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Abstract—Before conducting maintenance on 10-kV 

distribution networks, the use of unmanned aerial vehicles 

(UAVs) for inspecting distribution lines can effectively enhance 

the operational efficiency of personnel in live working scenarios. 

For UAV-based inspection of power distribution networks, an 

optimal flight path ensures both operational safety and 

comprehensive image acquisition in live working scenarios. 

Therefore, this study proposes a UAV path planning algorithm 

and an insulator defect classification model based on YOLOv11, 

aiming to develop a UAV system for live power line detection. 

Firstly, a UAV path planning model is established to minimize 

the flight path length and maximize the image acquisition range, 

which also considers the safety distance constraints between 

UAVs and live power lines. On this basis, the optimization 

strategy of the particle swarm optimization (PSO) algorithm is 

introduced into the marine predictors algorithm (MPA), and a 

hybrid PSO-MPA algorithm is designed to improve the 

convergence accuracy of the MPA algorithm and solve the 

proposed UAV planning model. In addition, an insulator defect 

detection model has been developed to accurately identify the 

image information collected by UAVs. In order to improve the 

accuracy of the YOLOv11 model, the task-separation assignment 

(TSA) module was introduced into the YOLOv11 model, and a 

TSA-YOLOv11 model was designed. Experimental results 

demonstrate that the proposed PSO-MPA algorithm achieves 

superior convergence accuracy compared to five algorithms, 

including PSO. When the UAV flight step size is one meter, the 

PSO-MPA algorithm reduces the objective function value by an 

average of 49.62% relative to the other algorithms. Additionally, 

the TSA-YOLOv11 model attained an average accuracy of 

96.87% for the insulator defect classification problem. 

Keywords—Marine predictors algorithm; YOLOv11; defect 

classification; UAV path planning; live power lines 

I. INTRODUCTION 

In live working scenarios, maintenance of the 10-kV 
distribution network by staff mainly faces challenges such as 
high safety risks, long inspection times, and blind spots in the 
field of vision. Unmanned aerial vehicles (UAVs) for 
inspecting 10-kV distribution networks can reduce the risk of 
direct exposure of personnel to high voltage environments, 
greatly improving safety. In addition, UAVs have multi-angle 
inspection capabilities, which can quickly obtain image data, 
significantly improving inspection efficiency and accuracy, and 
can timely detect hidden dangers that are difficult for humans 
to detect. UAV technology has the advantages of safety, high 
coverage, and strong defect detection capability in distribution 

network inspection tasks. Therefore, the power company is 
exploring the application of UAVs in the inspection tasks of 
distribution networks. Specifically, UAV-based distribution 
networks inspection technology achieves accurate diagnosis of 
insulator defects and wire breakage faults through visual 
sensors [1]. In addition, UAV-based distribution networks 
inspection is more in line with the goals of new power system 
construction in terms of economy and environmental 
protection. For the UAV-based distribution networks 
inspection system, the UAV path planning module is the 
foundation of intelligent inspection of distribution networks. 
This module automatically solves an optimal and safe flight 
route, aiming to shorten the inspection time or distance, avoid 
obstacles, and ensure flight safety, ultimately achieving 
comprehensive image acquisition throughout the inspection 
range. In addition, the insulator defect detection module aims 
to automatically, quickly, and accurately identify various 
defects in insulators from a large number of inspection images, 
thereby effectively reducing operation and maintenance costs, 
preventing power grid accidents, and improving power supply 
reliability [2]-[3]. 

At present, power companies require UAVs to operate in 
live power line scenarios. However, the current UAV path 
planning problem has not taken into account the safety distance 
constraints between UAVs and live power lines, and there are 
still problems such as low convergence accuracy of path 
optimization algorithms [4]. In addition, the accuracy of 
insulator defect identification is also an important challenge. 
Specifically, convolutional neural network (CNN) models face 
challenges such as complex background interference and high 
training data acquisition costs in insulator defect recognition 
tasks. The distribution networks background of the insulator 
captured by UAV is too complex, such as wires, towers, sky, 
and vegetation, which may affect the detection accuracy of the 
CNN model. Therefore, it is necessary to develop an insulator 
defect recognition model with strong feature extraction and 
classification capabilities to accurately locate and identify low 
contrast defects on insulators in background noise. In addition, 
CNN models require a large amount of high-quality and 
accurately labeled training data during the training process. 
Obtaining balanced data integration that covers various defect 
types, camera angles, and insulator models is costly. In the 
context of distribution networks in reality, there are far more 
normal insulator samples than defect samples, which leads to 
CNN-based insulator defect recognition models being prone to 
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bias towards the "No Defects" category, significantly reducing 
the accuracy of defect recognition [5]. 

YOLOv8, as a real-time object detection model, is also 
used in insulator defect detection tasks. Although YOLOv8 
performs better in small object detection tasks compared to 

CNN models, its detection accuracy is also lower for extremely 
fine cracks or damages on insulators, resulting in a higher rate 
of missed detection of surface defects on insulators. Overall, 
the biggest challenges for CNN and YOLOv8 in insulator 
defect recognition include complex background interference 
and low detection accuracy for small targets [6]. 

 
Fig. 1. UAV-based live power line inspection system. 

