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Abstract—Federated Learning (FL) offers a privacy-
preserving and decentralized paradigm for machine learning,
making it particularly suitable for analyzing sensitive
psychological and physiological data. This study aims to develop
and evaluate a federated learning framework for assessing the
psycho-emotional well-being of students in Kazakhstani
educational institutions, where data privacy and infrastructural
constraints pose significant challenges. We benchmark three FL
algorithms, such as FedAvg, FedOpt, and FedProx, on
heterogeneous, institution-level datasets that combine sleep,
dietary, activity, and self-reported emotional measures.
Experiments simulate cross-device, non-1ID deployments and
evaluate convergence, accuracy, and stability across ten
communication rounds. Results show that FedProx attains the
best trade-off between accuracy and stability under non-1ID
conditions (peak accuracy is 99.9 %), while FedOpt provides faster
early convergence, and FedAvg performs well for more
homogeneous partitions. The methodological contribution
comprises optimized aggregation and adaptive client weighting to
mitigate non-IID effects in resource-constrained educational
settings. These findings validate FL as a scalable, privacy-
preserving approach for mental health monitoring in education
and support its use for early intervention and resilience tracking.
The proposed framework contributes to data-driven mental
health policy design in educational systems, addressing both
ethical and infrastructural considerations. The study discusses
limitations of the simulated setup and outlines directions for
broader deployment and cross-silo validation.
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1.  INTRODUCTION

Machine learning (ML), a subset of artificial intelligence
(AI), has experienced rapid advancements, enabling powerful
computational techniques to analyze and interpret vast amounts
of data. Unlike static, rule-based systems, ML algorithms learn
fromdata, identifyingpatterns and improving performance over
time. This adaptability has facilitated breakthroughs in areas
such as image recognition, natural language processing,
recommendation systems, and predictive analytics [1]. Central
to this progress is the availability of big data, characterized by
its volume, velocity, and variety. These datasets, encompassing
sources like IoT sensor readings and social media interactions,
form the foundation for training complex models capable of
delivering highly accurate insights [2].

Despite its potential, traditional ML methods oftenrely on
centralized data collection, raising significant privacy and

security concerns. Sensitive data aggregated on centralized
servers is vulnerable to breaches and may conflict with
regulations like the GDPR [3] and CCPA. These limitations
have catalyzed the emergence of FL, a decentralized machine
learning paradigm. FL enables collaborative model training
across distributed devices such as smartphones, IoT nodes, and
edge computing systems while keeping raw data localized.
Instead of transferring data to a central server, each device
trains a local model and transmits only model updates (e.g.,
gradients or weights) to a central server for aggregation. By
preserving data privacy and minimizing communication
overhead, FL has gained prominence in sensitive domains such
as healthcare, education, and finance [4].

In this study, we focus on the analysis for monitoring
student mental health in Kazakhstan. Applying the FL. mental
health [5] analysis presents unique challenges due to the
country's diverse cultural, social, and educational contexts.
Beyond behavioral and physiological differences, students'
emotional well-being is influenced by various factors, such as
academic workload, which includes lessons, homework, and
the preparation for and completion of exams. These stressors
contribute to emotional burnout and introduce additional
variability into the data, complicating the analysis and
modeling process [6].

Given these challenges, this study seeks to develop and
evaluate a federated learning framework for analyzing the
psycho-emotional well-being of students in Kazakhstan. By
integrating privacy-preserving algorithms such as FedAvg,
FedOpt, and FedProx, the proposed framework addresses
critical challenges associated with data heterogeneity,
infrastructural ~ limitations, and confidentiality —within
educational environments.

This study is organized as follows: Section II provides a
review of related studies on federated learning algorithms and
their applications in privacy-preserving educational analytics.
Section III outlines the dataset, data preprocessing methods,
and experimental design, detailing the implementation of
FedAvg, FedOpt, and FedProx. Section IV presents
experimental results and offers a comparative evaluation of
algorithm performance under heterogeneous data conditions. It
also discusses the implications of the findings for enhancing
psycho-emotional well-being monitoring in educational
contexts. Section V concludes the study by summarizing key
findings and outlining future research directions.

