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Abstract—The rapid evolution of generative adversarial 

networks (GANs) and diffusion models has made synthetic media 

increasingly realistic, raising societal concerns around 

misinformation, identity fraud, and digital trust. Existing 

deepfake detection methods either rely on deep learning, which 

suffers from poor generalization and vulnerability to distortions, 

or forensic analysis, which is interpretable but limited against new 

manipulation techniques. This study proposes a hybrid 

framework that fuses forensic features—including noise residuals, 

JPEG compression traces, and frequency-domain descriptors—

with deep learning representations from convolutional neural 

networks (CNNs) and vision transformers (ViTs). Evaluated on 

benchmark datasets (FaceForensics++, Celeb-DF v2, DFDC), the 

proposed model consistently outperformed single-method 

baselines and demonstrated superior performance compared to 

existing state-of-the-art hybrid approaches, achieving F1-scores of 

0.96, 0.82, and 0.77, respectively. Robustness tests demonstrated 

stable performance under compression (F1 = 0.87 at QF = 50), 

adversarial perturbations (AUC = 0.84), and unseen 

manipulations (F1 = 0.79). Importantly, explainability analysis 

showed that Grad-CAM and forensic heatmaps overlapped with 

ground-truth manipulated regions in 82 per cent of cases, 

enhancing transparency and user trust. These findings confirm 

that hybrid approaches provide a balanced solution—combining 

the adaptability of deep models with the interpretability of 

forensic cues—to develop resilient and trustworthy deepfake 

detection systems. 
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I. INTRODUCTION 

The emergence of generative artificial intelligence (AI) 
models, such as GANs and diffusion models, has dramatically 
advanced the creation of synthetic media. These technologies, 
popularly associated with deepfakes, produce hyper-realistic 
images and videos that are increasingly difficult to distinguish 
from authentic content. Deepfake content is proliferating 
rapidly, with recent reports estimating that deepfake files surged 
from around 500,000 in 2023 to over 8 million in 2025, business 
losses an average of nearly $500,000 per deepfake-related 
incident, and human detection rates on high-quality deepfake 
videos dropping to 24.5 per cent, especially when compression 
or post-processing is involved [1]. While deepfakes have 
legitimate applications in film production, education, and digital 
creativity, they also pose serious societal risks, including 
misinformation, identity fraud, political manipulation, and 
erosion of public trust in digital media [2], [3]. 

Current deepfake detection research has largely focused on 
deep learning approaches, particularly CNNs, recurrent neural 
networks (RNNs), and, more recently, transformer-based 
architectures. These models learn discriminative representations 
that can separate authentic from manipulated content. Despite 
their success, they suffer from several limitations: poor 
generalization across datasets, sensitivity to compression or 
adversarial attacks, and a lack of transparency in decision-
making [4], [5]. In contrast, classical forensic analysis—based 
on principles of image formation and physical signal 
processing—examines sensor noise patterns, JPEG compression 
artifacts, or frequency inconsistencies. These techniques are 
interpretable and reliable for certain manipulations, but they 
often fail to adapt to new generation techniques [6], [7]. 

The shortcomings of purely deep learning or purely forensic 
approaches have spurred interest in hybrid frameworks that 
integrate both [8]. Hybrid methods combine the adaptability of 
learned representations with the interpretability of forensic 
traces, yielding systems that are more robust and explainable [9], 
[10]. For instance, ensembles of CNNs and transformers capture 
both local pixel-level cues and global temporal context, while 
forensic features provide interpretable indicators such as 
abnormal noise residuals or disrupted frequency patterns. 
Recent studies suggest that such fusion can mitigate the 
challenges of cross-dataset generalization and robustness to real-
world distortions [11], [12], [13], [14]. 

Nevertheless, several gaps remain. First, many detection 
systems continue to overfit to specific datasets, limiting their 
ability to generalize to novel manipulation techniques. Second, 
most detectors exhibit performance degradation under realistic 
video conditions such as compression, resolution changes, and 
adversarial noise. Third, explainability remains underexplored; 
stakeholders such as law enforcement agencies, media 
organizations, and social platforms increasingly require 
interpretable justifications for automated decisions. Finally, 
resource efficiency—critical for real-time deployment—
remains an open challenge. 

This study addresses these challenges by proposing a hybrid 
deepfake detection framework that fuses forensic features with 
deep learning representations. Specifically, the approach 
integrates noise residuals, compression inconsistencies, and 
frequency-domain descriptors with CNN and transformer-based 
features through a fusion architecture. The model is evaluated 
across multiple datasets, manipulation types, and compression 
levels, with emphasis on cross-dataset generalization and 
robustness under adversarial settings. In addition, 
interpretability is enhanced by visualizing manipulated regions 
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and forensic traces, supporting explainable AI in multimedia 
forensics. 