The task paragraph assignment (TSA) module can further 
classify candidate samples based on specific defect types and 
confidence levels in insulator defect recognition tasks, thereby 
improving the accuracy of insulator defect recognition. 
Therefore, in this study, the TAS module was introduced into 
the head module of the YOLOv11 model with the aim of 
improving its accuracy. In addition, a biological heuristic 
algorithm has been developed to solve the optimal path for the 
UAV, aiming to safely and efficiently complete distribution 
networks detection tasks. Fig. 1 shows the UAV-based 
distribution networks detection system developed in this study. 
The system consists of two modules: UAV path planning and 
insulator defect recognition. The particle swarm optimization-
based marine predictors algorithm (PSO-MAP) is used to 
optimize the flight path of inspection UAVs. Through this 
flight path, UAVs can collect a large amount of image data. 
Based on these image data, the insulator defect recognition 
module identifies and detects defects in insulators. The main 
contributions of this study are summarized as follows: 

• A UAV-based intelligent detection system framework 
for live power lines has been designed. The system 
integrates a UAV path planning algorithm and an 
insulator defect recognition model, and develops a 
complete end-to-end UAV-based distribution network 
detection system. 

• A mathematical model for path planning for UAV 
power line inspection scenarios has been developed, 
which aims to minimize the flight path length and 

maximize the image acquisition range. In addition, the 
model considers the safety distance constraint between 
UAVs and live lines to ensure operational safety. 

• A hybrid PSO-MPA algorithm was developed by 
combining particle swarm optimization (PSO) and 
marine predator algorithm (MPA) optimization 
strategies. Experimental results have shown that this 
algorithm significantly improves the convergence 
accuracy of the PSO algorithm, and the potential of the 
PSO-MPA algorithm in optimizing the path of the 
inspection UAV has been demonstrated. 

• The TSA module was introduced into the head module 
of the YOLOv11 model, and the TSA-YOLOv1 model 
was developed to improve the accuracy of the insulator 
defect recognition module based on the YOLOv11 
model. The TSA-YOLOv11 model achieved an average 
accuracy of 96.87% in insulator defect classification 
tasks, improving the reliability of insulator defect 
detection. 

The remaining parts of this study are arranged as follows: 
Section II reviews the work on UAV path planning and defect 
classification. Section III introduces the proposed UAV-based 
distribution networks inspection system. Section IV presents 
the results and discusses them. Finally, Section V summarizes 
the entire study. 
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II. RELATED WORK 

A. UAV Path Planning 

At present, UAVs have been applied in various fields such 
as logistics, communication, and patrol. Therefore, a large 
number of UAV path planning models have been developed 
for these scenarios. In [7], the authors proposed an autonomous 
trajectory planning method for UAVs used in industrial facility 
inspections. This study designed a viewpoint resampling 
mechanism to meet the multi-perspective coverage 
requirements in complex industrial scenes. By dynamically 
optimizing the position of observation points, the image 
acquisition quality of key areas was improved, and the flight 
path length was shortened. Sonny et al. studied the path 
planning problem of UAV-assisted wireless networks and 
proposed an improved PSO algorithm [8]. In order to address 
the low convergence accuracy of the PSO algorithm in 
handling UAV path planning problems, this study introduced 
dynamic inertia weights and mutation operators into the PSO 
algorithm, aiming to enhance the algorithm's global search 
capability, minimize UAV energy consumption, and maximize 
ground user network coverage. Rückin et al. developed an 
active learning path planning framework for the semantic 
mapping of UAVs. This framework models path planning as an 
information gain maximization problem, evaluates the 
uncertainty of unexplored areas in real-time through Bayesian 
inference, dynamically guides UAVs to collect high-value data, 
and aims to plan a path for UAVs to explore unknown areas 
[9]. 

In [10], the authors propose a noise-aware path and energy 
management joint optimization model for collaborative 
operation of multiple UAVs in noise-sensitive areas. This study 
aims to quantify the cost of sound pollution by establishing a 
noise propagation model of the rotor, with the aim of 
constraining UAV flight altitude and path to avoid residential 
areas. At the same time, the study designed an intelligent 
power allocation strategy for batteries, aimed at maximizing 
the endurance of UAVs. In [11], the authors studied the 
challenges of UAV path planning under the framework of 
Internet of Drones (IoD), and proposed a distributed 
collaborative optimization framework. This study uses 
transmission delay cost and packet loss rate as path cost 
functions to generate paths for multiple UAVs. 

In [12], the authors developed a distribution UAV 
autonomous path planning and control system based on the 
Internet of Things (IoT) and edge computing technology. The 
system deploys edge nodes to process UAV perception data in 
real-time and combines with a cloud-based task scheduling 
center to generate the global optimal path, significantly 
reducing the latency of end-to-end decision-making. The 
experimental results show that this path planning method can 
effectively reduce the communication cost and flight distance 
of UAVs. Yanmaz et al. developed a dynamic multi-objective 
path planning method to address the challenges of 
collaborative search and communication support for multiple 
UAVs. This method takes maximizing the target discovery 
probability and network connectivity as the objectives of the 
path planning model, establishes a Markov decision model, and 
designs a distributed UAV path optimization algorithm, aiming 

to dynamically adjust the UAV formation by real-time 
evaluation of communication link quality [13]. 

In addition to the PSO-based path optimization algorithm 
mentioned earlier, some other cutting-edge research is also 
exploring the application of biological heuristic algorithms in 
UAV path planning problems. For example, in [14], a UAV 
covert path planning method based on reinforcement learning 
(RL) was proposed. This method is inspired by the kinematics 
of natural organisms, and trains RL agents to learn strategies 
that mimic natural organisms' covert approach to prey by 
constructing a three-dimensional dynamic environment of state 
and action space. In [15], the authors developed a UAV path 
planning algorithm that combines Q-learning and Grey Wolf 
Optimizer (GWO) to solve complex 3D path planning 
problems for UAV flight. This study utilizes Q-learning to 
dynamically optimize key parameters of the GWO, such as 
convergence factor and population position update weights, in 
order to enhance the algorithm's adaptability in dynamic 
obstacle environments and improve the convergence accuracy 
of GWO algorithm. 

