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Abstract—This study proposes a game-theoretic framework
for achieving robust stability in DC motor systems operating
under parametric uncertainty and external disturbances. We
model the controller, disturbance, and uncertainty as strategic
players in a non-cooperative differential game and synthesize
equilibrium policies using a Lyapunov—game approach.
Practically, the method integrates: 1) LMI-based stabilization to
certify descent conditions, 2) actor—critic reinforcement learning
to approximate the Hamilton-Jacobi-Isaacs (HJI) value function
beyond linear regimes, and 3) evolutionary/swarm optimization
for controller initialization and distributed observer tuning. We
validate the framework on a separately excited DC motor subject
to +20% parameter variations and a bounded load-torque
disturbance and compare it against PID and H, baselines.
Simulations show consistently faster rise/settling, lower overshoot,
stronger disturbance rejection at a step disturbance, and smoother
control effort, while attaining the highest qualitative robustness
margin among the tested controllers. Beyond single-motor
stabilization, we outline extensions to multi-agent coordination,
security-aware  control, and  fractional/fuzzy = models,
demonstrating adaptability and scalability of the approach. These
results indicate that framing stability as the outcome of strategic
interactions yields reliable and efficient DC-motor control in
uncertain, adversarial environments.
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l. INTRODUCTION

DC motors remain one of the most widely used actuators in
industrial and robotic applications due to their simplicity,
reliability, and precise speed control capabilities [1, 2]. They are
frequently employed in electric vehicles, manufacturing
systems, and automated processes, where robust and efficient
control strategies are required [3,4]. Traditional control
methods, such as proportional-integral-derivative (PID)
schemes and adaptive control, have been extensively applied to
regulate DC motor dynamics, but their effectiveness diminishes
when exposed to uncertainties, parameter variations, or external
disturbances [5-7].

To address these limitations, researchers have relied on
observer design and Lyapunov-based stability analysis to

guarantee robust performance under uncertain conditions [8, 9].
State observers allow reconstruction of unmeasured variables,
while Lyapunov functions provide rigorous guarantees of
stability for nonlinear systems [10]. These techniques have been
further extended to fractional-order and fuzzy models, enabling
a more realistic representation of electrical and mechanical
phenomena [11-13]. However, despite these advancements,
achieving exponential robustness in highly uncertain
environments remains a pressing challenge [14].

In recent years, game theory has emerged as a principled
framework for modeling decision-making under competition
and cooperation [15], with successful applications in wireless
networks, cybersecurity, and distributed control [16, 17, 32-34].

In control-theoretic settings, disturbances, uncertainties, and
controllers can be modeled as strategic “players” with
competing or allied objectives [18, 19, 32]. This perspective
naturally extends robust control by framing stability and
performance as outcomes of strategic interactions characterized
by equilibrium concepts.

Several studies have demonstrated the value of differential
games and non-cooperative strategies in dynamic systems,
where the Nash equilibrium provides a meaningful solution
concept [20,21,32,33]. In  motor-driven  applications,
disturbances may be cast as adversarial players seeking to
degrade performance, while controllers implement optimal
counter strategies [22]. Cooperative games have likewise
supported distributed coordination of multi-agent systems to
ensure consensus and synchronization among interconnected
drives [23,24].

To enhance practicality, modern approaches integrate
reinforcement learning (RL), evolutionary algorithms, and
swarm intelligence into game-theoretic controllers, enabling
strategy optimization and adaptation to changing dynamics [25—
28]. Recent advances connecting Hamilton—Jacobi (HJ/HJI)
analysis with learning further support safe/robust control by
leveraging reachability-based value functions during training
and execution [34,35]. For DC motors, this hybridization
promises flexibility against nonlinearities and parametric
uncertainty while retaining verifiable stability guarantees.
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Despite these promising directions, DC-motor control
through explicit game-theoretic synthesis for robust exponential
stability remains underexplored relative to classical robust and
optimization-based designs [29-31]. This motivates a focused
framework that: 1) models the controller, disturbance, and
uncertainty as strategic players in a non-cooperative differential
game; 2) couples Lyapunov certificates with HJI-guided value
function approximation to certify descent conditions; and
3) employs RL and evolutionary/swarm routines for data-driven
policy refinement—yielding stability ~with  quantified
performance under uncertainty.

