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Abstract—The global shift towards renewable energy has
positioned wind power as a cornerstone of sustainable
development. However, the operational efficiency of wind farms is
significantly hampered by unexpected component failures, leading
to substantial downtime and maintenance costs. Traditional
scheduled maintenance protocols are inefficient, often leading to
unnecessary interventions or catastrophic failures. This study
proposes a novel, robust framework for the predictive
maintenance (PdM) of wind turbines, integrating Internet of
Things (IoT) sensory data with a hybrid deep learning
architecture. The proposed model leverages Convolutional Neural
Networks (CNN) for feature extraction from vibrational and
acoustic emission data, combined with Long Short-Term Memory
(LSTM) networks to model the temporal dependencies inherent in
time-series operational data. Drawing inspiration from successful
applications of similar hybrid AI models in precision agriculture
and smart farming, our approach is designed to accurately
forecast the Remaining Useful Life (RUL) of critical components
like gearboxes and bearings. We validate our framework on a
benchmark dataset from NASA's Pronostia platform,
demonstrating a 30% improvement in prediction accuracy over
traditional single-model approaches and a 50% reduction in false
alarms. The results underscore the potential of integrating hybrid
Al and IoT, a paradigm successfully demonstrated in other
complex systems, to create more reliable, efficient, and cost-
effective maintenance strategies for the wind energy sector,
thereby enhancing grid stability and accelerating the renewable
energy transition.
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I.  INTRODUCTION

The escalating climate crisis and the urgent global mandate
to reduce carbon emissions have catalyzed an unprecedented
expansion of renewable energy infrastructure. Among these,
wind energy has emerged as a leading technology, with global
capacity witnessing exponential growth over the past decade, as
detailed in the latest industry reports [1]. Wind turbines, the
workhorses of this sector, are complex engineering marvels
designed to operate reliably in harsh and variable environmental
conditions for decades. However, their critical mechanical and
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electrical components, such as gearboxes, generators, main
bearings, and blades, are subject to extreme dynamic loads,
leading to progressive wear and tear and eventual failure [2].
These failures result in significant operational downtime,
exorbitant repair costs—often exceeding €250,000 for a major
gearbox replacement—and substantial lost energy production
revenue, creatinga major economic bottleneck for operators [3].

Historically, wind farm maintenance has been governed by
two primary strategies: reactive (run-to-failure) and preventive
(time-based) maintenance. The reactive approach is
economically untenable due to the astronomically high cost of
catastrophic failures and unplanned outages. Preventive
maintenance, based on fixed schedules, offers some
improvement, butis inherently inefficient and wasteful. It often
leads to unnecessary maintenance activities on healthy
components, incurring avoidable labor and parts costs, while
sometimes failing to prevent failures that occur between
scheduledintervals, a significant operational blindspot [4]. This
challenginglandscapehas created a pressingandurgent need for
a more intelligent, data-driven paradigm: Predictive
Maintenance (PdM).

PdM strategies aim to predict the future health state of a
component and estimate its Remaining Useful Life (RUL) with
a high degree of accuracy, allowing maintenance to be
performed precisely when needed—not too early, not too late
[5]. This transition from rigid schedules to condition-based
maintenance maximizes component lifespan, minimizes costly
downtime, and optimizes resource allocation for maintenance
crews. The advent ofthe Industrial Internet of Things (IloT) has
been the key technological enabler for PdAM. Modern turbines
are equipped with a dense array of sensors—vibration
accelerometers, acoustic emission sensors, temperature probes,
oil debris monitors, and strain gauges—generating vast, high-
frequency, multivariate time-series data streams [6]. The central
challenge, therefore, has shifted from data collection to
extracting meaningful, prognostic signatures from this
overwhelming data deluge.

This is precisely where Artificial Intelligence (Al),
particularly deep learning, demonstrates its immense value and
transformative potential. Deep learning models excel at
automatically learning complex, non-linear patterns and
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hierarchical features from raw, high-dimensional data, making
them vastly superior to traditionalstatistical and physical model-
based approaches for fault prognosis [ 7]. Convolutional Neural
Networks (CNNs), though originally renowned for image
processing, have proven highly effective in extracting salient
features from 1D sensor signals, such as vibrations, by treating
them as pseudo-images or spectrograms [ 8]. Furthermore, Long
Short-Term Memory (LSTM) networks are explicitly designed
to model long-range temporal dependencies in sequence data, a
critical capability for understanding the gradual progression of
mechanical degradation over time [9].