The key contributions of this study are fourfold. First, it 
proposes a hybrid deepfake detection framework that uniquely 
integrates forensic cues—including noise residuals, JPEG 
compression traces, and frequency-domain descriptors—with 
deep learning representations from convolutional neural 
networks and vision transformers through a dedicated fusion 
architecture. Second, the proposed model emphasizes 
robustness and cross-dataset generalization, addressing the 
persistent limitations of existing detectors that struggle with 
unseen manipulations, compression, and adversarial distortions. 
Third, the study incorporates an explainability module that fuses 
Grad-CAM visualizations with forensic heatmaps to enhance 
the transparency and interpretability of detection results. Finally, 
this research bridges the gap between AI adaptability and 
forensic interpretability, contributing to the development of 
more trustworthy, resilient, and explainable deepfake detection 
systems. 

II. RELATED WORK 

A. Deep Learning-Based Approaches 

Most state-of-the-art deepfake detectors rely on deep neural 
networks to automatically learn discriminative features from 
data. CNNs have been widely adopted due to their ability to 
capture spatial artifacts in manipulated images and videos. For 
instance, Afchar et al. [15] proposed MesoNet, a compact CNN 
architecture designed for video forgery detection, demonstrating 
strong performance on low-resolution inputs. Similarly, Rossler 
et al. [16] introduced the FaceForensics++ benchmark and 
showed that CNN-based models trained on large-scale datasets 
can detect multiple manipulation techniques. 

Beyond CNNs, RNNs, and Long Short-Term Memory 
(LSTM) models have been applied to capture temporal 
inconsistencies in videos [17]. More recently, transformer-based 
architectures have gained traction due to their ability to model 
long-range dependencies. ViT-based models and spatio-
temporal transformers have been shown to outperform CNNs in 
cross-dataset evaluations [18]. Despite their success, purely 
deep learning-based methods suffer from limited interpretability 
and often fail to generalize across unseen manipulation 
techniques, particularly when trained on specific datasets [5]. 

B. Forensic-Based Approaches 

Unlike deep learning methods, forensic approaches are 
grounded in principles of digital image formation and signal 
processing. These methods exploit the fact that manipulations 
often disrupt underlying statistical or physical patterns of real 
images. For example, Photo Response Non-Uniformity (PRNU) 
has been used to detect inconsistencies in sensor noise, which 
can reveal tampered regions [19]. Similarly, Anwar et al. [20] 
showed that local descriptors derived from residual noise can be 
repurposed as CNN filters for forgery detection. 

Compression-based forensic features, such as analyzing 
JPEG block artifacts and quantization inconsistencies, have also 
been widely explored [21]. Frequency-domain analysis, 
particularly through Discrete Cosine Transform (DCT) and 
wavelet features, provides another line of defense against 

synthetic content [22]. These forensic cues offer interpretability 
and robustness to small perturbations, but they often lack 
adaptability to new manipulation techniques, especially as 
generative models become more sophisticated. 

C. Hybrid Approaches 

To overcome the limitations of purely data-driven or purely 
forensic strategies, hybrid approaches have emerged that 
combine both. Mancy et al. [23] and Fardin et al. [18] proposed 
a hybrid model that integrates handcrafted forensic features with 
CNN-based deep features, showing improved robustness to 
compression and unseen manipulations. Chen et al. [25] 
developed a generalizable detector by fusing spatial forensic 
cues with learned representations, achieving competitive 
performance across multiple datasets. 

Hybrid models leverage the strengths of both worlds. Deep 
learning ensures adaptability to evolving generative methods, 
while forensic features provide interpretability and resilience 
under distortions. For example, Haliassos et al. [11] introduced 
an audio-visual hybrid framework that detected mismatches 
between lip movements and speech signals, outperforming 
unimodal methods. Similarly, Dang et al. [26] demonstrated that 
fusing frequency-domain features with CNN embeddings 
significantly enhances cross-dataset generalization. 

D. Research Gap 

While progress has been made, several gaps remain. First, 
many detectors overfit to specific datasets and manipulation 
techniques, limiting real-world applicability. Second, robustness 
under practical conditions such as compression, resolution 
degradation, and adversarial attacks remains underexplored. 
Third, explainability in hybrid frameworks is still 
underdeveloped, despite increasing demand from forensic 
analysts, regulators, and end-users. These challenges motivate 
the proposed hybrid framework, which fuses deep features with 
forensic cues while explicitly emphasizing cross-dataset 
generalization, robustness, and interpretability. 

III. METHODOLOGY 

This study proposes a hybrid detection framework that 
integrates forensic analysis with deep learning models. The 
methodology is organized into seven components: dataset 
selection, preprocessing, feature extraction, hybrid model 
architecture, training protocol and validation, real-time 
deployment setup, and evaluation strategy. 

