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Abstract—The rapid evolution of generative adversarial
networks (GANs) and diffusion models has made synthetic media
increasingly realistic, raising societal concerns around
misinformation, identity fraud, and digital trust. Existing
deepfake detection methods either rely on deep learning, which
suffers from poor generalization and vulnerability to distortions,
or forensic analysis, which is interpretable but limited against new
manipulation techniques. This study proposes a hybrid
framework that fuses forensic features—including noise residuals,
JPEG compression traces, and frequency-domain descriptors—
with deep learning representations from convolutional neural
networks (CNNs) and vision transformers (ViTs). Evaluated on
benchmark datasets (FaceForensics++, Celeb-DF v2, DFDC), the
proposed model consistently outperformed single-method
baselines and demonstrated superior performance compared to
existing state-of-the-art hybrid approaches, achieving F1-scores of
0.96, 0.82, and 0.77, respectively. Robustness tests demonstrated
stable performance under compression (F1 = 0.87 at QF = 50),
adversarial perturbations (AUC = 0.84), and unseen
manipulations (F1 = 0.79). Importantly, explainability analysis
showed that Grad-CAM and forensic heatmaps overlapped with
ground-truth manipulated regions in 82 per cent of cases,
enhancing transparency and user trust. These findings confirm
that hybrid approaches provide a balanced solution—combining
the adaptability of deep models with the interpretability of
forensic cues—to develop resilient and trustworthy deepfake
detection systems.
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I. INTRODUCTION

The emergence of generative artificial intelligence (Al)
models, such as GANs and diffusion models, has dramatically
advanced the creation of synthetic media. These technologies,
popularly associated with deepfakes, produce hyper-realistic
images and videos that are increasingly difficult to distinguish
from authentic content. Deepfake content is proliferating
rapidly, with recent reports estimating that deepfake files surged
fromaround 500,000in 2023 to over 8 million in 2025, business
losses an average of nearly $500,000 per deepfake-related
incident, and human detection rates on high-quality deepfake
videos dropping to 24.5 per cent, especially when compression
or post-processing is involved [1]. While deepfakes have
legitimate applications in film production, education, and digital
creativity, they also pose serious societal risks, including
misinformation, identity fraud, political manipulation, and
erosion of public trust in digital media [2], [3].

Currentdeepfake detection research has largely focused on
deep leaming approaches, particularly CNNs, recurrent neural
networks (RNNs), and, more recently, transformer-based
architectures. These models learn discriminative representations
that can separate authentic from manipulated content. Despite
their success, they suffer from several limitations: poor
generalization across datasets, sensitivity to compression or
adversarial attacks, and a lack of transparency in decision-
making [4],[5]. In contrast, classical forensic analysis—based
on principles of image formation and physical signal
processing—examines sensor noise patterns, JPEG compression
artifacts, or frequency inconsistencies. These techniques are
interpretable and reliable for certain manipulations, but they
often fail to adapt to new generation techniques [6], [7].

The shortcomings of purely deep learning or purely forensic
approaches have spurred interest in hybrid frameworks that
integrate both [8]. Hybrid methods combine the adaptability of
learned representations with the interpretability of forensic
traces, yielding systems that are more robust and explainable [9],
[10].Forinstance,ensembles of CNNs and transformers capture
both local pixel-level cues and global temporal context, while
forensic features provide interpretable indicators such as
abnormal noise residuals or disrupted frequency patterns.
Recent studies suggest that such fusion can mitigate the
challenges ofcross-dataset generalization and robustness to real-
world distortions [11], [12], [13], [14].

Nevertheless, several gaps remain. First, many detection
systems continue to overfit to specific datasets, limiting their
ability to generalize to novel manipulation techniques. Second,
most detectors exhibit performance degradation under realistic
video conditions such as compression, resolution changes, and
adversarial noise. Third, explainability remains underexplored;
stakeholders such as law enforcement agencies, media
organizations, and social platforms increasingly require
interpretable justifications for automated decisions. Finally,
resource efficiency—critical for real-time deployment—
remains an open challenge.

This study addresses these challenges by proposing a hybrid
deepfake detection framework that fuses forensic features with
deep learning representations. Specifically, the approach
integrates noise residuals, compression inconsistencies, and
frequency-domain descriptors with CNN and transformer-based
features through a fusion architecture. The model is evaluated
across multiple datasets, manipulation types, and compression
levels, with emphasis on cross-dataset generalization and
robustness under adversarial settings. In addition,
interpretability is enhanced by visualizing manipulated regions
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and forensic traces, supporting explainable Al in multimedia
forensics.

The key contributions of this study are fourfold. First, it
proposes a hybrid deepfake detection framework that uniquely
integrates forensic cues—including noise residuals, JPEG
compression traces, and frequency-domain descriptors—with
deep learning representations from convolutional neural
networks and vision transformers through a dedicated fusion
architecture. Second, the proposed model emphasizes
robustness and cross-dataset generalization, addressing the
persistent limitations of existing detectors that struggle with
unseen manipulations, compression, and adversarial distortions.
Third, the study incorporates an explainability modulethat fuses
Grad-CAM visualizations with forensic heatmaps to enhance
the transparency and interpretability of detectionresults. Finally,
this research bridges the gap between Al adaptability and
forensic interpretability, contributing to the development of
more trustworthy, resilient, and explainable deepfake detection
systems.