B. Target Identification Model 

In [16], the authors designed a YOLO architecture for 
identifying pedestrians and vehicles for target detection tasks 
aimed at border patrol. In addition, this study decomposes the 
complex collaborative patrol problem into global path planning 
and local conflict resolution and task allocation problems, 
aiming to efficiently coordinate the flight paths and monitoring 
tasks of multiple drones. Chen et al. focused on the challenging 
problem of detecting small ship targets in ocean-wide area 
remote sensing images. In order to overcome the difficulties of 
small targets having limited information and being easily 
submerged in the ocean background, this study also designed 
an improved YOLO model, aiming to enhance the model's 
ability to extract features and utilize motion information of 
small targets, thereby improving the accuracy of ship 
recognition [17]. In [18], the authors developed an insulator 
identification and defect detection system for distribution 
networks inspection. This study proposes a defect detection 
method for insulators based on YOLOX. The core of this 
method lies in optimizing the YOLOX model, introducing a 
high-resolution differential module aimed at capturing the local 
detailed features and minor defects of insulators and their key 
components more finely. 

Zhang et al. proposed a method for identifying the working 
angle of a loader bucket based on the YOLOv5s model. This 
method utilizes YOLOv5s to quickly and accurately locate the 
target of the bucket, and introduces an attention mechanism to 
more accurately recognize the posture of the bucket, ultimately 
calculating the working angle of the bucket [19]. In [20], the 
authors focus on the task of detecting small targets in infrared 
images. In order to solve the problem of target loss or false 
alarm caused by traditional methods, this study proposes an 
improved strategy based on pixel extension. In [21], the 
authors developed an intelligent inspection system based on a 
UAV for power insulator inspection tasks under complex 
weather conditions. The system has successfully achieved 
autonomous positioning, state recognition, and defect detection 
of insulators by equipping sensors and machine learning 
algorithms suitable for complex environments. Xuan et al. 
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proposed an intelligent identification method for insulator 
defects based on Fully Convolutional One Stage (FCOS). The 
experimental results show that this method can not only 
accurately locate and segment individual insulators in the 
image, but also finely segment the defect areas on the insulator 
surface [22]. In [23], the authors proposed an efficient personal 
protective equipment detection model based on YOLOv8, 
aiming to develop a system for detecting whether workers are 
wearing compliant personal protective equipment, such as 
safety helmets, reflective clothing, and gloves, and to improve 
the accuracy and robustness of the YOLOv8 model in human 
protective equipment detection tasks. 

III. METHODOLOGY 

As shown in Fig. 1, the proposed UAV-based distribution 
networks inspection system consists of two parts: path 
planning and insulator detection. The UAV path planning 
model aims to minimize the flight path length and maximize 
the image acquisition range, while considering three 
constraints: the maximum pitch angle, maximum endurance 
time, and safe distance between the UAV and the live-line. On 
this basis, a PSO-MPA algorithm was developed for the path 
planning model of power inspection drones to solve the flight 
path of the drones. The TSA module was introduced into the 
YOLOv11 model to improve the accuracy of the insulator 
defect recognition model. 

A. UAV Path Planning  for Power Inspection 

Before conducting UAV path planning, the transmission 
facilities are first divided into grids. In this study, the 
transmission facilities were surface divided into a set

 1 2 _ max, ,, bv v vV = . Based on the height of the transmission 

facilities, the initial flight height of the drone was determined 

as flyH . The UAV's path consists of a series of path nodes

 1,2, ,m =  . Another key parameter for UAV path planning 

is _Step Size . 

The path distance cost _Path Disf of UAV is defined in Eq. (1): 

( ) ( ) ( )
2 2 2

_ 1 1 1Path Dis m m m m m m

m

f x x y y z z− − −



= − + − + −
       () 

where, ( ), ,m m mx y z is the position of the UAV's path node m

in the coordinate system. 

The definition of _Step Size is as follows in Eq. (2): 

( ) ( ) ( )
2 2 2

1 1 1_ m m m m m mStep Size x x y y z z− − −= − + − + −
  () 

mz is defined in Eq. (3): 

,m flyz H m=                                  () 

The image acquisition range of the UAV is defined as 
Eq. (4): 

( )
 , 1,2, , _ max

_ max

b

img

v
f b b

b


=  


               () 

where, ( )bv is a 0-1 variable. When the UAV captures an 

image of grid bv position, ( ) 0bv = ; Otherwise, ( ) 1bv = . 

The objective function of the UAV path planning model 
used for distribution networks inspection is Eq. (5): 

1 _ 2Path Dis imgF w f w f=  +                    () 

where, 1w and 2w are the weight coefficients of the objective 

function. 

The constraint conditions for UAV path planning in 
distribution networks inspection are defined as follows 
[Eq. (6)]: 

max ,m m                                       () 

where, m is the pitch angle of the distribution networks 

inspection UAV. max is the maximum pitch angle of the 

distribution networks inspection UAV [Eq. (7)]. 

_Path Dis

UAV

UAV

f
T

speed
                                  () 

where, UAVspeed is the flight speed of the distribution 

networks inspection UAV. UAVT is the maximum endurance 

time of the distribution networks inspection UAV [Eq. (8)]. 

