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Abstract—Predictive maintenance plays a crucial role in 

minimizing unplanned downtimes, reducing maintenance costs, 

and optimizing the operational efficiency of IoT-embedded 

industrial machinery. Despite its transformative potential, 

traditional predictive maintenance methods often face challenges 

such as limited accuracy, high latency, and inefficiencies in 

processing large and imbalanced datasets. This study proposes an 

enhanced predictive maintenance method using the Sliding 

Window Method with XGB model (E.XGB), incorporating 

advanced data preprocessing, permutation importance, and 

hyperparameter optimization to address these limitations. The 

proposed method was evaluated on two datasets, which are the 

synthetic AI4I 2020 Predictive Maintenance Dataset and the real-

world CNC Milling Dataset. A comparative analysis with a 

predictive maintenance method using E.AB from prior research 

as a benchmark, along with several baseline models, DT, RF, and 

SVM, revealed that the E.XGB model consistently outperformed 

other methods in accuracy, precision, recall, and F1-scores. On the 

AI4I2020 dataset, the E.XGB model achieved an accuracy of 

99.05%, while on the CNC Milling dataset, it attained an accuracy 

of 99.01%. Additionally, the E.XGB model also demonstrated 

reduced training and prediction times, meeting the real-time 

requirements of industrial applications. The proposed model 

demonstrated training speed of approximately 94% and 

prediction speeds of approximately 99.8% improvement over the 

E.AB model, making it highly suitable for real-time industrial 

applications. By improving accuracy, training speed, and 

prediction latency, the predictive maintenance method offers a 

robust, scalable, and reliable solution for predictive maintenance 

across diverse industrial contexts. 

Keywords—Internet of Things; machine learning; predictive 
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I. INTRODUCTION 

Industrial maintenance has evolved from reactive strategies 
to predictive maintenance, a proactive approach utilizing 
machine learning and IoT technologies. Traditional methods 
are often costly, inefficient, and prone to unplanned downtimes 
due to manual feature extraction and inaccurate degradation 
modelling [1, 2]. Predictive maintenance, however, predicts 
potential failures and optimizes schedules, allowing for timely 
interventions without detailed knowledge of degradation 
processes [3]. This approach offers significant benefits, such as 
reduced downtime, extended equipment life, and enhanced 
sustainability [4]. However, implementing predictive 
maintenance remains challenging due to the complexity of 
industrial systems and the intricate data patterns requiring 

analysis [5]. These challenges highlight the need for advanced 
methods that enhance accuracy and processing efficiency. By 
leveraging IoT and machine learning technologies, this study 
addresses these limitations, focusing on adaptability and 
scalability to meet the demands of diverse industrial 
applications. 

The main problem that motivates this research is that 
current predictive maintenance methods still face challenges in 
achieving fast training speeds and prediction speeds while 
maintaining high accuracy, which is essential for real-time 
industrial applications [1, 6]. Due to massive sensor data 
generated by IoT-embedded machines, many existing methods 
rely on complex machine learning models to predict faults. 
Although this is effective and accurate, it leads to prolonged 
training times and higher prediction [7]. Having long training 
time can lead to delayed model updates, causing adaptability 
and scalability issues, while long prediction time causes 
delayed fault detection, which is important for real-time 
industrial machines. This study addresses these limitations by 
proposing an Enhanced Predictive Maintenance Method using 
the Sliding Window Method with XGB model (E.XGB) on 
sensor data, which can optimize training speeds and lower 
prediction latency while still maintaining a high accuracy [5]. 
By addressing these gaps, the study aims to enhance current 
predictive maintenance methods to satisfy the real-time 
requirements of industrial machinery. 

The goal is to improve fault prediction accuracy, minimize 
false alarms, and reduce unnecessary maintenance and 
downtime. Faster training speeds and real-time predictions are 
also prioritized to support scalability and timely decision-
making in industrial operations. The research focuses on IoT-
driven machinery, using the AI4I 2020 Predictive Maintenance 
Dataset [8] and CNC Milling Dataset [9]. The proposed E.XGB 
model is evaluated against other machine learning methods like 
AdaBoost, Decision Tree, Random Forest, and Support Vector 
Machine. Performance is measured using metrics like accuracy, 
precision, recall, F1 score, ROC AUC, and prediction latency, 
with results benchmarked against existing approaches. This 
study’s significance lies in improving fault detection accuracy, 
reducing training times, and enabling real-time predictions, 
which together lower downtime and maintenance costs. By 
bridging the gap between machine learning advancements and 
practical industrial applications, the research provides a robust 
foundation for future predictive maintenance innovations. 
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The rest of this study is organized as follows: Section II 
reviews related work on predictive maintenance, including 
algorithms, and its performance for IoT-based industrial 
systems. Section III details the methodology, including data 
preparation, model training, and optimization techniques. 
Section IV explains the proposed E.XGB method, supported by 
flowcharts, formulas, and calculations. Section V presents 
experimental results, comparing the proposed model’s 
performance to previous methods. Section VI summarizes the 
study’s contributions and provides suggestions for future 
research. 