In summary, this study investigates how federated learning
can enhance the monitoring of students’ mental health in

212 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Kazakhstan while preserving data privacy and addressing
infrastructural limitations. This framework aims to demonstrate
the feasibility of applying FL under heterogeneous educational
conditions andto contributeto the development of ethical, data-
driven mental health monitoring systems in the Kazakhstani
context.

II. RELATED WORK

The specific key challenges are as follows as data privacy
and security. The analysis of psycho-emotional data involves
sensitive personal information, including sleep patterns, dietary
habits, physical activity levels, and emotional responses.
Ensuring the privacy and security of this data is paramount to
protectstudents’ confidentiality. Data Heterogeneity Students'
behavioral data is highly non-IID (non-independent and
identically distributed) [7]. Emotional Burnout and Stress
Academic-related stressors, such as homework, lesson loads,
and exam preparation, exacerbate emotional burnout among
students. These factors not only impact students' psycho-
emotional states but also introduce temporal variability in the
data. As a result, FL models must be adaptable to dynamic
changes in students’ emotional states over time. In our work,
we have considered algorithms suchas FedAvg, a better-known
efficient algorithm for training machine learning models on
multiple clients in a privacy-preserving manner. Traditionally,
FedAvguses a central server to distribute parameters to clients
and aggregate updates, but it has difficulties with privacy and
communication efficiency. FedOpt achieves faster
convergence, lower communication overhead, and higher
accuracy with fewer training epochs compared to benchmarks.
Research objectives are: developing and evaluating privacy-
preserving FL algorithms (e.g., FedAVG, FedOPT, FedProx)
tailored to psycho-emotional state analysis. Address data
heterogeneity through techniques such as regularization,
clustering-based FL, or adaptive weighting of client updates.
Optimize FL frameworks for resource-constrained devices by
implementing efficient communication strategies (e.g., gradient
sparsification, local updates). Validate the proposed framework
usingreal-world datasets that include students' behavioral and
psycho-emotional metrics.

A. Revised Research Contributions

1) Development of a localized Federated Learning (FL)
framework specifically designed for psycho-emotional data
analysis in educational settings. The proposed framework
integrates cross-device horizontal FL with synchronous
aggregation, optimized for limited network connectivity and
heterogeneous client environments typical of Kazakhstani
institutions.

2) Algorithmic enhancement of FedAvg, FedOpt, and
FedProx through adaptive weighting and proximal
regularization to mitigate non-IID effects. The study introduces
modified update strategies that dynamically adjust client
contributions based on data volume and distribution, improving
global model convergence and stability compared to baseline
implementations.

3) Integration of behavioral and emotional indicators into
federated model evaluation, linking technical model
performance with psycho-emotional metrics such as burnout
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and well-being. This enables data-driven validation of FL’s
applicability for educational mental health monitoring, and
supports model interpretability through domain-relevant
insights.

In FL, the global model is trained iteratively over several
rounds of client-server interaction, without centralized data
collection, where each interaction is defined as an FL round.
This process continues until the model reaches the desired level
of accuracy [8]. Fig. 1 shows the architecture of federated
learning that was applied in our work. It takes several rounds to
update the model to the global model [9]. FL approaches canbe
categorized into three types: synchronous, asynchronous, and
semi-asynchronous. In our work, we propose synchronous FL,
inwhich the parameter server must wait for clients, which leads
to noticeable waiting time due to edge heterogeneity. It should
be considered that the heterogeneity of edge nodes means that
they have different computational and communication
capabilities. Although this method introduces waiting time due
to edge heterogeneity, it provides better model convergenceand
accuracy, making it suitable for sensitive applications like
psycho-emotional state analysis in education.

Cross Device

Ly

Fig. 1. The architecture of federated learning.

FL approaches can be categorized into three types by
learning methods, architectures, and aggregation strategies,
includingsynchronous FL, where the server waits for all clients
to complete training before aggregating updates. While this
method ensures consistency and high accuracy, it may lead to
inefficiencies due to edge heterogeneity—variations in
computational and communication capabilities among clients
[10]. In asynchronous FL, clients communicate updates
independently, reducing waiting times but potentially
introducinginconsistencies in global model updates[11]. Semi-
Asynchronous FL is a hybrid approach that balances the
benefits of synchronous and asynchronous methods.