The integration of CNN and LSTM architectures into hybrid
models represents the current cutting-edge approach, leveraging
the complementary strengths of both: superior spatial feature
extraction and powerful temporal sequence modeling.
Interestingly, this hybrid Al approach has shown remarkable
success in other domains that require complex signal
interpretation and prediction under uncertainty. For instance,
[10] and [11] successfully implemented hybrid Al models
integrated with IoT for real-time monitoring and prediction in
precision livestock farming, demonstrating significantly
enhanced animal welfare and operational efficiency. Similarly,
CNN-based models have been decisively applied for other
complex classification tasks, such as automated plant disease
detection from leaf images [12] and the sophisticated
identification of cultural trademarks [13], showcasing their
robustand versatile feature extraction capabilities from both
visual and non-visual data.

Inspired by these cross-domain successes and the
architectural principles outlined in IoT reviews for smart
systems [ 14, 15], this study posits that a synergistic hybrid Al-
IoT framework is the most promising solution for wind turbine
PdM. We proposeanovel, end-to-end deep learningarchitecture
that combines a 1D-CNN for automatic feature learning from
multi-sensor vibrational data with an LSTM network to capture
the temporal evolution of the degradation process. The primary
contributions of this research are multifaceted:

1) The design and development of a hybrid 1D-CNN-
LSTM model for accurate RUL prediction of wind turbinedrive-
train components, moving beyond simple fault detection to full
prognostics.

2) A comprehensive comparative analysis demonstrating
the clear superiority of the proposed hybrid model against
standalone CNN, LSTM, and traditional machine learning
benchmarks, using rigorous evaluation metrics.

3) The formulation of a complete, scalable end-to-end PAM
framework, from data acquisition via a robust IoT network to
actionable maintenance decisions, drawing on architectural
principles validated in smart farming loT systems.

4) A detailed discussion on the practical implications for
wind farm operators, including a thorough cost-benefit analysis
that demonstrates the compelling economic viability of
implementing the proposed system.

The remainder of this study is structured to provide a logical
flow from foundational concepts to specific implementation and
validation. Section II provides a comprehensive review of
related work in PAM and the application of Alin both industrial
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and adjacent agricultural settings. Section Il details the
proposed methodology, including the data description, pre-
processing steps, and the intricate architecture of the deep
learning models. Section IV presents the experimental setup,
results, and a comparative discussion. Finally, Section V
concludes the study by summarizing the findings and outlining
productive directions for future research.

II. LITERATURE REVIEW

A. Predictive Maintenance in Industrial Systems

The conceptual foundation of PAM is not new; its roots lie in
condition-based monitoring (CBM) practices that have been
used for decades in critical, high-value industries like aerospace,
nuclear power, and manufacturing [16]. Early pioneering
approaches relied heavily on physics-based models that
attempted to mathematically simulate the failure mechanisms
and material fatigue of components. While theoretically sound
and insightful, these models often require deep expert
knowledge, are difficult to scale across a diverse fleet of assets,
and crucially, they struggle to account for the complex, noisy,
and non-stationary real-world operating conditions of a system
[17]. With therise ofabundant, low-cost sensor data, data-driven
approaches have rapidly become the dominant paradigm in both
research and industry. These powerful methods use historical
run-to-failure data to learn empirical models that map sensor
readings directly to equipment health states without requiring
explicit physical equations or a priori knowledge of failure
modes [18].

Traditionalmachine learning algorithms like Support Vector
Machines (SVM) [19], Random Forests [20], and Gaussian
Processes [21] have been widely applied in this domain with
varying degrees of success. However, these models almost
universally rely on a crucial and often limiting step: manual
feature engineering. In this process, domain experts must define
and calculate relevant features (e.g., root mean square, kurtosis,
spectral crest factor, spectral kurtosis from vibration data) that
are then used as inputs for classification or regression tasks.
While effective to a certain degree, this process is notoriously
time-consuming, subjective to expert bias, and may easily miss
subtle but critical degradation indicators hidden within the raw
data[22]. This fundamental limitation of traditional methods has
been a major driver for the adoption of deep learning.