II. RELATED WORKS 

In recent years, predictive maintenance for IoT-embedded 
industrial machinery has garnered significant attention. In [1], 
the authors proposed a predictive maintenance method that 
utilizes machine learning algorithms, particularly AdaBoost, to 
classify machine stops in knitting machines. Their system 
achieved 92% accuracy, enabling timely maintenance and 
improved efficiency in the textile industry. In terms of 
hyperparameter tuning, they employed grid search cross-
validation (GridSearchCV) for hyperparameter optimization. 
However, the resulting output possessed high latency in 
processing and may hinder its application in real-time systems. 

The challenge of imbalanced datasets is tackled by 
enhancing the KNN algorithm [10]. By employing techniques 
like feature engineering, standardization, and under-sampling, 
their model achieved a 97.1% accuracy. The ability to handle 
imbalanced data is crucial in predictive maintenance, although 
KNN's performance can vary based on dataset characteristics. 
The approach also explicitly mentions hyperparameter tuning 
and states that Grid Search tuning was applied to optimize the 
K-Nearest Neighbours (KNN) model. However, it does use an 
automated hyperparameter tuning method. 

Similarly, in [11], the authors proposed a framework 
combining XGB and LOF models with XAI to address 
imbalanced datasets. Their method achieved 96% accuracy 
with XGB and 91% with LOF. The dual approach helps by 
focusing on predictive classification with XGB and anomaly 
detection with LOF. However, the study highlighted potential 
issues with the synthetic noise introduced by SMOTE and 
scalability challenges in real-time applications. However, no 
explicit mention of hyperparameter tuning was found in this 
study. 

Multiple machine learning models including LR, KNN, and 
ANN, for failure prediction [12]. The ANN model 
outperformed others with an accuracy of 96.85%, but it 
struggled with false positives, indicating a need to balance 
sensitivity and specificity in complex environments. In this 
approach, structured hyperparameter tuning methods that 
include GridSearchCV and RandomizedSearchCV were used 
in their work. 

LSTM networks combined with Auto Encoder is employed 
to predict tool wear in CNC milling machines [13]. Their model 
achieved 98% accuracy, showing improved performance over 
previous methods. However, long datasets could reduce the 
model’s accuracy, and the authors recommended prioritizing 

relevant data through a weighting mechanism. Also, there was 
no hyperparameter tuning approach mentioned in the approach. 

In another deep learning approach, reinforcement learning 
techniques like Q-learning and SARSA alongside LSTM 
networks is applied to monitor CNC tool conditions [14]. The 
SARSA algorithm achieved 98.66% accuracy. While 
reinforcement learning optimizes decision-making, the 
complexity of the model posed challenges in training, requiring 
large datasets and still misclassifying certain instances. Again, 
in this approach, no mention of hyperparameter tuning is 
involved. 

Machine learning and deep learning methods for tool wear 
prediction were compared, showing that CNN and AE-LSTM 
outperformed KNN [15]. While deep learning models are more 
accurate, they are computationally intensive, raising concerns 
about their scalability. In this approach, there was no mention 
about the usage of hyperparameter tuning. 

The use of SVM for detecting machine failures in predictive 
maintenance is compared in [16], achieving up to 88% accuracy 
in testing data. In terms of hyperparameter tuning, this approach 
employs grid search for selecting optimal hyperparameters (C 
and Gamma). However, the SVM's reliance on parameter 
tuning, such as C and gamma, can slow optimization, making it 
unsuitable for real-time applications. 

LSTM models are used for predictive degradation 
modelling in milling machines, achieving 80% accuracy [17]. 
The advantage of this method lies in its ability to predict 
degradation by considering sequential dependencies. However, 
it struggled with imbalanced data and may not account for all 
failure modes, especially in more complex systems. On real-
time systems, [2] integrated IoT and machine learning for 
predictive maintenance, using algorithms like SVM, RNN, and 
CNN. Their method achieved 87% accuracy with SVM on a 
milling dataset and 98% with CNN on a bearing dataset. While 
the models performed well, processing large datasets and 
extracting meaningful features for real-time predictive 
maintenance posed challenges. 

A hybrid deep learning model combining CNN and LSTM 
for fault detection is proposed in [18], achieving 97.9% 
accuracy. The model's ability to capture both spatial and 
temporal patterns in multivariate sensor data made it effective 
for fault detection. However, its complexity and need for 
substantial annotated data slow down its real-time applicability. 

A PM-C-LSTM model is used for wind turbines, achieving 
a 96.77% accuracy [19]. While promising for wind energy 
applications, the model’s effectiveness across different 
environments requires further validation. Despite the 
advancements, the reviewed works reveal several gaps in 
predictive maintenance research. A significant issue is the 
trade-off between accuracy and processing speed. Deep 
learning models, like CNN-LSTM and hybrid models, achieve 
high accuracy but come with high computational costs, which 
may limit their use in real-time applications. 