Contributions of this work: 1) formulates a DC-motor
control problem as a tri-player game and derives conditions for
exponential stability via Lyapunov—-game synthesis [15,32]; 2)
integrates LMI-based stabilization with actor—critic HJI
approximation to bridge certified analysis and learning [25-
28,34,35]; and 3) demonstrates validated performance and
robustness margins against PID and H, baselines under
parameter variations and bounded disturbances [5-7,29-31].

The study outline is as follows: Section Il introduces the
mathematical model of the DC motor system. Section IlI
develops the game-theoretic framework for robust stability,
including non-cooperative and differential-game formulations.
Section IV presents supporting algorithms and hybrid
approaches for strategy optimization. Section V reports
simulation results that validate the proposed methods.
Section VI concludes and outlines future research directions.

Il. MATHEMATICAL MODEL OF THE DC MOTOR SYSTEM

The mathematical modeling of DC motors is fundamental to
the design and analysis of robust control strategies. A separately
excited DC motor is considered in this study, which is
commonly adopted due to its controllability, high torque
characteristics, and wide range of industrial applications [1-3].
Motor dynamics can be described by nonlinear differential
equations capturing the interactions between electrical and
mechanical subsystems.

A. Electrical Subsystem

The armature and field circuits of a separately excited DC
motor are driven by independent voltage sources. Their
dynamics can be expressed as follows [Eq. (1) and Eq. (2)]:

%z(i)*(va—Ra*ia—Km*if*w) (1)
di ;
L= () Gr=Rer i) @
where,

- iz and i are the armature and field currents,
respectively.

- v, and v, denote the applied armature and field
voltages.

- R, Ry represent the resistances, and Lo, Ly the
inductances of the armature and field circuits.

- K, is the motor torque constant.
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- w is the angular velocity of the motor shaft.

These equations capture the coupling between the electrical
states and the mechanical dynamics through the back
electromotive force (EMF) term K, * i * w.

B. Mechanical Subsystem

The mechanical motion of the rotor is modeled by Newton’s
second law [Eq. (3)]:

=(ﬁ)*(Km*ia*if—Bm*w—Tl) ?3)

- where,

dw
dt

- w isthe angular velocity of the motor shaft.
- ] denotes the moment of inertia.

- B, is the viscous friction coefficient.

- T, represents the external load torque.

- Kp * ig * if is the electromagnetic torque.

The torque produced by the motor is proportional to the
product i,if, emphasizing the nonlinear coupling between
electrical and mechanical states.

C. Compact State-Space Representation

Defining the state vector as Eq. (4):

fl = iav 52 = ifv and 63 = w, (4)
the system can be written in compact state-space form
[Eq. O)]:

(3 1
|(d_t1= Ki* &+ Ky &% &5 + (Z)*v“

13 1
T SR O ©)
d
L§= Ko* &% &+ Ks* &5 — (]i)* T,
m
where, the constants are defined as:
— _Ra — _EKm - _K& —Km . _ _Bm
=TT Ty e T Ty e T s T T

It is important to note that x; < 0 for i = 1,3,5, which
introduces natural damping into the system, while x, and k,
determine the nonlinear coupling between states.

D. Sources of Uncertainty

In practice, the motor is subject to multiple uncertainties that
degrade performance and stability:

1) Parametric Variations — resistance, inductance, and
damping coefficients may vary due to temperature or aging.

2) External Disturbances — load torque T; fluctuates with
mechanical demands.

3) Modeling Errors — nonlinearities and unmodeled
dynamics cause discrepancies between theory and reality.

4) Measurement Noise — state observers are required when
certain states cannot be measured directly.

Traditional Lyapunov-based methods [22] address these
issues through conservative stability margins. However, to
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improve adaptability and robustness, a new paradigm is
required.

E. Motivation for Game-Theoretic Formulation

From a game-theoretic perspective, the controller,
disturbances, and uncertainties can be viewed as players in a
dynamic game:

- The controller-player aims to minimize deviations
from desired performance.

- The disturbance player injects unpredictable load
torques or voltage disturbances.

- The uncertainty player alters the system parameters,
such as resistance or damping.

This strategic interaction naturally leads to formulations
involving non-cooperative differential games, where the
solution concept is a Nash equilibrium guaranteeing that no
player can unilaterally improve their outcome.

Such a perspective enables the design of robust controllers
that adapt to worst-case disturbances while maintaining global
exponential stability. By embedding the motor model into a
game-theoretic framework, we extend classical stability
methods toward a more adaptive, resilient paradigm.