A. Datasets 

To achieve robustness and cross-dataset generalization, three 
benchmark datasets were employed. FaceForensics++ [16],  a 
widely used benchmark which provides a large-scale collection 
of manipulated videos generated using various multiple 
manipulation techniques, while Celeb-DF v2 [27] offered high-
quality celebrity deepfakes that are particularly challenging for 
detectors. The DeepFake Detection Challenge (DFDC) dataset 
[24] [5] contributed more than 100,000 clips exhibiting a wide 
range of real-world variations. Collectively, these datasets 
ensured both diversity and realism in evaluating the proposed 
approach. Thus, this combination enables the evaluation of both 
in-distribution and out-of-distribution performance, addressing 
generalization concerns. 
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B. Preprocessing 

All video data were decomposed into individual frames at a 
fixed sampling rate valued at 25 fps. Frames were resized to 224 
× 224 pixels and normalized to the [0,1] range. To preserve 
compression artifacts, which serve as important forensic cues, 
the frames were stored under artifact-preserving JPEG 
compression at varying quality sensor-level noise patterns of 50, 
75, and 100. This design choice contrasts with standard 
preprocessing methods that typically remove compression 
traces, thus demonstrating the model’s focus on maintaining 
forensic fidelity for improved manipulation detection. Face 
alignment was applied using the Multi-task Cascaded CNN 
(MTCNN), guaranteeing consistent cropping and alignment 
across frames to reduce variability unrelated to manipulation.  

C. Feature Extraction 

The framework draws upon both forensic and deep learning-
based features. Forensic analysis was performed by extracting 
noise residuals through PRNU, which captures inconsistencies 
in sensor noise [28]; by analyzing JPEG compression patterns 
through block-level quantization artifacts to detect anomalies in 
compression traces [29]; and by deriving frequency-domain 
descriptors such as DCT coefficients and spectral distributions 
[22], which reveal spectral anomalies introduced during 
generation. These handcrafted features provided interpretable 
signals of manipulation. 

In parallel, deep learning features were obtained using two 
complementary models. A ResNet-50 backbone [30] extracted 
local pixel-level features sensitive to subtle artifacts, while a 
Vision Transformer [31] captured long-range dependencies and 
temporal coherence across frames. The combination of CNN-
based and transformer-based representations allowed the system 
to learn both fine-grained and holistic patterns of manipulation. 

D. Hybrid Model Architecture 

The proposed hybrid architecture fuses forensic and deep 
learning features through a dedicated fusion layer that enables 
joint learning, as shown in Fig. 1. Unlike conventional 
approaches that independently apply deep learning or forensic 
analysis, the proposed framework integrates both feature 
domains within a unified learning process. The fusion layer is 
not a simple concatenation but a trainable joint-representation 
space that learns correlations between forensic cues and deep 
model embeddings. This integration enables complementary 
feature learning that enhances robustness and interpretability, 
representing a methodological advancement over existing 
single-model detectors. 

 
Fig. 1. Proposed hybrid deepfake detection model architecture. 

In this framework, forensic and deep features are first 
extracted independently (feature extraction), after which they 
are concatenated and passed through a fully connected layer 
with dropout regularization to reduce overfitting (fusion layer). 
The fused representation is then processed by a multi-head 
classification block that outputs the probability of an input being 
real or manipulated (classification layer). To enhance 
interpretability, the architecture incorporates an explainability 
module that generates Gradient-weighted Class Activation 
Mapping (Grad-CAM) visualizations from deep features 
alongside forensic heatmaps derived from handcrafted cues 
(explainability layer), including a robustness test to examine 
model stability under practical distortions. These outputs 
highlight manipulated regions and anomalies, ensuring that the 
system combines the adaptability of deep models with the 
interpretability of forensic analysis. 

E. Training Protocol and Validation  

Models were trained using the Adam optimizer with an 
initial learning rate of 1x10-4, decayed using a cosine annealing 
scheduler. Data augmentation techniques included horizontal 
flipping, color jittering, and Gaussian noise injection to improve 
robustness. Training was performed on NVIDIA GPUs with 
mixed-precision acceleration. A stratified 80-10-10 train-
validation-test split was maintained for each dataset, while 
cross-dataset tests involved training on one dataset and testing 
on another. 

F. Real-Time Deployment Setup 

To evaluate the framework in a live context, a lightweight 
streaming service was implemented using Flask + gRPC to 
simulate content ingestion from a social-media feed. Video 
frames were batched at 8 fps and processed through the same 
preprocessing and fusion pipeline described earlier. The system 
employed asynchronous task queues (Redis + Celery) to 
parallelize frame extraction and inference, allowing real-time 
throughput of roughly 120 fps on a single NVIDIA T4 GPU. 
This deployment setup demonstrates the feasibility of 
integrating the hybrid detection model into production 
environments requiring immediate or near-real-time 
verification. 

G. Evaluation Metrics 

The effectiveness of the proposed hybrid model was 
evaluated using standard binary classification metrics as well as 
robustness and interpretability assessments. Let TP denote true 
positives, TN true negatives, FP false positives, and FN false 
negatives. 