Models like AdaBoost [1] and SVM [16] also face 
challenges in terms of processing speed, as they require 
substantial parameter tuning, slowing down optimization. 
Managing imbalanced datasets remains another challenge. 
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While techniques like SMOTE and under-sampling improve 
model performance [10, 11], they may introduce synthetic noise 
or fail to generalize effectively. Furthermore, models may 
perform poorly when failure events are rare, highlighting the 
need for better methods to manage imbalanced data without 
sacrificing accuracy. 

In summary, the research on predictive maintenance for 
IoT-embedded industrial machinery has made significant 
strides, but challenges in accuracy, processing speed, and 
handling imbalanced data persist. Moving forward, research 
should focus on optimizing the balance between accuracy and 
speed, improving the generalization of models across diverse 
datasets, and finding better methods to handle imbalanced data 
while avoiding the introduction of noise. Addressing these 
issues will pave the way for more efficient, dependable, and 
scalable predictive maintenance systems that can meet the 
demands of real-world industrial environments. 

III. METHODOLOGY 

A. Experimental Setup 

This study evaluates the proposed Enhanced XGBoost 
(E.XGB) model for predictive maintenance by comparing it 
with the method by [1] and several baseline models. The 
E.XGB model builds upon the approach in [1] for IoT industrial 
applications, improving against the AB model with the 
proposed XGB model by incorporating minor enhancements. 
The method proposed by [1] is replicated in this study using the 
same configurations as the original study to be used as a 
comparison. The replicated Elkateb method, referred to as 
Enhanced AdaBoost (E.AB), is used as the primary benchmark. 
Additionally, three baseline models, DT, RF, and SVM, will 
serve as secondary benchmarks, using default parameters 
without optimization. All models will be trained and tested on 
both imbalanced and balanced datasets to ensure 
comprehensive evaluation. Performance is measured using 
metrics such as accuracy, precision, recall, F1-score, confusion 
matrices, ROC-AUC, training times, and prediction times. This 
study aims to address the challenges in the method in [1] and 
demonstrate the effectiveness of the proposed E.XGB model. 

B. System Infrastructure 

The predictive maintenance system for IoT-embedded 
machinery integrates real-time data collection, cloud-based 
processing, and machine learning to predict and prevent 
equipment failures. Fig. 1 illustrates the system's workflow in 
an industrial setting. 

Sensors embedded in machines monitor critical parameters 
like vibration, temperature, speed, torque, and tool wear during 
operation. These sensors transmit real-time data to the cloud via 
secure, high-speed connections. The cloud provides the 
necessary computational resources to process large volumes of 
data. In the cloud, data undergoes preprocessing to clean and 
organize it, ensuring it is accurate and ready for analysis. 
Machine learning models then analyze this data to detect 
patterns, trends, and anomalies. Trained on historical data, these 
models predict potential faults by identifying early warning 
signs, such as abnormal temperature increases or irregular 
torque patterns. When a potential issue is detected, the system 
generates alerts for maintenance teams through dashboards, 

notifications, or emails. Alerts specify the affected machine or 
component, the type of fault, and its urgency, enabling 
technicians to address problems proactively. By preventing 
unexpected breakdowns, this system reduces downtime, cuts 
repair costs, and extends machine life. As more data is 
collected, the system improves its accuracy, making predictive 
maintenance an efficient and reliable alternative to traditional 
maintenance practices. 

 
Fig. 1. System overview. 

C. Methodology 

This study follows the CRISP-DM methodology, a 
structured and iterative framework ideal for developing 
predictive maintenance systems [18]. Fig. 2 illustrates the entire 
methodology overview. It begins with data collection, using 
existing datasets to ensure high-quality and representative data. 
In data preprocessing, key steps include data cleansing, 
addressing imbalances, data smoothing, standardization, and 
splitting data into training (80%) and testing (20%) sets. 

 
Fig. 2. Methodology overview. 
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During the model creation phase, the study replicates a prior 
model and develops three additional benchmark models. 
Feature importance is analyzed before training begins. The 
model testing phase evaluates performance on the test set using 
metrics like accuracy, precision, and F1 score to assess 
generalization capability. The proposed E.XGB model is then 
optimized through techniques like hyperparameter tuning and 
cross-validation to enhance accuracy and efficiency. Finally, 
visualizing results with tools such as confusion matrices and 
ROC curves provides insights into model performance and 
supports transparent communication with stakeholders. 

D. Technical Setup and Development Environment 

The simulation for this study was developed in Visual 
Studio Code (VS Code), a popular, free, and open-source code 
editor known for its versatility and extensive support for 
plugins [20]. The programming language used is Python, 
widely recognized for its effectiveness in data science and 
machine learning due to its powerful libraries [21]. 

Several Python libraries were employed for simulation. 
Pandas was used for data cleaning, preparation, and 
transformation [22]. Scikit-learn facilitated data pre-
processing, machine learning model imports, feature selection, 
and performance metrics calculations. The Time library helped 
track training and processing time, while Matplotlib and 
Seaborn were used for visualizations. 

