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Abstract—This study proposes a game-theoretic framework 

for achieving robust stability in DC motor systems operating 

under parametric uncertainty and external disturbances. We 

model the controller, disturbance, and uncertainty as strategic 

players in a non-cooperative differential game and synthesize 

equilibrium policies using a Lyapunov–game approach. 

Practically, the method integrates: 1) LMI-based stabilization to 

certify descent conditions, 2) actor–critic reinforcement learning 

to approximate the Hamilton–Jacobi–Isaacs (HJI) value function 

beyond linear regimes, and 3) evolutionary/swarm optimization 

for controller initialization and distributed observer tuning. We 

validate the framework on a separately excited DC motor subject 

to ±20% parameter variations and a bounded load-torque 

disturbance and compare it against PID and 𝑯∞ baselines. 

Simulations show consistently faster rise/settling, lower overshoot, 

stronger disturbance rejection at a step disturbance, and smoother 

control effort, while attaining the highest qualitative robustness 

margin among the tested controllers. Beyond single-motor 

stabilization, we outline extensions to multi-agent coordination, 

security-aware control, and fractional/fuzzy models, 

demonstrating adaptability and scalability of the approach. These 

results indicate that framing stability as the outcome of strategic 

interactions yields reliable and efficient DC-motor control in 

uncertain, adversarial environments. 

Keywords—Game theory; DC motor control; robust stability; 

differential games; Lyapunov stability; reinforcement learning; 
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I. INTRODUCTION 

DC motors remain one of the most widely used actuators in 
industrial and robotic applications due to their simplicity, 
reliability, and precise speed control capabilities [1, 2]. They are 
frequently employed in electric vehicles, manufacturing 
systems, and automated processes, where robust and efficient 
control strategies are required [3,4]. Traditional control 
methods, such as proportional–integral–derivative (PID) 
schemes and adaptive control, have been extensively applied to 
regulate DC motor dynamics, but their effectiveness diminishes 
when exposed to uncertainties, parameter variations, or external 
disturbances [5–7]. 

To address these limitations, researchers have relied on 
observer design and Lyapunov-based stability analysis to 

guarantee robust performance under uncertain conditions [8, 9]. 
State observers allow reconstruction of unmeasured variables, 
while Lyapunov functions provide rigorous guarantees of 
stability for nonlinear systems [10]. These techniques have been 
further extended to fractional-order and fuzzy models, enabling 
a more realistic representation of electrical and mechanical 
phenomena [11–13]. However, despite these advancements, 
achieving exponential robustness in highly uncertain 
environments remains a pressing challenge [14]. 

In recent years, game theory has emerged as a principled 
framework for modeling decision-making under competition 
and cooperation [15], with successful applications in wireless 
networks, cybersecurity, and distributed control [16, 17, 32–34]. 

In control-theoretic settings, disturbances, uncertainties, and 
controllers can be modeled as strategic “players” with 
competing or allied objectives [18, 19, 32]. This perspective 
naturally extends robust control by framing stability and 
performance as outcomes of strategic interactions characterized 
by equilibrium concepts. 

Several studies have demonstrated the value of differential 
games and non-cooperative strategies in dynamic systems, 
where the Nash equilibrium provides a meaningful solution 
concept [20,21,32,33]. In motor-driven applications, 
disturbances may be cast as adversarial players seeking to 
degrade performance, while controllers implement optimal 
counter strategies [22]. Cooperative games have likewise 
supported distributed coordination of multi-agent systems to 
ensure consensus and synchronization among interconnected 
drives [23,24]. 

