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Abstract—Facial expression recognition (FER) under partial 

occlusion remains a challenging task, especially when key regions 

of the face, such as the mouth and nose, are covered by medical 

masks. Such conditions significantly reduce the discriminative 

features available for accurate emotion recognition, limiting the 

effectiveness of conventional full-face approaches. To address this 

issue, this study proposes a part-based learning framework that 

partitions the face into multiple regions, allowing the model to 

exploit unoccluded areas for expression recognition. The proposed 

method employs Support Vector Machine (SVM) classifiers 

trained on Histogram of Oriented Gradients (HoG) features 

extracted from 2, 3, 4, and 6 facial partitions. Each part-based 

model is trained independently, and their outputs are combined 

through a weighted soft voting ensemble mechanism to generate 

the final prediction. The experiments were conducted on the 

MaskedFER2013 dataset, which contains 31,116 grayscale facial 

images (48×48 pixels) distributed across seven emotion classes. 

The results demonstrate that the four-part model achieves the best 

performance, reaching an accuracy of 45%, outperforming both 

single-part models and full-face baselines under occlusion 

scenarios. These findings confirm that the proposed part-based 

ensemble approach enhances the robustness of FER systems by 

effectively leveraging complementary regional features, thereby 

providing a promising solution for real-world applications, where 

facial occlusion is unavoidable. 
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I. INTRODUCTION 

Facial expressions are among the most critical indicators of 
human emotion in visual communication, serving as an essential 
channel for conveying affective states such as happiness, 
sadness, anger, fear, surprise, and disgust [1]. Unlike verbal 
communication, facial expressions provide immediate and 
universal cues that enable individuals to understand others' 
emotional states. FER has become an important research field 
with applications in human-computer interaction, healthcare, 
affective computing, surveillance, driver fatigue detection, and 
entertainment systems [2]. Integrating FER into modern 
intelligent systems enhances their adaptability, naturalness, and 
responsiveness, allowing machines to interact more effectively 
with humans. 

Despite its broad potential, FER remains a challenging task, 
particularly in scenarios where faces are partially occluded. 
Objects such as sunglasses, hands, or medical face masks often 
obstruct critical regions of the face, reducing the discriminative 
power of visual features. This problem has become even more 
critical during and after the COVID-19 pandemic, when the 
widespread use of medical masks made occlusion a common 

condition in everyday environments [3], [4]. Since key regions 
like the mouth and chin play a central role in expressing 
emotions, their absence poses significant difficulties for 
conventional FER models that assume complete face visibility. 
Occlusion of critical regions such as the mouth and chin 
significantly degrades recognition accuracy because traditional 
FER models are typically trained on unobstructed faces and rely 
on holistic features. 

Recent research has focused on developing robust methods 
under occlusion to address these challenges. Several occlusion-
specific datasets, such as MaskedFER2023 [5], have been 
introduced to reflect real-world scenarios where masks and other 
obstacles hide facial features. These datasets provide valuable 
benchmarks for advancing FER systems that must operate 
reliably in post-pandemic conditions. Moreover, traditional 
holistic approaches have been increasingly complemented by 
part-based learning strategies, which divide the face into 
localized regions (e.g., upper face, lower face, or quadrants) [6]. 
It allows the system to extract meaningful features from the 
visible areas even when some parts are hidden. 

The main contribution of this study is introducing a Partial 
Part Model (PPM) combined with ensemble learning to enhance 
FER under partial occlusion. Unlike previous approaches that 
treat the face as a whole, the proposed method divides the face 
into multiple regions, allowing the system to preserve and 
exploit discriminative features from visible areas while ignoring 
occluded regions. Feature extraction is performed using HoG, 
which ensures computational efficiency and robustness against 
variations in illumination and scale. Each facial part is 
independently classified using SVM, chosen for their strong 
performance in small- to medium-sized datasets and their 
interpretability [7], [8]. However, its performance tends to 
deteriorate markedly when facial images are affected by partial 
occlusion. This degradation occurs because SVM typically 
relies on global feature representations, making it sensitive to 
missing or distorted regions. When essential facial areas such as 
the mouth are covered by objects like medical masks, the 
resulting feature vectors become less discriminative and less 
representative of the true facial expression. Consequently, a 
major challenge arises in enhancing the robustness of SVM-
based systems to maintain reliable recognition performance 
under occluded conditions [9]. The outputs of these classifiers 
are then aggregated through a soft voting ensemble strategy, 
producing a final decision that leverages complementary 
information across regions. 