I1l. GAME-THEORETIC FRAMEWORK FOR ROBUST
STABILITY

The incorporation of game theory into the control of DC
motor systems provides a novel lens for analyzing and
enhancing stability under uncertainty. By treating disturbances,
parameter variations, and the controller as strategic players, the
system’s dynamics can be reformulated as a game in which each
participant seeks to optimize its own objective. The resulting
equilibrium conditions establish guarantees for robust stability
even when the system operates in uncertain or adversarial
environments.

A. Players and their Objectives

We define three primary players in the DC motor control
problem:

1) Controller Player

- Objective: minimize the deviation of the motor
states (&, &,, &;) from desired trajectories.

- Strategy: adjust the control input v, based on
observed or estimated states.

2) Disturbance Player

- Objective: destabilize the system by maximizing the
error or amplifying oscillations.

- Strategy: inject external torque variations T; or
voltage disturbances.

3) Uncertainty Player

- Objective: alter the effective dynamics by shifting
parameters (Ry, Ry, B, Jim)-
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- Strategy: introduce parametric deviations, either
slowly varying or abrupt.

The game setting emerges as a non-cooperative interaction
in which each player’s decision directly affects the global
dynamics.

B. Cost Functions and Payoffs

Each player is associated with a payoff or cost function. For
the controller, the cost reflects tracking error and control effect

[Eq. (6)]:
Je= fooo( ;& + 08" + a6’ + Brd)dt, (6)
where, @; and § are positive weighting parameters.

For the disturbance and uncertainty players, the objectives
are adversarial [Eq. (7)]:

Ja= — fooo()’1'f32 + 72 (ATl)Z)dt, (7
For the uncertainty player [Eq. (8)]:

Ju=— 1 ( 8, (ARZ + AR?) + 6, (AB,%)) dt ®)

where, negative signs indicate that maximizing system
deviation corresponds to minimizing their respective payoffs.
Nominal values are reported in Table I.

C. Nash Equilibrium Formulation

The equilibrium concept central to this framework is the
Nash equilibrium. A control input v, *, disturbance strategy T;",
and uncertainty pattern Ap* form a Nash equilibrium if no
player can unilaterally change its strategy to improve its payoff:

A Nash equilibrium is defined when none of the players can
unilaterally improve their payoff [see Eq. (9) to Eq. (11)]:

]c(va*' Tl*' AP*) < ]C(Va' Tl*' AP*)' Vva: (9)
]d(va*'Tl*v Ap*) < ]d(va*le' Ap*)v VT[, (10)
]u(va*rTl*v Ap*) < ]u(va*'Tl*rAp)v VAP: (11)

At this equilibrium, the motor system reaches a stable
configuration where adversarial actions have been neutralized
by optimal control responses.

D. Differential Game Formulation

Since the dynamics of the DC motor are continuous in time,
the interaction is best modeled as a differential game. The
general system can be expressed as Eq. (12):

% = F(E@,va(0, Ty (®), 4p(®)), (12)
with the state vector [Eq. (13)]
§=( & 5(3)T (13)

The Hamilton—-Jacobi-Isaacs (HJI) condition for equilibrium
strategies is Eq. (14):

0= ng(iln ﬁ%g{ L(E: Vo, Ty, Ap) + VV(f) : f(fr Vo, Ty, AP)}
(14)
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where, L(-) is the running cost and V(&) is the value
function. Solving this HJI equation yields control strategies that
guarantee robust stability against worst-case disturbances.

E. Robust Stability via Lyapunov—Game Synthesis

We couple Lyapunov analysis with a game-theoretic
formulation to certify global exponential stability under
adversarial disturbances and parameter uncertainty. Let

[Eq. (15)]
V() =¢TPg, P >0 (15)

be a quadratic Lyapunov candidate and let f (¢, v,, T,, Ap)
denote the closed-loop state dynamics.

Exponential stability is ensured if there exists A > 0 such
that, along trajectories [Eq. (16)],
2
S< -aliEl’, ve, (16)
under the equilibrium control strategy v,*.

In the presence of strategic adversaries—Iload torque T, and
parametric perturbations Ap—the condition above is enforced in
a min—max sense [Eq. (17)]:

% <minmax{ VV(§) - f(&, v, T, Ap)} < -2 ||'f||2
t vq TpAp
7)

Lemma (Exponential Lyapunov—game
inequality).
If there exist P > 0and A > 0 such that Eq. (16) holds for all &,

then the origin of the closed-loop system is globally

stability under

exponentially stable against all admissible
disturbance/uncertainty strategies; specifically [Eq. (18)],
—Ct . — l
V(t) < e “'V(0)withc = ) (18)

and hence [Eq. (19)],

1(0) < [Fme 72 11 €0) Il (19)

Proof sketch. From Eq. (17), we have V < —1 || € |I’<
A

~ Amax(P)
V(t), and positive definiteness of P yields the bound on ||

S .