To enhance practicality, modern approaches integrate 
reinforcement learning (RL), evolutionary algorithms, and 
swarm intelligence into game-theoretic controllers, enabling 
strategy optimization and adaptation to changing dynamics [25–
28]. Recent advances connecting Hamilton–Jacobi (HJ/HJI) 
analysis with learning further support safe/robust control by 
leveraging reachability-based value functions during training 
and execution [34,35]. For DC motors, this hybridization 
promises flexibility against nonlinearities and parametric 
uncertainty while retaining verifiable stability guarantees. 
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Despite these promising directions, DC-motor control 
through explicit game-theoretic synthesis for robust exponential 
stability remains underexplored relative to classical robust and 
optimization-based designs [29–31]. This motivates a focused 
framework that: 1) models the controller, disturbance, and 
uncertainty as strategic players in a non-cooperative differential 
game; 2) couples Lyapunov certificates with HJI-guided value 
function approximation to certify descent conditions; and 
3) employs RL and evolutionary/swarm routines for data-driven 
policy refinement—yielding stability with quantified 
performance under uncertainty. 

Contributions of this work: 1) formulates a DC-motor 
control problem as a tri-player game and derives conditions for 
exponential stability via Lyapunov–game synthesis [15,32]; 2) 
integrates LMI-based stabilization with actor–critic HJI 
approximation to bridge certified analysis and learning [25–
28,34,35]; and 3) demonstrates validated performance and 
robustness margins against PID and 𝐻∞ baselines under 
parameter variations and bounded disturbances [5–7,29–31]. 

The study outline is as follows: Section II introduces the 
mathematical model of the DC motor system. Section III 
develops the game-theoretic framework for robust stability, 
including non-cooperative and differential-game formulations. 
Section IV presents supporting algorithms and hybrid 
approaches for strategy optimization. Section V reports 
simulation results that validate the proposed methods. 
Section VI concludes and outlines future research directions. 

II. MATHEMATICAL MODEL OF THE DC MOTOR SYSTEM 

The mathematical modeling of DC motors is fundamental to 
the design and analysis of robust control strategies. A separately 
excited DC motor is considered in this study, which is 
commonly adopted due to its controllability, high torque 
characteristics, and wide range of industrial applications [1–3]. 
Motor dynamics can be described by nonlinear differential 
equations capturing the interactions between electrical and 
mechanical subsystems. 

A. Electrical Subsystem 

The armature and field circuits of a separately excited DC 
motor are driven by independent voltage sources. Their 
dynamics can be expressed as follows [Eq. (1) and Eq. (2)]: 

𝑑𝑖𝑎

𝑑𝑡
= (

1

𝐿𝑎
) ∗  (𝑣𝑎 − 𝑅𝑎 ∗  𝑖𝑎 − 𝐾𝑚 ∗  𝑖𝑓 ∗  𝜔) (1) 

𝑑𝑖𝑓

𝑑𝑡
= (

1

𝐿𝑓
) ∗  (𝑣𝑓 − 𝑅𝑓 ∗  𝑖𝑓)  (2) 

where, 

- 𝑖𝑎  and 𝑖𝑓  are the armature and field currents, 

respectively. 

- 𝑣𝑎  and 𝑣𝑓  denote the applied armature and field 

voltages. 

- 𝑅𝑎 , 𝑅𝑓  represent the resistances, and 𝐿𝑎 , 𝐿𝑓  the 

inductances of the armature and field circuits. 

- 𝐾𝑚 is the motor torque constant. 

- 𝜔 is the angular velocity of the motor shaft. 

These equations capture the coupling between the electrical 
states and the mechanical dynamics through the back 
electromotive force (EMF) term 𝐾𝑚 ∗  𝑖𝑓 ∗  𝜔. 

B. Mechanical Subsystem 

The mechanical motion of the rotor is modeled by Newton’s 
second law [Eq. (3)]: 

𝑑𝜔

𝑑𝑡
= (

1

𝐽𝑚
) ∗  (𝐾𝑚 ∗  𝑖𝑎 ∗  𝑖𝑓 − 𝐵𝑚 ∗  𝜔 − 𝑇𝑙) (3) 

- where, 

- 𝜔 is the angular velocity of the motor shaft. 

- 𝐽𝑚 denotes the moment of inertia. 

- 𝐵𝑚 is the viscous friction coefficient. 

- 𝑇𝑙 represents the external load torque. 

- 𝐾𝑚 ∗  𝑖𝑎 ∗  𝑖𝑓 is the electromagnetic torque. 