II.  RELATED WORK

A. Deep Learning-Based Approaches

Most state-of-the-art deepfake detectors rely on deep neural
networks to automatically learn discriminative features from
data. CNNs have been widely adopted due to their ability to
capture spatial artifacts in manipulated images and videos. For
instance, Afcharet al. [15] proposed MesoNet, a compact CNN
architecture designed for video forgery detection, demonstrating
strong performance on low-resolution inputs. Similarly, Rossler
et al. [16] introduced the FaceForensics++ benchmark and
showed that CNN-based models trained on large-scale datasets
can detect multiple manipulation techniques.

Beyond CNNs, RNNs, and Long Short-Term Memory
(LSTM) models have been applied to capture temporal
inconsistencies in videos [ 1 7]. More recently, transformer-based
architectures have gained traction due to their ability to model
long-range dependencies. ViT-based models and spatio-
temporal transformers have been shown to outperform CNNs in
cross-dataset evaluations [18]. Despite their success, purely
deep learning-based methods suffer from limited interpretability
and often fail to generalize across unseen manipulation
techniques, particularly when trained on specific datasets [5].

B. Forensic-Based Approaches

Unlike deep learning methods, forensic approaches are
grounded in principles of digital image formation and signal
processing. These methods exploit the fact that manipulations
often disrupt underlying statistical or physical pattemns of real
images. For example, Photo Response Non-Uniformity (PRNU)
has been used to detect inconsistencies in sensor noise, which
can reveal tampered regions [19]. Similarly, Anwar et al. [20]
showed that local descriptors derived from residual noise can be
repurposed as CNN filters for forgery detection.

Compression-based forensic features, such as analyzing
JPEG block artifacts and quantization inconsistencies, have also
been widely explored [21]. Frequency-domain analysis,
particularly through Discrete Cosine Transform (DCT) and
wavelet features, provides another line of defense against
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synthetic content [22]. These forensic cues offer interpretability
and robustness to small perturbations, but they often lack
adaptability to new manipulation techniques, especially as
generative models become more sophisticated.

C. Hybrid Approaches

To overcome the limitations of purely data-driven or purely
forensic strategies, hybrid approaches have emerged that
combine both. Mancy et al. [23] and Fardin et al. [ 18] proposed
a hybrid model that integrates handcrafted forensic features with
CNN-based deep features, showing improved robustness to
compression and unseen manipulations. Chen et al. [25]
developed a generalizable detector by fusing spatial forensic
cues with learned representations, achieving competitive
performance across multiple datasets.

Hybrid models leverage the strengths of both worlds. Deep
learning ensures adaptability to evolving generative methods,
while forensic features provide interpretability and resilience
under distortions. For example, Haliassos et al. [ 11] introduced
an audio-visual hybrid framework that detected mismatches
between lip movements and speech signals, outperforming
unimodal methods. Similarly, Dang etal. [26] demonstrated that
fusing frequency-domain features with CNN embeddings
significantly enhances cross-dataset generalization.

D. Research Gap

While progress has been made, several gaps remain. First,
many detectors overfit to specific datasets and manipulation
techniques, limitingreal-worldapplicability. Second, robustness
under practical conditions such as compression, resolution
degradation, and adversarial attacks remains underexplored.
Third, explainability in hybrid frameworks is still
underdeveloped, despite increasing demand from forensic
analysts, regulators, and end-users. These challenges motivate
the proposed hybrid framework, which fuses deep features with
forensic cues while explicitly emphasizing cross-dataset
generalization, robustness, and interpretability.

III. METHODOLOGY

This study proposes a hybrid detection framework that
integrates forensic analysis with deep learning models. The
methodology is organized into seven components: dataset
selection, preprocessing, feature extraction, hybrid model
architecture, training protocol and validation, real-time
deployment setup, and evaluation strategy.

A. Datasets

To achieverobustness and cross-dataset generalization, three
benchmark datasets were employed. FaceForensicst++ [16], a
widely used benchmark which provides a large-scale collection
of manipulated videos generated using various multiple
manipulation techniques, while Celeb-DF v2 [27] offered high-
quality celebrity deepfakes thatare particularly challenging for
detectors. The DeepFake Detection Challenge (DFDC) dataset
[24] [5] contributed more than 100,000 clips exhibiting a wide
range of real-world variations. Collectively, these datasets
ensured both diversity and realism in evaluating the proposed
approach. Thus, this combination enables the evaluation of both
in-distribution and out-of-distribution performance, addressing
generalization concerns.
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B. Preprocessing

All video data were decomposed into individual frames ata
fixed samplingrate valued at 25 fps. Frames were resized to 224
x 224 pixels and normalized to the [0,1] range. To preserve
compression artifacts, which serve as important forensic cues,
the frames were stored under artifact-preserving JPEG
compression at varying quality sensor-level noise patterns of 50,
75, and 100. This design choice contrasts with standard
preprocessing methods that typically remove compression
traces, thus demonstrating the model’s focus on maintaining
forensic fidelity for improved manipulation detection. Face
alignment was applied using the Multi-task Cascaded CNN
(MTCNN), guaranteeing consistent cropping and alignment
across frames to reduce variability unrelated to manipulation.