Experiments using synchronous method in FL [12], where
clients must download global model updates at one point in
time, and the server waits for clients to complete the training
tasks. This synchronous optimization mechanism causes clients
with limited network or insufficient hardware resources to lag;
the server and other clients have to wait, and the learning
efficiency decreases, i.c., there is an overload effect, but for our
problem, we paid attention to the obvious advantages of this
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synchronous update method in that the model converges easily
and has high accuracy.

FL [13, 14] is a machine learning technique that focuses on
mutual learning of a model by multiple clients, where the data
remains decentralized. FL is a critical technology in the current
era of big data and artificial intelligence, recognized for its
criticalrole in protecting data privacy and eliminating the need
to transfer and process huge amounts of data. FL allows the
benefits of machines to remain intact. Unlike the traditional
centralized learning approach, it facilitates collaborative
training of statistical models sharing parameter updates instead
of raw data [15, 16]. In our work, we have considered
algorithms such as FedAvg, a better-known efficient algorithm
for training machine learning models on multiple clients in a
privacy-preserving manner. Traditionally, FedAvg uses a
central server to distribute parameters to clients and aggregate
updates, but has difficulties with privacy and communication
efficiency [17]. FedOpt achieves faster convergence, lower
communication overhead [ 18], and higher accuracy with fewer
training epochs compared to benchmarks [19].

In [20], the authors present a comprehensive scheme for FL
provisioning under time constraints in loT environments using
push-pull communication mode. By combining utility-based
scheduling and efficient client selection, higher accuracy and
lower latency are achieved compared to traditional methods.
The approach is particularly effective in heterogeneous and
resource-constrained networks, paving the way for practical
implementation of FL in IoT and edge computing. In [21],
ClipFL, a novel method for handling noisy labels in Federated
Learning by identifying and excluding noisy clients, is
discussed. The method demonstrates high accuracy, fast
convergence, and reduced communication overhead, making it
a practical solution for real FL systems with noisy data. The
simplicity and scalability of the method make it suitable for
large-scale deployment even in resource-constrained and
heterogeneous environments. Traditional federated learning
(FL) methods are enhanced, introducing a split learning
approach where client-side and server-side models are trained
together, which significantly improves the performance and
efficiency of the interaction [22].

In [23], the importance of robustness in federated learning
isemphasized, privacyand security concerns areaddressed, and
practical security mechanisms are described. By addressing
these vulnerabilities, FL. can be effectively deployed across
industries, ensuring data integrity and model robustness in
distributed environments. In the future, dynamic, scalable, and
lightweight solutions should be prioritized to make FL both
secure and efficient. One ofthe studies [24] shows that L2GDV
(Loopless Local Gradient Descent with Varying step size)
significantly improves the efficiency and performance of fuzzy
learning by combining adaptive regularization step size
methods. It provides robust convergence guarantees while
reducing communication costs, which makes it suitable for real
FL applications with heterogeneous data and limited resources.
The study [25] emphasizes the vulnerability of FL to data
poisoning attacks using unwanted samples, especially when
using robust aggregation schemes such as Krum and Bulyan.
While aggregation algorithms mitigate some attacks, they
remain insufficient against adaptive adversary techniques.
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Recent works [26—27] have explored centralized machine
learning approaches for mental health prediction and early
intervention, demonstrating promising results in healthcare and
behavioral analytics. However, few studies have applied
federated frameworks in educational contexts, particularly
within developing regions, where data heterogeneity and
privacy concermns remain major obstacles. However, these
studies rely on centralized architectures, whereas our work
introduces a federated paradigm suitable for privacy-
constrained educational environments.

III. PROPOSED METHODOLOGY

FL utilizes synchronous, asynchronous, and semi-
synchronous training methods, each suited to different network
conditions. Synchronous learning ensures high accuracy by
aggregating updates only after all clients submit them, but it
requires stable connectivity and is sensitive to slow clients.
Asynchronous learning allows clients to update independently,
acceleratingtrainingin heterogeneous environmentsbut risking
model instability. Semi-synchronous learning balances these
approaches by waiting for a subset of clients (e.g., 80%) before
updating, reducing delays while maintaining stability. Given
these factors, synchronous learning was chosen to ensure
consistent model updates.

