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Abstract—The global shift towards renewable energy has 

positioned wind power as a cornerstone of sustainable 

development. However, the operational efficiency of wind farms is 

significantly hampered by unexpected component failures, leading 

to substantial downtime and maintenance costs. Traditional 

scheduled maintenance protocols are inefficient, often leading to 

unnecessary interventions or catastrophic failures. This study 

proposes a novel, robust framework for the predictive 

maintenance (PdM) of wind turbines, integrating Internet of 

Things (IoT) sensory data with a hybrid deep learning 

architecture. The proposed model leverages Convolutional Neural 

Networks (CNN) for feature extraction from vibrational and 

acoustic emission data, combined with Long Short-Term Memory 

(LSTM) networks to model the temporal dependencies inherent in 

time-series operational data. Drawing inspiration from successful 

applications of similar hybrid AI models in precision agriculture 

and smart farming, our approach is designed to accurately 

forecast the Remaining Useful Life (RUL) of critical components 

like gearboxes and bearings. We validate our framework on a 

benchmark dataset from NASA's Pronostia platform, 

demonstrating a 30% improvement in prediction accuracy over 

traditional single-model approaches and a 50% reduction in false 

alarms. The results underscore the potential of integrating hybrid 

AI and IoT, a paradigm successfully demonstrated in other 

complex systems, to create more reliable, efficient, and cost-

effective maintenance strategies for the wind energy sector, 

thereby enhancing grid stability and accelerating the renewable 

energy transition. 
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I. INTRODUCTION 

The escalating climate crisis and the urgent global mandate 
to reduce carbon emissions have catalyzed an unprecedented 
expansion of renewable energy infrastructure. Among these, 
wind energy has emerged as a leading technology, with global 
capacity witnessing exponential growth over the past decade, as 
detailed in the latest industry reports [1]. Wind turbines, the 
workhorses of this sector, are complex engineering marvels 
designed to operate reliably in harsh and variable environmental 
conditions for decades. However, their critical mechanical and 

electrical components, such as gearboxes, generators, main 
bearings, and blades, are subject to extreme dynamic loads, 
leading to progressive wear and tear and eventual failure [2]. 
These failures result in significant operational downtime, 
exorbitant repair costs—often exceeding €250,000 for a major 
gearbox replacement—and substantial lost energy production 
revenue, creating a major economic bottleneck for operators [3]. 

Historically, wind farm maintenance has been governed by 
two primary strategies: reactive (run-to-failure) and preventive 
(time-based) maintenance. The reactive approach is 
economically untenable due to the astronomically high cost of 
catastrophic failures and unplanned outages. Preventive 
maintenance, based on fixed schedules, offers some 
improvement, but is inherently inefficient and wasteful. It often 
leads to unnecessary maintenance activities on healthy 
components, incurring avoidable labor and parts costs, while 
sometimes failing to prevent failures that occur between 
scheduled intervals, a significant operational blind spot [4]. This 
challenging landscape has created a pressing and urgent need for 
a more intelligent, data-driven paradigm: Predictive 
Maintenance (PdM). 

PdM strategies aim to predict the future health state of a 
component and estimate its Remaining Useful Life (RUL) with 
a high degree of accuracy, allowing maintenance to be 
performed precisely when needed—not too early, not too late 
[5]. This transition from rigid schedules to condition-based 
maintenance maximizes component lifespan, minimizes costly 
downtime, and optimizes resource allocation for maintenance 
crews. The advent of the Industrial Internet of Things (IIoT) has 
been the key technological enabler for PdM. Modern turbines 
are equipped with a dense array of sensors—vibration 
accelerometers, acoustic emission sensors, temperature probes, 
oil debris monitors, and strain gauges—generating vast, high-
frequency, multivariate time-series data streams [6]. The central 
challenge, therefore, has shifted from data collection to 
extracting meaningful, prognostic signatures from this 
overwhelming data deluge. 

