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Abstract—Federated Learning (FL) offers a privacy-

preserving and decentralized paradigm for machine learning, 

making it particularly suitable for analyzing sensitive 

psychological and physiological data. This study aims to develop 

and evaluate a federated learning framework for assessing the 

psycho-emotional well-being of students in Kazakhstani 

educational institutions, where data privacy and infrastructural 

constraints pose significant challenges. We benchmark three FL 

algorithms, such as FedAvg, FedOpt, and FedProx, on 

heterogeneous, institution-level datasets that combine sleep, 

dietary, activity, and self-reported emotional measures. 

Experiments simulate cross-device, non-IID deployments and 

evaluate convergence, accuracy, and stability across ten 

communication rounds. Results show that FedProx attains the 

best trade-off between accuracy and stability under non-IID 

conditions (peak accuracy is 99.9%), while FedOpt provides faster 

early convergence, and FedAvg performs well for more 

homogeneous partitions. The methodological contribution 

comprises optimized aggregation and adaptive client weighting to 

mitigate non-IID effects in resource-constrained educational 

settings. These findings validate FL as a scalable, privacy-

preserving approach for mental health monitoring in education 

and support its use for early intervention and resilience tracking. 

The proposed framework contributes to data-driven mental 

health policy design in educational systems, addressing both 

ethical and infrastructural considerations. The study discusses 

limitations of the simulated setup and outlines directions for 

broader deployment and cross-silo validation. 
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I. INTRODUCTION 

Machine learning (ML), a subset of artificial intelligence 
(AI), has experienced rapid advancements, enabling powerful 
computational techniques to analyze and interpret vast amounts 
of data. Unlike static, rule-based systems, ML algorithms learn 
from data, identifying patterns and improving performance over 
time. This adaptability has facilitated breakthroughs in areas 
such as image recognition, natural language processing, 
recommendation systems, and predictive analytics [1]. Central 
to this progress is the availability of big data, characterized by 
its volume, velocity, and variety. These datasets, encompassing 
sources like IoT sensor readings and social media interactions, 
form the foundation for training complex models capable of 
delivering highly accurate insights [2]. 

Despite its potential, traditional ML methods often rely on 
centralized data collection, raising significant privacy and 

security concerns. Sensitive data aggregated on centralized 
servers is vulnerable to breaches and may conflict with 
regulations like the GDPR [3] and CCPA. These limitations 
have catalyzed the emergence of FL, a decentralized machine 
learning paradigm. FL enables collaborative model training 
across distributed devices such as smartphones, IoT nodes, and 
edge computing systems while keeping raw data localized. 
Instead of transferring data to a central server, each device 
trains a local model and transmits only model updates (e.g., 
gradients or weights) to a central server for aggregation. By 
preserving data privacy and minimizing communication 
overhead, FL has gained prominence in sensitive domains such 
as healthcare, education, and finance [4]. 

In this study, we focus on the analysis for monitoring 
student mental health in Kazakhstan. Applying the FL mental 
health [5] analysis presents unique challenges due to the 
country's diverse cultural, social, and educational contexts. 
Beyond behavioral and physiological differences, students' 
emotional well-being is influenced by various factors, such as 
academic workload, which includes lessons, homework, and 
the preparation for and completion of exams. These stressors 
contribute to emotional burnout and introduce additional 
variability into the data, complicating the analysis and 
modeling process [6]. 

Given these challenges, this study seeks to develop and 
evaluate a federated learning framework for analyzing the 
psycho-emotional well-being of students in Kazakhstan. By 
integrating privacy-preserving algorithms such as FedAvg, 
FedOpt, and FedProx, the proposed framework addresses 
critical challenges associated with data heterogeneity, 
infrastructural limitations, and confidentiality within 
educational environments.  

This study is organized as follows: Section II provides a 
review of related studies on federated learning algorithms and 
their applications in privacy-preserving educational analytics. 
Section III outlines the dataset, data preprocessing methods, 
and experimental design, detailing the implementation of 
FedAvg, FedOpt, and FedProx. Section IV presents 
experimental results and offers a comparative evaluation of 
algorithm performance under heterogeneous data conditions. It 
also discusses the implications of the findings for enhancing 
psycho-emotional well-being monitoring in educational 
contexts. Section V concludes the study by summarizing key 
findings and outlining future research directions. 