The torque produced by the motor is proportional to the 
product 𝑖𝑎𝑖𝑓, emphasizing the nonlinear coupling between 

electrical and mechanical states. 

C. Compact State-Space Representation 

Defining the state vector as Eq. (4): 

𝜉1  =  𝑖𝑎,      𝜉2 = 𝑖𝑓,    𝑎𝑛𝑑 𝜉3  =  𝜔,  (4) 

the system can be written in compact state-space form 
[Eq. (5)]: 

{
 
 

 
 
𝑑𝜉1

𝑑𝑡
= 𝜅1 ∗  𝜉1 + 𝜅2 ∗  𝜉2 ∗  𝜉3  +  (

1

𝐿𝑎
) ∗  𝑣𝑎

𝑑𝜉2

𝑑𝑡
=  𝜅3 ∗  𝜉2  +  (

1

𝐿𝑓
) ∗  𝑣𝑓

𝑑𝜉3

𝑑𝑡
= 𝜅4 ∗  𝜉1 ∗  𝜉2 + 𝜅5 ∗  𝜉3  −  (

1

𝐽𝑚
) ∗  𝑇𝑙

 (5) 

where, the constants are defined as: 

 𝜅1  =  −
𝑅𝑎

𝐿𝑎
 , 𝜅2 = −

𝐾𝑚

𝐿𝑎
,  𝜅3 = −

𝑅𝑓

𝐿𝑓
,  𝜅4 =

𝐾𝑚

𝐽𝑚
, 𝜅5 = −

𝐵𝑚

𝐽𝑚
. 

It is important to note that 𝜅𝑖 < 0  for 𝑖 = 1,3,5 , which 
introduces natural damping into the system, while 𝜅2 and 𝜅4 
determine the nonlinear coupling between states. 

D. Sources of Uncertainty 

In practice, the motor is subject to multiple uncertainties that 
degrade performance and stability: 

1) Parametric Variations – resistance, inductance, and 

damping coefficients may vary due to temperature or aging. 

2) External Disturbances – load torque 𝑇𝑙  fluctuates with 

mechanical demands. 

3) Modeling Errors – nonlinearities and unmodeled 

dynamics cause discrepancies between theory and reality. 

4) Measurement Noise – state observers are required when 

certain states cannot be measured directly. 
Traditional Lyapunov-based methods [22] address these 

issues through conservative stability margins. However, to 
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improve adaptability and robustness, a new paradigm is 
required. 

E. Motivation for Game-Theoretic Formulation 

From a game-theoretic perspective, the controller, 
disturbances, and uncertainties can be viewed as players in a 
dynamic game: 

- The controller-player aims to minimize deviations 

from desired performance. 

- The disturbance player injects unpredictable load 

torques or voltage disturbances. 

- The uncertainty player alters the system parameters, 

such as resistance or damping. 

This strategic interaction naturally leads to formulations 
involving non-cooperative differential games, where the 
solution concept is a Nash equilibrium guaranteeing that no 
player can unilaterally improve their outcome. 

Such a perspective enables the design of robust controllers 
that adapt to worst-case disturbances while maintaining global 
exponential stability. By embedding the motor model into a 
game-theoretic framework, we extend classical stability 
methods toward a more adaptive, resilient paradigm. 

III. GAME-THEORETIC FRAMEWORK FOR ROBUST 

STABILITY 

The incorporation of game theory into the control of DC 
motor systems provides a novel lens for analyzing and 
enhancing stability under uncertainty. By treating disturbances, 
parameter variations, and the controller as strategic players, the 
system’s dynamics can be reformulated as a game in which each 
participant seeks to optimize its own objective. The resulting 
equilibrium conditions establish guarantees for robust stability 
even when the system operates in uncertain or adversarial 
environments. 

A. Players and their Objectives 

We define three primary players in the DC motor control 
problem: 

1) Controller Player 

- Objective: minimize the deviation of the motor 

states  (𝜉1, 𝜉2, 𝜉3) from desired trajectories. 

- Strategy: adjust the control input 𝑣𝑎 based on 

observed or estimated states. 