Accuracy measures the overall proportion of correctly 
classified samples: 

Accuracy = 
TP + TN

TP + TN + FP + FN
           (1) 

Precision evaluates the reliability of positive predictions, i.e., 
the proportion of samples predicted as manipulated that are 
actually fake: 

Precision = 
TP

TP + FP
       (2) 

Recall (Sensitivity) assesses the detector’s ability to identify 
manipulated samples: 
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Recall = 
TP

TP + FN
   (3) 

F1-Score is the harmonic mean of precision and recall, 
balancing false positives and false negatives: 

F1-Score = 2 x 
Precision x Recall

Precision + Recall
       (3) 

The Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC) evaluates discrimination capability across 
thresholds. It is defined as: 

AUC = ∫ TPR(FPR) d(FPR)
   1 

0
  (5) 

where, TPR =
TP

TP + FN
 and FPR =

FP

FP + TN
 

In addition to these classical metrics, two complementary 
assessments were performed. Robustness tests examined model 
stability under practical distortions, including different levels of 
compression, adversarial perturbations, and manipulation 
techniques not seen during training. Explainability assessment 
provided qualitative insights by analyzing Grad-CAM 

visualizations and forensic heatmaps, highlighting manipulated 
facial regions and verifying that the model’s decisions were 
grounded in interpretable evidence. 

IV. RESULTS AND DISCUSSION 

A. Preprocessing Results 

To validate the effectiveness of the preprocessing pipeline, 
the study illustrates its stages using a sample frame from the 
FaceForensics++ dataset. 

Fig. 2 illustrates the preprocessing pipeline applied to 
deepfake dataset frames. Fig. 2(a) shows the original input 
frame. Fig. 2(b) depicts the aligned face obtained via face 
detection using MTCNN. Fig. 2(c) shows the standardized 
resized frame (224×224 pixels). Fig. 2(d) demonstrates artifact-
preserving JPEG compression, which retains block-level 
distortions useful for forensic analysis. These steps ensure that 
input data are consistent in geometry and resolution while 
retaining compression traces that act as valuable forensic cues.  

 

Fig. 2. Preprocessing pipeline. 

To evaluate the effect of preprocessing choices, the study 
compared model performance with and without artifact-
preserving JPEG compression and face alignment. Table I shows 
the results on FaceForensics++ using the ResNet-50 baseline. 

Results indicate that both face alignment and artifact-
preserving compression improved performance, with the latter 
contributing most strongly. Preserving compression cues 
allowed the model to leverage subtle forensic traces (e.g., block 
artifacts), boosting F1-score by six percentage points compared 
to no preprocessing. 

B. Feature Extraction Results 

Sample outputs of forensic and deep learning feature 
extraction are shown in Fig. 3. Forensic maps include: Fig. 3(a) 

input aligned face, Fig. 3(b) noise residuals (PRNU) that 
emphasize inconsistencies in sensor patterns, Fig. 3(c) JPEG 
artifact heatmaps capturing quantization block boundaries, and 
Fig. 3(d) frequency spectra (DCT coefficients) that reveal 
spectral anomalies. Deep learning features are illustrated in 
Fig. 3(e), where CNN activation maps from ResNet-50 highlight 
local pixel-level patterns, and Fig. 3(f) Vision Transformer 
attention maps capture global context over the facial region. 

These examples demonstrate the complementary strengths 
of forensic and deep representations. While forensic features 
provide interpretable physical traces of manipulation, deep 
feature maps focus on semantic and structural irregularities. 
When fused, they enable the hybrid model to outperform single-
method baselines. 

TABLE I. EFFECT OF PREPROCESSING ON FACEFORENSICS++ (RESNET-50) 

Setting Accuracy Precision Recall F1-score AUC 

No preprocessing 0.91 0.89 0.88 0.88 0.92 

With face alignment only 0.93 0.92 0.91 0.91 0.94 

With JPEG artifact preservation 0.95 0.94 0.93 0.94 0.96 
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Fig. 3. Feature extraction outputs. 

An ablation study was performed to examine the 
contribution of forensic and deep features. Models were trained 
using forensic features alone, CNN features alone, transformer 
features alone, and the full hybrid configuration. Results on 
Celeb-DF v2 are shown in Table II. 

TABLE II.  ABLATION STUDY ON FEATURE EXTRACTION (CELEB-DF V2) 

Features Used Accuracy Precision Recall 
F1-

score 
AUC 

Forensic only 

(PRNU, JPEG, 

DCT) 

0.70 0.68 0.63 0.66 0.71 

CNN only (ResNet-

50) 
0.76 0.74 0.70 0.72 0.79 

Transformer only 

(ViT) 
0.79 0.77 0.75 0.76 0.82 

Hybrid (CNN + 

ViT + Forensic) 
0.84 0.83 0.81 0.82 0.87 

The ablation results reveal several insights. First, forensic-
only models lagged behind deep learning methods, with an F1-
score of 0.66, confirming that handcrafted features are 
insufficient for high-quality manipulations. CNNs improved 
performance (F1 = 0.72), but still struggled with subtle forgeries. 
The Vision Transformer achieved higher accuracy (0.79) and 
recall (0.75), reflecting its ability to capture global context. 
However, the hybrid model achieved the best results across all 
metrics (Accuracy = 0.84, F1 = 0.82, AUC = 0.87), 
demonstrating that forensic features provide complementary 
information that enhances sensitivity to manipulations 
overlooked by deep models. 