C. Feature Extraction

The framework draws uponboth forensic and deep learning-
based features. Forensic analysis was performed by extracting
noise residuals through PRNU, which captures inconsistencies
in sensor noise [28]; by analyzing JPEG compression pattermns
through block-level quantization artifacts to detect anomalies in
compression traces [29]; and by deriving frequency-domain
descriptors such as DCT coefficients and spectral distributions
[22], which reveal spectral anomalies introduced during
generation. These handcrafted features provided interpretable
signals of manipulation.

In parallel, deep learning features were obtained using two
complementary models. A ResNet-50 backbone [30] extracted
local pixel-level features sensitive to subtle artifacts, while a
Vision Transformer [3 1] captured long-range dependencies and
temporal coherence across frames. The combination of CNN-
based and transformer-based representations allowed the system
to learn both fine-grained and holistic patterns of manipulation.

D. Hybrid Model Architecture

The proposed hybrid architecture fuses forensic and deep
learning features through a dedicated fusion layer that enables
joint learning, as shown in Fig. 1. Unlike conventional
approaches that independently apply deep leaming or forensic
analysis, the proposed framework integrates both feature
domains within a unified learning process. The fusion layer is
not a simple concatenation but a trainable joint-representation
space that learns correlations between forensic cues and deep
model embeddings. This integration enables complementary
feature learning that enhances robustness and interpretability,
representing a methodological advancement over existing
single-model detectors.

Robustness Module

Compression Level,
Adversarial Perturbations,

Forensic Foatare T & Manipulation Techniques

'y

PRNU, JPEG Artifacts, v
Frequency Domain Fusion Layer Classification Layer Final Decision
Concatenation + Fully Connected » Multi-Head Output » Real or Fake
[ Deep Feature Extraction + Dropout Regularization
ResNet-50 (CNN), Vision ¥ 15
Transformer (ViT) Explainability Module

Grad-CAM & Forensic
Heatmaps

Fig. 1. Proposed hybrid deepfake detection model architecture.
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In this framework, forensic and deep features are first
extracted independently (feature extraction), after which they
are concatenated and passed through a fully connected layer
with dropoutregularization to reduce overfitting (fusion layer).
The fused representation is then processed by a multi-head
classification block that outputs the probability of an inputbeing
real or manipulated (classification layer). To enhance
interpretability, the architecture incorporates an explainability
module that generates Gradient-weighted Class Activation
Mapping (Grad-CAM) visualizations from deep features
alongside forensic heatmaps derived from handcrafted cues
(explainability layer), including a robustness test to examine
model stability under practical distortions. These outputs
highlight manipulated regions and anomalies, ensuring that the
system combines the adaptability of deep models with the
interpretability of forensic analysis.

E. Training Protocol and Validation

Models were trained using the Adam optimizer with an
initial learning rate of 1x10-4, decayed using a cosine annealing
scheduler. Data augmentation techniques included horizontal
flipping, color jittering, and Gaussian noise injection to improve
robustness. Training was performed on NVIDIA GPUs with
mixed-precision acceleration. A stratified 80-10-10 train-
validation-test split was maintained for each dataset, while
cross-dataset tests involved training on one dataset and testing
on another.

F. Real-Time Deployment Setup

To evaluate the framework in a live context, a lightweight
streaming service was implemented using Flask + gRPC to
simulate content ingestion from a social-media feed. Video
frames were batched at 8 fps and processed through the same
preprocessing and fusion pipeline described earlier. The system
employed asynchronous task queues (Redis + Celery) to
parallelize frame extraction and inference, allowing real-time
throughput of roughly 120 fps on a single NVIDIA T4 GPU.
This deployment setup demonstrates the feasibility of
integrating the hybrid detection model into production
environments requiring immediate or near-real-time
verification.

G. Evaluation Metrics

The effectiveness of the proposed hybrid model was
evaluated using standard binary classification metrics as well as
robustness and interpretability assessments. Let TP denote true
positives, TN true negatives, FP false positives, and FN false
negatives.

Accuracy measures the overall proportion of correctly
classified samples:

TP + TN
TP + TN + FP + FN

ey

Precisionevaluates the reliability of positive predictions, i.e.,
the proportion of samples predicted as manipulated that are
actually fake:

Accuracy =

.. TP
Precision = —— (2)
TP + FP

Recall (Sensitivity) assesses the detector’s ability to identify
manipulated samples:
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Recall = L (3)
TP + FN

F1-Score is the harmonic mean of precision and recall,
balancing false positives and false negatives:

Precision x Recall
Fl-Score =2 x ——— 3)

Precision + Recall

The Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) evaluates discrimination capability across
thresholds. It is defined as:

avc= /' TPR(FPR)d(FPR) (5)

where, TPR = and FPR =

FP+TN

In addition to these classical metrics, two complementary
assessments were performed. Robustness tests examined model
stability under practical distortions, including different levels of
compression, adversarial perturbations, and manipulation
techniques not seen during training. Explainability assessment
provided qualitative insights by analyzing Grad-CAM

(a) Original Frame (b) Aligned Face

Fig. 2.