2) Disturbance Player 

- Objective: destabilize the system by maximizing the 

error or amplifying oscillations. 

- Strategy: inject external torque variations 𝑇𝑙  or 

voltage disturbances. 

3) Uncertainty Player 

- Objective: alter the effective dynamics by shifting 

parameters (𝑅𝑎, 𝑅𝑏 , 𝐵𝑚, 𝐽𝑚). 

- Strategy: introduce parametric deviations, either 

slowly varying or abrupt. 

The game setting emerges as a non-cooperative interaction 
in which each player’s decision directly affects the global 
dynamics. 

B. Cost Functions and Payoffs 

Each player is associated with a payoff or cost function. For 
the controller, the cost reflects tracking error and control effect 
[Eq. (6)]: 

𝐽𝑐 = ∫ ( 𝛼1𝜉1
2  +  𝛼2𝜉2

2 + 𝛼3𝜉3
2 +  𝛽 𝑣𝑎

2)𝑑𝑡,
∞

0
  (6) 

where, 𝛼𝑖 and 𝛽 are positive weighting parameters. 

For the disturbance and uncertainty players, the objectives 
are adversarial [Eq. (7)]: 

𝐽𝑑 = − ∫ ( 𝛾1𝜉3
2 + 𝛾2 (𝛥𝑇𝑙)

2)𝑑𝑡
∞

0
,  (7) 

For the uncertainty player [Eq. (8)]: 

𝐽𝑢 = − ∫ ( 𝛿1(𝛥𝑅𝑎
2 +  𝛥𝑅𝑓

2) + 𝛿2 (𝛥𝐵𝑚
2 )) 𝑑𝑡

∞

0
  (8) 

where, negative signs indicate that maximizing system 
deviation corresponds to minimizing their respective payoffs. 
Nominal values are reported in Table I. 

C. Nash Equilibrium Formulation 

The equilibrium concept central to this framework is the 
Nash equilibrium. A control input 𝑣𝑎

∗, disturbance strategy 𝑇𝑙
∗, 

and uncertainty pattern  𝛥𝑝∗  form a Nash equilibrium if no 
player can unilaterally change its strategy to improve its payoff: 

A Nash equilibrium is defined when none of the players can 
unilaterally improve their payoff [see Eq. (9) to Eq. (11)]: 

𝐽𝑐(𝑣𝑎
∗, 𝑇𝑙

∗,  𝛥𝑝∗) ≤  𝐽𝑐(𝑣𝑎, 𝑇𝑙
∗,  𝛥𝑝∗), ∀ 𝑣𝑎, (9) 

𝐽𝑑(𝑣𝑎
∗, 𝑇𝑙

∗,  𝛥𝑝∗) ≤  𝐽𝑑(𝑣𝑎
∗, 𝑇𝑙 ,  𝛥𝑝

∗), ∀ 𝑇𝑙 , (10) 

𝐽𝑢(𝑣𝑎
∗, 𝑇𝑙

∗,  𝛥𝑝∗) ≤  𝐽𝑢(𝑣𝑎
∗, 𝑇𝑙

∗, 𝛥𝑝), ∀ 𝛥𝑝, (11) 

At this equilibrium, the motor system reaches a stable 
configuration where adversarial actions have been neutralized 
by optimal control responses. 

D. Differential Game Formulation 

Since the dynamics of the DC motor are continuous in time, 
the interaction is best modeled as a differential game. The 
general system can be expressed as Eq. (12): 

𝑑𝜉

𝑑𝑡
=  𝑓(𝜉(𝑡), 𝑣𝑎(𝑡), 𝑇𝑙(𝑡), 𝛥𝑝(𝑡)),  (12) 

with the state vector [Eq. (13)] 

 𝜉 = (𝜉1, 𝜉2, 𝜉3)
𝑇   (13) 

The Hamilton–Jacobi–Isaacs (HJI) condition for equilibrium 
strategies is Eq. (14): 

0 = min
𝑣𝑎

max
𝑇𝑙,𝛥𝑝

{ 𝐿(𝜉, 𝑣𝑎, 𝑇𝑙 , 𝛥𝑝) +  𝛻𝑉(𝜉) ·  𝑓(𝜉, 𝑣𝑎, 𝑇𝑙 , 𝛥𝑝)} 

(14) 
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where, 𝐿(∙)  is the running cost and 𝑉(𝜉)  is the value 
function. Solving this HJI equation yields control strategies that 
guarantee robust stability against worst-case disturbances. 