In summary, this study investigates how federated learning 
can enhance the monitoring of students’ mental health in 
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Kazakhstan while preserving data privacy and addressing 
infrastructural limitations. This framework aims to demonstrate 
the feasibility of applying FL under heterogeneous educational 
conditions and to contribute to the development of ethical, data-
driven mental health monitoring systems in the Kazakhstani 
context. 

II. RELATED WORK 

The specific key challenges are as follows as data privacy 
and security. The analysis of psycho-emotional data involves 
sensitive personal information, including sleep patterns, dietary 
habits, physical activity levels, and emotional responses. 
Ensuring the privacy and security of this data is paramount to 
protect students’ confidentiality. Data Heterogeneity Students' 
behavioral data is highly non-IID (non-independent and 
identically distributed) [7]. Emotional Burnout and Stress 
Academic-related stressors, such as homework, lesson loads, 
and exam preparation, exacerbate emotional burnout among 
students. These factors not only impact students' psycho-
emotional states but also introduce temporal variability in the 
data. As a result, FL models must be adaptable to dynamic 
changes in students’ emotional states over time. In our work, 
we have considered algorithms such as FedAvg, a better-known 
efficient algorithm for training machine learning models on 
multiple clients in a privacy-preserving manner. Traditionally, 
FedAvg uses a central server to distribute parameters to clients 
and aggregate updates, but it has difficulties with privacy and 
communication efficiency. FedOpt achieves faster 
convergence, lower communication overhead, and higher 
accuracy with fewer training epochs compared to benchmarks. 
Research objectives are: developing and evaluating privacy-
preserving FL algorithms (e.g., FedAVG, FedOPT, FedProx) 
tailored to psycho-emotional state analysis. Address data 
heterogeneity through techniques such as regularization, 
clustering-based FL, or adaptive weighting of client updates. 
Optimize FL frameworks for resource-constrained devices by 
implementing efficient communication strategies (e.g., gradient 
sparsification, local updates). Validate the proposed framework 
using real-world datasets that include students' behavioral and 
psycho-emotional metrics. 

A. Revised Research Contributions 

1) Development of a localized Federated Learning (FL) 

framework specifically designed for psycho-emotional data 

analysis in educational settings. The proposed framework 

integrates cross-device horizontal FL with synchronous 

aggregation, optimized for limited network connectivity and 

heterogeneous client environments typical of Kazakhstani 

institutions. 

2) Algorithmic enhancement of FedAvg, FedOpt, and 

FedProx through adaptive weighting and proximal 

regularization to mitigate non-IID effects. The study introduces 

modified update strategies that dynamically adjust client 

contributions based on data volume and distribution, improving 

global model convergence and stability compared to baseline 

implementations. 

3) Integration of behavioral and emotional indicators into 

federated model evaluation, linking technical model 

performance with psycho-emotional metrics such as burnout 

and well-being. This enables data-driven validation of FL’s 

applicability for educational mental health monitoring, and 

supports model interpretability through domain-relevant 

insights. 

In FL, the global model is trained iteratively over several 
rounds of client-server interaction, without centralized data 
collection, where each interaction is defined as an FL round. 
This process continues until the model reaches the desired level 
of accuracy [8]. Fig. 1 shows the architecture of federated 
learning that was applied in our work. It takes several rounds to 
update the model to the global model [9]. FL approaches can be 
categorized into three types: synchronous, asynchronous, and 
semi-asynchronous. In our work, we propose synchronous FL, 
in which the parameter server must wait for clients, which leads 
to noticeable waiting time due to edge heterogeneity.  It should 
be considered that the heterogeneity of edge nodes means that 
they have different computational and communication 
capabilities. Although this method introduces waiting time due 
to edge heterogeneity, it provides better model convergence and 
accuracy, making it suitable for sensitive applications like 
psycho-emotional state analysis in education. 

 

Fig. 1. The architecture of federated learning. 

FL approaches can be categorized into three types by 
learning methods, architectures, and aggregation strategies, 
including synchronous FL, where the server waits for all clients 
to complete training before aggregating updates. While this 
method ensures consistency and high accuracy, it may lead to 
inefficiencies due to edge heterogeneity—variations in 
computational and communication capabilities among clients 
[10]. In asynchronous FL, clients communicate updates 
independently, reducing waiting times but potentially 
introducing inconsistencies in global model updates [11]. Semi-
Asynchronous FL is a hybrid approach that balances the 
benefits of synchronous and asynchronous methods. 