( )  , , 1,2, , _maxb safetyL v UAV L b b   
       () 

where, ( ),bL v UAV is the distance between the UAV and the 

distribution networks. safetyL is the safe distance between the 

UAV and the distribution networks. 

To solve this path planning model, a PSO-MPA algorithm 
was developed. The MPA algorithm mainly includes predation 
strategies based on Brownian motion and target aggregation 
strategies based on Levy motion [24]. In order to improve the 
convergence accuracy of MPA, a speed update-based foraging 
strategy based on the PSO algorithm is also added to the hybrid 
PSO-MPA algorithm. The definition of the PSO-MPA 
algorithm is as follows: 

1) Initialization: Initialize the position O of the marine 

predator population, initialize the speed of PSO, and set the 

maximum iteration number _ maxIter of the PSO-MPA 

algorithm. 

2) Calculate adaptive parameters: Determine the update 

and search process that should be executed for the current 

iteration count Iter based on the value of / _maxIter Iter . 

3) Update strategy 1: The foraging strategy based on 

speed updates the positions of all marine predators to obtain

O . 

4) Update strategy 2: Based on Brownian motion, update 

the positions of some marine predators using a predation 

strategy. The update process is defined as Eq. (9): 

( )( )_ ( )O k new PBM O k =                     () 
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where, ( )O k is defined as the location of the k -th marine 

predator. ( )PBM  is defined as a predation strategy based on 

Brownian motion. 

5) Update strategy 3: Implement a target aggregation 

strategy based on Levy motion for the remaining marine 

predators. 

6) Evaluate and select the optimal solution: Calculate the 

fitness of all updated positions of marine predators and 

generate the optimal solution. 

B. Defect Detection of Insulators 

Although multiple frameworks such as Real-Time 
Detection Transformer (RTDRTR), Region-based 
Convolutional Neural Networks (RCNN), and YOLOv8 have 
been used for specific object detection or insulator defect 
identification tasks, improving the accuracy of insulator defect 
detection models remains a challenge [23]. Therefore, in this 
study, the TSA module was introduced into the YOLOv11 
model to improve the accuracy of insulator defect detection. 
Fig. 2 shows the header module of the proposed TSA-
YOLOv11 model. 

 
Fig. 2. Head module of the YOLOv11 model based on TSA (TSA-

YOLOv11). 

The header module of the TSA-YOLOv11 model is 
designed to enhance the recognition of insulator defect types 
by integrating the global modeling capability of the 
Transformer with the local feature extraction ability of CNN. 
After a series of convolutional layers and Bottleneck modules 
for dimensionality reduction and local feature extraction, the 
resulting insulator features are fed into the TSA module. 
Within this module, the features undergo multi-head 
integration, residual connections, and layer normalization 
before being output, thereby modeling dependency 
relationships between any two spatial positions. 

In the header module of the TSA-YOLOv11 model, the 
pooling layer uses max pooling technology. The definition of 
max pooling is as follows [Eq. (10)]: 

 ,(0,1) max

1
                       (1 (0,1))

j

i jj

i

i Pj

i PRand

Rand
P 

  = 

+ −   
       () 

where, (0,1)Rand is a random number with a value of 0 or 

1. j is the j -th element of the feature map output from the 

max pooling operation. i is the i -th position of the j -th 

element in the input feature map jP . 

IV. EXPERIMENTS 

This study proposes an intelligent UAV inspection system 
for distribution networks detection, with a primary focus on 
addressing UAV path planning and insulator defect detection 
challenges. To validate the effectiveness of the proposed path 
planning algorithm, a three-dimensional flight simulation 
environment was established based on actual substation map 
data. For insulator defect detection, the image samples were 
collected under varying lighting conditions, shooting distances, 
and camera angles to ensure comprehensive coverage of 
operational scenarios. 

A. Path Planning Results 

In order to demonstrate the application results of the 
proposed PSO-MPA algorithm in the path planning problem of 
power inspection UAVs, and to explore the influence of the 
key parameter of flight step size on the objective function, 
multiple power inspection UAV path planning experiments 
were designed based on different flight step sizes. Firstly, the 
flight step sizes were set to 1 meter, 3 meters, 5 meters, 7 
meters, 9 meters, and 11 meters, respectively. Based on 
different flight step sizes, independent experiments were 
conducted to explore the influence of flight step sizes on the 
fitness function. In addition, rime (RIME) optimization 
algorithm [25], Harris hawks optimization (HHO) [26], snow 
geese algorithm (SGA) [27], PSO, The Tornado optimizer with 
Coriolis force (TOC) algorithm is also used to solve the path 
planning problem of power inspection UAVs, aiming to verify 
the convergence accuracy and robustness of the PSO-MPA 
algorithm. In addition, in this study, standard deviation was 
used to evaluate the stability of the path planning algorithm for 
power inspection UAVs. 

Fig. 3 shows the flight paths generated by the PSO-MPA 
algorithm for the power inspection UAV under different step 
sizes. Fig. 4(a) and Fig. 4(b) show the iterative function curves 
of PSO-MPA, HHO, PSO, RIME, SGA, and TOC algorithms 
with step sizes set to 1 meter and 3 meters, respectively. 
Fig. 5(a) and Fig. 5(b) show the iteration function curves of 
each algorithm when the step size is set to 5 meters and 7 
meters, respectively. Fig. 6(a) and Fig. 6(b) show the iteration 
function curves of each algorithm when the step size is set to 9 
meters and 11 meters, respectively. Table I shows the fitness 
function values of each algorithm at different step sizes. 