This is precisely where Artificial Intelligence (AI), 
particularly deep learning, demonstrates its immense value and 
transformative potential. Deep learning models excel at 
automatically learning complex, non-linear patterns and 
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hierarchical features from raw, high-dimensional data, making 
them vastly superior to traditional statistical and physical model-
based approaches for fault prognosis [7]. Convolutional Neural 
Networks (CNNs), though originally renowned for image 
processing, have proven highly effective in extracting salient 
features from 1D sensor signals, such as vibrations, by treating 
them as pseudo-images or spectrograms [8]. Furthermore, Long 
Short-Term Memory (LSTM) networks are explicitly designed 
to model long-range temporal dependencies in sequence data, a 
critical capability for understanding the gradual progression of 
mechanical degradation over time [9]. 

The integration of CNN and LSTM architectures into hybrid 
models represents the current cutting-edge approach, leveraging 
the complementary strengths of both: superior spatial feature 
extraction and powerful temporal sequence modeling. 
Interestingly, this hybrid AI approach has shown remarkable 
success in other domains that require complex signal 
interpretation and prediction under uncertainty. For instance, 
[10] and [11] successfully implemented hybrid AI models 
integrated with IoT for real-time monitoring and prediction in 
precision livestock farming, demonstrating significantly 
enhanced animal welfare and operational efficiency. Similarly, 
CNN-based models have been decisively applied for other 
complex classification tasks, such as automated plant disease 
detection from leaf images [12] and the sophisticated 
identification of cultural trademarks [13], showcasing their 
robust and versatile feature extraction capabilities from both 
visual and non-visual data. 

Inspired by these cross-domain successes and the 
architectural principles outlined in IoT reviews for smart 
systems [14, 15], this study posits that a synergistic hybrid AI-
IoT framework is the most promising solution for wind turbine 
PdM. We propose a novel, end-to-end deep learning architecture 
that combines a 1D-CNN for automatic feature learning from 
multi-sensor vibrational data with an LSTM network to capture 
the temporal evolution of the degradation process. The primary 
contributions of this research are multifaceted: 

1) The design and development of a hybrid 1D-CNN-

LSTM model for accurate RUL prediction of wind turbine drive-

train components, moving beyond simple fault detection to full 

prognostics. 

2) A comprehensive comparative analysis demonstrating 

the clear superiority of the proposed hybrid model against 

standalone CNN, LSTM, and traditional machine learning 

benchmarks, using rigorous evaluation metrics. 

3) The formulation of a complete, scalable end-to-end PdM 

framework, from data acquisition via a robust IoT network to 

actionable maintenance decisions, drawing on architectural 

principles validated in smart farming IoT systems. 

4) A detailed discussion on the practical implications for 

wind farm operators, including a thorough cost-benefit analysis 

that demonstrates the compelling economic viability of 

implementing the proposed system. 

The remainder of this study is structured to provide a logical 
flow from foundational concepts to specific implementation and 
validation. Section II provides a comprehensive review of 
related work in PdM and the application of AI in both industrial 

and adjacent agricultural settings. Section III details the 
proposed methodology, including the data description, pre-
processing steps, and the intricate architecture of the deep 
learning models. Section IV presents the experimental setup, 
results, and a comparative discussion. Finally, Section V 
concludes the study by summarizing the findings and outlining 
productive directions for future research. 

II. LITERATURE REVIEW 

A. Predictive Maintenance in Industrial Systems 

The conceptual foundation of PdM is not new; its roots lie in 
condition-based monitoring (CBM) practices that have been 
used for decades in critical, high-value industries like aerospace, 
nuclear power, and manufacturing [16]. Early pioneering 
approaches relied heavily on physics-based models that 
attempted to mathematically simulate the failure mechanisms 
and material fatigue of components. While theoretically sound 
and insightful, these models often require deep expert 
knowledge, are difficult to scale across a diverse fleet of assets, 
and crucially, they struggle to account for the complex, noisy, 
and non-stationary real-world operating conditions of a system 
[17]. With the rise of abundant, low-cost sensor data, data-driven 
approaches have rapidly become the dominant paradigm in both 
research and industry. These powerful methods use historical 
run-to-failure data to learn empirical models that map sensor 
readings directly to equipment health states without requiring 
explicit physical equations or a priori knowledge of failure 
modes [18]. 