In practice, Eq. (17) is checked or constructed by: i) selecting
Pvia an LMI-based stabilizer and ii) refining the control policy
toward the minimizing strategy v; while treating (T,, Ap) as
maximizing players. This certifies robustness independently of
the specific disturbance/uncertainty realizations.

V. Gronwall’s inequality gives the stated bound on

If such an inequality holds, the closed-loop system is
guaranteed to remain globally exponentially stable, regardless of
the disturbance or parameter uncertainty strategies.

F. Cooperative versus Non-Cooperative Scenarios

Two major scenarios arise in practice:

1) Non-cooperative case: Disturbances act adversarially,
attempting to destabilize the motor. Here, the Nash equilibrium
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ensures that the controller’s strategy is robust against worst-
case scenarios.

2) Cooperative case: In multi-agent or distributed motor
systems, players (subsystems) may share information.
Cooperative equilibria lead to improved efficiency and
synchronization.

Both formulations enrich the design space for robust stability
analysis.

G. Computational Considerations

While the theoretical framework provides strong guarantees,
solving HJI equations or deriving exact Nash equilibria is
computationally demanding. Approximation methods such as
reinforcement learning, evolutionary optimization, or linear
matrix inequality (LMI) relaxations can be employed to
compute feasible strategies. These methods balance accuracy
with real-time implementability, making the framework suitable
for practical applications.

IV. ALGORITHMIC IMPLEMENTATION AND SIMULATION
RESULTS

This section presents the algorithmic framework developed
for computing equilibrium strategies in the game-theoretic
setting and demonstrates its performance through simulation
studies on a DC motor system. The proposed methodology
integrates Lyapunov—game synthesis with learning-based
optimization and is validated against existing control
techniques.

A. Algorithmic Framework

The robust stability problem formulated in Section Il is
solved using a combination of classical and modern methods.
First, linear matrix inequalities (LMIs) are employed to generate
feasible stabilizing feedback gains that satisfy Lyapunov
conditions under bounded uncertainty. Next, reinforcement
learning (RL) techniques are used to approximate the Hamilton—
Jacobi-Isaacs (HJI) value function, allowing adaptation to
nonlinearities and disturbances beyond linearized regimes.
Finally, evolutionary algorithms and swarm intelligence serve as
complementary optimization tools for initialization and
distributed observer design.

The overall workflow is summarized as follows:

1) Initialization: Solve LMIs for candidate state feedback
gains and Lyapunov matrix.

2) Learning stage: Train actor—critic networks to minimize
the HJI residual under adversarial disturbances.

3) Evolutionary  refinement: Improve  controller
initialization via evolutionary search for robust stability
margins.

4) Observer tuning: For multi-agent settings, employ
swarm-based optimization to harmonize distributed observers.

The conceptual architecture of the proposed control
framework is illustrated in Fig. 1.
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Fig. 1. Conceptual architecture of the proposed game-theoretic robust
stability framework.

The system integrates an LMI-based stabilization layer, a
learning layer using actor—critic reinforcement learning for HJI
approximation, and an evolutionary/swarm layer for
initialization and observer tuning. Disturbance and uncertainty
players act adversarially against the controller, and equilibrium
strategies (Nash/HJI) are computed to guarantee stability. The
observer feeds estimated states & to the controller, which
generates the control v, for the DC motor plant, while the plant
output y closes the loop.

B. Simulation Setup

We evaluated the framework on a separately excited DC
motor (hominal parameters in Table 1), subject to parametric
variations and bounded load-torque disturbances.

TABLE I. NOMINAL PARAMETERS OF THE DC MOTOR USED IN
SIMULATION SETUP

Parameter Symbol Value
Armature resistance R, 1.20
Armature inductance L, 0.05H
Field resistance R¢ 1.00
Field inductance Ls 0.05H
Torque constant K 0.01N-m/A
Rotor inertia - 0.01 kg - m?
Damping coefficient B 01N -m-s

Uncertainties of +20% were applied to electrical and
mechanical parameters, and the load torque T, varied within
[—0.05,0.05] N -m to represent disturbances. Controllers
compared include PID, H,,, and the proposed game-theoretic
design.