From Fig. 4(a), it can be seen that the PSO-MPA algorithm 
generates a fitness function value of 3175.06 in solving the 
path planning problem of the power inspection UAV. 
Compared with the other five algorithms, the PSO-MPA 
algorithm has the smallest fitness function value, when the 
flight step size of the UAV is 1 meter. From Fig. 4(b), it can be 
seen that when the UAV's flight step size is 3 meters, the PSO-
MPA algorithm also has the lowest fitness function value, 
which is 3276.60, an average decrease of 44.53% compared to 
the other five algorithms. From Fig. 5(a) and Fig. 5(b), it can 
be seen that when the UAV's flight step size is 5 meters and 7 
meters, respectively, compared with HHO, PSO, RIME, SGA, 
and TOC algorithms, the fitness function value of PSO-MPA 
algorithm is also the smallest. From Fig. 6(a) and Fig. 6(b), it 
can be seen that when the UAV's flight step size is 9 meters 
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and 11 meters, the fitness function values of the PSO-MPA algorithm are 3559.49 and 3232.06, respectively. 

 

Fig. 3. UAV path planning results with different flight step sizes. 

TABLE I.  THE FITNESS FUNCTION VALUES OF UAV PATHS WITH DIFFERENT FLIGHT STEP SIZES 

Algorithm PSO-MPA HHO PSO RIME SGA TOC 

Step Size Fitness Function 

1 3175.06 6665.64 6328.04 7242.72 8539.11 4343.94 

3 3276.60 7626.56 6115.06 5133.10 7717.98 4396.74 

5 3790.45 10572.84 7185.90 5184.23 7727.14 5169.95 

7 3909.39 7121.22 6995.10 7638.17 7819.61 7842.44 

9 3559.49 7914.00 7252.17 6775.45 8759.74 7146.64 

11 3232.06 7058.16 5329.62 6135.50 5515.12 5837.17 

 

 
Fig. 4. The iterative function curve for flight steps of 1 meter and 3 meters. 

Therefore, it can be concluded that among all step settings, 
the proposed PSO-MPA algorithm generates the smallest 
fitness function value compared to other algorithms when 
solving the path planning problem of power inspection UAV. 
The PSO-MPA algorithm performs significantly better than 
HHO, PSO, RIME, SGA, and TOC algorithms in solving path 
planning problems for power inspection UAVs. The objective 
function value corresponding to the PSO-MPA algorithm 
decreased by 25.48% to 47.46% compared to the objective 
function value generated by the suboptimal algorithm. When 
the step size is set to 9 meters, the fitness function value of the 
PSO-MPA algorithm is 3559.49, and the decrease in the 
objective function value is the most significant. Compared with 
the second ranked RIME algorithm, the objective function 
value of the PSO-MPA algorithm has decreased by 47.46%.  
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Fig. 5. The iterative function curve for flight steps of 5 meters and 7 meters. 

When the step size is set to 3 meters, the performance of 
the PSO-MPA algorithm decreases, but compared with HHO, 
PSO, RIME, SGA, and TOC algorithms, the PSO-MPA 
algorithm still maintains a significant advantage in solving the 
path planning problem of power inspection UAVs. Compared 
with the second ranked TOC algorithm, the fitness function 
value of the PSO-MPA algorithm is reduced by 25.48%. In 
addition, by comparing the fitness values of each step size 
setting corresponding to the PSO-MPA algorithm, a flight step 
size of 1 meter was determined to be the optimal setting, and 
the generated drone path cost was the lowest. 

Table II shows the standard deviation of the fitness function 
values generated by each algorithm running independently ten 
times at different step sizes. Fig. 7 shows the standard 
deviation of the objective function values generated by running 
different algorithms ten times with different step sizes. It can 
be seen that compared with HHO, PSO, RIME, SGA, and TOC 
algorithms, PSO-MPA is the overall most stable algorithm. 
The PSO-MPA algorithm achieved the minimum standard 
deviation in all five step settings, indicating that it can maintain 
high consistency under different parameters. Especially when 
step size is 5 meters, the standard deviation of the PSO-MPA 

algorithm reaches 95.93, indicating the highest stability. HHO 
is the most unstable algorithm overall, with a standard 
deviation exceeding 270 under multiple flight step settings, 
significantly higher than other algorithms. 

 
Fig. 6. The iterative function curve for flight steps of 9 meters and 11 

meters. 

 
Fig. 7. The standard deviation of the fitness function values for UAV paths 

with different flight step sizes. 

TABLE II.  THE STANDARD DEVIATION OF THE FITNESS FUNCTION VALUES FOR UAV PATHS WITH DIFFERENT FLIGHT STEP SIZES 

Step Size Step Size=1 Step Size=3 Step Size=5 Step Size=7 Step Size=9 Step Size=11 

Algorithm Standard Deviation 

PSO-MPA 111.25 109.27 95.93 120.58 117.73 100.46 

HHO 184.11 155.46 154.54 273.41 144.24 271.39 

PSO 183.61 115.22 136.78 167.78 122.32 134.26 

RIME 176.18 153.63 189.80 150.17 96.32 172.27 

SGA 157.26 192.48 174.19 156.14 146.22 152.15 

TOC 121.82 118.70 138.26 122.44 183.05 167.97 
 

B. Defect Detection Results of Insulators 

To verify the performance of the TAS-YOLOv11 model in 
insulator defect detection, insulator defect detection 
experiments were conducted based on the RTDETR model, R-
CNN model, YOLOv8 model, YOLOv10 model, and 

YOLOv11 model [28]-[30]. Table III shows the types of 
insulator defects included in the training and testing sets of this 
study. In this study, insulators used in distribution networks 
were classified into four types: defect free, defect type 1, defect 
type 2, and defect type 3. 
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In this study, the dataset includes 8000 insulator images. 
The number of images in each of the four categories (insulators 
without defects, defect type 1, defect type 2, and defect type 3) 
is 2000. The training set includes 1600 insulator images for 
each of the four categories. The test set includes 1000 insulator 
images for each of the four categories. Table IV shows the 
parameter settings for different models. For different insulator 
defect detection models, the batch size and number of epochs 
are 2 and 300, respectively. 