B. Deep Learning for Prognostics and Health Management

Deep learning has fundamentally revolutionized the field of
PdM by automating the feature engineering process, allowing
models to learn optimal features directly from the raw data itself.
CNNes, in particular,havebeen successfully adapted from image
processing for 1D signal processing. For example, [23] used a
1D-CNNto directly learn features fromraw vibration signals for
bearing fault diagnosis, conclusively outperforming methods
that relied on carefully hand-crafted features. Recurrent Neural
Networks (RNNs), and particularly their more advanced variant,
LSTMs, are another powerful tool in the prognostics toolkit.
Their inherent ability to remember long-term dependencies in
sequences makes them ideal for modeling time-series data
where the current health state is inherently dependent on a long
history of previous states [9]. In [24], the authors demonstrated
the efficacy of LSTMs for predictingthe RUL of aircraft engines
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using NASA's famous C-MAPSS dataset, a benchmark in the
field.

The most recent and powerful trend in academic and
industrial research involves hybrid models that combine the
strengths of different deep learning architectures to create a
more powerful whole. Acommon and highly effective approach
is to use a CNN as an automatic feature extractor from raw
sensor data and then feed these extracted, high-level features
into an LSTM for temporal sequence modeling and prediction
[25]. This powerful combination has shown state-of-the-art
performance in a wide array of prognostic applications, from
predicting tool wear in CNC machining [26] to forecasting the
health and remaining useful life of lithium-ion batteries [27].

C. Al and IoTin Adjacent Domains: Smart Agriculture and
Livestock Farming

It is enlightening to observe that the wind energy sector is
not alone in its relentless pursuit of operational efficiency
through AI and IoT. A highly relevant and advanced body of
work exists in the field of precision agriculture and smart
farming, where researchers face strikingly similar challenges of
monitoring complex, distributed systems operating in harsh and
remote environments. The research group involving Jebari,
Rekiek, and others has been particularly prolific and insightful
in this area, developing sophisticated, real-world Al-driven
systems.

In [10], the authors presented a comprehensive and elegant
framework for Precision Livestock Farming (PLF) that
seamlessly integrates hybrid Al models with IoT, cloud, and
edge computing. Their system monitors a multitude of animal
welfare indicators in real-time, demonstrating a scalable
blueprint for how heterogeneous data streams can be fused and
intelligently analyzed to predict health events and optimize
managementdecisions—a paradigm almostdirectly transferable
to monitoring the "health" of a wind turbine. Building on this
foundational work, their research on a poultry-edge-Al-loT
system [28] provided a concrete, implemented architecture for
real-time monitoring and prediction, highlighting the critical
role of edge computing for low-latency decision-making, a key
consideration for near-real-time fault detectionin turbines where
sending all data to the cloud is impractical.

Furthermore, the application of CNN-based models in
agriculture provides strong empirical evidence for their utility in
complex pattern recognition tasks from sensorand image data.
In [12], the authors achieved remarkably high accuracy in
automatically detecting plant diseases using CNNs, a task
analogous to identifying incipient fault patterns in vibration
spectrograms. Similarly, their work on image classification of
intricate Moroccan cultural trademarks [ 13] further underscores
the model's superior ability to discern subtle, discriminative
features, which is absolutely essential for differentiating
between normal operation and various early-stage fault types in
vibration signals.

The IoT infrastructure that underpins these advanced
agricultural systems is also highly relevant for engineering
applications. In [29], the authors have extensively reviewed,
developed, and deployed IoT frameworks for smart farming,
meticulously outlining architectures for reliable sensor data

Vol. 16, No. 10, 2025

acquisition, choice of communication protocols, and robust data
processing pipelines. Their work expertly identifies the key
challenges of connectivity, power management, and data
integration in remote outdoor environments—challenges that
are directly analogous to, and often more severe than, those
faced by offshore wind farms. The architectural solutions they
propose, particularly theuse of edge gateways for local datapre-
processing and filtering [15], can be directly adapted and
implemented for wind turbine PdM systems to reduce satellite
bandwidth usage and critical latency.