E. Robust Stability via Lyapunov–Game Synthesis 

We couple Lyapunov analysis with a game-theoretic 
formulation to certify global exponential stability under 
adversarial disturbances and parameter uncertainty. Let 
[Eq. (15)] 

𝑉(𝜉) =  𝜉ᵀ 𝑃 𝜉,                  𝑃 >  0  (15) 

be a quadratic Lyapunov candidate and let 𝑓(𝜉, 𝑣𝑎, 𝑇ℓ, Δ𝑝) 
denote the closed-loop state dynamics. 

 Exponential stability is ensured if there exists 𝜆 > 0 such 
that, along trajectories [Eq. (16)], 

𝑑𝑉

𝑑𝑡
≤ −𝜆 ||𝜉||

2
, ∀ 𝜉,   (16) 

under the equilibrium control strategy 𝑣𝑎
∗. 

In the presence of strategic adversaries—load torque 𝑇ℓ and 
parametric perturbations Δ𝑝—the condition above is enforced in 
a min–max sense [Eq. (17)]: 

𝑑𝑉

𝑑𝑡
≤ min

𝑣𝑎
max
𝑇𝑙,𝛥𝑝

{ 𝛻𝑉(𝜉) ∙  𝑓(𝜉, 𝑣𝑎, 𝑇𝑙 , 𝛥𝑝)} ≤  −𝜆 ||𝜉||
2
 

 (17) 

Lemma (Exponential stability under Lyapunov–game 
inequality). 
If there exist 𝑃 ≻ 0and 𝜆 > 0 such that Eq. (16) holds for all 𝜉, 
then the origin of the closed-loop system is globally 
exponentially stable against all admissible 
disturbance/uncertainty strategies; specifically [Eq. (18)], 

𝑉(𝑡) ≤ 𝑒−𝑐𝑡𝑉(0)with𝑐 =
𝜆

𝜆max(𝑃)
, (18) 

and hence [Eq. (19)], 

∥ 𝜉(𝑡) ∥≤ √
𝜆max(𝑃)

𝜆min(𝑃)
 𝑒−

𝑐

2
𝑡
  ∥ 𝜉(0) ∥. (19) 

Proof sketch. From Eq. (17), we have 𝑉̇ ≤ −𝜆 ∥ 𝜉 ∥2≤

−
𝜆

𝜆max(𝑃)
𝑉 . Grönwall’s inequality gives the stated bound on 

𝑉(𝑡) , and positive definiteness of 𝑃 yields the bound on ∥
𝜉(𝑡) ∥.  

In practice, Eq. (17) is checked or constructed by: i) selecting 
𝑃via an LMI-based stabilizer and ii) refining the control policy 
toward the minimizing strategy 𝑣𝑎

∗ while treating (𝑇ℓ, Δ𝑝) as 
maximizing players. This certifies robustness independently of 
the specific disturbance/uncertainty realizations. 

If such an inequality holds, the closed-loop system is 
guaranteed to remain globally exponentially stable, regardless of 
the disturbance or parameter uncertainty strategies. 

F. Cooperative versus Non-Cooperative Scenarios 

Two major scenarios arise in practice: 

1) Non-cooperative case: Disturbances act adversarially, 

attempting to destabilize the motor. Here, the Nash equilibrium 

ensures that the controller’s strategy is robust against worst-

case scenarios. 

2) Cooperative case: In multi-agent or distributed motor 

systems, players (subsystems) may share information. 

Cooperative equilibria lead to improved efficiency and 

synchronization. 

Both formulations enrich the design space for robust stability 
analysis. 

