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Abstract—Before conducting maintenance on 10-kV
distribution networks, the use of unmanned aerial vehicles
(UAVs) for inspecting distribution lines can effectively enhance
the operational efficiency of personnel in live working scenarios.
For UAV-based inspection of power distribution networks, an
optimal flight path ensures both operational safety and
comprehensive image acquisition in live working scenarios.
Therefore, this study proposes a UAV path planning algorithm
and an insulator defect classification model based on YOLOv11,
aiming to develop a UAV system for live power line detection.
Firstly, a UAV path planning model is established to minimize
the flight path length and maximize the image acquisition range,
which also considers the safety distance constraints between
UAVs and live power lines. On this basis, the optimization
strategy of the particle swarm optimization (PSO) algorithm is
introduced into the marine predictors algorithm (MPA), and a
hybrid PSO-MPA algorithm is designed to improve the
convergence accuracy of the MPA algorithm and solve the
proposed UAV planning model. In addition, an insulator defect
detection model has been developed to accurately identify the
image information collected by UAVs. In order to improve the
accuracy of the YOLOv11 model, the task-separation assignment
(TSA) module was introduced into the YOLOv11 model, and a
TSA-YOLOv11 model was designed. Experimental results
demonstrate that the proposed PSO-MPA algorithm achieves
superior convergence accuracy compared to five algorithms,
including PSO. When the UAYV flight step size is one meter, the
PSO-MPA algorithm reduces the objective function value by an
average of 49.62% relative to the other algorithms. Additionally,
the TSA-YOLOv11l model attained an average accuracy of
96.87% for the insulator defect classification problem.

Keywords—Marine predictors algorithm; YOLOvll1; defect
classification; UAV path planning; live power lines

I.  INTRODUCTION

In live working scenarios, maintenance of the 10-kV
distribution network by staff mainly faces challenges such as
high safety risks, long inspection times, and blind spots in the
field of vision. Unmanned aerial vehicles (UAVs) for
inspecting 10-kV distribution networks can reduce the risk of
direct exposure of personnel to high voltage environments,
greatly improving safety. In addition, UAVs have multi-angle
inspection capabilities, which can quickly obtain image data,
significantly improving inspection efficiency and accuracy, and
can timely detect hidden dangers that are difficult for humans
to detect. UAV technology has the advantages of safety, high
coverage, and strong defect detection capability in distribution
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network inspection tasks. Therefore, the power company is
exploring the application of UAVs in the inspection tasks of
distribution networks. Specifically, UAV-based distribution
networks inspection technology achieves accurate diagnosis of
insulator defects and wire breakage faults through visual
sensors [1]. In addition, UAV-based distribution networks
inspection is more in line with the goals of new power system
construction in terms of economy and environmental
protection. For the UAV-based distribution networks
inspection system, the UAV path planning module is the
foundation of intelligent inspection of distribution networks.
This module automatically solves an optimal and safe flight
route, aiming to shorten the inspection time or distance, avoid
obstacles, and ensure flight safety, ultimately achieving
comprehensive image acquisition throughout the inspection
range. In addition, the insulator defect detection module aims
to automatically, quickly, and accurately identify various
defects in insulators from a large number of inspection images,
thereby effectively reducing operation and maintenance costs,
preventing power grid accidents, and improving power supply
reliability [2]-[3].

At present, power companies require UAVs to operate in
live power line scenarios. However, the current UAV path
planning problem has not taken into account the safety distance
constraints between UAVs and live power lines, and there are
still problems such as low convergence accuracy of path
optimization algorithms [4]. In addition, the accuracy of
insulator defect identification is also an important challenge.
Specifically, convolutional neural network (CNN) models face
challenges such as complex background interference and high
training data acquisition costs in insulator defect recognition
tasks. The distribution networks background of the insulator
captured by UAV is too complex, such as wires, towers, sky,
and vegetation, which may affect the detection accuracy of the
CNN model. Therefore, it is necessary to develop an insulator
defect recognition model with strong feature extraction and
classification capabilities to accurately locate and identify low
contrast defects on insulators in background noise. In addition,
CNN models require a large amount of high-quality and
accurately labeled training data during the training process.
Obtaining balanced data integration that covers various defect
types, camera angles, and insulator models is costly. In the
context of distribution networks in reality, there are far more
normal insulator samples than defect samples, which leads to
CNN-based insulator defect recognition models being prone to
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bias towards the "No Defects" category, significantly reducing
the accuracy of defect recognition [5].