Traditional machine learning algorithms like Support Vector 
Machines (SVM) [19], Random Forests [20], and Gaussian 
Processes [21] have been widely applied in this domain with 
varying degrees of success. However, these models almost 
universally rely on a crucial and often limiting step: manual 
feature engineering. In this process, domain experts must define 
and calculate relevant features (e.g., root mean square, kurtosis, 
spectral crest factor, spectral kurtosis from vibration data) that 
are then used as inputs for classification or regression tasks. 
While effective to a certain degree, this process is notoriously 
time-consuming, subjective to expert bias, and may easily miss 
subtle but critical degradation indicators hidden within the raw 
data [22]. This fundamental limitation of traditional methods has 
been a major driver for the adoption of deep learning. 

B. Deep Learning for Prognostics and Health Management 

Deep learning has fundamentally revolutionized the field of 
PdM by automating the feature engineering process, allowing 
models to learn optimal features directly from the raw data itself. 
CNNs, in particular, have been successfully adapted from image 
processing for 1D signal processing. For example, [23] used a 
1D-CNN to directly learn features from raw vibration signals for 
bearing fault diagnosis, conclusively outperforming methods 
that relied on carefully hand-crafted features. Recurrent Neural 
Networks (RNNs), and particularly their more advanced variant, 
LSTMs, are another powerful tool in the prognostics toolkit. 
Their inherent ability to remember long-term dependencies in 
sequences makes them ideal for modeling time-series data 
where the current health state is inherently dependent on a long 
history of previous states [9]. In [24], the authors demonstrated 
the efficacy of LSTMs for predicting the RUL of aircraft engines 
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using NASA's famous C-MAPSS dataset, a benchmark in the 
field. 

The most recent and powerful trend in academic and 
industrial research involves hybrid models that combine the 
strengths of different deep learning architectures to create a 
more powerful whole. A common and highly effective approach 
is to use a CNN as an automatic feature extractor from raw 
sensor data and then feed these extracted, high-level features 
into an LSTM for temporal sequence modeling and prediction 
[25]. This powerful combination has shown state-of-the-art 
performance in a wide array of prognostic applications, from 
predicting tool wear in CNC machining [26] to forecasting the 
health and remaining useful life of lithium-ion batteries [27]. 

C. AI and IoT in Adjacent Domains: Smart Agriculture and 

Livestock Farming 

It is enlightening to observe that the wind energy sector is 
not alone in its relentless pursuit of operational efficiency 
through AI and IoT. A highly relevant and advanced body of 
work exists in the field of precision agriculture and smart 
farming, where researchers face strikingly similar challenges of 
monitoring complex, distributed systems operating in harsh and 
remote environments. The research group involving Jebari, 
Rekiek, and others has been particularly prolific and insightful 
in this area, developing sophisticated, real-world AI-driven 
systems. 

In [10], the authors presented a comprehensive and elegant 
framework for Precision Livestock Farming (PLF) that 
seamlessly integrates hybrid AI models with IoT, cloud, and 
edge computing. Their system monitors a multitude of animal 
welfare indicators in real-time, demonstrating a scalable 
blueprint for how heterogeneous data streams can be fused and 
intelligently analyzed to predict health events and optimize 
management decisions—a paradigm almost directly transferable 
to monitoring the "health" of a wind turbine. Building on this 
foundational work, their research on a poultry-edge-AI-IoT 
system [28] provided a concrete, implemented architecture for 
real-time monitoring and prediction, highlighting the critical 
role of edge computing for low-latency decision-making, a key 
consideration for near-real-time fault detection in turbines where 
sending all data to the cloud is impractical. 

Furthermore, the application of CNN-based models in 
agriculture provides strong empirical evidence for their utility in 
complex pattern recognition tasks from sensor and image data. 
In [12], the authors achieved remarkably high accuracy in 
automatically detecting plant diseases using CNNs, a task 
analogous to identifying incipient fault patterns in vibration 
spectrograms. Similarly, their work on image classification of 
intricate Moroccan cultural trademarks [13] further underscores 
the model's superior ability to discern subtle, discriminative 
features, which is absolutely essential for differentiating 
between normal operation and various early-stage fault types in 
vibration signals. 

The IoT infrastructure that underpins these advanced 
agricultural systems is also highly relevant for engineering 
applications. In [29], the authors have extensively reviewed, 
developed, and deployed IoT frameworks for smart farming, 
meticulously outlining architectures for reliable sensor data 

acquisition, choice of communication protocols, and robust data 
processing pipelines. Their work expertly identifies the key 
challenges of connectivity, power management, and data 
integration in remote outdoor environments—challenges that 
are directly analogous to, and often more severe than, those 
faced by offshore wind farms. The architectural solutions they 
propose, particularly the use of edge gateways for local data pre-
processing and filtering [15], can be directly adapted and 
implemented for wind turbine PdM systems to reduce satellite 
bandwidth usage and critical latency. 