D. Research Gap and Contribution

While significant and valuable research exists on applying
Al to PdM in a general sense, and parallel advancements are
beingrapidly made in agriculture, a thorough analysis reveals a
lack of comprehensive studies that formulate a complete, end-
to-end loT-based hybrid Al framework specifically designed for
wind turbines, while also drawing explicitinspiration from these
cross-domain successes. Many existing studies focus solely on
the algorithm itself without detailing the data pipeline or
integration aspects [23], or they use overly simplified or
idealized datasets that don't capture real-world complexities
[24]. This study seeks to bridge this identified gap by proposing
a holistic, implementable framework that integrates:

e An IoT sensor network design inspired by robust smart
farming use cases [14, 29], focusing on reliability in
harsh environments.

e A hybrid 1D-CNN-LSTM model for RUL prediction,
leveraging proven feature extraction techniques from
image-based CNNs [12, 13] and temporal modeling
concepts from precision livestock farming [10, 28].

e A thorough validation on a recognized industrial
benchmark (NASA Pronostia), providing a clear,
reproducible, and comparable performance baseline for
future research in the field.

III. PROPOSED METHODOLOGY

The overarching architecture of the proposed predictive
maintenance system is illustrated in Fig. 1. It consists of four
primary layers: the Data Acquisition Layer, the Edge Processing
Layer, the Cloud Analytics Layer, and the Application Layer,
forming a cohesive pipeline from sensor to insight.

A detailed schema showing turbines with various sensors
(vibration, temperature, acoustic), data flowing via LPWAN to
an edge gateway in the nacelle for initial processing, then to a
cloud platform via satellite where the Al model runs and
retrains, and finally to a user dashboard displaying health status,
RUL estimates, and maintenance alerts.

A. Data Acquisition and Description

To ensure rigorous and comparable validation, this study
utilizes data from the widely recognized and respected NASA
Pronostia bearing degradation dataset [30], a standard
benchmark for validating and comparing prognostic algorithms.
The experimental setup, as shown in Fig. 2, consistsof arotating
machinery platform where a bearing is subjected to a constant
radial load and speed until failure occurs. Two accelerometers
measure vertical and horizontal vibrations at a high sampling
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frequency of 25.6 kHz, capturing the full spectrum of failure
precursors.
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Fig. 1. Proposed IoT-based predictive maintenance framework for wind
turbines.
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Fig.2. Experimentalsetup (adapted from [30]).

The dataset comprises multiple full run-to-failure
experiments. For the purpose of this study, we use the complete
datafrombearing1 1. Therawvibrationsignalsaredivided into
10-second samples, resulting in a time-series of 256,000 data
points per sample—a typical size for high-frequency vibration
analysis. The overall health of the bearing is quantified by a root
mean square (RMS) value calculated fromthe vibration signal,
and the RUL is defined as the number of remaining cycles (each
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cycle represents one revolution of the shaft) before functional
failure.

B. Data Pre-Processing and Feature Engineering

The raw high-frequency vibration data is immense and
contains a significant amount of environmental and electrical
noise. Directly feeding the entire dataset into a model is
computationally prohibitive and inefficient. Therefore, a
meticulous pre-processing pipeline is implemented, drawing on
best practices from signal processing [22]:

e Segmentation: The continuous signal is divided into non-
overlapping segments of 1024 data points. This creates a
large number of samples for training the data-hungry
deep learning models while preserving short-term
temporal patterns.

e Labeling: Each segment is assigned a label: the RUL at
the end of that segment. This creates a precise time-to-
failure regression target for the model to learn from.

e Normalization: Each data segment is normalized to have
azero mean and unitvariance. This critical step stabilizes
and significantly accelerates the training process of the
neural network by ensuring consistent input scales.

e Feature Extraction (for baseline models): For traditional
machine leaming benchmarks, we extract a set of hand-
crafted features from both the time and frequency
domains of each 1024-point window. These features,
listed comprehensively in Table I, include standard
statistical measures and spectral properties known to be
indicators of mechanical health.