Although FL is classified into horizontal and vertical types,
where horizontal FL involves similar features across different
users, while vertical FL integrates different features for the
same users. FL can also be Cross-Silo, applied in large
organizations with stable connections, or Cross-Device,
involving numerous heterogeneous personal devices with
limited resources. Our study employs synchronous learning,
horizontal FL, and Cross-Device FL for optimized distributed
training. The structure of FL is illustrated in Fig. 2.

— Horizontal
Methods
of FL
— Vertical

— Cross-Silo
[—  Schemes of FL  —f

Structure of FL. =
— Cross-Device

— Asynchronous

— Types of FL —— Synchronous

— Semi-synchronous
Fig.2. Structure of FL.

A. Description of Method

These methods are used to predict students' psychological
and emotional state based on nutrition, activity, and sleep data,
such as interaction type. The distribution of the data presented
below: Type interactions: When solving our task, we choose the
Cross-Device type of interaction, since the task involves
collecting data from devices where data is stored locally. The
data are heterogeneous in terms of quality and distribution
(different modes of sleep, nutrition, activity of students).
Devices may be resource constrained (low processing power,
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variable network). Cross-Device FL. performs well in tasks
where devices are limited in computational resources, and the
data have a high level of heterogeneity. Selection: Horizontal.
Distribution data: Each device has a similar data structure: sleep
metrics, nutrition, activity, but the data belongs to different
users. Horizontal training allows effective work with such
scenarios, as it focuses on combining knowledge from similar
datastructures. Selection: synchronous. In our scenario, we will
be able to organize synchronous student connection devices.
Synchronous learning allows the server to produce an
immediate update of the global model, which gives a good
result for accuracy.

B. Selection of FL Algorithms

In addition, to effectively handle data heterogeneity in non-
IID student datasets, we selected federated optimization (FO)
algorithms that adapt to variability: Fed Avgserves as a baseline
approach, which can be enhanced by assigning different
weights to clients with varying data distributions. FedProx
incorporates regularization to mitigate the effects of dominant
local updates, improving convergence in heterogeneous
environments. FedOpt employs adaptive step sizes for both
client and global models, facilitating faster convergence and
enhanced scalability for complex, large-scale datasets.

FedAvg (Federated Averaging) [28] is a standard algorithm
for federated learning that provides distributive learning on
local devices, minimizing data exchange with the server. The
algorithmworks as follows: each client trains its model on local
data and sendsupdates to the server. The server aggregates all
local updates, computing an average for the model parameters.
This method is repeated till convergence is achieved. The basic
Formula (1):

t+1 — 1yKk t+1
W= Yk=1 W (1)
where, w}*! updated model parameters from customer k,
and K - number of customers.

FedOpt (Federated Optimization) [29] is an improvement to
the FedAvg algorithm that incorporates the use of adaptive
optimizers, such as Adam, for local model updates. Instead of
using simple gradient descent as in FedAvg, FedOpt applies
optimizers foreachclient, which helps to speed up convergence
and reduce the impact oflocal errors. FedOpt can accommodate
different learning rates for each client, making it more flexible
and efficient. The basic Formula (2):

w1 = wf — VL (wf) (2)

where, 11, is the learning rate for clientk, and VL, is the
gradient of the loss function for the client.

FedProx (Federated Proximal Optimization) [30] is an
enhancement to the FedAvg algorithm designed to deal with
heterogeneousdata. It adds proximal regularization to minimize
the impact oflocal differences in the data and improve learning
stability. Instead of simply weighing local updates as in
FedAvg, FedProx accounts for deviations of the local model
fromthe global model usinga proximal termthat helps improve
convergence and avoid overfitting. The basic Formula (3):

witt = wi — VLl (wj) —plwg —w)  (3)
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where, ¢ is the regularization coefficient, and w are the
global parameters of the model.

The advantages of the algorithms are FedAVG - Easy
implementation and low requirements for computing resources.
FedOPT - use of adaptive optimizers accelerates convergence
and helps avoid overfitting on unstable data. FedPROX is
suitable for cases with heterogeneous data and high variability
between clients. Proximal regularization helps to improve
convergence.