C. Algorithmic Convergence

Fig. 2 reports the decay of the HJI residual during training.
The proposed RL + LMI shaping achieves faster and smoother
convergence than RL-only learning, indicating that combining a

hard Lyapunov/LMI certificate with adaptive policy
optimization stabilizes training and accelerates policy
improvement.
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Fig. 2. Algorithmic convergence of residual error.

All controllers were evaluated under identical setpoints, a
bounded load-torque disturbance injected at t =1s, and a
+20% parametric sweep around the nominal motor parameters
(see Table 1). We report standard time-domain metrics—rise
time, settling time, percent overshoot, and peak deviation under
disturbance—computed over 10 independent runs per condition
and summarized in Table I1.

D. Time-Domain Responses

Fig. 3(a) to Fig. 3(b) illustrate the motor’s speed response
under different conditions:

e Nominal operation [Fig. 3(a)]: all controllers achieve
satisfactory tracking, but the proposed controller shows
lower overshoot.

e Disturbance injection [Fig. 3(b)]: when a torque
disturbance is applied at t = 1s, the proposed controller
rejects it rapidly with minimal deviation, outperforming
PID and H,,.

e Parametric uncertainty [Fig. 3(c)]: the proposed method
maintains stability and performance despite +20%
parameter variations, whereas PID performance
degrades significantly.

() Speed Response - Nominal

(b) Response with Disturbance at t=1s

0.0 05 10 15 20 25 30 a4 05 L0 LS 2.0 25 30
Time (s} Time fs)

04 a5 1o 5 20 75 30
Time (5]

Fig. 3. Simulation results: (a) Speed response under nominal conditions; (b)
Response under a disturbance applied at t=1s; (c) Response under +20%
parameter uncertainty.

E. Control Effort Analysis

Fig. 4 compares control inputs v,(t) under disturbance
conditions. The PID controller exhibits aggressive oscillations,
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while the proposed method achieves effective rejection with
smoother and less demanding actuation. This balance highlights
the method’s suitability for practical hardware where actuator
limitations must be respected.

Control Effort under Disturbance
2.0 PID
Heo
—— Proposed

o [ [
wn o w

Control Effort va{t) (pu)

o
o

0.0 0.5 10 1.5 2.0 2.5 3.0
Time (s)

Fig. 4. Control effort under disturbance.

F. Robustness Margins

Quantitative results are summarized in Table Il and Fig. 5.
The proposed controller consistently achieves faster settling,
reduced overshoot, and stronger disturbance rejection compared
to PID and H,,. It also exhibits the highest robustness margin,
confirming its resilience under uncertainty.

TABLE Il.  COMPARATIVE PERFORMANCE METRICS
. Proposed (Game-
Metric PID H, Theoretic)
Rise time (s) 0.45 0.40 0.42
Settling time (s) 1.20 0.95 0.70
Overshoot (%) 125 8.2 5.4
Disturbance rejection
(peak deviation, rad/s) 0.18 0.11 0.05
Robust stability margin Low Medium High

Comparative Robustness Margins
PID
Heo
B Proposed

—
N

=
=)

o

120
0.95 g o.60 0-99

Perfermance / Rebustness Metric (normalized units)
@
n
Y
3

0.45 0.40 0.42 .30 %
. 018 011 0.05 - -
° e e i o Tl
o T At o0 X0 R
e WS TS eie iy W
w e o e <ot y

Fig. 5. Comparative robustness margins.

G. Discussion

The findings clearly demonstrate the advantages of the
proposed framework:

e Robustness: Explicit modeling of disturbances and
uncertainties as adversarial players leads to superior
rejection performance.

e Efficiency: Smoother control effort reduces actuator
stress and energy consumption.
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e Adaptability: The hybrid integration of LMIs, learning,
and evolutionary methods achieves both theoretical
guarantees and practical performance.

In comparison, PID fails under large uncertainties and H,,
provides robustness at the cost of conservatism. The proposed
approach achieves a more balanced and resilient solution,
making it well suited for modern industrial applications.

V. EXTENDED APPLICATIONS

The proposed game-theoretic robust stability framework is
not limited to the stabilization of a single DC motor system. Its
flexibility allows integration into diverse contexts, including
multi-agent motor networks, cyber-physical security, and
systems with fractional-order or fuzzy dynamics. These
extensions highlight the adaptability and interdisciplinary
potential of the approach.