Experiments using synchronous method in FL [12], where 
clients must download global model updates at one point in 
time, and the server waits for clients to complete the training 
tasks. This synchronous optimization mechanism causes clients 
with limited network or insufficient hardware resources to lag; 
the server and other clients have to wait, and the learning 
efficiency decreases, i.e., there is an overload effect, but for our 
problem, we paid attention to the obvious advantages of this 
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synchronous update method in that the model converges easily 
and has high accuracy. 

FL [13, 14] is a machine learning technique that focuses on 
mutual learning of a model by multiple clients, where the data 
remains decentralized. FL is a critical technology in the current 
era of big data and artificial intelligence, recognized for its 
critical role in protecting data privacy and eliminating the need 
to transfer and process huge amounts of data. FL allows the 
benefits of machines to remain intact. Unlike the traditional 
centralized learning approach, it facilitates collaborative 
training of statistical models sharing parameter updates instead 
of raw data [15, 16]. In our work, we have considered 
algorithms such as FedAvg, a better-known efficient algorithm 
for training machine learning models on multiple clients in a 
privacy-preserving manner. Traditionally, FedAvg uses a 
central server to distribute parameters to clients and aggregate 
updates, but has difficulties with privacy and communication 
efficiency [17]. FedOpt achieves faster convergence, lower 
communication overhead [18], and higher accuracy with fewer 
training epochs compared to benchmarks [19].  

In [20], the authors present a comprehensive scheme for FL 
provisioning under time constraints in IoT environments using 
push-pull communication mode. By combining utility-based 
scheduling and efficient client selection, higher accuracy and 
lower latency are achieved compared to traditional methods. 
The approach is particularly effective in heterogeneous and 
resource-constrained networks, paving the way for practical 
implementation of FL in IoT and edge computing. In [21], 
ClipFL, a novel method for handling noisy labels in Federated 
Learning by identifying and excluding noisy clients, is 
discussed. The method demonstrates high accuracy, fast 
convergence, and reduced communication overhead, making it 
a practical solution for real FL systems with noisy data. The 
simplicity and scalability of the method make it suitable for 
large-scale deployment even in resource-constrained and 
heterogeneous environments. Traditional federated learning 
(FL) methods are enhanced, introducing a split learning 
approach where client-side and server-side models are trained 
together, which significantly improves the performance and 
efficiency of the interaction [22]. 

In [23], the importance of robustness in federated learning 
is emphasized, privacy and security concerns are addressed, and 
practical security mechanisms are described. By addressing 
these vulnerabilities, FL can be effectively deployed across 
industries, ensuring data integrity and model robustness in 
distributed environments. In the future, dynamic, scalable, and 
lightweight solutions should be prioritized to make FL both 
secure and efficient. One of the studies [24] shows that L2GDV 
(Loopless Local Gradient Descent with Varying step size) 
significantly improves the efficiency and performance of fuzzy 
learning by combining adaptive regularization step size 
methods. It provides robust convergence guarantees while 
reducing communication costs, which makes it suitable for real 
FL applications with heterogeneous data and limited resources. 
The study [25] emphasizes the vulnerability of FL to data 
poisoning attacks using unwanted samples, especially when 
using robust aggregation schemes such as Krum and Bulyan. 
While aggregation algorithms mitigate some attacks, they 
remain insufficient against adaptive adversary techniques. 

Recent works [26–27] have explored centralized machine 
learning approaches for mental health prediction and early 
intervention, demonstrating promising results in healthcare and 
behavioral analytics. However, few studies have applied 
federated frameworks in educational contexts, particularly 
within developing regions, where data heterogeneity and 
privacy concerns remain major obstacles. However, these 
studies rely on centralized architectures, whereas our work 
introduces a federated paradigm suitable for privacy-
constrained educational environments. 

III. PROPOSED METHODOLOGY 

FL utilizes synchronous, asynchronous, and semi-
synchronous training methods, each suited to different network 
conditions. Synchronous learning ensures high accuracy by 
aggregating updates only after all clients submit them, but it 
requires stable connectivity and is sensitive to slow clients. 
Asynchronous learning allows clients to update independently, 
accelerating training in heterogeneous environments but risking 
model instability. Semi-synchronous learning balances these 
approaches by waiting for a subset of clients (e.g., 80%) before 
updating, reducing delays while maintaining stability. Given 
these factors, synchronous learning was chosen to ensure 
consistent model updates. 