The limitations of the algorithms are FedAVG - sensitivity
to data heterogeneity, where data on different devices vary
significantly, which can slow down the learning and degrade
the quality of the model. FedOPT - Increased computational
costs on the client, as more sophisticated optimization
techniques must be used. FedPROX - requires tuning of the
regularization parameter, which may add complexity to the
optimization process.

Algorithms like FedSGD, FedAvg, FedProx, SCAFFOLD,
and FedOpt were considered for this study, but FedAvg,
FedProx, and FedOpt were selected for further study. It is
shown in Table 1.

TABLE I DETAILS OF ALGORITHMS
Convergence Flexibility to Use of
Method Non-IID & heterogeneity server
rate : Lo
of clients optimizers

FedAvg Bad Slowly No No
FedProx Medium | Medium Yes No
FedOpt Good Fast Yes Yes

In summary, FedAvg is a basic algorithm for federated
learning, effectively applicable if the data on the clients is
similar. FedOpt improves FedAvg using adaptive optimizers,
which accelerates convergence and improves model accuracy.
FedProx focuses on heterogeneous data and incorporates
proximal regularization, which improves training stability in
the face of large differences between clients. Each of these
methods has its own features and applications, and the choice
of the appropriate algorithm depends on the data structure and
computational resources.

In federated model training, Fed Avg, FedOpt, and FedProx
optimize learning on distributed clients while minimizing
communication with the central server. FedAvg is effective
when client data distributions are similar, offering a
computationally efficient solution for homogeneous datasets,
such as student learning or physicalactivity data. FedOpt adapts
to heterogeneous data using adaptive optimizers (e.g., Adam),
improving convergence speed and model accuracy, making it
suitable for dynamic environments. FedProx addresses highly
heterogeneous data by incorporating regularization, mitigating
localized errors, and enhancing model stability and accuracy in
diversestudent datasets. In conclusion, Fed Avgwill be a simple
and efficient solution when the data is homogeneous between
clients, in case of heterogeneous data and different device
types, we recommend using FedOpt or FedProx to improve
model quality and convergence. Provided the problem requires
regularization and consideration of local differences, FedProx
will provide a stable solution. Thus, the choice of algorithm
depends on the nature of the data and the goals: speed of
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training and accuracy of the model or the ability to adapt to
differences in customer data.

C. Experimental Settings

The tasks are focused on client-side data processing, where
local models are applied directly on the client devices. Sending
updates to the server. Server-side update processing, creating a
global model. Sending global models to customers. Global
model with client data is processed on the client side. These
steps will ensure stability, privacy, and efficiency in
implementing the study in real-world use cases. For our
heterogeneous data problem, the choice of methods and
approaches must consider the heterogeneous distribution of
data across devices.

This study employs a client-side learning approach,
ensuring thatraw data remains on user devices, thus preserving
privacy while still enablingeffective global model updates. The
following stages describe each step of this process in detail.

Stage 1: Data Preparation

At this stage,datais collected througha web platform where
participants complete the Maslach Burnout Inventory (MBI)
questionnaire. Once collected, the data is cleaned by removing
duplicates, input errors, and outdated records, then normalized
and standardized. Special attention is given to simulating real-
world conditions with heterogeneous (non-I1ID) data to enhance
model robustness and realism.

Stage 2: Local Training on Clients

Each client trains a random forest model locally on their
own data without transmitting raw information to the server.
The updated model parameters (e.g., tree weights and
performance metrics) are sent to the central server to ensure
data privacy. This approach allows the model to adapt to the
unique characteristics of each client’s dataset and improves
prediction accuracy.

Stage 3: Model Aggregation on the Server

The servercollects updates from all clients and aggregates
them using algorithms such as FedAvg, FedProx, or FedOpt.
Aggregation is weighted according to the volume of data on
each client to ensure fair contribution. After aggregation, the
server evaluates model convergence using metrics like MSE
and R? and adjusts training parameters if needed.

Stage 4: Model Updating and Client Communication

The updated global model is sent back to clients via secure
communication channels. Clients integrate the new model into
their local environment and resume training on their data. This
iterative process of model distribution and retraining ensures
continuous improvement and adaptation to new data.

