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Abstract—Predictive maintenance plays a crucial role in
minimizing unplanned downtimes, reducing maintenance costs,
and optimizing the operational efficiency of IoT-embedded
industrial machinery. Despite its transformative potential,
traditional predictive maintenance methods often face challenges
such as limited accuracy, high latency, and inefficiencies in
processing large and imbalanced datasets. This study proposes an
enhanced predictive maintenance method using the Sliding
Window Method with XGB model (E.XGB), incorporating
advanced data preprocessing, permutation importance, and
hyperparameter optimization to address these limitations. The
proposed method was evaluated on two datasets, which are the
synthetic AI41 2020 Predictive Maintenance Dataset and the real-
world CNC Milling Dataset. A comparative analysis with a
predictive maintenance method using E.AB from prior research
as a benchmark, along with several baseline models, DT, RF, and
SVM, revealed that the E.XGB model consistently outperformed
other methods in accuracy, precision, recall,and F1-scores.On the
Al412020 dataset, the E.XGB model achieved an accuracy of
99.05%, while on the CNC Milling dataset, it attained an accuracy
of 99.01%. Additionally, the E.XGB model also demonstrated
reduced training and prediction times, meeting the real-time
requirements of industrial applications. The proposed model
demonstrated training speed of approximately 94% and
prediction speeds of approximately 99.8% improvement over the
E.AB model, making it highly suitable for real-time industrial
applications. By improving accuracy, training speed, and
prediction latency, the predictive maintenance method offers a
robust, scalable, and reliable solution for predictive maintenance
across diverse industrial contexts.
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I.  INTRODUCTION

Industrial maintenance has evolved from reactive strategies
to predictive maintenance, a proactive approach utilizing
machine learning and IoT technologies. Traditional methods
are often costly, inefficient, and prone to unplanned downtimes
due to manual feature extraction and inaccurate degradation
modelling [1, 2]. Predictive maintenance, however, predicts
potential failures and optimizes schedules, allowing for timely
interventions without detailed knowledge of degradation
processes [3]. This approach offers significant benefits, such as
reduced downtime, extended equipment life, and enhanced
sustainability [4]. However, implementing predictive
maintenance remains challenging due to the complexity of
industrial systems and the intricate data patterns requiring

analysis [5]. These challenges highlightthe need for advanced
methods that enhance accuracy and processing efficiency. By
leveraging IoT and machine leaming technologies, this study
addresses these limitations, focusing on adaptability and
scalability to meet the demands of diverse industrial
applications.

The main problem that motivates this research is that
current predictive maintenance methods still face challenges in
achieving fast training speeds and prediction speeds while
maintaining high accuracy, which is essential for real-time
industrial applications [1, 6]. Due to massive sensor data
generated by loT-embedded machines, many existing methods
rely on complex machine learning models to predict faults.
Although this is effective and accurate, it leads to prolonged
training times and higher prediction [7]. Having long training
time can lead to delayed model updates, causing adaptability
and scalability issues, while long prediction time causes
delayed fault detection, which is important for real-time
industrial machines. This study addresses these limitations by
proposing an Enhanced Predictive Maintenance Method using
the Sliding Window Method with XGB model (E.XGB) on
sensor data, which can optimize training speeds and lower
prediction latency while still maintaining a high accuracy [5].
By addressing these gaps, the study aims to enhance current
predictive maintenance methods to satisfy the real-time
requirements of industrial machinery.

The goal is to improve fault prediction accuracy, minimize
false alarms, and reduce unnecessary maintenance and
downtime. Faster training speeds and real-time predictions are
also prioritized to support scalability and timely decision-
makingin industrial operations. The research focuses on IoT-
driven machinery, using the AI412020 Predictive Maintenance
Dataset[8]and CNCMilling Dataset[9]. The proposed E.XGB
modelis evaluated against other machine leaming methods like
AdaBoost, Decision Tree, Random Forest, and Support Vector
Machine. Performanceis measured using metrics like accuracy,
precision, recall, F1 score, ROC AUC, and prediction latency,
with results benchmarked against existing approaches. This
study’s significance lies in improving fault detection accuracy,
reducing training times, and enabling real-time predictions,
which together lower downtime and maintenance costs. By
bridging the gap between machine learning advancements and
practical industrial applications, the research provides a robust
foundation for future predictive maintenance innovations.
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The rest of this study is organized as follows: Section II
reviews related work on predictive maintenance, including
algorithms, and its performance for loT-based industrial
systems. Section III details the methodology, including data
preparation, model training, and optimization techniques.
Section IV explains the proposed E.XGB method, supported by
flowcharts, formulas, and calculations. Section V presents
experimental results, comparing the proposed model’s
performance to previous methods. Section VI summarizes the
study’s contributions and provides suggestions for future
research.