TABLE III.  DEFECT TYPES OF INSULATORS 

Class Definition 

Defect-Free 
No defects: The insulator has no defects and works 

normally. 

Defect Type 1 
Surface Defect: The material on the surface of the 

insulator is damaged. 

Defect Type 2 
Damaged: The edge of the insulator is damaged or there 

are cracks in the insulator. 

Defect Type 3 
Missing: The insu lator string is missing one or several 

insulators. 

Table V presents the mean average precision (mAP@0.5) 
and training loss values for different insulator defect detection 
models. The proposed TAS-YOLOv11 achieves an mAP@0.5 
of 95.16%, outperforming the RTDETR and R-CNN models 
by 11.08% and 6.43%, respectively. Additionally, its training 
loss is 0.1252, representing reductions of 37.59% and 36.28% 
compared to RTDETR and R-CNN, respectively. Compared 
with the RTDETR model, R-CNN model, YOLOv6 model, 
YOLOv8 model, YOLOv10 model, and YOLOv11 model, the 
mAP@0.5 index of TAS-YOLOv11 increased by an average 
of 5.14%, and the training loss of TAS-YOLOv11 decreased 
by an average of 28.49%. Fig. 8 shows the results of insulator 
defect recognition based on the TAS-YOLOv11 model. 

TABLE IV.  PARAMETER SETTINGS 

Models Parameter Value 

RTDETR 

Batch size 2 

Number of epochs 300 

Learning rate 1E-4 

R-CNN 

Batch size 2 

Number of epochs 300 

Learning rate 1E-6 

YOLO 

Batch size 2 

Number of epochs 300 

Learning rate 1E-3 

Table VI shows the performance of different insulator 
defect detection models. In Table VI, two indicators, accuracy 
and recall, are used to evaluate different insulator defect 
detection models. From Table VI, it can be seen that in the 
experiment of insulator defect detection, the TAS-YOLOv11 
model has the best performance and highest accuracy in the 
four types of defect detection. 

TABLE V.  PERFORMANCE COMPARISON OF DIFFERENT MODELS 

Models mAP@0.5 (%) Training Loss 

RTDETR 85.67 0.2006 

R-CNN 89.41 0.1965 

YOLOv8 91.32 0.1887 

YOLOv10 92.18 0.1609 

YOLOv11 94.46 0.1435 

TAS-YOLOv11 95.16 0.1252 

TABLE VI.  IDENTIFICATION RESULTS OF INSULATOR DEFECTS USING 

DIFFERENT MODELS 

Models Class Accuracy Recall 

RTDETR 

Defect-Free 0.8745 0.8617 

Defect Type 1 0.8659 0.8569 

Defect Type 2 0.8943 0.8722 

Defect Type 3 0.8741 0.8632 

R-CNN 

Defect-Free 0.8918 0.8774 

Defect Type 1 0.8901 0.8749 

Defect Type 2 0.8792 0.8564 

Defect Type 3 0.8577 0.8513 

YOLOv8 

Defect-Free 0.9674 0.9519 

Defect Type 1 0.9357 0.9349 

Defect Type 2 0.9290 0.9125 

Defect Type 3 0.9293 0.9123 

YOLOv10 

Defect-Free 0.9666 0.9667 

Defect Type 1 0.9381 0.9305 

Defect Type 2 0.9374 0.9181 

Defect Type 3 0.9341 0.9183 

YOLOv11 

Defect-Free 0.9683 0.9557 

Defect Type 1 0.9375 0.9277 

Defect Type 2 0.9434 0.9320 

Defect Type 3 0.9326 0.9379 

TAS-YOLOv11 

Defect-Free 0.9793 0.9632 

Defect Type 1 0.9653 0.9564 

Defect Type 2 0.9699 0.9417 

Defect Type 3 0.9603 0.9581 

The defect free insulator detection accuracy and recall of 
TAS-YOLOv11 model are 97.93% and 96.32%, respectively. 
Compared to the accuracy of the YOLOv11 model, the TAS-
YOLOv11 model shows an improvement of over 1 percentage 
point. In the detection of the most difficult surface defect 
(defect type 1), the accuracy of the TAS-YOLOv11 model is 
96.53%, which is 2.72 percentage points higher than the 
suboptimal model YOLOv10. The recall rate of traditional R-
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CNN models in missing defects (defect type 3) is only 85.13%, 
which poses a high risk of inaccurate recognition. 

 
Fig. 8. The results of insulator defect detection based on TAS-YOLOv11 

model. 