YOLOV8, as a real-time object detection model, is also
used in insulator defect detection tasks. Although YOLOv8
performs better in small object detection tasks compared to
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CNN models, its detection accuracy is also lower for extremely
fine cracks or damages on insulators, resulting in a higher rate
of missed detection of surface defects on insulators. Overall,
the biggest challenges for CNN and YOLOVS in insulator
defect recognition include complex background interference
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The task paragraph assignment (TSA) module can further
classify candidate samples based on specific defect types and
confidence levels in insulator defect recognition tasks, thereby
improving the accuracy of insulator defect recognition.
Therefore, in this study, the TAS module was introduced into
the head module of the YOLOvl1l model with the aim of
improving its accuracy. In addition, a biological heuristic
algorithm has been developed to solve the optimal path for the
UAYV, aiming to safely and efficiently complete distribution
networks detection tasks. Fig. 1 shows the UAV-based
distribution networks detection system developed in this study.
The system consists of two modules: UAV path planning and
insulator defect recognition. The particle swarm optimization-
based marine predictors algorithm (PSO-MAP) is used to
optimize the flight path of inspection UAVs. Through this
flight path, UAVs can collect a large amount of image data.
Based on these image data, the insulator defect recognition
module identifies and detects defects in insulators. The main
contributions of this study are summarized as follows:

o A UAV-based intelligent detection system framework
for live power lines has been designed. The system
integrates a UAV path planning algorithm and an
insulator defect recognition model, and develops a
complete end-to-end UAV-based distribution network
detection system.

e A mathematical model for path planning for UAV
power line inspection scenarios has been developed,
which aims to minimize the flight path length and
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power line inspection system.

maximize the image acquisition range. In addition, the
model considers the safety distance constraint between
UAVs and live lines to ensure operational safety.

e A hybrid PSO-MPA algorithm was developed by
combining particle swarm optimization (PSO) and
marine predator algorithm (MPA) optimization
strategies. Experimental results have shown that this
algorithm significantly improves the convergence
accuracy of the PSO algorithm, and the potential of the
PSO-MPA algorithm in optimizing the path of the
inspection UAV has been demonstrated.

e The TSA module was introduced into the head module
of the YOLOvV11 model, and the TSA-YOLOv1 model
was developed to improve the accuracy of the insulator
defect recognition module based on the YOLOvll
model. The TSA-YOLOv11 model achieved an average
accuracy of 96.87% in insulator defect classification
tasks, improving the reliability of insulator defect
detection.

The remaining parts of this study are arranged as follows:
Section II reviews the work on UAV path planning and defect
classification. Section III introduces the proposed UAV-based
distribution networks inspection system. Section IV presents
the results and discusses them. Finally, Section V summarizes
the entire study.
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II.  RELATED WORK

A. UAV Path Planning

At present, UAVs have been applied in various fields such
as logistics, communication, and patrol. Therefore, a large
number of UAV path planning models have been developed
for these scenarios. In [7], the authors proposed an autonomous
trajectory planning method for UAVs used in industrial facility
inspections. This study designed a viewpoint resampling
mechanism to meet the multi-perspective coverage
requirements in complex industrial scenes. By dynamically
optimizing the position of observation points, the image
acquisition quality of key areas was improved, and the flight
path length was shortened. Sonny et al. studied the path
planning problem of UAV-assisted wireless networks and
proposed an improved PSO algorithm [8]. In order to address
the low convergence accuracy of the PSO algorithm in
handling UAV path planning problems, this study introduced
dynamic inertia weights and mutation operators into the PSO
algorithm, aiming to enhance the algorithm's global search
capability, minimize UAV energy consumption, and maximize
ground user network coverage. Riickin et al. developed an
active leamning path planning framework for the semantic
mapping of UAVs. This framework models path planning as an
information gain maximization problem, evaluates the
uncertainty of unexplored areas in real-time through Bayesian
inference, dynamically guides UAVs to collect high-value data,
and aims to plan a path for UAVs to explore unknown areas

[9].