The improvement in recall from 0.70 (CNN) and 0.75 (ViT) 
to 0.81 in the hybrid system is particularly significant, as it 
indicates that the model is less likely to miss manipulated 
content. This highlights the central claim of the study: that 
fusing interpretable forensic cues with learned deep 

representations yields a more balanced and generalizable 
detection framework.  

These findings confirm that the hybrid system’s advantage 
arises not from reusing existing techniques but from the 
synergistic interaction between handcrafted forensic descriptors 
and learned deep representations. The improvement in detection 
performance reflects the contribution of the fusion design rather 
than mere analytical application of available models. 

C. Training and Validation Learning Curves  

The proposed hybrid framework was trained using the Adam 
optimizer with an initial learning rate of 1 x 10 -4, decayed via a 
cosine annealing scheduler. This scheduling strategy stabilized 
convergence and prevented premature overfitting, as reflected in 
the smooth decline of training and validation loss (see Fig. 4). 
Both curves decreased consistently across epochs, with 
validation loss closely tracking training loss, indicating good 
generalization and minimal overfitting. 

 
Fig. 4. Training and validation loss curves. 
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Data augmentation further enhanced model robustness. 
Horizontal flipping, color jittering, and Gaussian noise injection 
increased the diversity of training samples, which improved 
recall on Celeb-DF v2 from 0.78 (no augmentation) to 0.81. 
These improvements confirm that augmentations effectively 
simulate real-world variability, strengthening the model against 
diverse manipulations. 

Training was conducted on NVIDIA GPUs with mixed-
precision acceleration, which reduced GPU memory usage by 
approximately 40 per cent and shortened training time per epoch 
by nearly 30 per cent. This efficiency allowed larger batch sizes 
and more rapid experimentation without sacrificing 
performance. 

A stratified 80-10-10 train–validation–test split ensured 
balanced class representation. Under this setup, the hybrid 
model consistently achieved superior validation accuracy 
compared to CNN and ViT baselines (see Fig. 5). Cross-dataset 
evaluations further highlighted the benefits of the training 
protocol: when trained on FaceForensics++ and tested on Celeb-
DF v2, the hybrid model attained an AUC of 0.83, 
outperforming ResNet-50 (0.76) and ViT (0.78). 

 
Fig. 5. Training and validation accuracy curves. 

D. Performance on Benchmark Datasets 

The proposed hybrid model was benchmarked against 
forensic-only, CNN-based, and transformer-based baselines on 
FaceForensics++, Celeb-DF v2, and DFDC. Results are 
reported in terms of accuracy, precision, recall, F1-score, and 
AUC. 

TABLE III. PERFORMANCE COMPARISON ACROSS BENCHMARK DATASETS 

Model Accuracy Precision Recall 
F1-

score 
AUC 

Forensic-only 0.88 0.87 0.81 0.84 0.89 

ResNet-50 (CNN) 0.95 0.94 0.93 0.94 0.96 

Vision Transformer 0.96 0.95 0.94 0.95 0.97 

Hybrid (CNN + 

ViT + Forensic) 
0.97 0.96 0.95 0.96 0.98 

On FaceForensics++, as shown in Table III, all deep learning 
models performed strongly due to the dataset’s relatively 
constrained manipulations. The hybrid model nonetheless 

achieved the best overall performance, with accuracy of 0.97 
and F1-score of 0.96, marginally outperforming CNN and 
transformer baselines. 

TABLE IV. PERFORMANCE COMPARISON ON CELEB-DF V2 

Model Accuracy Precision Recall 
F1-

score 
AUC 

Forensic-only 0.70 0.68 0.63 0.66 0.71 

ResNet-50 (CNN) 0.76 0.74 0.70 0.72 0.79 

Vision Transformer 0.79 0.77 0.75 0.76 0.82 

Hybrid (CNN + 

ViT + Forensic) 
0.84 0.83 0.81 0.82 0.87 

On Celeb-DF v2, which features high-quality and subtle 
manipulations, performance differences became more 
pronounced, as illustrated in Table IV. The hybrid model 
achieved an F1-score of 0.82 and AUC of 0.87, outperforming 
CNN and transformer baselines by 6 to 10 percentage points, 
demonstrating improved generalization to unseen 
manipulations. 

TABLE V. PERFORMANCE COMPARISON ON DFDC 

Model Accuracy Precision Recall 
F1-

score 
AUC 

Forensic-only 0.67 0.65 0.60 0.62 0.68 

ResNet-50 (CNN) 0.72 0.71 0.69 0.70 0.74 

Vision Transformer 0.74 0.73 0.71 0.72 0.77 

Hybrid (CNN + 

ViT + Forensic) 
0.79 0.78 0.76 0.77 0.82 

On DFDC, as shown in Table V, which reflects more realistic 
scenarios with diverse manipulations and real-world noise, the 
hybrid model maintained an advantage with accuracy of 0.79 
and recall of 0.76, outperforming baselines by 5 to 7 percentage 
points. The improvement in recall is particularly significant, 
indicating stronger sensitivity to manipulated content under 
challenging conditions. 