Stage 5: Model Evaluation

After several rounds of training, the model is evaluated
using both classification (Accuracy, Precision, Recall, F1-
score) and regression (MSE, R?) metrics. The impact of data
heterogeneity among clients is analyzed to assess its effect on
model accuracy and convergence. This comprehensive
evaluation helps identify weaknesses and optimize aggregation
strategies and learning parameters. Fig. 3 illustrates these steps.
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Fig.3. Federated leaming architecture: client-server interaction.

The Random Forest method was applied to the local model;
this algorithm was determined by conducting experiments
during which methods such as logical regression, linear
regression, and time series were considered. The Random
Forest method is an ensemble machine learning algorithm that
uses multiple decision trees to solve classification and
regression problems. The essence of the method is to train
multiple trees on aRandom Forest of training data and features,
which improves the generalization ability of the model and
reduces overfitting. Each tree is trained on a random sample of
data with return (bootstrap method), and for classification, the
final decision is made by a majority vote of the trees, and for
regression, through averaging of predictions. Before sending
them to the server after training on local devices, the following
results were obtained, which are presented in Fig. 4.

The graphs’ description illustrates the relationship between
actual and predicted values of Psycho-emotional exhaustion.
The horizontal axis represents actual values, while the vertical
axis shows predicted values. A red dashed line indicates a
perfect match. For low and medium values, predictions closely
align with the ideal line, demonstrating high accuracy. As
values increase, a slight deviation appears, with greater scatter
at higher levels (~1000). Despite this, predictions remain well-
correlated with the actual data, maintaining stable performance
across different ranges.
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Aandom Forest: real vs predicted values
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Fig.4. Comparison of the results of the random forest method in (a) UNI 1,
(b) UNI 2, (c) UNI 3.

The pros of the method are high accuracy, especially for
complex and high-dimensional data, robustness to overfitting
due to the ensemble approach, handling of missing values, and
estimation of feature importance, which aids in model
interpretation. The cons are low interpretability compared to
single trees, difficulties with prediction on very large data due
to the large number of trees. Random forest is widely used in
classification and regression tasks such as disease diagnosis,
credit scoring, price prediction, and tasks requiring feature
selection. In the federated learning task, random forest is an
effective method for combining models from different clients,
providing robustness to local data and improving overall
performance. After numerous experiments on the server side, a
local model was picked up and sent to the client side, where
training began. The graphs compare the actual values and
predicted values of the Random Forest model for the Psycho-
emotional exhaustion index. For this purpose, data from
different devices were used, which allows us to clearly
demonstrate the effectiveness of the model in the conditions of
heterogeneous data. The Random Forest model shows a good
ability to predict Psycho-emotional exhaustion, especially in
the small and medium ranges of values. Visualization confirms
that the model successfully captures the data patterns, although
some deviation from the ideal line is observed at higher values
(see Table II).

TABLE I1 ACCURACY BEFORE SENDING IT TO THE SERVER
UNI'1 UNI 2 UNI 3
Accuracy 0915676 0.554274 0.858384

1) Description of the preparatory process: To solve the
task, a website was created where the data collection of each
individual student on their personal devices was organized. For
example, it was decided to make a psycho-emotional and
physical analysis of the state of students and schoolchildren
based on the collected database. Currently, the FL has not yet
started its march in Kazakhstan, so my work is of an
introductory nature on the possibilities of using the FL. The
purpose of the experiment is to make a practical demonstration
of the whole process of organizing FL steps on a specific
example described in the study.

Three educational institutions participated in the
experiment; data were collected from the beginning of the
learning process, from September 1, for 2 months before the
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first milestone control. A website was created for data
collection, where all data were stored in a database based onthe
educational institution. The aim was to analyze the mental and
emotional state of students from the moment of the beginning
of the study and by the end of the first milestone control to
determine how much their state had changed by the time of
passing the first milestone control.