Although FL is classified into horizontal and vertical types, 
where horizontal FL involves similar features across different 
users, while vertical FL integrates different features for the 
same users. FL can also be Cross-Silo, applied in large 
organizations with stable connections, or Cross-Device, 
involving numerous heterogeneous personal devices with 
limited resources. Our study employs synchronous learning, 
horizontal FL, and Cross-Device FL for optimized distributed 
training. The structure of FL is illustrated in Fig. 2. 

 

Fig. 2. Structure of FL. 

A. Description of Method 

These methods are used to predict students' psychological 
and emotional state based on nutrition, activity, and sleep data, 
such as interaction type. The distribution of the data presented 
below: Type interactions: When solving our task, we choose the 
Cross-Device type of interaction, since the task involves 
collecting data from devices where data is stored locally. The 
data are heterogeneous in terms of quality and distribution 
(different modes of sleep, nutrition, activity of students). 
Devices may be resource constrained (low processing power, 
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variable network). Cross-Device FL performs well in tasks 
where devices are limited in computational resources, and the 
data have a high level of heterogeneity. Selection: Horizontal. 
Distribution data: Each device has a similar data structure: sleep 
metrics, nutrition, activity, but the data belongs to different 
users. Horizontal training allows effective work with such 
scenarios, as it focuses on combining knowledge from similar 
data structures. Selection: synchronous. In our scenario, we will 
be able to organize synchronous student connection devices. 
Synchronous learning allows the server to produce an 
immediate update of the global model, which gives a good 
result for accuracy. 

B. Selection of FL Algorithms 

In addition, to effectively handle data heterogeneity in non-
IID student datasets, we selected federated optimization (FO) 
algorithms that adapt to variability: FedAvg serves as a baseline 
approach, which can be enhanced by assigning different 
weights to clients with varying data distributions. FedProx 
incorporates regularization to mitigate the effects of dominant 
local updates, improving convergence in heterogeneous 
environments. FedOpt employs adaptive step sizes for both 
client and global models, facilitating faster convergence and 
enhanced scalability for complex, large-scale datasets. 

FedAvg (Federated Averaging) [28] is a standard algorithm 
for federated learning that provides distributive learning on 
local devices, minimizing data exchange with the server. The 
algorithm works as follows: each client trains its model on local 
data and sends updates to the server. The server aggregates all 
local updates, computing an average for the model parameters. 
This method is repeated till convergence is achieved. The basic 
Formula (1): 

𝜔𝑡+1 =
1

𝐾
∑ 𝜔𝑘

𝑡+1𝐾
𝑘=1         (1) 

where, 𝜔𝑘
𝑡+1 updated model parameters from customer k, 

and K - number of customers. 

FedOpt (Federated Optimization) [29] is an improvement to 
the FedAvg algorithm that incorporates the use of adaptive 
optimizers, such as Adam, for local model updates. Instead of 
using simple gradient descent as in FedAvg, FedOpt applies 
optimizers for each client, which helps to speed up convergence 
and reduce the impact of local errors. FedOpt can accommodate 
different learning rates for each client, making it more flexible 
and efficient. The basic Formula (2): 

𝜔𝑡+1 =  𝜔𝑘
𝑡 − 𝜇𝑘∇𝐿𝑘(𝜔𝑘

𝑡 )    (2) 

where, 𝜇𝑘 is the learning rate for client k, and 𝛻𝐿𝑘 is the 
gradient of the loss function for the client. 

FedProx (Federated Proximal Optimization) [30] is an 
enhancement to the FedAvg algorithm designed to deal with 
heterogeneous data. It adds proximal regularization to minimize 
the impact of local differences in the data and improve learning 
stability. Instead of simply weighing local updates as in 
FedAvg, FedProx accounts for deviations of the local model 
from the global model using a proximal term that helps improve 
convergence and avoid overfitting. The basic Formula (3): 

𝜔𝑘
𝑡+1 =  𝜔𝑘

𝑡 − 𝜇𝑘∇𝐿𝑘(𝜔𝑘
𝑡 ) − 𝜇(𝜔𝑘

𝑡 − 𝜔)     (3) 

where, 𝜇 is the regularization coefficient, and 𝜔 are the 
global parameters of the model. 

The advantages of the algorithms are FedAVG - Easy 
implementation and low requirements for computing resources. 
FedOPT - use of adaptive optimizers accelerates convergence 
and helps avoid overfitting on unstable data. FedPROX is 
suitable for cases with heterogeneous data and high variability 
between clients. Proximal regularization helps to improve 
convergence. 