In [10], the authors propose a noise-aware path and energy
management joint optimization model for collaborative
operation of multiple UAVs in noise-sensitive areas. This study
aims to quantify the cost of sound pollution by establishing a
noise propagation model of the rotor, with the aim of
constraining UAV flight altitude and path to avoid residential
areas. At the same time, the study designed an intelligent
power allocation strategy for batteries, aimed at maximizing
the endurance of UAVs. In [11], the authors studied the
challenges of UAV path planning under the framework of
Internet of Drones (IoD), and proposed a distributed
collaborative optimization framework. This study uses
transmission delay cost and packet loss rate as path cost
functions to generate paths for multiple UAVs.

In [12], the authors developed a distribution UAV
autonomous path planning and control system based on the
Internet of Things (IoT) and edge computing technology. The
system deploys edge nodes to process UAV perception data in
real-time and combines with a cloud-based task scheduling
center to generate the global optimal path, significantly
reducing the latency of end-to-end decision-making. The
experimental results show that this path planning method can
effectively reduce the communication cost and flight distance
of UAVs. Yanmaz et al. developed a dynamic multi-objective
path planning method to address the challenges of
collaborative search and communication support for multiple
UAVs. This method takes maximizing the target discovery
probability and network connectivity as the objectives of the
path planning model, establishes a Markov decision model, and
designs a distributed UAV path optimization algorithm, aiming
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to dynamically adjust the UAV formation by real-time
evaluation of communication link quality [13].

In addition to the PSO-based path optimization algorithm
mentioned earlier, some other cutting-edge research is also
exploring the application of biological heuristic algorithms in
UAV path planning problems. For example, in [14], a UAV
covert path planning method based on reinforcement leamning
(RL) was proposed. This method is inspired by the kinematics
of natural organisms, and trains RL agents to leamn strategies
that mimic natural organisms' covert approach to prey by
constructing a three-dimensional dynamic environment of state
and action space. In [15], the authors developed a UAV path
planning algorithm that combines Q-learning and Grey Wolf
Optimizer (GWO) to solve complex 3D path planning
problems for UAV flight. This study utilizes Q-learning to
dynamically optimize key parameters of the GWO, such as
convergence factor and population position update weights, in
order to enhance the algorithm's adaptability in dynamic
obstacle environments and improve the convergence accuracy
of GWO algorithm.

B. Target Identification Model

In [16], the authors designed a YOLO architecture for
identifying pedestrians and vehicles for target detection tasks
aimed at border patrol. In addition, this study decomposes the
complex collaborative patrol problem into global path planning
and local conflict resolution and task allocation problems,
aiming to efficiently coordinate the flight paths and monitoring
tasks of multiple drones. Chen et al. focused on the challenging
problem of detecting small ship targets in ocean-wide area
remote sensing images. In order to overcome the difficulties of
small targets having limited information and being easily
submerged in the ocean background, this study also designed
an improved YOLO model, aiming to enhance the model's
ability to extract features and utilize motion information of
small targets, thereby improving the accuracy of ship
recognition [17]. In [18], the authors developed an insulator
identification and defect detection system for distribution
networks inspection. This study proposes a defect detection
method for insulators based on YOLOX. The core of this
method lies in optimizing the YOLOX model, introducing a
high-resolution differential module aimed at capturing the local
detailed features and minor defects of insulators and their key
components more finely.