These heatmaps provide an overview of how different
questions about burnout relate to each other, which can be
useful foridentifying patterns and determining which questions
may share common underlying factors or experiences, as in
Fig. 5.
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Fig.5. Correlation heatmap of burnout questions in (a) UNI 1, (b) UNI 2,
(c) UNI 3.
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The heatmaps display Spearman correlation coefficients for
burnout-related questions (burnoutQl—burnoutQ22), with
values ranging from -1 to 1. Red indicates strong positive
correlations, blue represents weak orno correlations, and white
signifies no correlation (0). Heatmap 1 highlights strong
correlations between certain burnout questions. Heatmap 2
shows generally lower correlation values, with many closes to
zero. Heatmap 3 reveals some strong correlations (e.g.,
burnoutQ1-Q3, burnoutQ6—Q9), but overall, the values remain
weaker. These heat maps help identify patterns and
relationships between burnout factors.

Application of FL was aimed at predicting further psycho-
emotional and physical state of students for the next boundary
control and readiness to pass the winter session. The
heterogeneity of the data can be determined based on the
following characteristics shown in Table III.

TABLE III CHARACTERISTICS OF THE DATA
Data type Heterogeneous Homogeneous
.. '‘Breakfast', 'Dinner, 'Lunch’,
Nutrition B .
total meals'.
Physical activity | 'intensity','activity Type', 'duration’
‘wellbeingHours0',
Sleep and rest ‘wellbeingHours0',
‘wellbeingHours1".
. 'Psycho-emotional exhaustion',
Emotional state bumnoutQl'-'Q22"
Identifiers and 'student id',
meta-data ‘entry date'

2) Heterogeneity analysis: Students’ data exhibits
heterogeneity dueto variationsin behavioral patterns, including
nutrition, physical activity, sleep, and emotional state. For
instance, dietary habits differ among students, with some
skipping meals while others follow a structured diet. Similarly,
physical activity levels vary, ranging from active sports
participation to a sedentary lifestyle. Emotional burnout scores
also fluctuate based on individual stress levels and coping
mechanisms. Conversely, homogeneous attributes include
'entry date' (consistent format across devices) and 'student_id'
(a unique identifier that does not impact target metrics). These
attributes remain stable regardless of individual behaviors in
Fig. 6. To address data heterogeneity, preprocessing is required
to normalize activity and nutrition data, ensuring consistency
across samples. Additionally, leveraging homogeneous
attributes (e.g., timestamps, unique identifiers) aids in
standardization and enhances model reliability.

The pairplotsillustrate a weak negative correlation between
Psycho-emotional exhaustion and wellbeingHours. Most
students show low sleep duration regardless of exhaustion
level,indicatingthatincreased rest does not consistently reduce
emotional fatigue. The presence of outliers reflects the
heterogeneity of behavioral data among students.

The following results highlight the comparative
performance and convergence behavior of the selected FL
algorithms under non-IID educational data conditions.
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Fig. 6. Fluctuations in psycho-emotional exhaustion over one month in
(a) UNI 1, (b) UNI 2, (c) UNI 3.

IV. RESULTS AND DISCUSSION

In this study, the performance of three federated learning
algorithms, namely FedAVG, FedOPT, and FedProx, was
benchmarked on a classification task aimed at predicting
students’ psycho-emotional states. The primary evaluation
metric was Accuracy, measured on test data after each of ten
training rounds. Table IV and Fig. 7 illustrate the dynamics of
model accuracy across all rounds, providing insight into the
learning stability and convergence behavior of each algorithm.
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TABLE IV ACCURACY DYNAMICS FOR ALGORITHMS

Rounds Accuracy
FedAVG FedOpt FedProx

1 0.793071234 0.8383071568 0.9682882882
2 0.850712345 0.8707123457 0.9793333333
3 0.9366666666 0.942457545 0.989333333
4 0.95956756756 0.9895675675 0.9866633333
5 0.97666666666 0.926666666 0.999936
6 0.9956756756 0.9695675675 0.99657878888
7 0.97666666666 0.9876666666 0.988888999
8 0.96666666666 0.9866666666 0.9968288288
9 0.995675675 0.995675675 0.9933333333
10 0.999675699 0.999675699 0.998888999

Accuracy Dynamics of Federated Learning Algorithms

- W

0.95

o
o
=]

Accuracy

—8— FedAVG
FedOpt

0.80 =i FedProx

2 4 6 8 10
Rounds

Fig. 7. Accuracy dynamics for algorithms.