II. RELATED WORKS

In recent years, predictive maintenance for loT-embedded
industrial machinery has garnered significantattention. In [1],
the authors proposed a predictive maintenance method that
utilizes machine learning algorithms, particularly AdaBoost, to
classify machine stops in knitting machines. Their system
achieved 92% accuracy, enabling timely maintenance and
improved efficiency in the textile industry. In terms of
hyperparameter tuning, they employed grid search cross-
validation (GridSearchCV) for hyperparameter optimization.
However, the resulting output possessed high latency in
processing and may hinder its application in real-time systems.

The challenge of imbalanced datasets is tackled by
enhancing the KNN algorithm [10]. By employing techniques
like feature engineering, standardization, and under-sampling,
their model achieveda 97.1% accuracy. The ability to handle
imbalanced data is crucial in predictive maintenance, although
KNN's performance can vary based on dataset characteristics.
The approach also explicitly mentions hyperparameter tuning
and states that Grid Search tuning was applied to optimize the
K-Nearest Neighbours (KNN) model. However, it does use an
automated hyperparameter tuning method.

Similarly, in [11], the authors proposed a framework
combining XGB and LOF models with XAI to address
imbalanced datasets. Their method achieved 96% accuracy
with XGB and 91% with LOF. The dual approach helps by
focusing on predictive classification with XGB and anomaly
detection with LOF. However, the study highlighted potential
issues with the synthetic noise introduced by SMOTE and
scalability challenges in real-time applications. However, no
explicit mention of hyperparameter tuning was found in this
study.

Multiple machine leaming models including LR, KNN;, and
ANN, for failure prediction [12]. The ANN model
outperformed others with an accuracy of 96.85%, but it
struggled with false positives, indicating a need to balance
sensitivity and specificity in complex environments. In this
approach, structured hyperparameter tuning methods that
include GridSearchCV and RandomizedSearchCV were used
in their work.

LSTM networks combined with Auto Encoderis employed
to predicttool wear in CNCmillingmachines [ 1 3]. Their model
achieved 98% accuracy, showing improved performance over
previous methods. However, long datasets could reduce the
model’s accuracy, and the authors recommended prioritizing
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relevant data through a weighting mechanism. Also, there was
no hyperparameter tuning approach mentioned in the approach.

In another deep learning approach, reinforcement learning
techniques like Q-learning and SARSA alongside LSTM
networks is applied to monitor CNC tool conditions [ 14]. The
SARSA algorithm achieved 98.66% accuracy. While
reinforcement learning optimizes decision-making, the
complexity of the model posed challenges in training, requiring
large datasets and still misclassifying certain instances. Again,
in this approach, no mention of hyperparameter tuning is
involved.

Machine learning and deep learning methods for tool wear
prediction were compared, showing that CNN and AE-LSTM
outperformed KNN [15]. While deep learning models are more
accurate, they are computationally intensive, raising concerns
about their scalability. In this approach, there was no mention
about the usage of hyperparameter tuning.

Theuse of SVM for detectingmachine failures in predictive
maintenanceis comparedin [16],achievingup to 88% accuracy
intestingdata. In terms of hyperparameter tuning, this approach
employs grid search for selecting optimal hyperparameters (C
and Gamma). However, the SVM's reliance on parameter
tuning, such as C and gamma, can slow optimization, making it
unsuitable for real-time applications.

LSTM models are used for predictive degradation
modelling in milling machines, achieving 80% accuracy [17].
The advantage of this method lies in its ability to predict
degradation by considering sequential dependencies. However,
it struggled with imbalanced data and may not account for all
failure modes, especially in more complex systems. On real-
time systems, [2] integrated IoT and machine learning for
predictive maintenance, using algorithms like SVM, RNN, and
CNN. Their method achieved 87% accuracy with SVM on a
milling datasetand 98% with CNN on a bearing dataset. While
the models performed well, processing large datasets and
extracting meaningful features for real-time predictive
maintenance posed challenges.

A hybrid deep learning model combining CNN and LSTM
for fault detection is proposed in [18], achieving 97.9%
accuracy. The model's ability to capture both spatial and
temporal patterns in multivariate sensor data made it effective
for fault detection. However, its complexity and need for
substantial annotated data slow down its real-time applicability.

A PM-C-LSTM model is used for wind turbines, achieving
a 96.77% accuracy [19]. While promising for wind energy
applications, the model’s effectiveness across different
environments requires further validation. Despite the
advancements, the reviewed works reveal several gaps in
predictive maintenance research. A significant issue is the
trade-off between accuracy and processing speed. Deep
learning models, like CNN-LSTM and hybrid models, achieve
high accuracy but come with high computational costs, which
may limit their use in real-time applications.