Zhang et al. proposed a method for identifying the working
angle of a loader bucket based on the YOLOvSs model. This
method utilizes YOLOVSs to quickly and accurately locate the
target of the bucket, and introduces an attention mechanism to
more accurately recognize the posture of the bucket, ultimately
calculating the working angle of the bucket [19]. In [20], the
authors focus on the task of detecting small targets in infrared
images. In order to solve the problem of target loss or false
alarm caused by traditional methods, this study proposes an
improved strategy based on pixel extension. In [21], the
authors developed an intelligent inspection system based on a
UAV for power insulator inspection tasks under complex
weather conditions. The system has successfully achieved
autonomous positioning, state recognition, and defect detection
of insulators by equipping sensors and machine learning
algorithms suitable for complex environments. Xuan et al.
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proposed an intelligent identification method for insulator
defects based on Fully Convolutional One Stage (FCOS). The
experimental results show that this method can not only
accurately locate and segment individual insulators in the
image, but also finely segment the defect areas on the insulator
surface [22]. In [23], the authors proposed an efficient personal
protective equipment detection model based on YOLOVS,
aiming to develop a system for detecting whether workers are
wearing compliant personal protective equipment, such as
safety helmets, reflective clothing, and gloves, and to improve
the accuracy and robustness of the YOLOv8 model in human
protective equipment detection tasks.

III. METHODOLOGY

As shown in Fig. 1, the proposed UAV-based distribution
networks inspection system consists of two parts: path
planning and insulator detection. The UAV path planning
model aims to minimize the flight path length and maximize
the image acquisition range, while considering three
constraints: the maximum pitch angle, maximum endurance
time, and safe distance between the UAV and the live-line. On
this basis, a PSO-MPA algorithm was developed for the path
planning model of power inspection drones to solve the flight
path of the drones. The TSA module was introduced into the
YOLOv11 model to improve the accuracy of the insulator
defect recognition model.

A. UAV Path Planning for Power Inspection

Before conducting UAV path planning, the transmission
facilities are first divided into grids. In this study, the
transmission facilities were surface divided into a set

V'={":%2,V, | - Based on the height of the transmission

facilities, the initial flight height of the drone was determined
as H, . The UAV's path consists of a series of path nodes

I'={1,2,---,m} . Another key parameter for UAV path planning
is Step _Size .

The path distance cost f5,,, , 0f UAV is defined in Eq. (1):

me‘hiDix = Z\/(xm _xm—l)z +(ym = V-l )2 +(Zm _Zm—l)2
mel (1)

where, (x,,,,,,z, )is the position of the UAV's path node m

in the coordinate system.

The definition of Step Size is as follows in Eq. (2):

2 2

Step_SiZe = \/(xm _‘xmfl )2 + (ym - ym—l) + (Zm - Zm—l) (2)
z,1s defined in Eq. (3):
z,=H,,Vmel 3)
The image acquisition range of the UAV is defined as
Eq. (4):

P _M,Vbe{l,l-",b_max} S
b_max

mg
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where, (v, )is a 0-1 variable. When the UAV captures an
image of grid v, position, B(v,)=0; Otherwise, £(v,)=1.

The objective function of the UAV path planning model
used for distribution networks inspection is Eq. (5):

F = 1/Vl ><](‘Pat117D11\‘ + W2 Xﬁmg (5)

where, w, and w, are the weight coefficients of the objective
function.

The constraint conditions for UAV path planning in
distribution networks inspection are defined as follows

[Eq. (6)]:
0,<0, Ymel (6)

where, 6, is the pitch angle of the distribution networks

inspection UAV. 6 is the maximum pitch angle of the

distribution networks inspection UAV [Eq. (7)].

fParhiDis <T (7)

— U4V
speed,,,

where, speed,,,, is the flight speed of the distribution
networks inspection UAV. T, is the maximum endurance
time of the distribution networks inspection UAV [Eq. (8)].

L(v,,UAV) > Ly, Vb €{1,2,--,b_max}

(®)
where, L(v,,UAV ) is the distance between the UAV and the

distribution networks. L, is the safe distance between the

UAYV and the distribution networks.

To solve this path planning model, a PSO-MPA algorithm
was developed. The MPA algorithm mainly includes predation
strategies based on Brownian motion and target aggregation
strategies based on Levy motion [24]. In order to improve the
convergence accuracy of MPA, a speed update-based foraging
strategy based on the PSO algorithm is also added to the hybrid
PSO-MPA algorithm. The definition of the PSO-MPA
algorithm is as follows:

1) Initialization: Initialize the position O of the marine
predator population, initialize the speed of PSO, and set the
maximum iteration number lfer max of the PSO-MPA
algorithm.