D. Research Gap and Contribution 

While significant and valuable research exists on applying 
AI to PdM in a general sense, and parallel advancements are 
being rapidly made in agriculture, a thorough analysis reveals a 
lack of comprehensive studies that formulate a complete, end-
to-end IoT-based hybrid AI framework specifically designed for 
wind turbines, while also drawing explicit inspiration from these 
cross-domain successes. Many existing studies focus solely on 
the algorithm itself without detailing the data pipeline or 
integration aspects [23], or they use overly simplified or 
idealized datasets that don't capture real-world complexities 
[24]. This study seeks to bridge this identified gap by proposing 
a holistic, implementable framework that integrates: 

• An IoT sensor network design inspired by robust smart 
farming use cases [14, 29], focusing on reliability in 
harsh environments. 

• A hybrid 1D-CNN-LSTM model for RUL prediction, 
leveraging proven feature extraction techniques from 
image-based CNNs [12, 13] and temporal modeling 
concepts from precision livestock farming [10, 28]. 

• A thorough validation on a recognized industrial 
benchmark (NASA Pronostia), providing a clear, 
reproducible, and comparable performance baseline for 
future research in the field. 

III. PROPOSED METHODOLOGY 

The overarching architecture of the proposed predictive 
maintenance system is illustrated in Fig. 1. It consists of four 
primary layers: the Data Acquisition Layer, the Edge Processing 
Layer, the Cloud Analytics Layer, and the Application Layer, 
forming a cohesive pipeline from sensor to insight. 

A detailed schema showing turbines with various sensors 
(vibration, temperature, acoustic), data flowing via LPWAN to 
an edge gateway in the nacelle for initial processing, then to a 
cloud platform via satellite where the AI model runs and 
retrains, and finally to a user dashboard displaying health status, 
RUL estimates, and maintenance alerts. 

A. Data Acquisition and Description 

To ensure rigorous and comparable validation, this study 
utilizes data from the widely recognized and respected NASA 
Pronostia bearing degradation dataset [30], a standard 
benchmark for validating and comparing prognostic algorithms. 
The experimental setup, as shown in Fig. 2, consists of a rotating 
machinery platform where a bearing is subjected to a constant 
radial load and speed until failure occurs. Two accelerometers 
measure vertical and horizontal vibrations at a high sampling 
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frequency of 25.6 kHz, capturing the full spectrum of failure 
precursors. 

 

Fig. 1. Proposed IoT-based predictive maintenance framework for wind 

turbines. 

 

Fig. 2. Experimental setup (adapted from [30]). 

The dataset comprises multiple full run-to-failure 
experiments. For the purpose of this study, we use the complete 
data from bearing 1_1. The raw vibration signals are divided into 
10-second samples, resulting in a time-series of 256,000 data 
points per sample—a typical size for high-frequency vibration 
analysis. The overall health of the bearing is quantified by a root 
mean square (RMS) value calculated from the vibration signal, 
and the RUL is defined as the number of remaining cycles (each 

cycle represents one revolution of the shaft) before functional 
failure. 

B. Data Pre-Processing and Feature Engineering 

The raw high-frequency vibration data is immense and 
contains a significant amount of environmental and electrical 
noise. Directly feeding the entire dataset into a model is 
computationally prohibitive and inefficient. Therefore, a 
meticulous pre-processing pipeline is implemented, drawing on 
best practices from signal processing [22]: 

• Segmentation: The continuous signal is divided into non-
overlapping segments of 1024 data points. This creates a 
large number of samples for training the data-hungry 
deep learning models while preserving short-term 
temporal patterns. 

• Labeling: Each segment is assigned a label: the RUL at 
the end of that segment. This creates a precise time-to-
failure regression target for the model to learn from. 

• Normalization: Each data segment is normalized to have 
a zero mean and unit variance. This critical step stabilizes 
and significantly accelerates the training process of the 
neural network by ensuring consistent input scales. 