The limitations of the algorithms are FedAVG - sensitivity 
to data heterogeneity, where data on different devices vary 
significantly, which can slow down the learning and degrade 
the quality of the model. FedOPT - Increased computational 
costs on the client, as more sophisticated optimization 
techniques must be used. FedPROX - requires tuning of the 
regularization parameter, which may add complexity to the 
optimization process. 

Algorithms like FedSGD, FedAvg, FedProx, SCAFFOLD, 
and FedOpt were considered for this study, but FedAvg, 
FedProx, and FedOpt were selected for further study. It is 
shown in Table I. 

TABLE I  DETAILS OF ALGORITHMS 

Method Non-IID 
Convergence 

rate 

Flexibility to 

heterogeneity 

of clients 

Use of 

server 

optimizers 

FedAvg Bad Slowly No No 

FedProx Medium Medium Yes No 

FedOpt Good Fast Yes Yes 

In summary, FedAvg is a basic algorithm for federated 
learning, effectively applicable if the data on the clients is 
similar. FedOpt improves FedAvg using adaptive optimizers, 
which accelerates convergence and improves model accuracy. 
FedProx focuses on heterogeneous data and incorporates 
proximal regularization, which improves training stability in 
the face of large differences between clients. Each of these 
methods has its own features and applications, and the choice 
of the appropriate algorithm depends on the data structure and 
computational resources. 

In federated model training, FedAvg, FedOpt, and FedProx 
optimize learning on distributed clients while minimizing 
communication with the central server. FedAvg is effective 
when client data distributions are similar, offering a 
computationally efficient solution for homogeneous datasets, 
such as student learning or physical activity data. FedOpt adapts 
to heterogeneous data using adaptive optimizers (e.g., Adam), 
improving convergence speed and model accuracy, making it 
suitable for dynamic environments. FedProx addresses highly 
heterogeneous data by incorporating regularization, mitigating 
localized errors, and enhancing model stability and accuracy in 
diverse student datasets. In conclusion, FedAvg will be a simple 
and efficient solution when the data is homogeneous between 
clients, in case of heterogeneous data and different device 
types, we recommend using FedOpt or FedProx to improve 
model quality and convergence. Provided the problem requires 
regularization and consideration of local differences, FedProx 
will provide a stable solution. Thus, the choice of algorithm 
depends on the nature of the data and the goals: speed of 
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training and accuracy of the model or the ability to adapt to 
differences in customer data. 

C. Experimental Settings 

The tasks are focused on client-side data processing, where 
local models are applied directly on the client devices. Sending 
updates to the server. Server-side update processing, creating a 
global model. Sending global models to customers. Global 
model with client data is processed on the client side. These 
steps will ensure stability, privacy, and efficiency in 
implementing the study in real-world use cases. For our 
heterogeneous data problem, the choice of methods and 
approaches must consider the heterogeneous distribution of 
data across devices. 

This study employs a client-side learning approach, 
ensuring that raw data remains on user devices, thus preserving 
privacy while still enabling effective global model updates. The 
following stages describe each step of this process in detail. 

Stage 1: Data Preparation 

At this stage, data is collected through a web platform where 
participants complete the Maslach Burnout Inventory (MBI) 
questionnaire. Once collected, the data is cleaned by removing 
duplicates, input errors, and outdated records, then normalized 
and standardized. Special attention is given to simulating real-
world conditions with heterogeneous (non-IID) data to enhance 
model robustness and realism. 

Stage 2: Local Training on Clients 

Each client trains a random forest model locally on their 
own data without transmitting raw information to the server. 
The updated model parameters (e.g., tree weights and 
performance metrics) are sent to the central server to ensure 
data privacy. This approach allows the model to adapt to the 
unique characteristics of each client’s dataset and improves 
prediction accuracy. 

Stage 3: Model Aggregation on the Server 

The server collects updates from all clients and aggregates 
them using algorithms such as FedAvg, FedProx, or FedOpt. 
Aggregation is weighted according to the volume of data on 
each client to ensure fair contribution. After aggregation, the 
server evaluates model convergence using metrics like MSE 
and R² and adjusts training parameters if needed. 

Stage 4: Model Updating and Client Communication 

The updated global model is sent back to clients via secure 
communication channels. Clients integrate the new model into 
their local environment and resume training on their data. This 
iterative process of model distribution and retraining ensures 
continuous improvement and adaptation to new data. 