Models like AdaBoost [1] and SVM [16] also face
challenges in terms of processing speed, as they require
substantial parameter tuning, slowing down optimization.
Managing imbalanced datasets remains another challenge.
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While techniques like SMOTE and under-sampling improve
model performance[10, 11],theymay introduce synthetic noise
or fail to generalize effectively. Furthermore, models may
perform poorly when failure events are rare, highlighting the
need for better methods to manage imbalanced data without
sacrificing accuracy.

In summary, the research on predictive maintenance for
IoT-embedded industrial machinery has made significant
strides, but challenges in accuracy, processing speed, and
handling imbalanced data persist. Moving forward, research
should focus on optimizing the balance between accuracy and
speed, improving the generalization of models across diverse
datasets, and finding better methods to handle imbalanced data
while avoiding the introduction of noise. Addressing these
issues will pave the way for more efficient, dependable, and
scalable predictive maintenance systems that can meet the
demands of real-world industrial environments.

III. METHODOLOGY

A. Experimental Setup

This study evaluates the proposed Enhanced XGBoost
(E.XGB) model for predictive maintenance by comparing it
with the method by [1] and several baseline models. The
E.XGB model buildsupon the approach in [1] for [oT industrial
applications, improving against the AB model with the
proposed XGB model by incorporating minor enhancements.
The method proposed by [1]isreplicated in this study usingthe
same configurations as the original study to be used as a
comparison. The replicated Elkateb method, referred to as
Enhanced AdaBoost (E.AB),is used as the primary benchmark.
Additionally, three baseline models, DT, RF, and SVM, will
serve as secondary benchmarks, using default parameters
without optimization. All models will be trained and tested on
both imbalanced and balanced datasets to ensure
comprehensive evaluation. Performance is measured using
metrics such as accuracy, precision, recall, F1 -score, confusion
matrices, ROC-AUC, training times, and prediction times. This
study aims to address the challenges in the method in [1] and
demonstrate the effectiveness of the proposed E.XGB model.

B. System Infrastructure

The predictive maintenance system for loT-embedded
machinery integrates real-time data collection, cloud-based
processing, and machine learning to predict and prevent
equipment failures. Fig. 1 illustrates the system's workflow in
an industrial setting.

Sensors embedded in machines monitor critical parameters
like vibration, temperature, speed, torque, and tool wear during
operation. These sensors transmit real-time data to the cloud via
secure, high-speed connections. The cloud provides the
necessary computational resources to process large volumes of
data. In the cloud, data undergoes preprocessing to clean and
organize it, ensuring it is accurate and ready for analysis.
Machine learning models then analyze this data to detect
patterns, trends,andanomalies. Trained on historical data, these
models predict potential faults by identifying early warning
signs, such as abnormal temperature increases or irregular
torque patterns. When a potential issue is detected, the system
generates alerts for maintenance teams through dashboards,
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notifications, or emails. Alerts specify the affected machine or
component, the type of fault, and its urgency, enabling
technicians to address problems proactively. By preventing
unexpected breakdowns, this system reduces downtime, cuts
repair costs, and extends machine life. As more data is
collected, the system improves its accuracy, making predictive
maintenance an efficient and reliable alternative to traditional
maintenance practices.
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Fig. 1. System overview.

C. Methodology

This study follows the CRISP-DM methodology, a
structured and iterative framework ideal for developing
predictive maintenancesystems[18]. Fig.2 illustrates the entire
methodology overview. It begins with data collection, using
existing datasets to ensure high-quality and representative data.
In data preprocessing, key steps include data cleansing,
addressing imbalances, data smoothing, standardization, and
splitting data into training (80%) and testing (20%) sets.
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Fig.2. Methodology overview.
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Duringthe model creationphase, the study replicates a prior
model and develops three additional benchmark models.
Feature importance is analyzed before training begins. The
model testing phase evaluates performance on the test set using
metrics like accuracy, precision, and F1 score to assess
generalization capability. The proposed E.XGB modelis then
optimized through techniques like hyperparameter tuning and
cross-validation to enhance accuracy and efficiency. Finally,
visualizing results with tools such as confusion matrices and
ROC curves provides insights into model performance and
supports transparent communication with stakeholders.

D. Technical Setup and Development Environment

The simulation for this study was developed in Visual
Studio Code (VS Code), a popular, free, and open-source code
editor known for its versatility and extensive support for
plugins [20]. The programming language used is Python,
widely recognized for its effectiveness in data science and
machine learning due to its powerful libraries [21].