2) Calculate adaptive parameters: Determine the update
and search process that should be executed for the current
iteration count /zer based on the value of lter / Iter _max .

3) Update strategy 1: The foraging strategy based on
speed updates the positions of all marine predators to obtain
o".

4) Update strategy 2: Based on Brownian motion, update
the positions of some marine predators using a predation
strategy. The update process is defined as Eq. (9):

O(k) _new=PBM (O(k)") 9)
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where, O(k)is defined as the location of the k -th marine

predator. PBM (.)is defined as a predation strategy based on
Brownian motion.

5) Update strategy 3: Implement a target aggregation
strategy based on Levy motion for the remaining marine
predators.

6) Evaluate and select the optimal solution: Calculate the
fitness of all updated positions of marine predators and
generate the optimal solution.

B. Defect Detection of Insulators

Although multiple frameworks such as Real-Time
Detection Transformer (RTDRTR), Region-based
Convolutional Neural Networks (RCNN), and YOLOv8 have
been used for specific object detection or insulator defect
identification tasks, improving the accuracy of insulator defect
detection models remains a challenge [23]. Therefore, in this
study, the TSA module was introduced into the YOLOvI1I
model to improve the accuracy of insulator defect detection.
Fig. 2 shows the header module of the proposed TSA-
YOLOv11 model.

Task-Separation Assignment (TSA) Module

T
—> = 4

ULIONI2AR T

Pyramid Pocling Module (PPM)

Y

Fig.2. Head module of the YOLOv11 model based on TSA (TSA-

YOLOv11).

The header module of the TSA-YOLOvll model is
designed to enhance the recognition of insulator defect types
by integrating the global modeling capability of the
Transformer with the local feature extraction ability of CNN.
After a series of convolutional layers and Bottleneck modules
for dimensionality reduction and local feature extraction, the
resulting insulator features are fed into the TSA module.
Within this module, the features undergo multi-head
integration, residual connections, and layer normalization
before being output, thereby modeling dependency
relationships between any two spatial positions.

In the header module of the TSA-YOLOv11 model, the
pooling layer uses max pooling technology. The definition of
max pooling is as follows [Eq. (10)]:

H, = Rand(0,1)xmax{A,,i € P}
+(1—Rand(0,1))xlszi
|PJ | iek; (10)
where, Rand(0,1) is a random number with a value of 0 or
1. H;is the j -th element of the feature map output from the
max pooling operation. A, is the i -th position of the j -th

element in the input feature map P,.

Vol. 16, No. 10, 2025

IV. EXPERIMENTS

This study proposes an intelligent UAV inspection system
for distribution networks detection, with a primary focus on
addressing UAV path planning and insulator defect detection
challenges. To validate the effectiveness of the proposed path
planning algorithm, a three-dimensional flight simulation
environment was established based on actual substation map
data. For insulator defect detection, the image samples were
collected under varying lighting conditions, shooting distances,
and camera angles to ensure comprehensive coverage of
operational scenarios.

A. Path Planning Results

In order to demonstrate the application results of the
proposed PSO-MPA algorithm in the path planning problem of
power inspection UAVs, and to explore the influence of the
key parameter of flight step size on the objective function,
multiple power inspection UAV path planning experiments
were designed based on different flight step sizes. Firstly, the
flight step sizes were set to 1 meter, 3 meters, 5 meters, 7
meters, 9 meters, and 11 meters, respectively. Based on
different flight step sizes, independent experiments were
conducted to explore the influence of flight step sizes on the
fitness function. In addition, rime (RIME) optimization
algorithm [25], Harris hawks optimization (HHO) [26], snow
geese algorithm (SGA) [27], PSO, The Tormado optimizer with
Coriolis force (TOC) algorithm is also used to solve the path
planning problem of power inspection UAVs, aiming to verify
the convergence accuracy and robustness of the PSO-MPA
algorithm. In addition, in this study, standard deviation was
used to evaluate the stability of the path planning algorithm for
power inspection UAVs.