Stage 5: Model Evaluation 

After several rounds of training, the model is evaluated 
using both classification (Accuracy, Precision, Recall, F1-
score) and regression (MSE, R²) metrics. The impact of data 
heterogeneity among clients is analyzed to assess its effect on 
model accuracy and convergence. This comprehensive 
evaluation helps identify weaknesses and optimize aggregation 
strategies and learning parameters. Fig. 3 illustrates these steps. 

 

Fig. 3. Federated learning architecture: client-server interaction. 

The Random Forest method was applied to the local model; 
this algorithm was determined by conducting experiments 
during which methods such as logical regression, linear 
regression, and time series were considered. The Random 
Forest method is an ensemble machine learning algorithm that 
uses multiple decision trees to solve classification and 
regression problems. The essence of the method is to train 
multiple trees on a Random Forest of training data and features, 
which improves the generalization ability of the model and 
reduces overfitting. Each tree is trained on a random sample of 
data with return (bootstrap method), and for classification, the 
final decision is made by a majority vote of the trees, and for 
regression, through averaging of predictions. Before sending 
them to the server after training on local devices, the following 
results were obtained, which are presented in Fig. 4. 

The graphs’ description illustrates the relationship between 
actual and predicted values of Psycho-emotional exhaustion. 
The horizontal axis represents actual values, while the vertical 
axis shows predicted values. A red dashed line indicates a 
perfect match. For low and medium values, predictions closely 
align with the ideal line, demonstrating high accuracy. As 
values increase, a slight deviation appears, with greater scatter 
at higher levels (~1000). Despite this, predictions remain well-
correlated with the actual data, maintaining stable performance 
across different ranges. 

 
(a) UNI 1 

 
(b) UNI 2 
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(c) UNI 3 

Fig. 4. Comparison of the results of the random forest method in (a) UNI 1, 

(b) UNI 2, (c) UNI 3. 

The pros of the method are high accuracy, especially for 
complex and high-dimensional data, robustness to overfitting 
due to the ensemble approach, handling of missing values, and 
estimation of feature importance, which aids in model 
interpretation. The cons are low interpretability compared to 
single trees, difficulties with prediction on very large data due 
to the large number of trees. Random forest is widely used in 
classification and regression tasks such as disease diagnosis, 
credit scoring, price prediction, and tasks requiring feature 
selection. In the federated learning task, random forest is an 
effective method for combining models from different clients, 
providing robustness to local data and improving overall 
performance. After numerous experiments on the server side, a 
local model was picked up and sent to the client side, where 
training began. The graphs compare the actual values and 
predicted values of the Random Forest model for the Psycho-
emotional exhaustion index. For this purpose, data from 
different devices were used, which allows us to clearly 
demonstrate the effectiveness of the model in the conditions of 
heterogeneous data. The Random Forest model shows a good 
ability to predict Psycho-emotional exhaustion, especially in 
the small and medium ranges of values. Visualization confirms 
that the model successfully captures the data patterns, although 
some deviation from the ideal line is observed at higher values 
(see Table II). 

TABLE II ACCURACY BEFORE SENDING IT TO THE SERVER 

 UNI 1 UNI 2 UNI 3 

Accuracy 0.915676 0.554274 0.858384 

1) Description of the preparatory process: To solve the 

task, a website was created where the data collection of each 

individual student on their personal devices was organized. For 

example, it was decided to make a psycho-emotional and 

physical analysis of the state of students and schoolchildren 

based on the collected database. Currently, the FL has not yet 

started its march in Kazakhstan, so my work is of an 

introductory nature on the possibilities of using the FL. The 

purpose of the experiment is to make a practical demonstration 

of the whole process of organizing FL steps on a specific 

example described in the study. 

Three educational institutions participated in the 
experiment; data were collected from the beginning of the 
learning process, from September 1, for 2 months before the 

first milestone control. A website was created for data 
collection, where all data were stored in a database based on the 
educational institution. The aim was to analyze the mental and 
emotional state of students from the moment of the beginning 
of the study and by the end of the first milestone control to 
determine how much their state had changed by the time of 
passing the first milestone control. 

These heatmaps provide an overview of how different 
questions about burnout relate to each other, which can be 
useful for identifying patterns and determining which questions 
may share common underlying factors or experiences, as in 
Fig. 5. 