Several Python libraries were employed for simulation.
Pandas was used for data cleaning, preparation, and
transformation [22]. Scikit-learn facilitated data pre-
processing, machine learning model imports, feature selection,
and performance metrics calculations. The Time library helped
track training and processing time, while Matplotlib and
Seaborn were used for visualizations.

The simulations were run on a system with the following
specifications:

e Processor: Intel(R) Core (TM) 17-8750H CPU
e Memory: 32 GB RAM

e Operating System: Microsoft Windows 1 1 Home Single
Language.

E. Dataset

Datasets area structured collection of data used foranalysis,
modelling, and decision-making in various fields such as
machine learning, statistics, and research. One of the key
limitations of the previous approach is its reliance on a single
dataset for experimentation[1,2,10,11,12,13,14,15,16,19].
This restricts the generalizability of the model, as its
performance has not been validated across diverse IoT
environments with varying sensor data and operational
conditions. In the context of [oT-based predictive maintenance,
different datasets may exhibit variations in data distribution,
sensor noise, and failure patterns, which a single dataset cannot
fully capture. Without evaluation on multiple datasets, the
robustness of the method remains uncertain, increasing the risk
of overfitting to dataset-specific characteristics. Therefore, in
our experiment, we use two datasets to enhance the
generalizability and robustness of our proposed approach,
ensuring its applicability across different loT environments.
The datasets used are the AI41 2020 Dataset [8] and the CNC
Milling Dataset [9], with each representing synthetic and real-
world data, respectively. Additionally, these datasets exhibit
both imbalanced and balanced characteristics, allowing us to
assess the model’s ability to handle class imbalance issues,
which are common in real-world predictive maintenance
applications.

Vol. 16, No. 10, 2025

1) AI412020 dataset: The AI4l 2020 Predictive
Maintenance Dataset [8] is a synthetic dataset designed to
replicate real-world industrial predictive maintenance data. It is
widely used as a benchmark for machine learning algorithms,
particularly for handling imbalanced datasets in predictive
maintenance, quality assurance, and anomaly detection tasks.
The dataset combines time-series and static data, including
sensor readings, control signals, and process parameters,
making it a valuable resource for developing predictive
maintenance methods. The dataset contains 10,000 rows with
two IDs, which are UID and Product ID, six features, and six
failure modes. The features include product type, air
temperature [K], process temperature [K], rotational speed
[rpm], torque [Nm], and tool wear [min]. The six failure modes
are machine failure, tool wear failure (TWF), heat dissipation
failure (HDF), power failure (PWF), overstrain failure (OSF),
and random failures (RNF).

2) CNC milling dataset: The CNCMilling Dataset from the
University of Michigan SMART Lab [9] is a real-world dataset
based on machining experiments conducted on a CNC milling
machine. Data was collected from four machine motors, X, Y,
Z axes, and spindle at a sampling rate of 100ms during 18
experiments on wax blocks. The dataset includes 25,286 rows
with 55 features, including 1 ID and 3 failure modes as
tool condition, machining finalized, and
passed visual inspection. This study will use data fromall 18
experiments but focus on selected features to challenge the
model with limited input data. The tool condition feature will
bethetargetvariable. Unlikethe synthetic and imbalanced AK4I
2020 dataset, this balanced dataset provides an opportunity to
evaluate the model’s performance in a real-world environment,
enhancing the robustness of the experiment.

IV. ENHANCED PREDICTIVE MAINTENANCE METHOD USING
XGB

The proposed enhanced predictive maintenance method that
is used in this study is designed based on the [1] approach to
predictive maintenance for IOT industrial applications.
However, the core model is modified along with several other
minor changes in this study to further enhance the method
proposed by [1]. This study’s proposed enhanced predictive
maintenance method aims to improve by eliminating some of
the challenges present in that method.

Fig. 3 illustrates the flowchart of the entire enhanced
predictive maintenance method. The flowchart provides a
detailed pipeline for predictive fault detection using sensor data
and an E.XGB model. This end-to-end process is designed to
systematically prepare the data, refine feature selection,
optimize the model, and deliver accurate predictions for
identifying faults. By integrating feature importance methods,
data preprocessing, and hyperparameter optimization, the
pipeline aims to achieve reliable and efficient results,
particularly for predictive maintenance applications.
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Fig.3. Enhanced predictive method overview.

A. Data Pre-Processing

Pre-processing is the first and critical step in the machine
learning workflow to ensure that the data is clean, consistent,
and suitable for analysis. Raw data is often messy, incomplete,
or unstructured, which can lead to inaccurate or inefficient
model training. Preprocessing helps address these issues by
transforming the data into a format that models can understand
and learn effectively. After receiving the data collected from
the sensors and the initial features x and target y selection is
done, several steps are gone through to pre-process the data.
Detailed information on how each pre-processing step is done
is described in the sections below.