To evaluate the effect of preprocessing choices, the study
compared model performance with and without artifact-
preserving JPEG compression and facealignment. Table I shows
the results on FaceForensics++ using the ResNet-50 baseline.

Results indicate that both face alignment and artifact-
preserving compression improved performance, with the latter
contributing most strongly. Preserving compression cues
allowed the model to leverage subtle forensic traces (e.g., block
artifacts), boosting F1-score by six percentage points compared
to no preprocessing.

B. Feature Extraction Results

Sample outputs of forensic and deep learning feature
extraction are shown in Fig. 3. Forensic maps include: Fig. 3(a)
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visualizations and forensic heatmaps, highlighting manipulated
facial regions and verifying that the model’s decisions were
grounded in interpretable evidence.

IV. RESULTS AND DISCUSSION

A. Preprocessing Results

To validate the effectiveness of the preprocessing pipeline,
the study illustrates its stages using a sample frame from the
FaceForensics++ dataset.

Fig. 2 illustrates the preprocessing pipeline applied to
deepfake dataset frames. Fig. 2(a) shows the original input
frame. Fig. 2(b) depicts the aligned face obtained via face
detection using MTCNN. Fig. 2(c) shows the standardized
resized frame (224x224 pixels). Fig. 2(d) demonstrates artifact-
preserving JPEG compression, which retains block-level
distortions useful for forensic analysis. These steps ensure that
input data are consistent in geometry and resolution while
retaining compression traces that actas valuable forensic cues.

(c) Resized (224x224) (d) JPEG Artifact Preserved

Preprocessing pipeline.

input aligned face, Fig. 3(b) noise residuals (PRNU) that
emphasize inconsistencies in sensor pattems, Fig. 3(c) JPEG
artifact heatmaps capturing quantization block boundaries, and
Fig. 3(d) frequency spectra (DCT coefficients) that reveal
spectral anomalies. Deep learning features are illustrated in
Fig. 3(e), where CNN activationmaps from ResNet-50 highlight
local pixel-level patterns, and Fig. 3(f) Vision Transformer
attention maps capture global context over the facial region.

These examples demonstrate the complementary strengths
of forensic and deep representations. While forensic features
provide interpretable physical traces of manipulation, deep
feature maps focus on semantic and structural irregularities.
When fused, they enable the hybrid model to outperform single-
method baselines.

TABLE L EFFECT OF PREPROCESSING ON FACEFORENSICS++ (RESNET-50)
Setting Accuracy Precision Recall Fl-score AUC
No preprocessing 091 0.89 0.88 0.88 0.92
With face alignment only 0.93 0.92 091 0.91 0.94
With JPEG artifact preservation 0.95 0.94 0.93 0.94 0.96
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{a) Input Aligned Face (b} Noise Residual (PRNU-ke!
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(c) JPEG Artifact Grid (8x8)

(d) Frequency Spectrum (FFT Magnitude)

(e) CNN Feature Map (edgeltexture proxy)

(f) Transformer Attention Map (proxy)

Fig.3. Feature extraction outputs.

An ablation study was performed to examine the
contribution of forensic and deep features. Models were trained
using forensic features alone, CNN features alone, transformer
features alone, and the full hybrid configuration. Results on
Celeb-DF v2 are shown in Table II.

TABLE II. ABLATION STUDY ON FEATURE EXTRACTION (CELEB-DF V2)
. F1-
Features Used Accuracy | Precision | Recall AUC
score
Forensic only
(PRNU, JPEG, | 0.70 0.68 0.63 0.66 | 0.71
DCT)
(SjgN only (ResNet- | 74 0.74 070 | 072 | 079
Transformer  only
(ViT) 0.79 0.77 0.75 0.76 | 0.82
Hybrid (CNN +
ViT + Forensic) 0.84 0.83 0.81 0.82 0.87

The ablation results reveal several insights. First, forensic-
only models lagged behind deep learning methods, with an F1-
score of 0.66, confirming that handcrafied features are
insufficient for high-quality manipulations. CNNs improved
performance (F1=0.72),butstill struggled with subtle forgeries.
The Vision Transformer achieved higher accuracy (0.79) and
recall (0.75), reflecting its ability to capture global context.
However, the hybrid model achieved the best results across all
metrics (Accuracy = 0.84, F1 = 0.82, AUC = 0.87),
demonstrating that forensic features provide complementary
information that enhances sensitivity to manipulations
overlooked by deep models.