G. Computational Considerations 

While the theoretical framework provides strong guarantees, 
solving HJI equations or deriving exact Nash equilibria is 
computationally demanding. Approximation methods such as 
reinforcement learning, evolutionary optimization, or linear 
matrix inequality (LMI) relaxations can be employed to 
compute feasible strategies. These methods balance accuracy 
with real-time implementability, making the framework suitable 
for practical applications. 

IV. ALGORITHMIC IMPLEMENTATION AND SIMULATION 

RESULTS 

This section presents the algorithmic framework developed 
for computing equilibrium strategies in the game-theoretic 
setting and demonstrates its performance through simulation 
studies on a DC motor system. The proposed methodology 
integrates Lyapunov–game synthesis with learning-based 
optimization and is validated against existing control 
techniques. 

A. Algorithmic Framework 

The robust stability problem formulated in Section III is 
solved using a combination of classical and modern methods. 
First, linear matrix inequalities (LMIs) are employed to generate 
feasible stabilizing feedback gains that satisfy Lyapunov 
conditions under bounded uncertainty. Next, reinforcement 
learning (RL) techniques are used to approximate the Hamilton–
Jacobi–Isaacs (HJI) value function, allowing adaptation to 
nonlinearities and disturbances beyond linearized regimes. 
Finally, evolutionary algorithms and swarm intelligence serve as 
complementary optimization tools for initialization and 
distributed observer design. 

The overall workflow is summarized as follows: 

1) Initialization: Solve LMIs for candidate state feedback 

gains and Lyapunov matrix. 

2) Learning stage: Train actor–critic networks to minimize 

the HJI residual under adversarial disturbances. 

3) Evolutionary refinement: Improve controller 

initialization via evolutionary search for robust stability 

margins. 

4) Observer tuning: For multi-agent settings, employ 

swarm-based optimization to harmonize distributed observers. 

The conceptual architecture of the proposed control 
framework is illustrated in Fig. 1. 
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Fig. 1. Conceptual architecture of the proposed game-theoretic robust 

stability framework. 

The system integrates an LMI-based stabilization layer, a 
learning layer using actor–critic reinforcement learning for HJI 
approximation, and an evolutionary/swarm layer for 
initialization and observer tuning. Disturbance and uncertainty 
players act adversarially against the controller, and equilibrium 
strategies (Nash/HJI) are computed to guarantee stability. The 

observer feeds estimated states 𝜉 to the controller, which 
generates the control 𝑣𝑎 for the DC motor plant, while the plant 
output 𝑦 closes the loop. 

B. Simulation Setup 

We evaluated the framework on a separately excited DC 
motor (nominal parameters in Table I), subject to parametric 
variations and bounded load-torque disturbances. 

TABLE I.  NOMINAL PARAMETERS OF THE DC MOTOR USED IN 

SIMULATION SETUP 

Parameter Symbol Value 

Armature resistance 𝑅𝑎 1.2 𝛺 

Armature inductance 𝐿𝑎 0.05 𝐻 

Field resistance 𝑅𝑓 1.0 𝛺 

Field inductance 𝐿𝑓 0.05 𝐻 

Torque constant 𝐾𝑚 0.01 𝑁 · 𝑚 𝐴⁄  

Rotor inertia 𝐽𝑚 0.01 𝑘𝑔 · 𝑚2 

Damping coefficient 𝐵𝑚 0.1 𝑁 · 𝑚 · 𝑠 

Uncertainties of ±20% were applied to electrical and 
mechanical parameters, and the load torque 𝑇𝑙  varied within 
[−0.05,0.05] 𝑁 · 𝑚  to represent disturbances. Controllers 
compared include PID, 𝐻∞, and the proposed game-theoretic 
design. 

C. Algorithmic Convergence 

Fig. 2 reports the decay of the HJI residual during training. 
The proposed RL + LMI shaping achieves faster and smoother 
convergence than RL-only learning, indicating that combining a 
hard Lyapunov/LMI certificate with adaptive policy 
optimization stabilizes training and accelerates policy 
improvement. 

 

Fig. 2. Algorithmic convergence of residual error. 