Fig. 3 shows the flight paths generated by the PSO-MPA
algorithm for the power inspection UAV under different step
sizes. Fig. 4(a) and Fig. 4(b) show the iterative function curves
of PSO-MPA, HHO, PSO, RIME, SGA, and TOC algorithms
with step sizes set to 1 meter and 3 meters, respectively.
Fig. 5(a) and Fig. 5(b) show the iteration function curves of
each algorithm when the step size is set to 5 meters and 7
meters, respectively. Fig. 6(a) and Fig. 6(b) show the iteration
function curves of each algorithm when the step size is set to 9
meters and 11 meters, respectively. Table I shows the fitness
function values of each algorithm at different step sizes.

From Fig. 4(a), it can be seen that the PSO-MPA algorithm
generates a fitness function value of 3175.06 in solving the
path planning problem of the power inspection UAV.
Compared with the other five algorithms, the PSO-MPA
algorithm has the smallest fitness function value, when the
flight step size of the UAV is 1 meter. From Fig. 4(b), it can be
seen that when the UAV's flight step size is 3 meters, the PSO-
MPA algorithm also has the lowest fitness function value,
which is 3276.60, an average decrease of 44.53% compared to
the other five algorithms. From Fig. 5(a) and Fig. 5(b), it can
be seen that when the UAV's flight step size is 5 meters and 7
meters, respectively, compared with HHO, PSO, RIME, SGA,
and TOC algorithms, the fitness function value of PSO-MPA
algorithm is also the smallest. From Fig. 6(a) and Fig. 6(b), it
can be seen that when the UAV's flight step size is 9 meters
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and 11 meters, the fitness function values of the PSO-MPA
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algorithm are 3559.49 and 3232.06, respectively.
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Fig.3. UAV path planning results with different flight step sizes.
TABLE 1. THE FITNESS FUNCTION VALUES OF UAV PATHS WITH DIFFERENT FLIGHT STEP SIZES
Algorithm PSO-MPA HHO PSO RIME SGA TOC
Step Size Fitness Function
1 3175.06 6665.64 6328.04 7242.72 8539.11 4343.94
3 3276.60 7626.56 6115.06 5133.10 7717.98 4396.74
5 3790.45 10572.84 7185.90 5184.23 7727.14 5169.95
7 3909.39 712122 6995.10 7638.17 7819.61 7842.44
9 3559.49 7914.00 7252.17 6775.45 8759.74 7146.64
11 3232.06 7058.16 5329.62 6135.50 5515.12 5837.17
Fi W ; ; 1 Therefore, it can be concluded that among all step settings,
S o the proposed PSO-MPA algorithm generates the smallest
P v fitness function value compared to other algorithms when
Eaf e - solving the path planning problem of power inspection UAV.
H The PSO-MPA algorithm performs significantly better than
37 xk HHO, PSO, RIME, SGA, and TOC algorithms in solving path
2, ‘ ‘ ‘ ‘ . i i . . planning problems for power inspection UAVs. The objective
1) 100 200 300 400 500 600 00 800 901 1000 . . .
Number of Tterations v ' function value corresponding to the PSO-MPA algorithm
Y (b decreased by 25.48% to 4746% compared to the objective
2 Ry ‘ ' === function value generated by the suboptimal algorithm. When
24T PO the step size is set to 9 meters, the fitness function value of the
g B SGh PSO-MPA algorithm is 355949, and the decrease in the
= == L objective function value is the most significant. Compared with
ENi T — the second ranked RIME algorithm, the objective function
3 value of the PSO-MPA algorithm has decreased by 47.46%.
a OO 100 200 300 400 500 600 700 J00 900 1000
Number ot Tterations
Fig. 4. The iterative function curve for flight steps of 1 meter and 3 meters.
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Fig. 5. The iterative function curve for flight steps of 5 meters and 7 meters.

When the step size is set to 3 meters, the performance of
the PSO-MPA algorithm decreases, but compared with HHO,
PSO, RIME, SGA, and TOC algorithms, the PSO-MPA
algorithm still maintains a significant advantage in solving the
path planning problem of power inspection UAVs. Compared
with the second ranked TOC algorithm, the fitness function
value of the PSO-MPA algorithm is reduced by 25.48%. In
addition, by comparing the fitness values of each step size
setting corresponding to the PSO-MPA algorithm, a flight step
size of 1 meter was determined to be the optimal setting, and
the generated drone path cost was the lowest.