 
(a) UNI 1 

 
(b) UNI 2 

 
(c) UNI 3 

Fig. 5. Correlation heatmap of burnout questions in (a) UNI 1, (b) UNI 2, 

(c) UNI 3. 
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The heatmaps display Spearman correlation coefficients for 
burnout-related questions (burnoutQ1–burnoutQ22), with 
values ranging from -1 to 1. Red indicates strong positive 
correlations, blue represents weak or no correlations, and white 
signifies no correlation (0). Heatmap 1 highlights strong 
correlations between certain burnout questions. Heatmap 2 
shows generally lower correlation values, with many closes to 
zero. Heatmap 3 reveals some strong correlations (e.g., 
burnoutQ1–Q3, burnoutQ6–Q9), but overall, the values remain 
weaker. These heat maps help identify patterns and 
relationships between burnout factors. 

Application of FL was aimed at predicting further psycho-
emotional and physical state of students for the next boundary 
control and readiness to pass the winter session. The 
heterogeneity of the data can be determined based on the 
following characteristics shown in Table III. 

TABLE III CHARACTERISTICS OF THE DATA 

Data type Heterogeneous Homogeneous 

Nutrition 
'Breakfast', 'Dinner', 'Lunch', 
'total_meals'. 

 

Physical activity 'intensity', 'activityType', 'duration'  

Sleep and rest 

'wellbeingHours0', 

'wellbeingHours0', 

'wellbeingHours1'. 

 

Emotional state 
'Psycho-emotional exhaustion', 
'burnoutQ1'- 'Q22'. 

 

Identifiers and 
meta-data 

 
'student_id', 
'entry_date' 

2) Heterogeneity analysis: Students’ data exhibits 

heterogeneity due to variations in behavioral patterns, including 

nutrition, physical activity, sleep, and emotional state. For 

instance, dietary habits differ among students, with some 

skipping meals while others follow a structured diet. Similarly, 

physical activity levels vary, ranging from active sports 

participation to a sedentary lifestyle. Emotional burnout scores 

also fluctuate based on individual stress levels and coping 

mechanisms. Conversely, homogeneous attributes include 

'entry date' (consistent format across devices) and 'student_id' 

(a unique identifier that does not impact target metrics). These 

attributes remain stable regardless of individual behaviors in 

Fig. 6. To address data heterogeneity, preprocessing is required 

to normalize activity and nutrition data, ensuring consistency 

across samples. Additionally, leveraging homogeneous 

attributes (e.g., timestamps, unique identifiers) aids in 

standardization and enhances model reliability. 
The pair plots illustrate a weak negative correlation between 

Psycho-emotional exhaustion and wellbeingHours. Most 
students show low sleep duration regardless of exhaustion 
level, indicating that increased rest does not consistently reduce 
emotional fatigue. The presence of outliers reflects the 
heterogeneity of behavioral data among students. 

The following results highlight the comparative 
performance and convergence behavior of the selected FL 
algorithms under non-IID educational data conditions. 

 
(a) UNI 1 

 
(b) UNI 2 

 
(c) UNI 3 

Fig. 6. Fluctuations in psycho-emotional exhaustion over one month in 

(a) UNI 1, (b) UNI 2, (c) UNI 3. 

IV. RESULTS AND DISCUSSION 

In this study, the performance of three federated learning 
algorithms, namely FedAVG, FedOPT, and FedProx, was 
benchmarked on a classification task aimed at predicting 
students’ psycho-emotional states. The primary evaluation 
metric was Accuracy, measured on test data after each of ten 
training rounds. Table IV and Fig. 7 illustrate the dynamics of 
model accuracy across all rounds, providing insight into the 
learning stability and convergence behavior of each algorithm. 
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TABLE IV ACCURACY DYNAMICS FOR ALGORITHMS 

Rounds 
Accuracy 

FedAVG FedOpt FedProx 

1 0.793071234 0.8383071568 0.9682882882 

2 0.850712345 0.8707123457 0.9793333333 

3 0.9366666666 0.942457545 0.989333333 

4 0.95956756756 0.9895675675 0.9866633333 

5 0.97666666666 0.926666666 0.999936 

6 0.9956756756 0.9695675675 0.99657878888 

7 0.97666666666 0.9876666666 0.988888999 

8 0.96666666666 0.9866666666 0.9968288288 

9 0.995675675 0.995675675 0.9933333333 

10 0.999675699 0.999675699 0.998888999 

 

Fig. 7. Accuracy dynamics for algorithms. 