B. Sliding Window Method

One of the key enhancements in our proposed approach is
the introduction of a data smoothing process using the Sliding
Window Method. This technique is particularly well-suited for
preprocessing loT data, including streaming data, as
demonstrated in [23]. By applyingthe Sliding Window Method
to raw sensor data, we effectively smooth fluctuations and
manage missing values, improving data consistency. The
method segments the data into fixed-sized windows and
computes the meanwithineach window, ensuringa more stable
and reliable representation of the underlying patterns in the
dataset.

The mean within each window starting at index t is

computed as:
t+K-1
2, *
i=t

ut is the mean of the window starting at position t.

U =

x| =

where,
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Xirepresents the data points in the window.
k is the number of elements in each window.
The summation runs from i=t to t+k—1

The missingvalues in thedataset are fixed usingthe forward
filling method.

TABLEI. SLIDING WINDOW PARAMETERS
Parame  Metho Inpla  Rolli Windo Minimum required data
ter d ce ng w points
Forwa
Range rd true mean 3 1
filling

Table I summarizes the parameters used for the Sliding
Window Method in the proposed E.XGB approach. The
forward fill (ffill) method replaces missing values with the last
valid entry, ensuring data continuity. With inplace set to true,
changes are made directly to the dataset. A rolling window of
size 3 computes the mean over three consecutive values,
moving forward one step at a time. The minimum required data
points parameterissetto 1, ensuring thatthe mean is calculated
even if some values are missing, as long as at least one valid
value exists. This method smooths fluctuations while
effectively handling missing data.

C. Data Normalization

The nextstep for data preprocessingin the proposed method
is data scaling. During the data scaling stage, numerical data in
the datasetare selected to undergo normalization. For this, the
StandardScaler method is imported from Scikit-Learn’s
preprocessing library. The StandardScaler uses the z-score
normalization technique to normalize the data. The z-score
normalization technique is applied to each data point Di in
category j, which calculates the number of standard deviations
each point is away from the mean of its category. The z-score
normalization is defined as:

J .
0j

where,

D}’ is the normalized data point for feature i in category j,
D} is the original data point in category j,

; is the mean of data category J,

o is the standard deviation of data category j.

Normalization ensures that all features are on a similar
scale, centered atthe origin, with a peak of 1. This improvesthe
stability of training by reducing variance and the impact of
outliers. This method ensures that featureshave amean of 0 and
a standard deviation of 1, making the model more robust to
outliers.

D. Data Splitting

After normalization, the datasetis split into training and
testingsets to ensure themodel trains on onesubset and s tested
on unseen data, reducing bias. Without splitting, testing on the
same dataset used for training could lead to misleading results.
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TABLE II. DATA SPLIT PARAMETERS

Parameter Train size Test size Random state

Value 0.8 0.2 42

The train_test split function from Scikit-Leamn’s model
selection library is used for this purpose, with parameters
specified in Tablell. For this study, 80% ofthe datais allocated
for training and 20% for testing. The data is shuffled randomly
before splitting, with a random state of 42 set to ensure
reproducibility.

E. Feature Selection

After splitting the data, feature selection is performed using
permutation importance, a technique that evaluates the
significance of each feature by shuffling its values and
observing the impact on model performance, with a significant
drop in accuracy indicating importance. The permutation
importance function from Scikit-Leamn’s inspection library is
applied to the preliminary XGB model and dataset to calculate
a reference score. The importance i; for feature f; is calculated
as follows:

where,
K is the total number of data points in the dataset,
k is the k™ datapoint.

For each feature, the values are shuffled to create a distorted
dataset, and the model is re-scored to determine feature
importance based on the performance drop. The process uses
the number of repeats parameter to specify the number of
shuffles, where higher values provide more reliable scores but
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minimize the loss function. The training process starts with an
initial prediction, often the mean of the target values. The
objective function combines a loss function to measure
prediction errors and a regularization term to prevent
overfitting. The function is:

m K
0bj(6) = ) LGI)+ ) )
i=1 k=1

where,

L (yi ¥;) is the loss function, which is the difference
between true and predicted values,

Q (fr) is the regularization term for the weak learner f,
m is the number of data points.
K is the number of trees.

At each iteration, the model adds a new tree, updating the
prediction. The final prediction is the sum of all tree
predictions. XGB excels athandlinglarge datasets and complex
relationships efficiently. Its combination of speed, accuracy,
and regularization makes it a top choice for structured data and
a frequent winner in machine learning competitions.