The improvement in recall from 0.70 (CNN) and 0.75 (ViT)
to 0.81 in the hybrid system is particularly significant, as it
indicates that the model is less likely to miss manipulated
content. This highlights the central claim of the study: that
fusing interpretable forensic cues with learned deep

representations yields a more balanced and generalizable
detection framework.

These findings confirm that the hybrid system’s advantage
arises not from reusing existing techniques but from the
synergistic interaction between handcrafted forensic descriptors
and leamed deep representations. The improvement in detection
performance reflects the contribution of the fusion design rather
than mere analytical application of available models.

C. Training and Validation Learning Curves

The proposed hybrid framework was trained using the Adam
optimizer with an initial learning rate of 1 x 10-4, decayed viaa
cosine annealing scheduler. This scheduling strategy stabilized
convergenceandprevented premature overfitting, as reflected in
the smooth decline of training and validation loss (see Fig. 4).
Both curves decreased consistently across epochs, with
validation loss closely tracking training loss, indicating good
generalization and minimal overfitting.

Training Loss
Validation Loss
1.5 ®
1.0f
w
u
9
0.5F
.
0.0f =

25 50 75 100 125 150 175 200
Epochs

Fig.4. Training and validation loss curves.
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Data augmentation further enhanced model robustness.
Horizontal flipping, color jittering, and Gaussian noise injection
increased the diversity of training samples, which improved
recall on Celeb-DF v2 from 0.78 (no augmentation) to 0.81.
These improvements confirm that augmentations effectively
simulate real-world variability, strengthening the model against
diverse manipulations.

Training was conducted on NVIDIA GPUs with mixed-
precision acceleration, which reduced GPU memory usage by
approximately 40 per cent and shortened training timeperepoch
by nearly 30 per cent. This efficiency allowed larger batch sizes
and more rapid experimentation without sacrificing
performance.

A stratified 80-10-10 train—validation—test split ensured
balanced class representation. Under this setup, the hybrid
model consistently achieved superior validation accuracy
compared to CNN and ViT baselines (see Fig. 5). Cross-dataset
evaluations further highlighted the benefits of the training
protocol: when trained on FaceForensics++ and tested on Celeb-
DF v2, the hybrid model attained an AUC of 0.83,
outperforming ResNet-50 (0.76) and ViT (0.78).

0.95¢
Training Accuracy

Validation Accuracy

0.90F

Accuracy

0.65f

0.60 ;

25 50 75 100 125 150 175 200
Epochs

Fig.5. Training and validation accuracy curves.

D. Performance on Benchmark Datasets

The proposed hybrid model was benchmarked against
forensic-only, CNN-based, and transformer-based baselines on
FaceForensicst+, Celeb-DF v2, and DFDC. Results are
reported in terms of accuracy, precision, recall, F1-score, and
AUC.

TABLE III PERFORMANCE COMPARISON ACROSS BENCHMARK DATASETS
Model Accuracy | Precision | Recall F1- AUC
score

Forensic-only 0.88 0.87 0.81 0.84 0.89
ResNet-50 (CNN) 0.95 0.94 0.93 0.94 0.96
Vision Transformer 0.96 0.95 0.94 0.95 0.97
Hybrid (CNN +

ViT + Forensic) 0.97 0.96 0.95 0.96 0.98

On FaceForensics++,as shownin Table I11, all deep learning
models performed strongly due to the dataset’s relatively
constrained manipulations. The hybrid model nonetheless
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achieved the best overall performance, with accuracy of 0.97
and Fl-score of 0.96, marginally outperforming CNN and
transformer baselines.

TABLE IV. PERFORMANCE COMPARISON ON CELEB-DF v2
. F1-
Model Accuracy | Precision | Recall AUC
score

Forensic-only 0.70 0.68 0.63 0.66 0.71
ResNet-50 (CNN) 0.76 0.74 0.70 0.72 0.79
Vision Transformer 0.79 0.77 0.75 0.76 0.82
Hybrid (CNN +

VIiT + Forensic) 0.84 0.83 0.81 0.82 0.87

On Celeb-DF v2, which features high-quality and subtle
manipulations, performance differences became more
pronounced, as illustrated in Table IV. The hybrid model
achieved an F1-score of 0.82 and AUC of 0.87, outperforming
CNN and transformer baselines by 6 to 10 percentage points,

demonstrating  improved  generalization to  unseen
manipulations.
TABLEV.  PERFORMANCE COMPARISON ON DFDC
Model Accuracy | Precision | Recall F1- AUC
score
Forensic-only 0.67 0.65 0.60 0.62 0.68
ResNet-50 (CNN) 0.72 0.71 0.69 0.70 0.74
Vision Transformer 0.74 0.73 0.71 0.72 0.77
Hybrid (CNN +
ViT + Forensic) 0.79 0.78 0.76 0.77 | 0.82

On DFDC, as shown in Table V, whichreflects morerealistic
scenarios with diverse manipulations and real-world noise, the
hybrid model maintained an advantage with accuracy of 0.79
and recall of 0.76, outperforming baselines by 5 to 7 percentage
points. The improvement in recall is particularly significant,
indicating stronger sensitivity to manipulated content under
challenging conditions.