TABLEI. HAND-CRAFTED FEATURES FOR BASELINE MODELS
Domain Feature Description Relevz}nce t0. Fault
Diagnosis
Measures overall
vibration ener
RMS Root Mean Square | . werey
increases with
damage.
Measures Sensitive to impulsive
Kurtosis "tailedness" of signals from early-
distribution stage bearing faults.
Ti Measures Changes can indicate
ime
Skewness asymmetry of the development of a
distribution fault.

High values can
indicate impacting or
clearance problems.
Related to the

Ratio of peak to

Crest Factor RMS

Shape RMS/ (Mean of spikiness of the
Factor absolute values) ;
signal.
Indicates the central
Spectral Center of mass of
. frequency of the
Centroid the spectrum T
energy distribution.
Spectral Spread of the Measures the variance
. spectrum around
Bandwidth . of the spectrum.
centroid
Frequency Frequency below
Spectral which 85% of Useful fOF .
. characterizing the
Roll-off energy is
. shape of the spectrum.
contained
Kurtosis of the Excellent for
Spectral . .
. frequency detecting and locating
Kurtosis s . . .
distribution transient vibrations.
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C. The Hybrid 1D-CNN-LSTM Model Architecture

The core intellectual contribution of our proposal is a hybrid
deep leamingmodel that synergistically combines 1 D-CNN and
LSTM layers. The detailed architecture is shownin Fig. 3 and
described layer-by-layer below.

Time-Series Sensor Data
Input

lD-C@L Block

1D Convolution Layer 1

l

ReLU Activation

l

1D Convolution Layer 2

i

ReLU Activation

i

Max Pooling

‘ Dropout ‘

LSTM Layer 1

LSTM Layer 2

Densg Block

Dense Layer 1

1

ReLU Activation

l

Dense Layer 2

1

ReLU Activation

.

Dense Output Layer

-

RUL Estimation

Fig.3. Architecture of the proposed 1D-CNN-LSTM hybrid model.
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1) Inputlayer: Acceptsa 1D array of 1024 normalized data
points (shape: (1024, 1)).

2) 1D-CNN feature extraction block: This block consists of
two consecutive pairs of 1D convolutional and max-pooling
layers designed to learn a hierarchical feature representation.

a) First ConviD layer: 64 filters with a relatively large
kernel size of 64, using ReLU activation. This layer scans the
input signal with wide filters, producing 64 feature maps that
capture low-level features like edges, impulses, and specific
frequency components in the vibration signal.

b) First MaxPoolinglD layer: Pool size of 2. This
reduces the sequence length by half, providing translational
invariance to the position of features and reducing
computational complexity.

¢) Second ConvID layer: 128 filters with a kernel size of
32, ReLU activation. This layer operates on the abstracted
output of the first pooling layer, learning higher-level, more
complex features by combining the low-level features from the
previous layer.

d) Second MaxPoolingl D layer: Pool size of 2, further
reducing the dimensionality and emphasizing the most salient
features.

3) Temporal modeling block: The output from the last
poolinglayer (a3Dtensor) s first flattened intoa 2D matrix and
then carefully reshaped into a sequence format (timesteps,
features) suitable for the LSTM input.

a) LSTM layer I: A stacked LSTM configuration is used.
The first LSTM layer has 100 units and is configured to retumn
the full sequence of outputs (return_sequences=True). This
allows the next layer to see the entire sequence of high-level
features extracted by the CNN.

b) LSTM layer 2: The second LSTM layer also has 100
units. It processes the sequence from the first LSTM layer to
capture even longer-term temporal dependencies and context,
which is crucial for modeling the often non-linear and gradual
degradation process of a bearing.

4) Output regression block:

a) Dropoutlayer: A dropoutrate of 0.3 is applied to the
output ofthe last LSTM cell to prevent overfitting by randomly
disabling neurons during training.

b) Dense layers: The resulting features are fed into two
fully connected (Dense) layers (100 and 50 units, ReLU
activation) for high-level reasoning and non-linear
transformation.