The simulations were run on a system with the following 
specifications: 

• Processor: Intel(R) Core (TM) i7-8750H CPU 

• Memory: 32 GB RAM 

• Operating System: Microsoft Windows 11 Home Single 
Language. 

E. Dataset 

Datasets are a structured collection of data used for analysis, 
modelling, and decision-making in various fields such as 
machine learning, statistics, and research. One of the key 
limitations of the previous approach is its reliance on a single 
dataset for experimentation [1, 2, 10, 11, 12, 13, 14, 15, 16, 19]. 
This restricts the generalizability of the model, as its 
performance has not been validated across diverse IoT 
environments with varying sensor data and operational 
conditions. In the context of IoT-based predictive maintenance, 
different datasets may exhibit variations in data distribution, 
sensor noise, and failure patterns, which a single dataset cannot 
fully capture. Without evaluation on multiple datasets, the 
robustness of the method remains uncertain, increasing the risk 
of overfitting to dataset-specific characteristics. Therefore, in 
our experiment, we use two datasets to enhance the 
generalizability and robustness of our proposed approach, 
ensuring its applicability across different IoT environments. 
The datasets used are the AI4I 2020 Dataset [8] and the CNC 
Milling Dataset [9], with each representing synthetic and real-
world data, respectively. Additionally, these datasets exhibit 
both imbalanced and balanced characteristics, allowing us to 
assess the model’s ability to handle class imbalance issues, 
which are common in real-world predictive maintenance 
applications. 

1) AI4I2020 dataset: The AI4I 2020 Predictive 

Maintenance Dataset [8] is a synthetic dataset designed to 

replicate real-world industrial predictive maintenance data. It is 

widely used as a benchmark for machine learning algorithms, 

particularly for handling imbalanced datasets in predictive 

maintenance, quality assurance, and anomaly detection tasks. 

The dataset combines time-series and static data, including 

sensor readings, control signals, and process parameters, 

making it a valuable resource for developing predictive 

maintenance methods. The dataset contains 10,000 rows with 

two IDs, which are UID and Product ID, six features, and six 

failure modes. The features include product type, air 

temperature [K], process temperature [K], rotational speed 

[rpm], torque [Nm], and tool wear [min]. The six failure modes 

are machine failure, tool wear failure (TWF), heat dissipation 

failure (HDF), power failure (PWF), overstrain failure (OSF), 

and random failures (RNF). 

2) CNC milling dataset: The CNC Milling Dataset from the 

University of Michigan SMART Lab [9] is a real-world dataset 

based on machining experiments conducted on a CNC milling 

machine. Data was collected from four machine motors, X, Y, 

Z axes, and spindle at a sampling rate of 100ms during 18 

experiments on wax blocks. The dataset includes 25,286 rows 

with 55 features, including 1 ID and 3 failure modes as 

tool_condition, machining_finalized, and 

passed_visual_inspection. This study will use data from all 18 

experiments but focus on selected features to challenge the 

model with limited input data. The tool_condition feature will 

be the target variable. Unlike the synthetic and imbalanced AI4I 

2020 dataset, this balanced dataset provides an opportunity to 

evaluate the model’s performance in a real-world environment, 

enhancing the robustness of the experiment. 

IV. ENHANCED PREDICTIVE MAINTENANCE METHOD USING 

XGB 

The proposed enhanced predictive maintenance method that 
is used in this study is designed based on the [1] approach to 
predictive maintenance for IOT industrial applications. 
However, the core model is modified along with several other 
minor changes in this study to further enhance the method 
proposed by [1]. This study’s proposed enhanced predictive 
maintenance method aims to improve by eliminating some of 
the challenges present in that method. 

Fig. 3 illustrates the flowchart of the entire enhanced 
predictive maintenance method. The flowchart provides a 
detailed pipeline for predictive fault detection using sensor data 
and an E.XGB model. This end-to-end process is designed to 
systematically prepare the data, refine feature selection, 
optimize the model, and deliver accurate predictions for 
identifying faults. By integrating feature importance methods, 
data preprocessing, and hyperparameter optimization, the 
pipeline aims to achieve reliable and efficient results, 
particularly for predictive maintenance applications. 
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Fig. 3. Enhanced predictive method overview. 

A. Data Pre-Processing 

Pre-processing is the first and critical step in the machine 
learning workflow to ensure that the data is clean, consistent, 
and suitable for analysis. Raw data is often messy, incomplete, 
or unstructured, which can lead to inaccurate or inefficient 
model training. Preprocessing helps address these issues by 
transforming the data into a format that models can understand 
and learn effectively. After receiving the data collected from 
the sensors and the initial features x and target y selection is 
done, several steps are gone through to pre-process the data. 
Detailed information on how each pre-processing step is done 
is described in the sections below. 