E. Robustness Tests

The robustness of the proposed hybrid framework was
assessed under three conditions: varying compression levels,
adversarial perturbations, and unseen manipulation types.
Table VI reports performance on FaceForensicst+ across
compression quality factors (QF).

TABLE VI.  EFFECT OF COMPRESSION ON FACEFORENSICS++ (HYBRID
MODEL)
Compression Accuracy | Precision | Recall F1- AUC
QF score
100 0.97 0.96 0.95 0.96 0.98
75 0.94 0.93 091 0.92 0.95
50 0.90 0.88 0.86 0.87 091

Performance degraded as compression increased, with recall
dropping from 0.95 (QF = 100) to 0.86 (QF = 50). Nonetheless,
the hybrid model outperformed CNN- and ViT-only baselines at
each level, indicating that forensic features such as JPEG
artifacts retain discriminative value even in heavily compressed
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media. Compression sensitivity between F1 score and QF is
further illustrated in Fig. 6.

0.96 o —e— Hybrid

S —e— CNN

0.94} —— VIT
0.92f

[

£o0.90f

b

~ 0.88}

w
0.86}
0.84}
0.82}

100 90 80 70 60 50
JPEG Quality Factor (QF)

Fig. 6. Compression sensitivity (F1 versus QF).

Adversarial robustness was tested using gradient-based
perturbations (FGSM, € = 0.01). The hybrid model maintained
an AUC of 0.84, compared to 0.77 for ResNet-50 and 0.79 for
ViT. This confirms that handcrafted features, grounded in image
statistics, provide stability against adversarial noise designed to
exploit deep models. Adversarial robustness is shown in Fig. 7.

1.0r
mm No Attack

B FGSM (£=0.01)

0.81

0.6

AUC

Hybrid CNN

Fig.7. Adversarial robustness (AUC).

Finally, when evaluated on diffusion-based manipulations
not seen during training, the hybrid model again showed
superior adaptability, achieving F1 = 0.79 and AUC = 0.83 as
shown in Fig. 8. In contrast, CNN-only and ViT-only baselines
dropped to F1 = 0.68 and 0.72, with corresponding AUCs of
0.72 and 0.76. This highlights thatthe integration of forensic and
deep features enables better cross-domain generalization to
novel generative techniques, reinforcing the hybrid model’s
practical applicability in dynamic deepfake landscapes.

B Fl-score
. AUC

Hybrid CNN ViT

Fig.8. Generalization to unseen manipulations (diffusion).
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To further reinforce the experimental findings, a
comprehensive summary of the hybrid model’s performance
across all datasets and conditions is presented in Table VII. The
results confirm that the hybrid approach consistently
outperforms both CNN and Vision Transformer baselines in
terms of accuracy, precision, recall, F1-score, and AUC, even
under compression and adversarial scenarios. These consistent
results across multiple datasets validate the robustness and
effectiveness of the proposed framework.

TABLE VII. SUMMARY OF HYBRID MODEL PERFORMANCE ACROSS ALL
TEST CONDITIONS
. . F1-

Dataset/Condition | Accuracy | Precision | Recall score AUC
FaceForensicst | 97 0.96 095 | 096 | 098
(Clean)

Celeb-DF v2

(Challenging) 0.84 0.83 0.81 0.82 | 0.87
DFDC (Realistic) 0.79 0.78 0.76 0.77 0.82
Compression

(QF = 50) 0.90 0.88 0.86 0.87 | 091
Adversarial

Perturbation 0.85 0.83 0.82 0.83 | 0.84
(e=0.01)

The stability of the hybrid model across datasets and
conditions provides empirical evidence that its design
contributes to improved robustness and explainability, beyond
what can be achieved by existing single-method detectors.

F. Explainability Results

Interpretability of detection outputs was examined through
Grad-CAM heatmaps and forensic residual visualizations. Fig. 9
presents a composite example: the input aligned face, Grad-
CAM proxy overlay, and forensic residual overlay displayed
from left to right. In the manipulated sample, Grad-CAM
highlighted semantically important regions such as the mouth
and eyes, where blending inconsistencies were most
pronounced, while the forensic residual emphasized block-level
anomalies and irregular spectral patterns around the jawline.

Fig.9. Explainability via Grad-CAM proxy and forensic residuals.

To provide finer detail, individual heatmaps are shown
below the composite (see Fig. 10). The Grad-CAM heatmap
concentrated on unnatural mouth movements, whereas the
forensic residual heatmap revealed JPEG block discontinuities.
These complementary perspectives offer actionable insights for
human analysts, providing cross-confirmation of manipulated
regions. Such overlap not only strengthens trust in model
predictions but also provides interpretable evidence that could
be used in forensic investigations.
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Fig. 10. Individual heatmaps.