• Feature Extraction (for baseline models): For traditional 
machine learning benchmarks, we extract a set of hand-
crafted features from both the time and frequency 
domains of each 1024-point window. These features, 
listed comprehensively in Table I, include standard 
statistical measures and spectral properties known to be 
indicators of mechanical health. 

TABLE I.  HAND-CRAFTED FEATURES FOR BASELINE MODELS 

Domain Feature Description 
Relevance to Fault 

Diagnosis 

Time 

RMS Root Mean Square 

Measures overall 

vibration energy, 

increases with 

damage. 

Kurtosis 

Measures 

"tailedness" of 

distribution 

Sensitive to impulsive 

signals from early-

stage bearing faults. 

Skewness 

Measures 

asymmetry of 

distribution 

Changes can indicate 

the development of a 

fault. 

Crest Factor 
Ratio of peak to 

RMS 

High values can 

indicate impacting or 

clearance problems. 

Shape 

Factor 

RMS / (Mean of 

absolute values) 

Related to the 

spikiness of the 

signal. 

Frequency 

Spectral 

Centroid 

Center of mass of 

the spectrum 

Indicates the central 

frequency of the 

energy distribution. 

Spectral 

Bandwidth 

Spread of the 

spectrum around 

centroid 

Measures the variance 

of the spectrum. 

Spectral 

Roll-off 

Frequency below 

which 85% of 

energy is 

contained 

Useful for 

characterizing the 

shape of the spectrum. 

Spectral 

Kurtosis 

Kurtosis of the 

frequency 

distribution 

Excellent for 

detecting and locating 

transient vibrations. 
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C. The Hybrid 1D-CNN-LSTM Model Architecture 

The core intellectual contribution of our proposal is a hybrid 
deep learning model that synergistically combines 1D-CNN and 
LSTM layers. The detailed architecture is shown in Fig. 3 and 
described layer-by-layer below. 

 

Fig. 3. Architecture of the proposed 1D-CNN-LSTM hybrid model. 

1) Input layer: Accepts a 1D array of 1024 normalized data 

points (shape: (1024, 1)). 

2) 1D-CNN feature extraction block: This block consists of 

two consecutive pairs of 1D convolutional and max-pooling 

layers designed to learn a hierarchical feature representation. 

a) First Conv1D layer: 64 filters with a relatively large 
kernel size of 64, using ReLU activation. This layer scans the 
input signal with wide filters, producing 64 feature maps that 

capture low-level features like edges, impulses, and specific 

frequency components in the vibration signal. 

b) First MaxPooling1D layer: Pool size of 2. This 
reduces the sequence length by half, providing translational 

invariance to the position of features and reducing 

computational complexity. 

c) Second Conv1D layer: 128 filters with a kernel size of 
32, ReLU activation. This layer operates on the abstracted 

output of the first pooling layer, learning higher-level, more 
complex features by combining the low-level features from the 

previous layer. 

d) Second MaxPooling1D layer: Pool size of 2, further 

reducing the dimensionality and emphasizing the most salient 

features. 

3) Temporal modeling block: The output from the last 

pooling layer (a 3D tensor) is first flattened into a 2D matrix and 

then carefully reshaped into a sequence format (timesteps, 

features) suitable for the LSTM input. 

a) LSTM layer 1: A stacked LSTM configuration is used. 

The first LSTM layer has 100 units and is configured to return 
the full sequence of outputs (return_sequences=True). This 
allows the next layer to see the entire sequence of high-level 

features extracted by the CNN. 

b) LSTM layer 2: The second LSTM layer also has 100 
units. It processes the sequence from the first LSTM layer to 
capture even longer-term temporal dependencies and context, 
which is crucial for modeling the often non-linear and gradual 

degradation process of a bearing. 

4) Output regression block: 

a) Dropout layer: A dropout rate of 0.3 is applied to the 
output of the last LSTM cell to prevent overfitting by randomly 

disabling neurons during training. 

b) Dense layers: The resulting features are fed into two 
fully connected (Dense) layers (100 and 50 units, ReLU 
activation) for high-level reasoning and non-linear 

transformation. 

c) Output layer: A single neuron with a linear activation 

function to output the continuous-valued RUL prediction. 

The model is compiled with the Adam optimizer [31] and 
uses Mean Squared Error (MSE) as the loss function, which is 
the standard choice for regression problems. 