B. Sliding Window Method 

One of the key enhancements in our proposed approach is 
the introduction of a data smoothing process using the Sliding 
Window Method. This technique is particularly well-suited for 
preprocessing IoT data, including streaming data, as 
demonstrated in [23]. By applying the Sliding Window Method 
to raw sensor data, we effectively smooth fluctuations and 
manage missing values, improving data consistency. The 
method segments the data into fixed-sized windows and 
computes the mean within each window, ensuring a more stable 
and reliable representation of the underlying patterns in the 
dataset. 

The mean within each window starting at index 𝑡 is 
computed as: 

𝜇𝑡 =
1

𝐾
∑ 𝑥𝑖

𝑡+𝐾−1

𝑖 =𝑡

 

where, 

𝜇𝑡 is the mean of the window starting at position 𝑡. 

𝑋𝑖 represents the data points in the window. 

𝑘 is the number of elements in each window. 

The summation runs from 𝑖=𝑡 to 𝑡+𝑘−1 

The missing values in the dataset are fixed using the forward 
filling method. 

TABLE I. SLIDING WINDOW PARAMETERS 

Parame

ter 

Metho

d 

Inpla

ce 

Rolli

ng 

Windo

w 

Minimum required data 

points 

Range 

Forwa

rd 

filling 

true mean 3 1 

Table I summarizes the parameters used for the Sliding 
Window Method in the proposed E.XGB approach. The 
forward fill (ffill) method replaces missing values with the last 
valid entry, ensuring data continuity. With inplace set to true, 
changes are made directly to the dataset. A rolling window of 
size 3 computes the mean over three consecutive values, 
moving forward one step at a time. The minimum required data 
points parameter is set to 1, ensuring that the mean is calculated 
even if some values are missing, as long as at least one valid 
value exists. This method smooths fluctuations while 
effectively handling missing data. 

C. Data Normalization 

The next step for data preprocessing in the proposed method 
is data scaling. During the data scaling stage, numerical data in 
the dataset are selected to undergo normalization. For this, the 
StandardScaler method is imported from Scikit-Learn’s 
preprocessing library. The StandardScaler uses the z-score 
normalization technique to normalize the data. The z-score 
normalization technique is applied to each data point 𝐷𝑖 in 
category 𝑗, which calculates the number of standard deviations 
each point is away from the mean of its category. The z-score 
normalization is defined as: 

𝐷𝑗
𝑖′

=
𝐷𝑗

𝑖 − 𝜇𝑗

𝜎𝑗
 

where, 

𝐷𝑗
𝑖′

 is the normalized data point for feature 𝑖 in category 𝑗, 

𝐷𝑗
𝑖 is the original data point in category 𝑗, 

𝜇𝑗 is the mean of data category 𝑗, 

𝜎𝑗 is the standard deviation of data category 𝑗. 

Normalization ensures that all features are on a similar 
scale, centered at the origin, with a peak of 1. This improves the 
stability of training by reducing variance and the impact of 
outliers. This method ensures that features have a mean of 0 and 
a standard deviation of 1, making the model more robust to 
outliers. 

D. Data Splitting 

After normalization, the dataset is split into training and 
testing sets to ensure the model trains on one subset and is tested 
on unseen data, reducing bias. Without splitting, testing on the 
same dataset used for training could lead to misleading results. 
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TABLE II. DATA SPLIT PARAMETERS 

Parameter Train size Test size Random state  

Value 0.8 0.2 42 

The train_test_split function from Scikit-Learn’s model 
selection library is used for this purpose, with parameters 
specified in Table II. For this study, 80% of the data is allocated 
for training and 20% for testing. The data is shuffled randomly 
before splitting, with a random state of 42 set to ensure 
reproducibility. 

E. Feature Selection 

After splitting the data, feature selection is performed using 
permutation importance, a technique that evaluates the 
significance of each feature by shuffling its values and 
observing the impact on model performance, with a significant 
drop in accuracy indicating importance. The permutation 
importance function from Scikit-Learn’s inspection library is 
applied to the preliminary XGB model and dataset to calculate 
a reference score. The importance 𝑖𝑗 for feature 𝑓𝑗 is calculated 
as follows: 

𝑖𝑗 = 𝑠 − 
1

𝐾
∑ 𝑠𝑘,𝑗

𝐾

k=1

 

where, 

𝐾 is the total number of data points in the dataset, 

𝑘 is the 𝑘th datapoint. 

For each feature, the values are shuffled to create a distorted 
dataset, and the model is re-scored to determine feature 
importance based on the performance drop. The process uses 
the number of repeats parameter to specify the number of 
shuffles, where higher values provide more reliable scores but 
increase computation time. 

TABLE III. PERMUTATION IMPORTANCE PARAMETERS 

Parameter 
Number of 

estimators 

Maximum 

depth 

Learning 

rate 
Number of repeats 

Value 100 10 0.05 10 

Table III shows the importance of the permutation 
parameters used. The initial XGB model is configured with key 
hyperparameters of number of estimators to 100 trees, 
maximum depth to 10 to balance complexity and overfitting, 
and learning rate of 0.05, to control tree contribution. Features 
with low importance scores, based on a predefined threshold, 
are removed to streamline the dataset, retaining only the most 
relevant features and improving model efficiency and 
performance. 