A. Multi-Agent and Distributed Motor Systems

In modern industrial settings, networks of DC motors often
operate collaboratively, such as in robotic swarms, conveyor
systems, and smart grids. Each motor can be modeled as an
agent interacting with others. In this case:

- Game-theoretic  formulation: Each  motor’s
controller is a player minimizing local error, while
disturbances act as adversarial players.

- Consensus objectives: Cooperative games ensure
synchronization of speeds and torque distribution
across all motors.

- Observer tuning: Swarm intelligence algorithms can
design  distributed  observers,  guaranteeing
consistent state estimation across agents.

This application demonstrates that the framework extends
naturally to multi-agent consensus and cooperative stability
problems.

B. Cyber-Physical Security and Attack-Resilient Control

DC motor systems in smart factories and autonomous
vehicles are increasingly networked, exposing them to malicious
cyber-physical attacks. Attackers may inject false load signals,
sensor corruption, or parameter perturbations.

- Game-theoretic modeling: Attackers are adversarial
players seeking to destabilize the system, while the
controller is the defender.

- Differential game dynamics: Robust equilibrium
ensures stability under worst-case attack scenarios.

- Hybrid algorithms: Reinforcement learning helps
adapt to unforeseen attack strategies while LMIs
provide hard stability guarantees.

This extension emphasizes security-awareness of the
framework, bridging control engineering with cybersecurity.
C. Fractional-Order Systems

Classical integer-order models may not capture the full
physical dynamics of electrical and mechanical systems.
Fractional calculus provides a more accurate representation of
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motor behavior, especially under viscoelastic or memory-
dependent conditions.

- Mittag-Leffler stability: Fractional-order stability
replaces exponential convergence, offering more
realistic long-term dynamics.

- Game-theoretic adaptation: The framework can be
redefined with fractional derivatives, where
adversarial players still represent uncertainties.

- Application: Fractional DC motor models benefit
from controllers designed with the same adversarial
equilibrium principles.

This extension improves model fidelity while preserving
robust control guarantees.

D. Fuzzy and Nonlinear Extensions

In many practical cases, motor systems exhibit nonlinearities
that are best captured using fuzzy models. Takagi—Sugeno (TS)
fuzzy systems approximate nonlinear dynamics with rule-based
linear models.

- Fuzzy-game hybrid: Each fuzzy rule can be treated
as a player, and equilibrium strategies provide
stabilization across the entire operating range.

- Advantages: The fuzzy representation reduces
modeling error, while the game-theoretic design
guarantees robustness to rule-switching and
uncertainty.

This application demonstrates that nonlinear and uncertain
motor systems can benefit from the synergy of fuzzy modeling
and game-theoretic stability.

E. Key Insights from Extended Applications

1) Scalability: The proposed method extends naturally to
distributed and multi-agent systems.

2) Security-awareness: Cyber-physical attack scenarios
can be modeled and mitigated within the same framework.

3) Model generality: Fractional and fuzzy system
formulations confirm the framework’s ability to handle diverse
nonlinear dynamics.

4) Interdisciplinary potential: The approach bridges
control engineering, cybersecurity, and computational
intelligence.

VI. CONCLUSION

This study advanced a game-theoretic framework for robust
stability of DC motor systems by modeling disturbances and
parameter uncertainties as adversarial players in a non-
cooperative differential game. We coupled Lyapunov-game
synthesis (via LMIs) with actor—critic reinforcement learning for
Hamilton—-Jacobi-lsaacs (HJI) approximation and used
evolutionary/swarm routines for controller initialization and
observer tuning. Across nominal, disturbed, and +20%
parametric-variation  scenarios, the proposed controller
consistently outperformed PID and H,, baselines—achieving
faster settling, lower overshoot, stronger disturbance rejection at
t = 15, and smoother control effort (see Table Il and Fig. 2 to
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Fig. 5). These results indicate that casting stability as the
outcome of strategic interactions yields a certifiable and
adaptable control scheme for DC-motor applications.

The main limitations are the computational cost of HJI
approximation, sensitivity to observer gains in highly noisy
regimes, and the need for on-hardware validation beyond
simulation. Future work will target: i) scalable multi-agent
extensions for distributed motor networks, ii) integration of
security mechanisms against cyber—physical attacks, iii)
extensions to fractional/hybrid and fuzzy motor models, and iv)
real-time experimental validation on embedded platforms.
Addressing these directions will broaden applicability and
further solidify the role of game-theoretic, Lyapunov-certified
control in modern automation systems.
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