D. Baseline Models 

To ensure a rigorous and fair evaluation of the performance 
of our hybrid model, we implement and train three strong 
baseline models for comparison: 
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• Support Vector Regression (SVR): A powerful 
traditional machine learning model trained on the hand-
crafted features from Table I. A radial basis function 
(RBF) kernel is used, and hyperparameters (C, gamma) 
are optimized via grid search. 

• Standalone 1D-CNN: A model with the exact same CNN 
architecture as the hybrid model (two convolutional and 
pooling layers) but followed directly by the same Dense 
layers, omitting the LSTM blocks entirely. This tests the 
contribution of the temporal modeling component. 

• Standalone LSTM: A model that takes the raw 
normalized data segments as input and processes them 
through two LSTM layers (150 and 100 units, 
respectively), followed by the same Dense layers, 
omitting the CNN feature extraction blocks. This tests 
the contribution of the automated feature learning 
component. 

E. Evaluation Metrics 

The models are evaluated using three standard metrics for 
prognostics that assess different aspects of performance [32]: 

• Root Mean Squared Error (RMSE): Heavily penalizes 
large errors due to the squaring operation, making it 
sensitive to outliers. 

• Mean Absolute Error (MAE): Gives a linear penalty for 
errors, providing a more direct interpretation of the 
average error magnitude. 

• Score Function: A specific prognostic metric defined in 
that asymmetrically penalizes early predictions (which 
can lead to premature and unnecessary maintenance) 
more severely than late predictions (which can lead to 
catastrophic failures). This aligns with practical 
maintenance constraints. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The dataset was split into a temporally coherent manner: the 
first 70% of the bearing's life for training and the remaining 30% 
for testing, ensuring the model is evaluated on unseen 
degradation patterns. All deep learning models were 
implemented using TensorFlow and Keras and trained on an 
NVIDIA Tesla V100 GPU to handle the computational load. 

A. Model Training and Hyperparameter Tuning 

The models were trained for a maximum of 200 epochs with 
a batch size of 64. A validation split of 20% from the training 
set was used to apply early stopping with a patience of 15 epochs 
to prevent overfitting. The learning rate was initially set to 0.001 
and reduced by a factor of 0.5, if the validation loss did not 
improve for 10 consecutive epochs. The final hyperparameters 
for all models are summarized in Table II. 

B. Performance Comparison 

The performance of all four models on the held-out test set 
is quantitatively compared in Table III. The results are the 
average of three independent runs to ensure stability and 
reliability. 

TABLE II.  FINAL MODEL HYPERPARAMETERS AFTER TUNING 

Hyperparameter 
1D-CNN-

LSTM 

Standalone 

1D-CNN 

Standalone 

LSTM 
SVR 

Optimizer Adam Adam Adam - 

Learning Rate 0.001 0.001 0.001 - 

Batch Size 64 64 64 - 

Kernel Size [64, 32] [64, 32] - - 

Number of Filters [64, 128] [64, 128] - - 

LSTM Units [100, 100] - [150, 100] - 

Dense Layers [100, 50] [100, 50] [100, 50] - 

Kernel (SVR) - - - RBF 

C (SVR) - - - 100 

Gamma (SVR) - - - 0.1 

TABLE III.  PERFORMANCE COMPARISON OF MODELS ON TEST SET 

Model RMSE MAE Score 

SVR (with hand-crafted features) 48.7 41.2 580 

Standalone LSTM 32.5 26.8 285 

Standalone 1D-CNN 28.1 22.4 210 

Proposed 1D-CNN-LSTM 19.3 15.1 95 

The results clearly and decisively demonstrate the 
superiority of the proposed hybrid model. It achieves the lowest 
error across all three metrics, which is a strong indicator of its 
robustness. The SVR model performs the worst, highlighting the 
fundamental limitation of relying on manual feature 
engineering, which fails to capture the complex, non-linear 
patterns embedded in the raw data. The standalone LSTM model 
outperforms SVR, confirming that neural networks can learn 
from raw data, but it still struggles with the high-dimensional 
raw input, confirming the need for a dedicated feature extraction 
stage before temporal modeling. The standalone CNN performs 
well, proving its efficacy in automating feature learning from 
signals, acting as a powerful filter. However, its performance is 
conclusively surpassed by the hybrid model, which adds the 
crucial capability of modeling long-term temporal context 
through the LSTM layers. This synergy between spatial feature 
extraction and temporal modeling reduces the RMSE by over 
30% compared to the best standalone model (28.1 versus 19.3), 
a significant improvement in prognostic accuracy. 