F. XGB Classification 

Once data preprocessing is complete, the core XGB model 
is initialized using the XGBoost classifier from the xgboost 
library. XGB is a highly efficient implementation of the 
gradient boosting framework, known for its speed, accuracy, 
and flexibility in handling structured data. It builds an ensemble 
of decision trees sequentially, optimizing each tree to correct 
errors from the previous ones using gradient descent to 

minimize the loss function. The training process starts with an 
initial prediction, often the mean of the target values. The 
objective function combines a loss function to measure 
prediction errors and a regularization term to prevent 
overfitting. The function is: 

𝑂𝑏𝑗(𝜃) = ∑𝐿(𝑦𝑖, 𝑦𝑖) +  ∑ Ω(𝑓𝑘)

𝐾

k=1

𝑚

i=1

 

where, 

𝐿 (𝑦𝑖, 𝑦𝑖 ) is the loss function, which is the difference 
between true and predicted values, 

Ω (𝑓𝑘) is the regularization term for the weak learner 𝑓𝑘, 

𝑚 is the number of data points. 

𝐾 is the number of trees. 

At each iteration, the model adds a new tree, updating the 
prediction. The final prediction is the sum of all tree 
predictions. XGB excels at handling large datasets and complex 
relationships efficiently. Its combination of speed, accuracy, 
and regularization makes it a top choice for structured data and 
a frequent winner in machine learning competitions. 

G. Hyperparameter Optimization Using GridSearchCV 

GridSearchCV is used to fine-tune the hyperparameters of 
the XGB model by testing all possible combinations of 
predefined values to find the best set. It evaluates each 
combination using 3-fold cross-validation, ensuring the model 
performs well on unseen data while avoiding overfitting. This 
process improves both accuracy and robustness. Table IV 
shows the ranges for key hyperparameters set and Table V 
shows the GridSearchCV parameters used. 

TABLE IV. XGB HYPERPARAMETER SEARCH RANGE 

Parameter 
Number of 

estimators 

Maximum 

depth 

Learning 

rate 
Sub sample 

Range 50 - 200 1 - 10 0.01 - 0.07 0.01 - 0.07 

TABLE V. GRIDSEARCHCV PARAMETERS 

Parameter Model Scoring CV 

Value 
XGBClassifier 

(eval_metric='logloss') 
accuracy 3 

For this study, GridSearchCV is imported from Scikit-
Learn’s model selection library and applied to the XGB 
classifier, initialized with an evaluation metric set based on the 
Logarithmic Loss value. The search grid includes ranges for 
key hyperparameters such as the number of estimators at 50 to 
200, maximum depth at 1 to 10, learning rate at 0.01 to 0.07, 
and subsample at 0.01 to 0.07. These parameters influence the 
model’s performance, and GridSearchCV compares average 
accuracy scores across all combinations to select the best one. 
The optimal hyperparameters are then used to build the final 
XGB model. 

V. RESULTS AND DISCUSSION 

This section summarizes the experimental results on the 
AI4I2020 dataset and CNC Milling dataset, comparing various 
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machine learning models across key metrics such as accuracy, 
precision, recall, F1-score, ROC-AUC, confusion matrices, 
training time, and prediction time. The results are organized 
into tables and visualized with figures to provide a 
comprehensive view of model performance and to facilitate 
comparisons. 

A. Pre-processing on AI4I2020 Dataset 

The AI4I2020 dataset underwent a series of preprocessing 
steps to ensure quality and consistency. Initially, the dataset 
was checked for missing values, and no null entries were found. 
Irrelevant features such as UDI, Product ID, and Type were 
removed, as they did not contribute to machine failure 
predictions, leaving air temperature, process temperature, 
rotational speed, torque, and tool wear as the selected features. 
The study also focused on predicting overall machine failures 
rather than specific failure types, so failure mode features like 
TWF, HDF, and PWF were excluded. 

 
Fig. 4. Data balance in AI4I2020 dataset. 

As shown in Fig. 4, the dataset revealed a significant class 
imbalance, with only 3.4% of instances labelled as machine 
failures. The data was then smoothed and segmented using a 
sliding window method. To address the varying scales of 
features, standardization was applied, ensuring all features had 
a mean of 0 and a standard deviation of 1, making them 
comparable and enhancing model performance. Finally, the 
data was split into 80% training and 20% testing subsets, 
preparing it for machine learning tasks. 