V. CONCLUSION 

This study proposes a dual-layer detection model for 
distribution networks, integrating UAV path planning and 
insulator defect recognition. In the path planning layer, a power 
grid inspection UAV path planning model aims to minimize 
flight distance and maximize image coverage. In addition, a 
hybrid PSO-MPA algorithm is designed to solve the path 
planning model of UAV for power grid inspection. The 
experimental results demonstrate that with a flight step size of 
one meter, the PSO-MPA algorithm reduces the objective 
function value by an average of 49.62% compared to the other 
five algorithms, significantly shortening the path length and 
improving the integrity of image acquisition for transmission 
facilities. In the insulator defect recognition layer, a TSA-
YOLOv11 model was developed, which introduces a task 
decoupling allocation module (TSA) to separate positioning 
and classification tasks, aiming to solve the feature conflict 
problem of traditional models. The average accuracy of 
insulator defect detection reached 96.87%, and the recall rate 
of high-risk damaged defects increased to 94.17%. In future 
research, combining reinforcement learning with proposed 
models to construct an online inspection system will be a key 
focus. 

ACKNOWLEDGMENT 

This work was supported by the Science and Technology 
Project of China Southern Power Grid Co., Ltd. under Grants 
YNKJXM20240219 and YNKJXM20240472. 

REFERENCES 

[1] H. Liu et al., "Study on UAV Parallel Planning System for Distribution 

networks Project Acceptance Under the Background of Industry 5.0," 

IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp. 5537-

5546, Aug. 2022, doi: 10.1109/TII.2022.3142723. 

[2] P. Hamelin et al., "Discrete-time control of LineDrone: An  assisted 

tracking and landing UAV for live power line inspection and 

maintenance," 2019 International Conference on Unmanned Aircraft 

Systems (ICUAS), Atlanta, GA, USA, 2019, pp. 292-298, doi: 

10.1109/ICUAS.2019.8798137. 

[3] N. Jain, J. Bed i, A. Anand and S. Godara, "A Transfer Learning 

Architecture to Detect Faulty Insulators in Powerlines," IEEE 

Transactions on Power Delivery, vol. 39, no. 2, pp. 1002-1011, April 

2024, doi: 10.1109/TPWRD.2024.3353203. 

[4] Haizhou Zhang and Shengnan Xu, “Path Planning Technology  for 

Unmanned Aerial Vehicle Swarm Based on Improved Jump Point 

Algorithm” International Journal of Advanced Computer Science and 

Applications (IJACSA), 16 (4 ), 2025. 

http://dx.doi.org/10.14569/IJACSA.2025.0160426 

[5] Wang Tingyu, Sun Xia, Liu Jiaxing and Zhang Yue, “A Deep Learning 

Based Detection Method for Insulator Defects in High Voltage 

Distribution networks” International Journal of Advanced Computer 

Science and Applications (IJACSA), 15 (10), 2024. 

http://dx.doi.org/10.14569/IJACSA.2024.0151040 

[6] M. He, L. Qin, X. Deng and K. Liu, "MFI-YOLO: Multi-Fault Insulator 

Detection Based on an Improved YOLOv8," IEEE Transactions on 

Power Delivery, vol. 39, no. 1, pp. 168-179, Feb. 2024, doi: 

10.1109/TPWRD.2023.3328178. 

[7] H. Liu, Y. P. Tsang, C. K. M. Lee and C. H. Wu, "UAV Trajectory 

Planning via Viewpoint Resampling for Autonomous Remote Inspection 

of Industrial Facilities," IEEE Transactions on Industrial Informatics, 

vol. 20, no. 5, pp. 7492-7501, May 2024, doi: 

10.1109/TII.2024.3361019. 

[8] A. Sonny, S. R. Yeduri and L. R. Cenkeramaddi, "Autonomous UAV 

Path Planning Using Modified PSO for UAV-Assisted Wireless 

Networks," IEEE Access, vol. 11, pp. 70353-70367, 2023, doi: 

10.1109/ACCESS.2023.3293203. 

[9] J. Rückin, F. Magistri, C. Stachniss and M. Popović, "An Informative 

Path Planning Framework for Active Learning in UAV-Based Semantic 

Mapping," IEEE Transactions on Robotics, vol. 39, no. 6, pp. 4279-

4296, Dec. 2023, doi: 10.1109/TRO.2023.3313811. 

[10] D. Scott, S. G. Manyam, I. E. Weintraub, D. W. Casbeer and M. Kumar, 

"Noise Aware Path Planning and Power Management of Hybrid Fuel 

UAVs," IEEE Transactions on Automation Science and Engineering, 

vol. 22, pp. 8227-8238, 2025, doi: 10.1109/TASE.2024.3481998. 

[11] J. V. Shirabayashi and L. B. Ruiz, "Toward UAV Path Planning 

Problem Optimization Considering the Internet of Drones," IEEE 

Access, vol. 11, pp. 136825-136854, 2023, doi: 

10.1109/ACCESS.2023.3339227. 

[12] Xiuzhu Zhang, “Path Planning and Control of Intelligent Delivery UAV 

Based on Internet of Things and Edge Computing” International Journal 

of Advanced Computer Science and Applications (IJACSA), 15 (3), 

2024. http://dx.doi.org/10.14569/IJACSA.2024.01503107  

[13] E. Yanmaz, H. M. Balanji and İ. Güven, "Dynamic Multi-UAV Path 

Planning for Multi-Target Search and Connectivity," IEEE Transactions 

on Vehicular Technology, vol. 73, no. 7, pp. 10516-10528, July 2024, 

doi: 10.1109/TVT.2024.3363840. 

[14] J. Li, Y. Zhu, C. Li and Z. Song, "A Motion Camouflage-Inspired Path 

Planning Method for UAVs Based on Reinforcement Learning," IEEE 

Transactions on Aerospace and Electronic Systems, vol. 61, no. 2, pp. 

4105-4114, April 2025, doi: 10.1109/TAES.2024.3496417. 