As shown in Fig. 7, all three algorithms exhibit an upward 
trend in accuracy as training progresses, demonstrating the 
effectiveness of the federated learning approach in distributed 
educational data environments. Among them, FedProx 
consistently achieved the highest accuracy, particularly in later 
rounds where it reached 99.99%, indicating its robustness in 
managing heterogeneous, non-IID data. This superior 
performance is attributed to its proximal regularization, which 
stabilizes updates and reduces divergence caused by local data 
variability across clients: 

a) FedOpt, which incorporates adaptive optimizers (e.g., 
Adam), also demonstrated strong convergence characteristics, 
achieving accuracy levels close to FedProx while maintaining 
lower communication overhead. However, its slightly lower 

accuracy in the final rounds suggests that additional 
regularization could further enhance its performance under 

highly heterogeneous conditions. 

b) FedAVG, while computationally efficient, displayed 

slower convergence and lower final accuracy compared to the 
other two methods. Its performance plateaued in the later 
rounds, emphasizing its sensitivity to client data heterogeneity. 
Nonetheless, FedAVG remains a practical solution for 
homogeneous datasets or resource-constrained environments, 

where computational simplicity is prioritized over precision. 

c) Overall, the results confirm that FedProx is the most 
effective algorithm for addressing data heterogeneity and 
achieving high model accuracy in psycho-emotional state 

prediction. FedOpt offers a balanced trade-off between speed 
and accuracy, whereas FedAVG is better suited for uniform 

data distributions. 

These findings support the study’s objectives by 
demonstrating that federated learning algorithms can be 
effectively applied to privacy-preserving educational analytics. 
The results offer actionable insights for educational institutions, 
researchers, and policymakers, emphasizing the potential of 
federated learning to enhance the monitoring of students’ 
psycho-emotional well-being while ensuring data 
confidentiality and accommodating diverse learning 
environments across regions. 

Moreover, the results directly align with the study’s 
objective of developing a federated learning framework for 
monitoring mental health in Kazakhstan, confirming that such 
systems can be implemented effectively under heterogeneous 
educational conditions. 

V. CONCLUSION AND FUTURE SCOPE 

This study aimed to develop and evaluate a privacy-
preserving federated learning framework for analyzing the 
psycho-emotional well-being of students in Kazakhstan, 
particularly under conditions of data heterogeneity and non-IID 
distributions. To achieve this, three federated learning 
algorithms, FedAvg, FedOpt, and FedProx, were benchmarked 
across ten communication rounds in a classification task. The 
results revealed distinct performance dynamics, convergence 
rates, and stability patterns under federated conditions. 

FedAvg showed steady improvement in accuracy from 
0.793 in round 1 to 0.9997 in round 10, indicating reliable 
convergence despite minor fluctuations in intermediate stages. 
FedOpt achieved slightly higher accuracy in the early rounds 
(0.9425 and 0.9895 in rounds 3 and 4) and demonstrated faster 
convergence than FedAvg. FedProx, starting with the highest 
initial accuracy (0.9683), maintained consistent progress and 
reached 0.9989 by the final round, confirming its robustness 
and effectiveness in handling heterogeneous and non-IID data 
distributions. 

These findings validate the study’s objective by 
demonstrating that federated optimization algorithms can 
effectively manage data heterogeneity and ensure secure, 
distributed model training for sensitive educational analytics. 
However, the experiments were conducted in a simulated 
federated environment involving a limited number of 
institutions, which may not fully represent large-scale or real-
world deployments. 

Future work will address these limitations by incorporating 
a broader range of educational institutions, exploring 
asynchronous and cross-silo FL configurations, and integrating 
additional behavioral and contextual variables to enhance 
predictive accuracy, adaptability, and robustness. Previous 
studies have explored centralized machine learning for mental 
health analysis and early intervention [31]; however, these 
relied on centralized data aggregation, leading to privacy and 
scalability challenges. 

This research advances the field by introducing a federated 
learning-based approach that ensures data confidentiality while 
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maintaining model accuracy and adaptability across 
heterogeneous educational environments. Overall, it establishes 
a foundation for ethical, data-driven, and privacy-aware 
educational analytics in Kazakhstan and beyond, supporting 
early intervention strategies and strengthening national efforts 
to promote student mental health and academic resilience. 
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