TABLE VI. PARAMETER OPTIMIZATION RESULT ON AI4I2020 DATASET 

Parameter 
Number of 

estimators 

Maximum 

depth 

Learning 

rate 
Sub sample 

Optimum 200 8 0.07 0.5 

Hyperparameter optimization for the XGB model was 
performed using GridSearchCV, resulting in an enhanced 
model configuration. The optimal parameters are shown in 
Table VI, which includes the number of estimators set to 200, 
maximum depth set to 8, learning rate set to 0.07, and 
subsample set to 0.5. These parameters were carefully chosen 
to balance model complexity and generalization, ensuring 
robust performance. A higher maximum depth allowed the 
model to capture more complexity without overfitting, while a 
smaller learning rate enabled gradual and stable learning. The 
subsample value helped mitigate overfitting by training the 
model on random subsets of data at each iteration. With these 
optimized hyperparameters, the E.XGB model achieved 

significant improvements in metrics such as accuracy, 
precision, recall, and F1-score, demonstrating its suitability for 
predicting machine failures in the AI4I2020 dataset. 

B. Model Results on AI4I2020 Dataset 

The classification performance of various models on the 
AI4I2020 dataset is summarized in Fig. 5 and Table VII, 
comparing E.XGB, E.AB, RF, DT, and SVM based on 
accuracy, precision, recall, F1-score, ROC AUC, training time, 
and prediction time. Among all models, the proposed E.XGB 
model outperforms the others, achieving the highest accuracy 
of 99.05%, precision of 93.62%, F1-score of 82.25%, and ROC 
AUC of 97.10%. 

 

Fig. 5. Efficiency results on CNC AI4I2020 dataset. 

Compared to E.AB, RF, DT, and SVM, the E.XGB 
demonstrates superior predictive capability while maintaining 
efficiency. Although DT achieves a recall of 65.57%, slightly 
lower than E.XGB’s 73.33%, it lags in precision at only 
67.80%, making it less reliable overall. 

TABLE VII. PERFORMANCE METRICS OF MODELS ON AI4I2020 DATASET 

Details E.XGB E.AB DT RF SVM 

Accuracy (%) 99.05 98.50 98.00 98.05 97.95 

Precision (%) 93.62 89.74 67.80 78.95 83.33 

Recall (%) 73.33 57.38 65.57 49.18 40.98 

F1-Score (%) 82.25 70.00 66.67 60.61 54.95 

ROC AUC (%) 97.10 94.64 87.26 86.63 85.35 

Training Time (s) 0.2102 3.9122 0.0312 0.4531 0.4343 

Prediction Time (s) 0.0001 0.0544 0.0001 0.0189 0.0937 

In terms of computational performance, E.XGB has a 
training time of 0.2102s, significantly faster than E.AB at 
3.9122s and RF at 0.4531s, while being slightly slower than DT 
at 0.0312s. For prediction time, E.XGB and DT are the fastest 
at 0.0001s, making them highly efficient for real-time 
applications. Although DT is computationally fast, it suffers 
from lower precision and an overall weaker predictive 
performance. Overall, for the AI4I2020 dataset, E.XGB proves 
to be the most effective model, offering the best trade-off 
between accuracy, precision, recall, and efficiency. DT, despite 
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being computationally efficient, falls short in terms of 
precision, making E.XGB is the most suitable choice for 
predictive maintenance applications in IoT-embedded 
machinery. 

C. Pre-processing on CNC Milling Dataset 

The CNC Milling Dataset was pre-processed to ensure high-
quality data for analysis. Missing values were checked and 
found to be absent, confirming data completeness. Feature 
selection was then performed, and a set of relevant features was 
chosen based on preliminary importance tests. The selected 
features included x1_actualposition, y1_actualposition, 
z1_actualposition, s1_actualposition, and m1_current_feedrate, 
with tool condition as the target feature, which directly relates 
to machinery degradation. 

 
Fig. 6. Data balance in CNC milling dataset. 

Unlike the AI4I2020 dataset, the CNC Milling dataset 
exhibited a balanced class distribution, as shown in Fig. 6, with 
47.4% labelled as machine failures. The data is then smoothed 
and segmented using the sliding window method. The dataset 
also revealed significant differences in feature scales, with 
features like X1_ActualPosition spanning wide ranges. To 
address this, all features were standardized, ensuring equal 
contribution to model performance. The final step was splitting 
the data into 80% training and 20% testing sets, preparing it for 
model training and evaluation. 

TABLE VIII. PARAMETER OPTIMIZATION RESULT ON CNC MILLING 

DATASET 

Parameter 
Number of 

estimators 

Maximum 

depth 

Learning 

rate 
Sub sample 

Optimum 200 10 0.07 0.7 

GridSearchCV was applied to the base XGB model to find 
the optimal hyperparameters. The best combination of 
parameters found is as shown in Table VIII, where the number 
of estimators is set to 200, the maximum depth set to 10, the 
learning rate set to 0.07, and the subsample set to 0.7. These 
parameters were chosen to strike a balance between model 
complexity and generalization. The maximum depth of 10 
allowed the model to capture sufficient complexity, while the 
learning rate of 0.07 ensured gradual learning. The subsample 
value of 0.7 helped reduce overfitting by training the model on 
a randomly selected subset of the data. These hyperparameters 
improved the model’s performance, as evidenced by better 

evaluation metrics such as accuracy, precision, recall, and F1-
score. 