G. Hyperparameter Optimization Using GridSearchCV

GridSearchCV is used to fine-tune the hyperparameters of
the XGB model by testing all possible combinations of
predefined values to find the best set. It evaluates each
combination using 3-fold cross-validation, ensuring the model
performs well on unseen data while avoiding overfitting. This
process improves both accuracy and robustness. Table IV
shows the ranges for key hyperparameters set and Table V
shows the GridSearchCV parameters used.

increase computation time TABLEIV. XGB HYPERPARAMETER SEARCH RANGE
Parameter Number of Maximum Learning Sub sample
TABLEIII.  PERMUTATION IMPORTANCE PARAMETERS estimators depth rate P
Number of  Maximum  Learmin Range 50-200 1-10 0.01-0.07 0.01-0.07
Parameter . € Number of repeats
estimators depth rate
Value 100 10 0.05 10 TABLE V. GRIDSEARCHCV PARAMETERS
. . Parameter Model Scorin, Ccv
Table III shows the importance of the permutation RCBCTassfior £
parameters used. The initial XGB model is configured with key Value accuracy 3

hyperparameters of number of estimators to 100 trees,
maximum depth to 10 to balance complexity and overfitting,
and learning rate of 0.05, to control tree contribution. Features
with low importance scores, based on a predefined threshold,
are removed to streamline the dataset, retaining only the most
relevant features and improving model efficiency and
performance.

F. XGB Classification

Once data preprocessing is complete, the core XGB model
is initialized using the XGBoost classifier from the xgboost
library. XGB is a highly efficient implementation of the
gradient boosting framework, known for its speed, accuracy,
and flexibility in handling structured data. It builds an ensemble
of decision trees sequentially, optimizing each tree to correct
errors from the previous ones using gradient descent to

(eval_metric="logloss")

For this study, GridSearchCV is imported from Scikit-
Learn’s model selection library and applied to the XGB
classifier, initialized with an evaluation metric set based on the
Logarithmic Loss value. The search grid includes ranges for
key hyperparameters such as the number of estimators at 50 to
200, maximumdepth at 1 to 10, learningrate at 0.01 to 0.07,
and subsampleat 0.01 to 0.07. These parameters influence the
model’s performance, and GridSearchCV compares average
accuracy scores across all combinations to selectthe best one.
The optimal hyperparameters are then used to build the final
XGB model.

V. RESULTS AND DISCUSSION

This section summarizes the experimental results on the
AI412020 datasetand CNC Milling dataset, comparing various
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machine learning models across key metrics such as accuracy,
precision, recall, F1-score, ROC-AUC, confusion matrices,
training time, and prediction time. The results are organized
into tables and visualized with figures to provide a
comprehensive view of model performance and to facilitate
comparisons.

A. Pre-processing on AI412020 Dataset

The AI412020 datasetunderwent a series of preprocessing
steps to ensure quality and consistency. Initially, the dataset
was checked for missing values,and no null entries were found.
Irrelevant features such as UDI, Product ID, and Type were
removed, as they did not contribute to machine failure
predictions, leaving air temperature, process temperature,
rotational speed, torque, and tool wear as the selected features.
The study also focused on predicting overall machine failures
rather than specific failure types, so failure mode features like
TWF, HDF, and PWF were excluded.

Failure

96.6%

No Failure

Fig.4. Data balance in AI412020 dataset.

As shown in Fig. 4, the datasetrevealed a significant class
imbalance, with only 3.4% of instances labelled as machine
failures. The data was then smoothed and segmented using a
sliding window method. To address the varying scales of
features, standardization was applied, ensuring all features had
a mean of 0 and a standard deviation of 1, making them
comparable and enhancing model performance. Finally, the
data was split into 80% training and 20% testing subsets,
preparing it for machine learning tasks.

TABLE VI. PARAMETER OPTIMIZATION RESULT ON AI412020 DATASET
Number of Maximum Learning
Parameter . Sub sample
estimators depth rate
Optimum 200 8 0.07 0.5

Hyperparameter optimization for the XGB model was
performed using GridSearchCV, resulting in an enhanced
model configuration. The optimal parameters are shown in
Table VI, which includes the number of estimators set to 200,
maximum depth set to 8, learning rate set to 0.07, and
subsample set to 0.5. These parameters were carefully chosen
to balance model complexity and generalization, ensuring
robust performance. A higher maximum depth allowed the
model to capture more complexity without overfitting, while a
smaller learning rate enabled gradual and stable learning. The
subsample value helped mitigate overfitting by training the
model on random subsets of data at each iteration. With these
optimized hyperparameters, the E.XGB model achieved
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significant improvements in metrics such as accuracy,
precision, recall, and F1-score, demonstrating its suitability for
predicting machine failures in the AI412020 dataset.