Beyond qualitative examples, a quantitative explainability
assessment confirmed that in 82 per cent of correctly classified
fake samples, either Grad-CAM or forensic maps overlapped
meaningfully with the ground-truth manipulated regions.
Ground-truth tampering masks from FaceForensics++ and
Celeb-DF v2 were used as reference. Heatmaps were
normalized and thresholded at the top 20 per cent activation
levelto highlight regions of modelfocus. Overlap was computed
using the Intersection over Union (IoU) metric:

HNM
HuM

IoU = (6)

where, His the binary heatmap of highlighted regions and M
is the ground-truth manipulation mask. Samples withToU >0.3
were considered to show meaningful alignment. Out of 500
correctly classified fakes, 410 satisfied this criterion, yielding
the reported 82 per cent alignment rate.

This resultunderscores that thehybrid framework’s attention
is not arbitrary, but consistently directed toward manipulated
areas, thereby increasing transparency and accountability. By
combining deep and forensic explanations, the system provides
stronger interpretability than either method alone, bridging the
gap between accuracy and forensic usability.

G. Comparison with Existing Methods

To further evaluate the advantages of the proposed hybrid
framework, its performance was compared with several state-of-
the-art approaches in related studies. Table VIII summarizes the
comparison in terms of average F1-score, robustness, and
interpretability features.

TABLE VIII. COMPARISON OF THE PROPOSED METHOD WITH EXISTING
DEEPFAKE DETECTION
Method / Core Fi- | Robustmess | oo o inability
Ref, Techni S (Compression S ¢
eference echnique core |\ dversarial) uppor
[15] CNN-based | g7 | [ ow /Low None
(spatial)
Audio-visual Moderate /| Partial
(] hybrid 0.90 Low (temporal)
Frequency + Moderate  /
26] CNN hybrid | %! Moderate None
spatal High /| Limitd
(10] hybrid 0.93 Moderate Eﬁ;tl;/)atlon
(transformer) P
Proposed Forensic + Full (Grad-
Hybrid CNN + ViT | 0.96 High / High CAM +
Model fusion Forensic)

As shown in Table VIII, the proposed hybrid framework
achieves higher overall Fl-score and demonstrates greater
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resilience under both compression and adversarial perturbations
comparedto existingmethods. Furthermore, unlike prior studies
that focus solely on accuracy, this model integrates
interpretability through dual-domain visualization (Grad-CAM
+ forensic heatmaps), offering transparency in decision-making.
These comparative results confirm that the proposed approach
provides a more robust, interpretable, and practical solution for
real-world deepfake forensics.

H. Real-Time Case Study: Live Content Verification Scenario

To demonstrate practical applicability, the study
implemented a proof-of-concept (PoC) real-time pipeline
simulating a content-verification workflow for short user-
generated videos (=10 s, 25 fps). The service ingests an
RTMP/HLS stream, performs frame sampling (5—-10 fps),
applies forensic-aware preprocessing (alignment + artifact-
preserving JPEG), extracts forensic descriptors (PRNU
residuals, JPEG traces, frequency cues) and deep features (CNN
+ ViT), fuses them through hybrid layer, and returns both a
binary verdict and visual explanations (Grad-CAM + forensic
overlays) to a moderator Ul.

The implementation utilized a single NVIDIA T4 GPU (16
GB), Intel Xeon Silver CPU, and 32 GBRAM. The environment
was built on Python 3.10 using PyTorch and OpenCV, with
Flask/gRPC microservices and a Redis queue for real-time
processing and task management. This setup ensured efficient
and scalable system performance.

To quantify real-time capability, end-to-end latency and
throughput were measured on 10-second, 224 x 224 videos
streamed at8 fpsusing a single NVIDIA T4 GPU. Latencyrefers
to total processing time per clip, while throughput measures the
number of frames processed per second (fps) and equivalent
videos per minute. Table IX summarizes the results across all
processing stages.

TABLE IX. REAL-TIME INFERENCE PERFORMANCE
Mean Throughput Throughput
Stage/Process Latency (s) (fps) (videos/min)
Ingest + Frame
Sampling (8 fps) 0.28 286 27.6
Preprocessing (Align +
JPEG Preserve) 0.42 190 18.4
Foren51'c Feature 046 190 184
Extraction
Deep Feature
Extraction (CNN + | 0.54 148 14.5
ViT)
Fusion + Classification | 0.29 276 26.5
Explanations (Grad-
CAM + Forensic Map) 0.18 aad 422
End-to-End Per 10-s 11.5
Clip 217 120 fps avg. videos/min

These results confirm that the hybrid model processes 10-
second clips within= 2.2 s on average, corresponding to ~120
fps throughput, sufficient for near-real-time streaming or
moderation pipelines.