D. Model Results on CNC Milling Dataset 

The classification performance of various models on the 
CNC Milling dataset is summarized in Fig. 7 and Table IX, 
comparing E.XGB, E.AB, RF, DT, and SVM based on 
accuracy, precision, recall, F1-score, ROC AUC, training time, 
and prediction time. Among these models, the proposed E.XGB 
demonstrates superior performance, achieving the highest 
accuracy of 99.01%, precision of 99.57%, recall of 98.30%, F1-
score of 98.93%, and ROC AUC of 99.98%. 

 
Fig. 7. Efficiency results on CNC milling dataset. 

Compared to E.AB, RF, DT, and SVM, E.XGB consistently 
delivers higher predictive capability while maintaining 
computational efficiency. In terms of training time, E.XGB 
completes training in just 0.3126s, significantly outperforming 
E.AB at 4.6340s, RF at 1.8848s, and SVM at 81.1611s, while 
being slightly slower than DT at 0.0473s. Similarly, for 
prediction time, E.XGB and DT are the fastest at 0.0001s, far 
surpassing the efficiency of other models, particularly SVM, 
which has the slowest prediction time at 6.8742s. 

TABLE IX. PERFORMANCE METRICS OF MODELS ON CNC MILLING 

DATASET 

Details E.XGB E.AB DT RF SVM 

Accuracy (%) 99.01 97.71 98.16 97.88 66.53 

Precision (%) 99.57 98.19 98.38 98.62 65.72 

Recall (%) 98.30 96.86 97.67 96.82 58.95 

F1-Score (%) 98.93 97.52 98.02 97.71 62.15 

ROC AUC (%) 99.98 99.71 99.64 99.87 72.29 

Training Time (s) 0.3126 4.6340 0.0473 1.8848 81.1611 

Prediction Time (s) 0.0001 0.0696 0.0001 0.0781 6.8742 

Despite DT being the fastest to train and predict, it still falls 
short in terms of accuracy of 98.16%, precision of 98.38%, and 
recall of 97.67%, making it less reliable for high-accuracy 
predictive maintenance applications. In contrast, SVM 
struggles significantly with an accuracy of only 66.53% and the 
lowest recall of 58.95%, proving unsuitable for this dataset. 
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Overall, E.XGB once again stands out as the most effective 
model for predictive maintenance in IoT-embedded machinery, 
offering the best balance of accuracy, precision, recall, and 
efficiency. 

VI. CONCLUSION 

In conclusion, this study proposes an enhanced predictive 
maintenance method for IoT-embedded industrial machinery, 
addressing challenges related to prediction accuracy, training 
efficiency, and prediction latency. The core of the method is the 
E.XGB model, which integrates enhanced feature selection, 
preprocessing, and hyperparameter optimization to overcome 
limitations of traditional approaches. The model demonstrated 
superior performance on the AI4I2020 and CNC Milling 
datasets, excelling in accuracy, precision, recall, and F1-scores, 
crucial for minimizing false positives and negatives in fault 
detection. It achieved 99.05% accuracy on the AI4I 2020 
dataset and 99.01% accuracy on the CNC Milling dataset. 
Moreover, the proposed model demonstrated training speed of 
approximately 94% and prediction speeds of approximately 
99.8% improvement than the E.AB model, thus meeting real-
time industrial application requirements. 

The optimized training and prediction pipelines resulted in 
significant reductions in computational time, making the model 
suitable for real-time applications. A comparative analysis with 
the E.AB method from previous research, as well as baseline 
models DT, RF, and SVM, highlighted the E.XGB model's 
consistent superiority. Its combination of advanced 
optimization techniques and lightweight design enables 
scalability across diverse operational conditions. The primary 
goal of the research which is enhancing predictive maintenance 
was achieved by improving accuracy, training efficiency, and 
prediction speed. Permutation importance and hyperparameter 
tuning enabled the identification of critical features for precise 
fault detection. Optimized preprocessing and grid search tuning 
reduced training time, while the lightweight architecture 
ensured low-latency predictions essential for real-time 
decision-making. 

The proposed method minimizes unplanned downtime, 
reduces maintenance costs, and extends machinery lifespan, 
with scalability and adaptability for various industries. By 
enhancing predictive accuracy, training speed, and prediction 
latency, this study bridges the gap between theoretical machine 
learning advancements and their practical applications in 
industrial maintenance, contributing to a more efficient and 
sustainable industrial ecosystem. 

Future research could focus on extending the proposed 
E.XGB model towards integration with IoT and edge devices, 
enabling deployment in resource-constrained environments for 
real-time predictive maintenance. In addition, exploring hybrid 
approaches that combine E.XGB with deep learning techniques 
such as CNNs or LSTMs may further enhance the model’s 
ability to capture complex temporal and nonlinear fault 
patterns. To ensure adoption in real industrial settings, 
incorporating explainable AI (XAI) methods will be essential 
for improving model interpretability and building trust among 
engineers and decision-makers. 
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