All controllers were evaluated under identical setpoints, a 
bounded load-torque disturbance injected at 𝑡 = 1 s , and a 
±20% parametric sweep around the nominal motor parameters 
(see Table I). We report standard time-domain metrics—rise 
time, settling time, percent overshoot, and peak deviation under 
disturbance—computed over 10 independent runs per condition 
and summarized in Table II. 

D. Time-Domain Responses 

Fig. 3(a) to Fig. 3(b) illustrate the motor’s speed response 
under different conditions: 

 Nominal operation [Fig. 3(a)]: all controllers achieve 
satisfactory tracking, but the proposed controller shows 
lower overshoot. 

 Disturbance injection [Fig. 3(b)]: when a torque 
disturbance is applied at 𝑡 = 1𝑠, the proposed controller 
rejects it rapidly with minimal deviation, outperforming 
PID and 𝐻∞. 

 Parametric uncertainty [Fig. 3(c)]: the proposed method 
maintains stability and performance despite ±20% 
parameter variations, whereas PID performance 
degrades significantly. 

 

Fig. 3. Simulation results: (a) Speed response under nominal conditions; (b) 

Response under a disturbance applied at t=1s; (c) Response under ±20% 

parameter uncertainty. 

E. Control Effort Analysis 

Fig. 4 compares control inputs 𝑣𝑎(𝑡)  under disturbance 
conditions. The PID controller exhibits aggressive oscillations, 
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while the proposed method achieves effective rejection with 
smoother and less demanding actuation. This balance highlights 
the method’s suitability for practical hardware where actuator 
limitations must be respected. 

 

Fig. 4. Control effort under disturbance. 

F. Robustness Margins 

Quantitative results are summarized in Table II and Fig. 5. 
The proposed controller consistently achieves faster settling, 
reduced overshoot, and stronger disturbance rejection compared 
to PID and 𝐻∞. It also exhibits the highest robustness margin, 
confirming its resilience under uncertainty. 

TABLE II.  COMPARATIVE PERFORMANCE METRICS 

Metric PID 𝑯∞ 
Proposed (Game-

Theoretic) 

Rise time (s) 0.45 0.40 0.42 

Settling time (s) 1.20 0.95 0.70 

Overshoot (%) 12.5 8.2 5.4 

Disturbance rejection 

(peak deviation, rad/s) 
0.18 0.11 0.05 

Robust stability margin Low Medium High 

 

Fig. 5. Comparative robustness margins. 

G. Discussion 

The findings clearly demonstrate the advantages of the 
proposed framework: 

 Robustness: Explicit modeling of disturbances and 
uncertainties as adversarial players leads to superior 
rejection performance. 

 Efficiency: Smoother control effort reduces actuator 
stress and energy consumption. 

 Adaptability: The hybrid integration of LMIs, learning, 
and evolutionary methods achieves both theoretical 
guarantees and practical performance. 

In comparison, PID fails under large uncertainties and 𝐻∞ 
provides robustness at the cost of conservatism. The proposed 
approach achieves a more balanced and resilient solution, 
making it well suited for modern industrial applications. 

V. EXTENDED APPLICATIONS 

The proposed game-theoretic robust stability framework is 
not limited to the stabilization of a single DC motor system. Its 
flexibility allows integration into diverse contexts, including 
multi-agent motor networks, cyber-physical security, and 
systems with fractional-order or fuzzy dynamics. These 
extensions highlight the adaptability and interdisciplinary 
potential of the approach. 

A. Multi-Agent and Distributed Motor Systems 

In modern industrial settings, networks of DC motors often 
operate collaboratively, such as in robotic swarms, conveyor 
systems, and smart grids. Each motor can be modeled as an 
agent interacting with others. In this case: 

- Game-theoretic formulation: Each motor’s 

controller is a player minimizing local error, while 

disturbances act as adversarial players. 

- Consensus objectives: Cooperative games ensure 

synchronization of speeds and torque distribution 

across all motors. 

- Observer tuning: Swarm intelligence algorithms can 

design distributed observers, guaranteeing 

consistent state estimation across agents. 

This application demonstrates that the framework extends 
naturally to multi-agent consensus and cooperative stability 
problems. 