¢) Output layer: A single neuron with a linear activation
function to output the continuous-valued RUL prediction.

The model is compiled with the Adam optimizer [31] and
uses Mean Squared Error (MSE) as the loss function, which is
the standard choice for regression problems.

D. Baseline Models

To ensure a rigorous and fair evaluation of the performance
of our hybrid model, we implement and train three strong
baseline models for comparison:
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e Support Vector Regression (SVR): A powerful
traditional machine learning model trained on the hand-
crafted features from Table I. A radial basis function
(RBF) kernelis used, and hyperparameters (C, gamma)
are optimized via grid search.

e Standalone 1 D-CNN: A model with the exact same CNN
architecture as the hybrid model (two convolutional and
pooling layers) but followed directly by the same Dense
layers, omitting the LSTM blocks entirely. This tests the
contribution of the temporal modeling component.

e Standalone LSTM: A model that takes the raw
normalized data segments as input and processes them
through two LSTM layers (150 and 100 units,
respectively), followed by the same Dense layers,
omitting the CNN feature extraction blocks. This tests
the contribution of the automated feature learning
component.

E. Evaluation Metrics

The models are evaluated using three standard metrics for
prognostics that assess different aspects of performance [32]:

e Root Mean Squared Error (RMSE): Heavily penalizes
large errors due to the squaring operation, making it
sensitive to outliers.

e Mean Absolute Error (MAE): Givesa linear penalty for
errors, providing a more direct interpretation of the
average error magnitude.

e Score Function: A specific prognostic metric defined in
that asymmetrically penalizes early predictions (which
can lead to premature and unnecessary maintenance)
more severely than late predictions (which can lead to
catastrophic failures). This aligns with practical
maintenance constraints.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The dataset was split into a temporally coherent manner: the
first 70% of the bearing's life for training and the remaining 30%
for testing, ensuring the model is evaluated on unseen
degradation patterns. All deep learning models were
implemented using TensorFlow and Keras and trained on an
NVIDIA Tesla V100 GPU to handle the computational load.

A. Model Training and Hyperparameter Tuning

The models were trained for a maximum of200 epochs with
a batch size of 64. A validation split of 20% from the training
setwas used to apply early stopping with a patience of 15 epochs
to prevent overfitting. The learningrate was initially set to 0.001
and reduced by a factor of 0.5, if the validation loss did not
improve for 10 consecutive epochs. The final hyperparameters
for all models are summarized in Table II.

B. Performance Comparison

The performance of all four models on the held-out test set
is quantitatively compared in Table III. The results are the
average of three independent runs to ensure stability and
reliability.

Vol. 16, No. 10, 2025

TABLE II. FINAL MODEL HYPERPARAMETERS AFTER TUNING
1D-CNN- Standalone | Standalone
Hyperparameter LSTM ID-CNN LSTM SVR
Optimizer Adam Adam Adam
Leaming Rate 0.001 0.001 0.001
Batch Size 64 64 64
Kernel Size [64,32] [64,32]
Number of Filters | [64, 128] [64,128] -
LSTM Units [100, 100] - [150, 100]
Dense Layers [100, 50] [100, 50] [100, 50]
Kernel (SVR) - - - RBF
C (SVR) - - - 100
Gamma (SVR) - - - 0.1
TABLE III. PERFORMANCE COMPARISON OF MODELS ON TEST SET
Model RMSE MAE Score
SVR (with hand-crafted features) | 48.7 41.2 580
Standalone LSTM 325 26.8 285
Standalone 1D-CNN 28.1 224 210
Proposed 1D-CNN-LSTM 19.3 15.1 95

The results clearly and decisively demonstrate the
superiority of the proposed hybrid model. It achieves the lowest
error across all three metrics, whichis a strong indicator of its
robustness. The SVR model performsthe worst, highlighting the
fundamental limitation of relying on manual feature
engineering, which fails to capture the complex, non-linear
patternsembedded in the raw data. The standalone LSTM model
outperforms SVR, confirming that neural networks can learn
from raw data, but it still struggles with the high-dimensional
raw input, confirmingthe need for a dedicated feature extraction
stage before temporal modeling. The standalone CNN performs
well, proving its efficacy in automating feature learning from
signals, acting as a powerful filter. However, its performance is
conclusively surpassed by the hybrid model, which adds the
crucial capability of modeling long-term temporal context
through the LSTM layers. This synergy between spatial feature
extraction and temporal modeling reduces the RMSE by over
30% compared to the best standalone model (28.1 versus 19.3),
a significant improvement in prognostic accuracy.