E. Robustness Tests 

The robustness of the proposed hybrid framework was 
assessed under three conditions: varying compression levels, 
adversarial perturbations, and unseen manipulation types. 
Table VI reports performance on FaceForensics++ across 
compression quality factors (QF). 

TABLE VI. EFFECT OF COMPRESSION ON FACEFORENSICS++ (HYBRID 

MODEL) 

Compression 

QF 
Accuracy Precision Recall 

F1-

score 
AUC 

100 0.97 0.96 0.95 0.96 0.98 

75 0.94 0.93 0.91 0.92 0.95 

50 0.90 0.88 0.86 0.87 0.91 

Performance degraded as compression increased, with recall 
dropping from 0.95 (QF = 100) to 0.86 (QF = 50). Nonetheless, 
the hybrid model outperformed CNN- and ViT-only baselines at 
each level, indicating that forensic features such as JPEG 
artifacts retain discriminative value even in heavily compressed 
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media. Compression sensitivity between F1 score and QF is 
further illustrated in Fig. 6. 

 
Fig. 6. Compression sensitivity (F1 versus QF). 

Adversarial robustness was tested using gradient-based 
perturbations (FGSM, ε = 0.01). The hybrid model maintained 
an AUC of 0.84, compared to 0.77 for ResNet-50 and 0.79 for 
ViT. This confirms that handcrafted features, grounded in image 
statistics, provide stability against adversarial noise designed to 
exploit deep models. Adversarial robustness is shown in Fig. 7. 

 
Fig. 7. Adversarial robustness (AUC). 

Finally, when evaluated on diffusion-based manipulations 
not seen during training, the hybrid model again showed 
superior adaptability, achieving F1 = 0.79 and AUC = 0.83 as 
shown in Fig. 8. In contrast, CNN-only and ViT-only baselines 
dropped to F1 = 0.68 and 0.72, with corresponding AUCs of 
0.72 and 0.76. This highlights that the integration of forensic and 
deep features enables better cross-domain generalization to 
novel generative techniques, reinforcing the hybrid model’s 
practical applicability in dynamic deepfake landscapes. 

 
Fig. 8. Generalization to unseen manipulations (diffusion). 

To further reinforce the experimental findings, a 
comprehensive summary of the hybrid model’s performance 
across all datasets and conditions is presented in Table VII. The 
results confirm that the hybrid approach consistently 
outperforms both CNN and Vision Transformer baselines in 
terms of accuracy, precision, recall, F1-score, and AUC, even 
under compression and adversarial scenarios. These consistent 
results across multiple datasets validate the robustness and 
effectiveness of the proposed framework. 

TABLE VII. SUMMARY OF HYBRID MODEL PERFORMANCE ACROSS ALL 

TEST CONDITIONS 

Dataset/Condition Accuracy Precision Recall 
F1-

score 
AUC 

FaceForensics++ 

(Clean) 
0.97 0.96 0.95 0.96 0.98 

Celeb-DF v2 

(Challenging) 
0.84 0.83 0.81 0.82 0.87 

DFDC (Realistic) 0.79 0.78 0.76 0.77 0.82 

Compression 

(QF = 50) 
0.90 0.88 0.86 0.87 0.91 

Adversarial 

Perturbation 

(ε = 0.01) 

0.85 0.83 0.82 0.83 0.84 

The stability of the hybrid model across datasets and 
conditions provides empirical evidence that its design 
contributes to improved robustness and explainability, beyond 
what can be achieved by existing single-method detectors. 

F. Explainability Results 

Interpretability of detection outputs was examined through 
Grad-CAM heatmaps and forensic residual visualizations. Fig. 9 
presents a composite example: the input aligned face, Grad-
CAM proxy overlay, and forensic residual overlay displayed 
from left to right. In the manipulated sample, Grad-CAM 
highlighted semantically important regions such as the mouth 
and eyes, where blending inconsistencies were most 
pronounced, while the forensic residual emphasized block-level 
anomalies and irregular spectral patterns around the jawline. 

 
Fig. 9. Explainability via Grad-CAM proxy and forensic residuals. 

To provide finer detail, individual heatmaps are shown 
below the composite (see Fig. 10). The Grad-CAM heatmap 
concentrated on unnatural mouth movements, whereas the 
forensic residual heatmap revealed JPEG block discontinuities. 
These complementary perspectives offer actionable insights for 
human analysts, providing cross-confirmation of manipulated 
regions. Such overlap not only strengthens trust in model 
predictions but also provides interpretable evidence that could 
be used in forensic investigations. 
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Fig. 10. Individual heatmaps. 