Table II shows the standard deviation of the fitness function
values generated by each algorithm running independently ten
times at different step sizes. Fig. 7 shows the standard
deviation of the objective function values generated by running
different algorithms ten times with different step sizes. It can
be seen that compared with HHO, PSO, RIME, SGA, and TOC
algorithms, PSO-MPA is the overall most stable algorithm.
The PSO-MPA algorithm achieved the minimum standard
deviation in all five step settings, indicating that it can maintain
high consistency under different parameters. Especially when
step size is 5 meters, the standard deviation of the PSO-MPA
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algorithm reaches 95.93, indicating the highest stability. HHO
is the most unstable algorithm overall, with a standard
deviation exceeding 270 under multiple flight step settings,
significantly higher than other algorithms.
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Fig. 6. The iterative function curve for flight steps of 9 meters and 11
meters.
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Fig. 7. The standard deviation of the fitness function values for UAV paths

with different flight step sizes.

TABLE II. THE STANDARD DEVIATION OF THE FITNESS FUNCTION VALUES FOR UAV PATHS WITH DIFFERENT FLIGHT STEP SIZES
Step Size Step Size=1 |  Step Size=3 |  Step Size=5 Step Size=7 | Step Size=9 Step Size=11
Algorithm Standard Deviation
PSO-MPA 11125 109.27 95.93 120.58 117.73 100.46
HHO 184.11 155.46 154.54 273.41 144.24 27139
PSO 183.61 11522 136.78 167.78 122.32 134.26
RIME 176.18 153.63 189.80 150.17 96.32 172.27
SGA 157.26 192.48 174.19 156.14 146.22 152.15
TOC 121.82 118.70 138.26 122.44 183.05 167.97

B. Defect Detection Results of Insulators

To verify the performance of the TAS-YOLOv11 model in
insulator defect detection, insulator defect detection
experiments were conducted based on the RTDETR model, R-
CNN model, YOLOv8 model, YOLOv10 model, and

YOLOv11 model [28]-[30]. Table IIl shows the types of
insulator defects included in the training and testing sets of this
study. In this study, insulators used in distribution networks
were classified into four types: defect free, defect type 1, defect
type 2, and defect type 3.
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In this study, the dataset includes 8000 insulator images.
The number of images in each of the four categories (insulators
without defects, defect type 1, defect type 2, and defect type 3)
is 2000. The training set includes 1600 insulator images for
each of the four categories. The test set includes 1000 insulator
images for each of the four categories. Table IV shows the
parameter settings for different models. For different insulator
defect detection models, the batch size and number of epochs
are 2 and 300, respectively.

Vol. 16, No. 10, 2025

TABLEIII. DEFECT TYPES OF INSULATORS
Class Definition
No defects: The insulator has no defects and works
Defect-Free
normally.

Surface Defect: The material on the surface of the

Defect T 1 . .
clect 1ype insulator is damaged.

Damaged: The edge of the insulator is damaged or there

Defect Type 2 are cracks in the insulator.

Missing: The insulator string is missing one or several

Defect T .
efect Type 3 insulators.

Table V presents the mean average precision (mAP@0.5)
and training loss values for different insulator defect detection
models. The proposed TAS-YOLOvV11 achieves an mAP@0.5
of 95.16%, outperforming the RTDETR and R-CNN models
by 11.08% and 6.43%, respectively. Additionally, its training
loss is 0.1252, representing reductions of 37.59% and 36.28%
compared to RTDETR and R-CNN, respectively. Compared
with the RTDETR model, R-CNN model, YOLOv6 model,
YOLOvV8 model, YOLOv10 model, and YOLOvI 1 model, the
mAP@0.5 index of TAS-YOLOVI11 increased by an average
of 5.14%, and the training loss of TAS-YOLOv11 decreased
by an average of 28.49%. Fig. 8 shows the results of insulator
defect recognition based on the TAS-YOLOv11 model.