B. Cyber-Physical Security and Attack-Resilient Control 

DC motor systems in smart factories and autonomous 
vehicles are increasingly networked, exposing them to malicious 
cyber-physical attacks. Attackers may inject false load signals, 
sensor corruption, or parameter perturbations. 

- Game-theoretic modeling: Attackers are adversarial 

players seeking to destabilize the system, while the 

controller is the defender. 

- Differential game dynamics: Robust equilibrium 

ensures stability under worst-case attack scenarios. 

- Hybrid algorithms: Reinforcement learning helps 

adapt to unforeseen attack strategies while LMIs 

provide hard stability guarantees. 

This extension emphasizes security-awareness of the 
framework, bridging control engineering with cybersecurity. 

C. Fractional-Order Systems 

Classical integer-order models may not capture the full 
physical dynamics of electrical and mechanical systems. 
Fractional calculus provides a more accurate representation of 
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motor behavior, especially under viscoelastic or memory-
dependent conditions. 

- Mittag-Leffler stability: Fractional-order stability 

replaces exponential convergence, offering more 

realistic long-term dynamics. 

- Game-theoretic adaptation: The framework can be 

redefined with fractional derivatives, where 

adversarial players still represent uncertainties. 

- Application: Fractional DC motor models benefit 

from controllers designed with the same adversarial 

equilibrium principles. 

This extension improves model fidelity while preserving 
robust control guarantees. 

D. Fuzzy and Nonlinear Extensions 

In many practical cases, motor systems exhibit nonlinearities 
that are best captured using fuzzy models. Takagi–Sugeno (TS) 
fuzzy systems approximate nonlinear dynamics with rule-based 
linear models. 

- Fuzzy-game hybrid: Each fuzzy rule can be treated 

as a player, and equilibrium strategies provide 

stabilization across the entire operating range. 

- Advantages: The fuzzy representation reduces 

modeling error, while the game-theoretic design 

guarantees robustness to rule-switching and 

uncertainty. 

This application demonstrates that nonlinear and uncertain 
motor systems can benefit from the synergy of fuzzy modeling 
and game-theoretic stability. 

E. Key Insights from Extended Applications 

1) Scalability: The proposed method extends naturally to 

distributed and multi-agent systems. 

2) Security-awareness: Cyber-physical attack scenarios 

can be modeled and mitigated within the same framework. 

3) Model generality: Fractional and fuzzy system 

formulations confirm the framework’s ability to handle diverse 

nonlinear dynamics. 

4) Interdisciplinary potential: The approach bridges 

control engineering, cybersecurity, and computational 

intelligence. 

VI. CONCLUSION 

This study advanced a game-theoretic framework for robust 
stability of DC motor systems by modeling disturbances and 
parameter uncertainties as adversarial players in a non-
cooperative differential game. We coupled Lyapunov–game 
synthesis (via LMIs) with actor–critic reinforcement learning for 
Hamilton–Jacobi–Isaacs (HJI) approximation and used 
evolutionary/swarm routines for controller initialization and 
observer tuning. Across nominal, disturbed, and ±20% 
parametric-variation scenarios, the proposed controller 
consistently outperformed PID and 𝐻∞ baselines—achieving 
faster settling, lower overshoot, stronger disturbance rejection at 
𝑡 = 1 s, and smoother control effort (see Table II and Fig. 2 to 

Fig. 5). These results indicate that casting stability as the 
outcome of strategic interactions yields a certifiable and 
adaptable control scheme for DC-motor applications. 

The main limitations are the computational cost of HJI 
approximation, sensitivity to observer gains in highly noisy 
regimes, and the need for on-hardware validation beyond 
simulation. Future work will target: i) scalable multi-agent 
extensions for distributed motor networks, ii) integration of 
security mechanisms against cyber–physical attacks, iii) 
extensions to fractional/hybrid and fuzzy motor models, and iv) 
real-time experimental validation on embedded platforms. 
Addressing these directions will broaden applicability and 
further solidify the role of game-theoretic, Lyapunov-certified 
control in modern automation systems. 
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