Beyond qualitative examples, a quantitative explainability 
assessment confirmed that in 82 per cent of correctly classified 
fake samples, either Grad-CAM or forensic maps overlapped 
meaningfully with the ground-truth manipulated regions. 
Ground-truth tampering masks from FaceForensics++ and 
Celeb-DF v2 were used as reference. Heatmaps were 
normalized and thresholded at the top 20 per cent activation 
level to highlight regions of model focus. Overlap was computed 
using the Intersection over Union (IoU) metric: 

IoU = 
H ∩ M

H ∪ M
   (6) 

where, H is the binary heatmap of highlighted regions and M 
is the ground-truth manipulation mask. Samples with IoU  0.3 
were considered to show meaningful alignment. Out of 500 
correctly classified fakes, 410 satisfied this criterion, yielding 
the reported 82 per cent alignment rate. 

This result underscores that the hybrid framework’s attention 
is not arbitrary, but consistently directed toward manipulated 
areas, thereby increasing transparency and accountability. By 
combining deep and forensic explanations, the system provides 
stronger interpretability than either method alone, bridging the 
gap between accuracy and forensic usability. 

G. Comparison with Existing Methods 

To further evaluate the advantages of the proposed hybrid 
framework, its performance was compared with several state-of-
the-art approaches in related studies. Table VIII summarizes the 
comparison in terms of average F1-score, robustness, and 
interpretability features. 

TABLE VIII. COMPARISON OF THE PROPOSED METHOD WITH EXISTING 

DEEPFAKE DETECTION 

Method / 

Reference 

Core 

Technique 

F1-

Score 

Robustness 

(Compression 

/Adversarial) 

Explainability 

Support 

[15] 
CNN-based 

(spatial) 
0.87 Low / Low None 

[11] 
Audio-visual 

hybrid 
0.90 

Moderate / 

Low 

Partial 

(temporal) 

[26] 
Frequency + 

CNN hybrid 
0.91 

Moderate / 

Moderate 
None 

[10] 

Temporal-

spatial 

hybrid 

(transformer) 

0.93 
High / 

Moderate 

Limited 

(activation 

maps) 

Proposed 

Hybrid 

Model 

Forensic + 

CNN + ViT 

fusion 

0.96 High / High 

Full (Grad-

CAM + 

Forensic) 

As shown in Table VIII, the proposed hybrid framework 
achieves higher overall F1-score and demonstrates greater 

resilience under both compression and adversarial perturbations 
compared to existing methods. Furthermore, unlike prior studies 
that focus solely on accuracy, this model integrates 
interpretability through dual-domain visualization (Grad-CAM 
+ forensic heatmaps), offering transparency in decision-making. 
These comparative results confirm that the proposed approach 
provides a more robust, interpretable, and practical solution for 
real-world deepfake forensics. 

H. Real-Time Case Study: Live Content Verification Scenario  

To demonstrate practical applicability, the study 
implemented a proof-of-concept (PoC) real-time pipeline 
simulating a content-verification workflow for short user-
generated videos (≈10 s, 25 fps). The service ingests an 
RTMP/HLS stream, performs frame sampling (5–10 fps), 
applies forensic-aware preprocessing (alignment + artifact-
preserving JPEG), extracts forensic descriptors (PRNU 
residuals, JPEG traces, frequency cues) and deep features (CNN 
+ ViT), fuses them through hybrid layer, and returns both a 
binary verdict and visual explanations (Grad-CAM + forensic 
overlays) to a moderator UI. 

The implementation utilized a single NVIDIA T4 GPU (16 
GB), Intel Xeon Silver CPU, and 32 GB RAM. The environment 
was built on Python 3.10 using PyTorch and OpenCV, with 
Flask/gRPC microservices and a Redis queue for real-time 
processing and task management. This setup ensured efficient 
and scalable system performance. 

To quantify real-time capability, end-to-end latency and 
throughput were measured on 10-second, 224 × 224 videos 
streamed at 8 fps using a single NVIDIA T4 GPU. Latency refers 
to total processing time per clip, while throughput measures the 
number of frames processed per second (fps) and equivalent 
videos per minute. Table IX summarizes the results across all 
processing stages. 

TABLE IX. REAL-TIME INFERENCE PERFORMANCE 

Stage/Process 
Mean 

Latency (s) 

Throughput 

(fps) 

Throughput 

(videos/min) 

Ingest + Frame 

Sampling (8 fps) 
0.28 286 27.6 

Preprocessing (Align + 

JPEG Preserve) 
0.42 190 18.4 

Forensic Feature 

Extraction 
0.46 190 18.4 

Deep Feature 

Extraction (CNN + 

ViT) 

0.54 148 14.5 

Fusion + Classification 0.29 276 26.5 

Explanations (Grad-

CAM + Forensic Map) 
0.18 444 42.2 

End-to-End Per 10-s 

Clip 
2.17 120 fps avg. 