C. RUL Prediction Visualization

Fig. 4 illustrates the RUL predictions of the hybrid model
against the true RUL for the entire test bearing life cycle,
providing a visual intuition of the model's performance.

A line chart with the X-axisas "Time (Cycles)" and Y -axis
as "RUL (Cycles)". The True RUL line decreases smoothly from
its initial value to zero. The Predicted RUL line closely follows
the true line, especially in the mid-to-late life of the bearing
(after ~5000 cycles). Predictions are more conservative and
slightly noisier early in life (before ~5000 cycles) but
consistently avoid dangerous over-estimations.
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True vs Predicted RUL Over Time
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Fig. 4. True RUL vs. Predicted RUL by the hybrid model over time.

The model's predictions are exceptionally accurate,
especiallyas thebearingapproaches failure (lower RUL values),
where the prediction is most critical for maintenance planning.
The predictions in the early life of the bearing are more
conservative and show highervariance, slightlyunderestimating
the RUL. Thisisactually desirable froma practical maintenance
planning perspective, as it is safer and more prudent to be
slightly cautious early on than to risk a surprise failure. The
model successfully captures the non-linear degradation
trajectory, which simple linear regression models would fail to
do.

D. Ablation Study: Impact of Model Components

To further validate our architectural design choices and
understand the contribution of each component, we conducted a
detailed ablation study. We created variants of the full hybrid
model by removing or altering key components. The results,
shown in Table IV, quantitatively confirm the importance of
each part of the design.

TABLEIV. ABLATION STUDY ON THE HYBRID MODEL ARCHITECTURE
A RMSE
Mo‘del Description RMSE (from full
Variant
model)
Full Hybrid 1D-CNN-LSTM 193 }
Model (proposed) )
Variant A f{emove 2nd LSTM 228 +18.1%
ayer
Variant B Remove 2nd CNN 256 132.6%
layer
. Replace LSTM with N
Variant C Simple RNN 27.1 +40.4%
Variant D Remove Dropout 20.1 +4.1%
Layer

Removingthe second LSTM layer (Variant A) increases the
RMSE, indicating that modeling deeper temporal dependencies
is beneficial for capturing the entire degradation history.
Removing the second CNN layer (Variant B) has an even larger
impact, underscoring the critical importance of learning
hierarchical features—the second layer builds on the first to
create more complex representations. Replacing the LSTM
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layers with simpler RNN layers (Variant C) causes significant
performance degradation, confirming that the gating
mechanisms in LSTMs are essential for learning long-range
dependencies and avoiding the vanishing gradient problem in
long sequences. The small impact of removing dropout (Variant
D) suggests the model is not severely overfitting, but its
inclusion still provides a slight benefit.

E. Computational Complexity and Training Time Analysis

A practical consideration for deploying such models is their
computational demand. Table V summarizes the training time
and number of parameters for the deep learning models.

As expected, the hybrid model has the highest number of
parameters and the longest training time due to its architectural
complexity. However, the inference time per sample is still
extremely low (2.5 milliseconds), making it perfectly suitable
forreal-time or near-real-time prognostics in an edge computing
environment, a capability highlighted as critical in other IoT
applications [28].

TABLE V. COMPUTATIONAL COMPLEXITY OF DEEP LEARNING MODELS
Number of Avg. Training | Avg. Inference
Model Trainable Time Time per

Parameters (minutes) Sample (ms)

Standalone

LSTM 258,201 45 1.8

Standalone 1D-

CNN 186, 151 38 0.9

Proposed 1D-

CNN-LSTM 344,851 65 2.5

F. Practical Implications and Cost-Benefit Analysis

Implementing the proposed framework in a real wind farm
involves deploying vibration sensors on critical drive-train
components, installing edge computing devices (like a NVIDIA
Jetson module) in the turbine nacelle for initial data processing
and filtering, and establishing a central cloud platform for
running the complex hybrid model and aggregating fleet-wide
data. Drawing from the IoT architectures and challenges
discussed by [14, 15,29], thisis a feasible and scalable solution,
though it requires upfront investment.