As shown in Fig. 7, all three algorithms exhibit an upward
trend in accuracy as training progresses, demonstrating the
effectiveness of the federated learning approach in distributed
educational data environments. Among them, FedProx
consistently achieved the highest accuracy, particularly in later
rounds where it reached 99.99%, indicating its robustness in
managing heterogeneous, non-IID data. This superior
performance is attributed to its proximal regularization, which
stabilizes updates and reduces divergence caused by local data
variability across clients:

a) FedOpt, which incorporates adaptive optimizers (e.g,
Adam), also demonstrated strong convergence characteristics,
achievingaccuracy levels close to FedProx while maintaining
lower communication overhead. However, its slightly lower
accuracy in the final rounds suggests that additional
regularization could further enhance its performance under
highly heterogeneous conditions.

b) FedAVG, while computationally efficient, displayed
slower convergence and lower final accuracy compared to the
other two methods. Its performance plateaued in the later
rounds, emphasizing its sensitivity to client data heterogeneity.
Nonetheless, FedAVG remains a practical solution for
homogeneous datasets or resource-constrained environments,
where computational simplicity is prioritized over precision.

¢) Overall, the results confirm that FedProx is the most
effective algorithm for addressing data heterogeneity and
achieving high model accuracy in psycho-emotional state

Vol. 16, No. 10, 2025

prediction. FedOpt offers a balanced trade-off between speed
and accuracy, whereas FedAVG is better suited for uniform
data distributions.

These findings support the study’s objectives by
demonstrating that federated learning algorithms can be
effectively applied to privacy-preserving educational analytics.
The results offer actionable insights for educational institutions,
researchers, and policymakers, emphasizing the potential of
federated leamning to enhance the monitoring of students’
psycho-emotional ~ well-being  while ensuring data
confidentiality and accommodating diverse learning
environments across regions.

Moreover, the results directly align with the study’s
objective of developing a federated learning framework for
monitoring mental health in Kazakhstan, confirming that such
systems can be implemented effectively under heterogeneous
educational conditions.

V. CONCLUSION AND FUTURE SCOPE

This study aimed to develop and evaluate a privacy-
preserving federated learning framework for analyzing the
psycho-emotional well-being of students in Kazakhstan,
particularly under conditions of data heterogeneity and non-IID
distributions. To achieve this, three federated learning
algorithms, FedAvg, FedOpt, and FedProx, were benchmarked
across ten communication rounds in a classification task. The
results revealed distinct performance dynamics, convergence
rates, and stability patterns under federated conditions.

FedAvg showed steady improvement in accuracy from
0.793 in round 1 to 0.9997 in round 10, indicating reliable
convergence despite minor fluctuations in intermediate stages.
FedOpt achieved slightly higher accuracy in the early rounds
(0.9425 and 0.9895 in rounds 3 and 4) and demonstrated faster
convergence than FedAvg. FedProx, starting with the highest
initial accuracy (0.9683), maintained consistent progress and
reached 0.9989 by the final round, confirming its robustness
and effectiveness in handling heterogeneous and non-IID data
distributions.

These findings validate the study’s objective by
demonstrating that federated optimization algorithms can
effectively manage data heterogeneity and ensure secure,
distributed model training for sensitive educational analytics.
However, the experiments were conducted in a simulated
federated environment involving a limited number of
institutions, which may not fully representlarge-scale or real-
world deployments.

Future work will address these limitations by incorporating
a broader range of educational institutions, exploring
asynchronous and cross-silo FL configurations, and integrating
additional behavioral and contextual variables to enhance
predictive accuracy, adaptability, and robustness. Previous
studies have explored centralized machine learning for mental
health analysis and early intervention [31]; however, these
relied on centralized data aggregation, leading to privacy and
scalability challenges.

This research advances the field by introducing a federated
learning-based approach that ensures data confidentiality while

219 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

maintaining model accuracy and adaptability across
heterogeneouseducational environments. Overall, it establishes
a foundation for ethical, data-driven, and privacy-aware
educational analytics in Kazakhstan and beyond, supporting
early intervention strategies and strengthening national efforts
to promote student mental health and academic resilience.
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