[15] Binbin Tu, Fei Wang, Xiaowei Han and Xibei Fu, “Q -learning Guided 

Grey Wolf Optimizer for UAV 3D Path Planning” International Journal 

of Advanced Computer Science and Applications (IJACSA), 15 (7), 

2024. http://dx.doi.org/10.14569/IJACSA.2024.0150747 

[16] Haishi Liu, Yuxuan Sun, Nan Pan, Qiyong Chen, Xiaojue Guo, Dilin 

Pan, "Multi-UAV Cooperative Task Planning for Border Patrol based on 

Hierarchical Optimization"  in Journal of Imaging Science and 

Technology, vol.65, pp 040402-1 - 040402-8,  2021, doi: 

https://doi.org/10.2352/J.ImagingSci.Technol.2021.65.4.040402 

[17] J. Chen, Z. Hu, W. Wu, Y. Zhao and B. Huang, "LKPF-YOLO: A Small 

Target Ship Detection Method for Marine Wide-Area Remote Sensing 

Images,"  IEEE Transactions on Aerospace and Electronic Systems, vol. 

61, no. 2, pp. 2769-2783, April 2025, doi: 

10.1109/TAES.2024.3476459. 

[18] Y. Li, D. Feng, Q. Zhang and S. Li, "HRD-YOLOX Based Insulator 

Identification and Defect Detection Method for Distribution networks," 

IEEE Access, vol. 12, pp. 22649-22661, 2024, doi: 

10.1109/ACCESS.2024.3363430. 

[19] X. Zhang, B. Cui, Z. Wang and W. Zeng, "Loader Bucket Working 

Angle Identification Method Based on YOLOv5s and EMA Attention 

http://dx.doi.org/10.14569/IJACSA.2024.0151040
http://dx.doi.org/10.14569/IJACSA.2024.0150747
https://doi.org/10.2352/J.ImagingSci.Technol.2021.65.4.040402


(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

254 | P a g e  
www.ijacsa.thesai.org 

Mechanism," IEEE Access, vol. 12, pp. 105488-105496, 2024, doi: 

10.1109/ACCESS.2024.3435146. 

[20] Z. Zhao, H. Wang, H. Li, J. Yang and P. Yu, "A Pixel Expansion-Based 

Improvement in Dense Nest ing Structures for Infrared Small Target 

Detection," IEEE Geoscience and Remote Sensing Letters, vol. 22, pp. 

1-5, 2025, Art no. 6005205, doi: 10.1109/LGRS.2025.3547899. 

[21] Y. Li, Y. Lu, K. Wu, Y. Fang, C. Zheng and J. Zhang, "Intelligent 

Inspection System for Power Insulators Based on AAV on Complex 

Weather Conditions," IEEE Transactions on Applied Superconductivity, 

vol. 34, no. 8, pp. 1-4, Nov. 2024, Art no. 9003204, doi: 

10.1109/TASC.2024.3465368. 

[22] Z. Xuan, J. Ding and J. Mao, "Intelligent Identification Method of 

Insulator Defects Based on CenterMask," IEEE Access, vol. 10, pp. 

59772-59781, 2022, doi: 10.1109/ACCESS.2022.3179975. 

[23] Z. Wang, Y. Zhu, Z. Ji, S. Liu and Y. Zhang, "An Efficient YOLOv8-

Based Model With Cross-Level Path Aggregation Enabling Personal 

Protective Equipment Detection," IEEE Transactions on Industrial 

Informatics, vol. 20, no. 11, pp. 13003-13014, Nov. 2024, doi: 

10.1109/TII.2024.3431045. 

[24] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, 

“Marine Predators Algorithm: A nature-inspired metaheuristic,” Expert 

Systems With Applications, vol. 152, Art. no. 113377, 2020, doi: 

10.1016/j.eswa.2020.113377 

[25] H. Su et al., “RIME: A physics-based optimization,” Neurocomputing, 

vol. 532, pp. 183–214, 2023, doi: 10.1016/j.neucom.2023.02.010 

[26] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. 

Chen, “Harris hawks optimization: Algorithm and applications,” Future 

Generation Computer Systems, vol. 97, pp. 849–872, 2019, doi: 

10.1016/j.future.2019.02.028 

[27] A.-Q. Tian, F.-F. Liu, and H.-X. Lv, “Snow Geese Algorithm: A novel 

migration-inspired meta-heuristic algorithm for constrained engineering 

optimization problems,” Applied Mathematical Modelling, vol. 126, pp. 

327–347, 2024, doi: 10.1016/j.apm.2023.10.045 

[28] Sun, H., Wang, Y., Du, J., & Wang, R. (2025). MFE-YOLO: A Mult i-

feature Fusion Algorithm for Airport Bird Detection. ICCK Transactions 

on Intelligent Systematics, 2(2), 85–94. 

https://doi.org/10.62762/TIS.2025.323887 

[29] Hamza, M., Ali, I., Ali, S., Khan, W., Shah, S.M., & Haq, I.U. (2025). 

Leveraging Machine Learning and Deep Learning for Advanced Malaria 

Detection Through Blood Cell Images. ICCK Journal of Image Analysis 

and Processing, 1(1), 17–26. https://doi.org/10.62762/JIAP.2025.514726 

[30] Akhtar, F., & Mahum, R. (2025). IRV2-hardswish Framework: A Deep 

Learning Approach for Deepfakes Detection and Classification. ICCK 

Journal of Image Analysis and Processing, 1 (1), 45–56. 

https://doi.org/10.62762/JIAP.2025.421251  

 

https://doi.org/10.62762/TIS.2025.323887
https://doi.org/10.62762/JIAP.2025.514726