B. Model Results on AI412020 Dataset

The classification performance of various models on the
AI412020 dataset is summarized in Fig. 5 and Table VII,
comparing E.XGB, E.AB, RF, DT, and SVM based on
accuracy, precision, recall, F1-score, ROC AUC, training time,
and prediction time. Among all models, the proposed E.XGB
model outperforms the others, achieving the highest accuracy
0199.05%, precision of 93.62%, F1-score 0f82.25%, and ROC
AUC 01 97.10%.

W Accuracy M Precision Recall M F1 Score
1
0.75
3
2 05
>
0.25
0
E.XGB E.AB DT RF SVM
Model

Fig.5. Efficiency results on CNC AI412020 dataset.

Compared to E.AB, RF, DT, and SVM, the E.XGB
demonstrates superior predictive capability while maintaining
efficiency. Although DT achievesa recall of 65.57%, slightly
lower than EXGB’s 73.33%, it lags in precision at only
67.80%, making it less reliable overall.

TABLE VII. PERFORMANCE METRICS OF MODELS ON Al412020 DATASET
Details E.XGB E.AB DT RF SVM
Accuracy (%) 99.05 98.50 98.00 98.05 97.95
Precision (%) 93.62 89.74 67.80 78.95 83.33
Recall (%) 73.33 57.38 65.57 49.18 40.98
F1-Score (%) 82.25 70.00 66.67 60.61 54.95
ROC AUC (%) 97.10 94.64 87.26 86.63 85.35
Training Time (s) 0.2102 39122 0.0312 0.4531 0.4343
Prediction Time (s) 0.0001 0.0544 0.0001 0.0189 0.0937

In terms of computational performance, E.XGB has a
training time of 0.2102s, significantly faster than E.AB at
3.9122sandRFat 0.4531s, while beingslightly slower than DT
at 0.0312s. For predictiontime, E.XGB and DT are the fastest
at 0.0001s, making them highly efficient for real-time
applications. Although DT is computationally fast, it suffers
from lower precision and an overall weaker predictive
performance. Overall, for the Al412020 dataset, E. XGB proves
to be the most effective model, offering the best trade-off
between accuracy, precision, recall, and efficiency. DT, despite
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being computationally efficient, falls short in terms of
precision, making E.XGB is the most suitable choice for
predictive maintenance applications in IoT-embedded
machinery.

C. Pre-processing on CNC Milling Dataset

The CNC Milling Dataset was pre-processed to ensure high-
quality data for analysis. Missing values were checked and
found to be absent, confirming data completeness. Feature
selection was then performed, and aset of relevant features was
chosen based on preliminary importance tests. The selected
features included x1 actualposition, y1 actualposition,
z1 _actualposition,s1_actualposition,andml1 _current feedrate,
with tool condition as the target feature, which directly relates
to machinery degradation.

Failure

No Failure i

Fig. 6. Data balance in CNC milling dataset.

Unlike the AI412020 dataset, the CNC Milling dataset
exhibited a balanced class distribution, as shown in Fig. 6, with
47.4% labelled as machine failures. The data is then smoothed
and segmented using the sliding window method. The dataset
also revealed significant differences in feature scales, with
features like X1 ActualPosition spanning wide ranges. To
address this, all features were standardized, ensuring equal
contribution to model performance. The final step was splitting
the data into 80% training and 20% testing sets, preparing it for
model training and evaluation.

TABLE VIII. PARAMETER OPTIMIZATION RESULT ON CNC MILLING

DATASET
Parameter Nur.nber of Maximum Learning Sub sample
estimators depth rate
Optimum 200 10 0.07 0.7

GridSearchCV was applied to the base XGB model to find
the optimal hyperparameters. The best combination of
parameters found is as shown in Table VIII, where the number
of estimators is set to 200, the maximum depth set to 10, the
learning rate set to 0.07, and the subsample set to 0.7. These
parameters were chosen to strike a balance between model
complexity and generalization. The maximum depth of 10
allowed the model to capture sufficient complexity, while the
learning rate of 0.07 ensured gradual learning. The subsample
value of 0.7 helped reduce overfitting by training the model on
a randomly selected subset of the data. These hyperparameters
improved the model’s performance, as evidenced by better
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evaluation metrics such as accuracy, precision, recall, and F1-
score.