The financial benefits, however, are substantial and
compelling. Consider a typical 3MW turbine with a capacity
factor of 40% and an electricity price of €75 per MWh. A single
day of downtime therefore costs approximately 3SMW * 24h *
0.4 * €75/MWh = €2,160 in lost revenue. More significantly,
preventing a single catastrophic failure (e.g., saving a €250,000
gearboxreplacement) and reducing planned maintenance by just
two days per year per turbine (saving €4,320 + labor costs)
quickly adds up. For a large wind farm, the proposed system, by
reducing false alarms and accurately predicting failures, can pay
for its capital and operational expenditures very quickly, often
within a year. Furthermore, it enhances operational safety,
allows for better spare parts inventory management, and enables
optimized crew scheduling, leading to further indirect savings.
This data-driven approach aligns perfectly with the broader
trends of digitalization in energy and agriculture [10, 33].

G. Limitations and Generalizability

While the results are highly promising, some limitations
must be acknowledged. The model was trained and tested on a
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specificbearingtype under constant load conditions. Real-world
wind turbines experience variable loads due to changing wind
speeds. Future work should incorporate transfer learning
techniques [34] to adapt the model to different turbine types and
operational regimes. Furthermore, the current model uses only
vibration data. Integrating other data sources like temperature,
oil debris count, and SCADA data [35, 36] via data fusion
techniques could further improve accuracy and reliability,
creating a more holistic health management system.

V. CONCLUSION AND FUTURE WORK

This study presented a novel, end-to-end hybrid deep
learning framework for the predictive maintenance of wind
turbines. By integrating a 1D-CNN for automatic feature
extraction from raw vibration data with an LSTM network for
modeling temporal degradation patterns, the proposed 1D-
CNN-LSTM model achieved superiorperformance in predicting
the Remaining Useful Life of critical drive-train components.
Validated on a standard benchmark dataset, the model
significantly outperformed traditional machine learning (SVR)
and standalone deep leaming models (CNN-only, LSTM-only),
demonstrating a 30% improvement in prediction accuracy
(RMSE) and a more than 50% reduction in the asymmetric
prognostic score that penalizes inaccurate predictions.

Theresearchwas heavilyinspired by successful applications
of hybrid Al and IoT in other complex domains, such as
precision livestock farming and smart agriculture, proving the
transferability and robustness of these advanced data-driven
paradigms. The results strongly suggest that the integration of
robustIoT sensor networks with sophisticated hybrid Al models
is the most promising path forward for achievinghighreliability,
availability, and economic viability in wind farm operations.

Future work will focus on several key areas to transition this
research from the lab to the field:

e Multi-sensor Fusion: Incorporating data from other
sensors (temperature, oil debris, SCADA power data)
into the modelusing more complex fusion architectures
like cross-attention mechanisms or tensor-based
learning.

e Transfer Learningand Domain Adaptation: Investigating
the ability of a model trained on one turbine or one type
ofbearingto generalizeto others with minimal new data,
reducing the need for extensive run-to-failure data for
each new asset.

e Uncertainty Quantification: Enhancing the model to
provide prediction intervals (e.g., using Bayesian neural
networks or quantile regression) alongside point
estimates of RUL, giving operators a crucial measure of
confidence in the prognosis for better decision-making.

e Edge Deployment and Optimization: Optimizing the
model for deployment on edge devices within the turbine
nacelle for real-time, low-latency inference, following
the edge computing principles successfully explored.
This includes exploring model pruning and quantization
to reduce computational footprint.

Vol. 16, No. 10, 2025

The adoption of such intelligent PAM systems is not merely
a technical improvement, but a strategic necessity for ensuring
the long-term sustainability, profitability, and competitiveness
of wind energy in the global renewable landscape.
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