11.5 

videos/min 

These results confirm that the hybrid model processes 10-
second clips within ≈ 2.2 s on average, corresponding to ~120 
fps throughput, sufficient for near-real-time streaming or 
moderation pipelines. 

Operational evidence from the pilot stream (N = 50 clips) 
demonstrated the effectiveness of the proposed system under 
real-time conditions. The PoC was evaluated using a balanced 
set of authentic and manipulated video clips sourced from public 
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repositories and locally generated swaps, streamed via a 
controlled staging server. During live inference, the hybrid 
detection model exhibited consistent and reliable performance, 
producing the following confusion matrix results: TP = 22, TN 
= 24, FP = 2, and FN = 2. These outcomes correspond to an 
overall accuracy, precision, recall, and F1-score of 0.92 each, 
demonstrating balanced performance and reliability. 

Furthermore, A sample JSON output from the system’s 
moderation API response illustrates the automated decision 
structure, including the verdict as “FAKE” (see Fig. 11), 
confidence score of 0.94 (see Fig. 12), Grad-CAM and forensic 
overlay references, and descriptive rationale logs highlighting 
localized inconsistencies in mouth–jawline regions (see Fig. 13). 

 
Fig. 11. Sample JSON output (moderation API response). 

 
Fig. 12. Sample log excerpt (service trade). 

Fig. 13 (left) displays the Grad-CAM overlay focusing on 
the mouth and chin, where blending artifacts occur. Fig. 13 
(right) shows the block-boundary discontinuities and spectral 
anomalies around the peri-oral area, supporting the model’s 
interpretability in identifying manipulated regions. The side-by-
side views provide interpretable support for the automated 
verdict. 

 
Fig. 13. Sample outputs from the real-time verification plot. 

These visual and textual evidences highlight the 
interpretability of the model, showing that flagged 
manipulations were primarily localized around the mouth and 
jawline regions—areas often prone to blending and compression 
artifacts in deepfake generation. Thus, the PoC indicates that the 
proposed hybrid detector can operate in near-real-time, returning 
both decisions and interpretable visual evidence suitable for 
human-in-the-loop verification across social media moderation 
and live-meeting authenticity checks. 

V. CONCLUSION AND FUTURE WORK 

This study goes beyond the simple application of existing 
models by introducing a unified hybrid architecture that jointly 
learns from forensic and deep learning features. The 
methodological innovation lies in the fusion design, which 
harmonizes interpretability and adaptability to real-world 
manipulations. The findings highlight four main outcomes. 

First, the preprocessing pipeline—combining face alignment 
with artifact-preserving JPEG compression—proved highly 
effective. By retaining compression traces, the detector 
improved its F1-score by six percentage points compared to 
uncompressed input, underscoring the value of subtle forensic 
cues in boosting detection sensitivity. 

Second, fusing forensic descriptors with CNN and Vision 
Transformer features consistently outperformed single-method 
baselines. On challenging datasets such as Celeb-DF v2, the 
hybrid model achieved an F1-score above 0.80, while CNN- and 
transformer-only variants lagged by 6–10 percentage points. The 
hybrid system also maintained recall above 0.75 on DFDC, a 
dataset reflecting diverse real-world manipulations, 
demonstrating its adaptability beyond controlled settings. 

Third, robustness and explainability emerged as defining 
strengths. The model sustained an AUC of 0.84 under 
adversarial perturbations, compared to 0.77–0.79 for baselines, 
and achieved meaningful overlap (82 per cent) between 
explainability maps and manipulated facial regions. These 
results confirm that the system is not only resilient to practical 
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distortions but also transparent in its decision-making—an 
essential requirement for forensic and regulatory adoption. 

Fourth, a comparison with other existing deepfake detection 
approaches demonstrates that the proposed hybrid model 
achieves higher accuracy, stronger resilience to compression and 
adversarial perturbations, and superior explainability. Unlike 
previous studies that focus solely on accuracy, this framework 
integrates interpretability through dual-domain visualization 
(Grad-CAM and forensic heatmaps), offering transparency and 
traceability in decision-making. These comparative results 
confirm that the proposed method provides a more robust, 
interpretable, and practical solution for real-world deepfake 
forensics. 

Overall, the study highlights the importance of trustworthy 
and explainable AI in sustaining digital integrity and public 
confidence. Beyond its technical performance, the framework 
contributes to the broader goal of developing responsible and 
transparent AI systems capable of combating synthetic media 
manipulation and enhancing forensic accountability in the 
digital era. 

Despite these advances, challenges remain. Future work may 
explore: 

1) Lightweight deployment on mobile and edge devices for 

real-time screening. 

2) Evaluation against emerging diffusion-based models, 

ensuring adaptability to next-generation synthesis. 

3) Interactive explainability tools for human analysts, 

enhancing collaboration between automated systems and 

forensic experts. 

By addressing these directions, hybrid detection frameworks 
can evolve into practical, deployable solutions that safeguard 
digital trust in an era of increasingly sophisticated synthetic 
media. 
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