D. Model Results on CNC Milling Dataset

The classification performance of various models on the
CNC Milling dataset is summarized in Fig. 7 and Table IX,
comparing E.XGB, E.AB, RF, DT, and SVM based on
accuracy, precision, recall, F1 -score, ROC AUC, training time,
and predictiontime. Amongthese models, the proposed E.XGB
demonstrates superior performance, achieving the highest
accuracy 0£99.01%, precisionof99.57%,recall 0f98.30%, F1-
score 0f 98.93%, and ROC AUC 0f 99.98%.

B Accuracy M Precision M Recall ™ F1Score

0.7
0.
0.2 |
0
F SVM

E.XGB E.AB DT R
Model

Value
(05} (9] =

(€]

Fig. 7. Efficiency results on CNC milling dataset.

Compared to E.AB,RF, DT, and SVM, E.XGB consistently
delivers higher predictive capability while maintaining
computational efficiency. In terms of training time, E.XGB
completes training in just 0.3126s, significantly outperforming
E.AB at 4.6340s, RF at 1.8848s,and SVM at 81.1611s, while
being slightly slower than DT at 0.0473s. Similarly, for
prediction time, E.XGB and DT are the fastest at 0.0001s, far
surpassing the efficiency of other models, particularly SVM,
which has the slowest prediction time at 6.8742s.

TABLE IX. PERFORMANCE METRICS OF MODELS ON CNC MILLING
DATASET
Details EXGB EAB DT RF SVM
Accuracy (%) 99.01 9771 9816 9788  66.53
Precision (%) 99.57 98.19 9838  98.62 6572
Recall (%) 98.30 96.86  97.67 9682 5895
F1-Score (%) 98.93 9752 98.02 9771  62.15
ROC AUC (%) 99.98 9971  99.64  99.87  72.29
Training Time (s) 03126 4.6340 0.0473 1.8848 81.1611
Prediction Time (s)  0.0001  0.0696 0.0001 0.0781 6.8742

Despite DT being the fastest to train and predict, it still falls
short in terms of accuracy of 98.16%, precision of 98.38%, and
recall of 97.67%, making it less reliable for high-accuracy
predictive maintenance applications. In contrast, SVM
struggles significantly with an accuracy ofonly 66.53% andthe
lowest recall of 58.95%, proving unsuitable for this dataset.
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Overall, E XGB once again stands out as the most effective
model for predictive maintenance in loT-embedded machinery,
offering the best balance of accuracy, precision, recall, and
efficiency.

VI. CONCLUSION

In conclusion, this study proposes an enhanced predictive
maintenance method for loT-embedded industrial machinery,
addressing challenges related to prediction accuracy, training
efficiency,and prediction latency. The core of the method s the
E.XGB model, which integrates enhanced feature selection,
preprocessing, and hyperparameter optimization to overcome
limitations of traditional approaches. The model demonstrated
superior performance on the Al412020 and CNC Milling
datasets, excelling in accuracy, precision, recall, and F1-scores,
crucial for minimizing false positives and negatives in fault
detection. It achieved 99.05% accuracy on the AI4I 2020
dataset and 99.01% accuracy on the CNC Milling dataset.
Moreover, the proposed model demonstrated training speed of
approximately 94% and prediction speeds of approximately
99.8% improvement than the E.AB model, thus meeting real-
time industrial application requirements.

The optimized training and prediction pipelines resulted in
significantreductions in computational time, makingthe model
suitable for real-time applications. A comparative analysis with
the E.AB method from previous research, as well as baseline
models DT, RF, and SVM, highlighted the E. XGB model's
consistent superiority. Its combination of advanced
optimization techniques and lightweight design enables
scalability across diverse operational conditions. The primary
goal of the research which is enhancing predictive maintenance
was achieved by improving accuracy, training efficiency, and
prediction speed. Permutation importance and hyperparameter
tuning enabled the identification of critical features for precise
faultdetection. Optimized preprocessingand grid search tuning
reduced training time, while the lightweight architecture
ensured low-latency predictions essential for real-time
decision-making.

The proposed method minimizes unplanned downtime,
reduces maintenance costs, and extends machinery lifespan,
with scalability and adaptability for various industries. By
enhancing predictive accuracy, training speed, and prediction
latency, this study bridges the gap between theoretical machine
learning advancements and their practical applications in
industrial maintenance, contributing to a more efficient and
sustainable industrial ecosystem.

Future research could focus on extending the proposed
E.XGB model towards integration with IoT and edge devices,
enabling deployment in resource-constrained environments for
real-time predictive maintenance. In addition, exploring hybrid
approaches that combine E.XGB with deep learning techniques
such as CNNs or LSTMs may further enhance the model’s
ability to capture complex temporal and nonlinear fault
patterns. To ensure adoption in real industrial settings,
incorporating explainable Al (XAI) methods will be essential
for improving model interpretability and building trust among
engineers and decision-makers.
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