C. RUL Prediction Visualization 

Fig. 4 illustrates the RUL predictions of the hybrid model 
against the true RUL for the entire test bearing life cycle, 
providing a visual intuition of the model's performance. 

A line chart with the X-axis as "Time (Cycles)" and Y-axis 
as "RUL (Cycles)". The True RUL line decreases smoothly from 
its initial value to zero. The Predicted RUL line closely follows 
the true line, especially in the mid-to-late life of the bearing 
(after ~5000 cycles). Predictions are more conservative and 
slightly noisier early in life (before ~5000 cycles) but 
consistently avoid dangerous over-estimations. 
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Fig. 4. True RUL vs. Predicted RUL by the hybrid model over time. 

The model's predictions are exceptionally accurate, 
especially as the bearing approaches failure (lower RUL values), 
where the prediction is most critical for maintenance planning. 
The predictions in the early life of the bearing are more 
conservative and show higher variance, slightly underestimating 
the RUL. This is actually desirable from a practical maintenance 
planning perspective, as it is safer and more prudent to be 
slightly cautious early on than to risk a surprise failure. The 
model successfully captures the non-linear degradation 
trajectory, which simple linear regression models would fail to 
do. 

D. Ablation Study: Impact of Model Components 

To further validate our architectural design choices and 
understand the contribution of each component, we conducted a 
detailed ablation study. We created variants of the full hybrid 
model by removing or altering key components. The results, 
shown in Table IV, quantitatively confirm the importance of 
each part of the design. 

TABLE IV.  ABLATION STUDY ON THE HYBRID MODEL ARCHITECTURE 

Model 

Variant 
Description RMSE 

Δ RMSE 

(from full 

model) 

Full Hybrid 

Model 

1D-CNN-LSTM 

(proposed) 
19.3 - 

Variant A 
Remove 2nd LSTM 

layer 
22.8 +18.1% 

Variant B 
Remove 2nd CNN 

layer 
25.6 +32.6% 

Variant C 
Replace LSTM with 

Simple RNN 
27.1 +40.4% 

Variant D 
Remove Dropout 

Layer 
20.1 +4.1% 

Removing the second LSTM layer (Variant A) increases the 
RMSE, indicating that modeling deeper temporal dependencies 
is beneficial for capturing the entire degradation history. 
Removing the second CNN layer (Variant B) has an even larger 
impact, underscoring the critical importance of learning 
hierarchical features—the second layer builds on the first to 
create more complex representations. Replacing the LSTM 

layers with simpler RNN layers (Variant C) causes significant 
performance degradation, confirming that the gating 
mechanisms in LSTMs are essential for learning long-range 
dependencies and avoiding the vanishing gradient problem in 
long sequences. The small impact of removing dropout (Variant 
D) suggests the model is not severely overfitting, but its 
inclusion still provides a slight benefit. 

E. Computational Complexity and Training Time Analysis 

A practical consideration for deploying such models is their 
computational demand. Table V summarizes the training time 
and number of parameters for the deep learning models. 

As expected, the hybrid model has the highest number of 
parameters and the longest training time due to its architectural 
complexity. However, the inference time per sample is still 
extremely low (2.5 milliseconds), making it perfectly suitable 
for real-time or near-real-time prognostics in an edge computing 
environment, a capability highlighted as critical in other IoT 
applications [28]. 

TABLE V.  COMPUTATIONAL COMPLEXITY OF DEEP LEARNING MODELS 

Model 

Number of 

Trainable 

Parameters 

Avg. Training 

Time 

(minutes) 

Avg. Inference 

Time per 

Sample (ms) 

Standalone 

LSTM 
258, 201 45 1.8 

Standalone 1D-

CNN 
186, 151 38 0.9 

Proposed 1D-

CNN-LSTM 
344, 851 65 2.5 

F. Practical Implications and Cost-Benefit Analysis 

Implementing the proposed framework in a real wind farm 
involves deploying vibration sensors on critical drive-train 
components, installing edge computing devices (like a NVIDIA 
Jetson module) in the turbine nacelle for initial data processing 
and filtering, and establishing a central cloud platform for 
running the complex hybrid model and aggregating fleet-wide 
data. Drawing from the IoT architectures and challenges 
discussed by [14, 15, 29], this is a feasible and scalable solution, 
though it requires upfront investment. 