TABLEIV. PARAMETER SETTINGS
Models Parameter Value
Batch size 2
RTDETR Number of epochs 300
Leamingrate 1E-4
Batch size 2
R-CNN Number of epochs 300
Leamingrate 1E-6
Batch size 2
YOLO Number of epochs 300
Leaming rate 1E-3

Table VI shows the performance of different insulator
defect detection models. In Table VI, two indicators, accuracy
and recall, are used to evaluate different insulator defect
detection models. From Table VI, it can be seen that in the
experiment of insulator defect detection, the TAS-YOLOv11
model has the best performance and highest accuracy in the
four types of defect detection.

TABLE V. PERFORMANCE COMPARISON OF DIFFERENT MODELS
Models mAP@0.5 (%) Training Loss
RTDETR 85.67 0.2006
R-CNN 89.41 0.1965
YOLOv8 91.32 0.1887
YOLOvV10 92.18 0.1609
YOLOv11 94.46 0.1435
TAS-YOLOv11 95.16 0.1252
TABLE VI. IDENTIFICATION RESULTS OF INSULATOR DEFECTS USING
DIFFERENT MODELS
Models Class Accuracy Recall
Defect-Free 0.8745 0.8617
Defect Type 1 0.8659 0.8569
RTDETR
Defect Type 2 0.8943 0.8722
Defect Type 3 0.8741 0.8632
Defect-Free 0.8918 0.8774
Defect Type 1 0.8901 0.8749
R-CNN
Defect Type 2 0.8792 0.8564
Defect Type 3 0.8577 0.8513
Defect-Free 0.9674 0.9519
Defect Type 1 0.9357 0.9349
YOLOv8
Defect Type 2 0.9290 0.9125
Defect Type 3 0.9293 09123
Defect-Free 0.9666 0.9667
Defect Type 1 0.9381 0.9305
YOLOv10
Defect Type 2 0.9374 0.9181
Defect Type 3 0.9341 0.9183
Defect-Free 0.9683 0.9557
Defect Type 1 0.9375 0.9277
YOLOv11
Defect Type 2 0.9434 0.9320
Defect Type 3 0.9326 0.9379
Defect-Free 0.9793 0.9632
Defect Type 1 0.9653 0.9564
TAS-YOLOv11
Defect Type 2 0.9699 0.9417
Defect Type 3 0.9603 0.9581

The defect free insulator detection accuracy and recall of
TAS-YOLOv11 model are 97.93% and 96.32%, respectively.
Compared to the accuracy of the YOLOv11 model, the TAS-
YOLOv11 model shows an improvement of over 1 percentage
point. In the detection of the most difficult surface defect
(defect type 1), the accuracy of the TAS-YOLOv11 model is
96.53%, which is 2.72 percentage points higher than the
suboptimal model YOLOv10. The recall rate of traditional R-
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CNN models in missing defects (defect type 3) is only 85.13%,
which poses a high risk of inaccurate recognition.

ct-Free: 0.94368

\>(" 5
3 FALS i

Fig. 8. The results of insulator defect detection based on TAS-YOLOv11
model.

V. CONCLUSION

This study proposes a dual-layer detection model for
distribution networks, integrating UAV path planning and
insulator defect recognition. In the path planning layer, a power
grid inspection UAV path planning model aims to minimize
flight distance and maximize image coverage. In addition, a
hybrid PSO-MPA algorithm is designed to solve the path
planning model of UAV for power grid inspection. The
experimental results demonstrate that with a flight step size of
one meter, the PSO-MPA algorithm reduces the objective
function value by an average of 49.62% compared to the other
five algorithms, significantly shortening the path length and
improving the integrity of image acquisition for transmission
facilities. In the insulator defect recognition layer, a TSA-
YOLOv11 model was developed, which introduces a task
decoupling allocation module (TSA) to separate positioning
and classification tasks, aiming to solve the feature conflict
problem of traditional models. The average accuracy of
insulator defect detection reached 96.87%, and the recall rate
of high-risk damaged defects increased to 94.17%. In future
research, combining reinforcement leaming with proposed
models to construct an online inspection system will be a key
focus.
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