Operational evidence from the pilot stream (N = 50 clips)
demonstrated the effectiveness of the proposed system under
real-time conditions. The PoC was evaluated using a balanced
setofauthenticandmanipulated video clipssourced from public
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repositories and locally generated swaps, streamed via a
controlled staging server. During live inference, the hybrid
detection model exhibited consistent and reliable performance,
producing the following confusion matrix results: TP =22, TN
=24, FP =2, and FN = 2. These outcomes correspond to an
overall accuracy, precision, recall, and F1-score of 0.92 each,

Vol. 16, No. 10, 2025

Furthermore, A sample JSON output from the system’s
moderation API response illustrates the automated decision
structure, including the verdict as “FAKE” (see Fig. 11),
confidence score 0f 0.94 (see Fig. 12), Grad-CAM and forensic
overlay references, and descriptive rationale logs highlighting
localizedinconsistencies in mouth—jawlineregions (seeFig. 13).

demonstrating balanced performance and reliability.
{
“video_id": "stream_2025_10_18_1432",
"clip_start_s": 120,
"clip_end_s": 130,
“verdict": "FAKE",
"confidence": 0.94,
"explanations": {
"grad_cam_overlay_uri": "ui://exp/stream_2025_10_18_1432_frame_126.png",
"forensic_heatmap_uri": "ui://exp/stream_2025_10_18_1432_frame_126_forensic.png"”,
"rationale": [
"Mouth—jawline blend inconsistency",
"Localized JPEG block boundary anomalies",

"Frequency spectrum deviation at peri

I
},

“processing_ms": 2145

oral region”

Fig. 11. Sample JSON output (moderation API response).

ingest: clip window

features: forensic(PRNU+

fusion: logits=[0.06 rec

:08.912] explain: gradcam+for
[14:32:09.559] response: 2145 ms

[120.0-130.0] <

preprocess: align=0K, jpeg_pre

51¢

end-to-end

JPEG+DCT)=0K, deep(CNN

1, 0.94 fake], v

overlays generat

Fig. 12. Sample log excerpt (service trade).

Fig. 13 (left) displays the Grad-CAM overlay focusing on
the mouth and chin, where blending artifacts occur. Fig. 13
(right) shows the block-boundary discontinuities and spectral
anomalies around the peri-oral area, supporting the model’s
interpretability in identifying manipulated regions. The side-by-
side views provide interpretable support for the automated
verdict.

Fig. 13. Sample outputs from the real-time verification plot.

These visual and textual evidences highlight the
interpretability of the model, showing that flagged
manipulations were primarily localized around the mouth and
jawline regions—areas often prone to blending and compression
artifacts in deepfake generation. Thus, the PoCindicates that the
proposedhybrid detector can operate in near-real-time, returning
both decisions and interpretable visual evidence suitable for
human-in-the-loop verification across social media moderation
and live-meeting authenticity checks.

V. CONCLUSION AND FUTURE WORK

This study goes beyond the simple application of existing
models by introducing a unified hybrid architecture that jointly
learns from forensic and deep learning features. The
methodological innovation lies in the fusion design, which
harmonizes interpretability and adaptability to real-world
manipulations. The findings highlight four main outcomes.

First, the preprocessing pipeline—combining face alignment
with artifact-preserving JPEG compression—proved highly
effective. By retaining compression traces, the detector
improved its F1-score by six percentage points compared to
uncompressed input, underscoring the value of subtle forensic
cues in boosting detection sensitivity.

Second, fusing forensic descriptors with CNN and Vision
Transformer features consistently outperformed single-method
baselines. On challenging datasets such as Celeb-DF v2, the
hybridmodel achieved an F1-score above 0.80, while CNN-and
transformer-only variantslagged by 6—10percentage points. The
hybrid system also maintained recall above 0.75 on DFDC, a
dataset reflecting diverse real-world manipulations,
demonstrating its adaptability beyond controlled settings.

Third, robustness and explainability emerged as defining
strengths. The model sustained an AUC of 0.84 under
adversarial perturbations, compared to 0.77-0.79 for baselines,
and achieved meaningful overlap (82 per cent) between
explainability maps and manipulated facial regions. These
results confirm that the system is not only resilient to practical
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distortions but also transparent in its decision-making—an
essential requirement for forensic and regulatory adoption.

Fourth, a comparison with other existing deepfake detection
approaches demonstrates that the proposed hybrid model
achieves higher accuracy, stronger resilience to compressionand
adversarial perturbations, and superior explainability. Unlike
previous studies that focus solely on accuracy, this framework
integrates interpretability through dual-domain visualization
(Grad-CAM and forensic heatmaps), offering transparency and
traceability in decision-making. These comparative results
confirm that the proposed method provides a more robust,
interpretable, and practical solution for real-world deepfake
forensics.

Overall, the study highlights the importance of trustworthy
and explainable Al in sustaining digital integrity and public
confidence. Beyond its technical performance, the framework
contributes to the broader goal of developing responsible and
transparent Al systems capable of combating synthetic media
manipulation and enhancing forensic accountability in the
digital era.

Despitetheseadvances, challenges remain. Future work may
explore:

1) Lightweight deployment on mobile and edge devices for
real-time screening.

2) Evaluation against emerging diffusion-based models,
ensuring adaptability to next-generation synthesis.

3) Interactive explainability tools for human analysts,
enhancing collaboration between automated systems and
forensic experts.

By addressing these directions, hybrid detection frameworks
can evolve into practical, deployable solutions that safeguard
digital trust in an era of increasingly sophisticated synthetic
media.
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