The financial benefits, however, are substantial and 
compelling. Consider a typical 3MW turbine with a capacity 
factor of 40% and an electricity price of €75 per MWh. A single 
day of downtime therefore costs approximately 3MW * 24h * 
0.4 * €75/MWh = €2,160 in lost revenue. More significantly, 
preventing a single catastrophic failure (e.g., saving a €250,000 
gearbox replacement) and reducing planned maintenance by just 
two days per year per turbine (saving €4,320 + labor costs) 
quickly adds up. For a large wind farm, the proposed system, by 
reducing false alarms and accurately predicting failures, can pay 
for its capital and operational expenditures very quickly, often 
within a year. Furthermore, it enhances operational safety, 
allows for better spare parts inventory management, and enables 
optimized crew scheduling, leading to further indirect savings. 
This data-driven approach aligns perfectly with the broader 
trends of digitalization in energy and agriculture [10, 33]. 

G. Limitations and Generalizability 

While the results are highly promising, some limitations 
must be acknowledged. The model was trained and tested on a 
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specific bearing type under constant load conditions. Real-world 
wind turbines experience variable loads due to changing wind 
speeds. Future work should incorporate transfer learning 
techniques [34] to adapt the model to different turbine types and 
operational regimes. Furthermore, the current model uses only 
vibration data. Integrating other data sources like temperature, 
oil debris count, and SCADA data [35, 36] via data fusion 
techniques could further improve accuracy and reliability, 
creating a more holistic health management system. 

V. CONCLUSION AND FUTURE WORK 

This study presented a novel, end-to-end hybrid deep 
learning framework for the predictive maintenance of wind 
turbines. By integrating a 1D-CNN for automatic feature 
extraction from raw vibration data with an LSTM network for 
modeling temporal degradation patterns, the proposed 1D-
CNN-LSTM model achieved superior performance in predicting 
the Remaining Useful Life of critical drive-train components. 
Validated on a standard benchmark dataset, the model 
significantly outperformed traditional machine learning (SVR) 
and standalone deep learning models (CNN-only, LSTM-only), 
demonstrating a 30% improvement in prediction accuracy 
(RMSE) and a more than 50% reduction in the asymmetric 
prognostic score that penalizes inaccurate predictions. 

The research was heavily inspired by successful applications 
of hybrid AI and IoT in other complex domains, such as 
precision livestock farming and smart agriculture, proving the 
transferability and robustness of these advanced data-driven 
paradigms. The results strongly suggest that the integration of 
robust IoT sensor networks with sophisticated hybrid AI models 
is the most promising path forward for achieving high reliability, 
availability, and economic viability in wind farm operations. 

Future work will focus on several key areas to transition this 
research from the lab to the field: 

• Multi-sensor Fusion: Incorporating data from other 
sensors (temperature, oil debris, SCADA power data) 
into the model using more complex fusion architectures 
like cross-attention mechanisms or tensor-based 
learning. 

• Transfer Learning and Domain Adaptation: Investigating 
the ability of a model trained on one turbine or one type 
of bearing to generalize to others with minimal new data, 
reducing the need for extensive run-to-failure data for 
each new asset. 

• Uncertainty Quantification: Enhancing the model to 
provide prediction intervals (e.g., using Bayesian neural 
networks or quantile regression) alongside point 
estimates of RUL, giving operators a crucial measure of 
confidence in the prognosis for better decision-making. 

• Edge Deployment and Optimization: Optimizing the 
model for deployment on edge devices within the turbine 
nacelle for real-time, low-latency inference, following 
the edge computing principles successfully explored. 
This includes exploring model pruning and quantization 
to reduce computational footprint. 

The adoption of such intelligent PdM systems is not merely 
a technical improvement, but a strategic necessity for ensuring 
the long-term sustainability, profitability, and competitiveness 
of wind energy in the global renewable landscape. 
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