This study is organized as follows: Section II presents the 
theoretical background and related works on FER and occlusion 
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handling methods. Section III describes the proposed 
methodology, including the Partial Part Model, feature 
extraction process, and ensemble learning strategy. Section IV 
details the experimental setup, dataset description, and 
evaluation metrics used in this study. It also discusses the 
experimental results and provides an analysis of the model’s 
performance under partial occlusion. Section V concludes the 
study. 

II. RELATED WORK 

FER under partial occlusion, particularly with face masks, 
has gained increasing attention recently. In [10], masked facial 
datasets were introduced, and recognition performance was 
evaluated, reporting an accuracy of 51.9%, which highlights the 
difficulty of the task. Building on this, [5] proposed two new 
datasets, MaskedFER2023 and MaskedCK+, demonstrating 
improved accuracies of 61% and 63%, respectively. These 
studies emphasize the need for more robust approaches to handle 
occluded facial regions. 

In [5], the authors also discussed three previously proposed 
approaches: the Region Attention Network (RAN) [11], which 
achieved an accuracy of 53%; the Attention-CNN (ACNN) [12], 
which obtained an accuracy of 57%; and the Occlusion Adaptive 
Deep Network (OADN) proposed [13], which achieved an 
accuracy of 59%. These results highlight the incremental 
progress in addressing facial expression recognition under 
occlusion and the ongoing need for more robust and generalized 
solutions. 

Beyond dataset development, several works have explored 
different modeling strategies for FER under mask occlusion. In 
[14], a dual-model framework was proposed: one model detects 
mask presence, while another predicts emotions. The system 
achieved 95% accuracy in mask detection, while expression 
recognition performance varied between 42% and 83%. CNNs 
were employed for feature extraction, and Haar cascade 
classifiers for classification. Meanwhile, [15] combined CNN-
based FaceNet feature extraction with SVM classification, 
achieving an accuracy of 98.93%, outperforming conventional 
methods. These approaches highlight the potential of combining 
deep feature extraction with classical machine learning 
classifiers to improve robustness in occluded FER scenarios. 

In parallel, traditional FER datasets without occlusion have 
significantly contributed to the progress of the field, including 
CK+ [16], JAFFE [17], and FER2013 [18]. FER2013 provides 
a large-scale collection of 28,709 training, 3,589 validation, and 
3,589 test images across seven emotion categories. In this study, 
the Masked FER2013 dataset is adopted, which extends 
FER2013 with mask occlusion and consists of approximately 
35,900 images with variations in orientation, race, and gender. 
This dataset serves as the foundation for our experiments. 

Despite these advancements, previous research still faces 
notable limitations. Most methods rely on holistic facial 
representations, making them vulnerable when critical regions 
like the mouth or chin are obscured. Deep learning approaches, 
while powerful, often require large-scale annotated datasets and 
substantial computational resources, limiting their practicality in 
real-time or low-resource applications. Moreover, hybrid 
approaches combining CNN with SVM, although effective, 

typically treat the face as a single unit rather than considering 
the independent contribution of visible sub-regions. 

To address these gaps, this study proposes PPM integrated 
with ensemble learning, designed to enhance the robustness of 
FER under partial occlusion. The proposed method divides the 
face into multiple regions, extracts local features using HOG, 
and classifies each region independently using SVM. The 
outputs are then aggregated through a soft voting strategy, 
enabling the system to leverage complementary information 
from visible regions while minimizing the impact of occluded 
areas. 

III. METHODOLOGY 

This section presents the methodology for developing the 
proposed FER system under partial occlusion. The approach is 
based on a PPM combined with ensemble learning using SVM. 
The methodology addresses the challenges of occluded facial 
regions, particularly those covered by masks, by partitioning the 
face into multiple sub-regions and leveraging localized 
information for robust emotion classification. The following 
subsections describe the architecture of the ensemble and PPM, 
as well as the detailed algorithmic workflow of the system. 

A. The Design of the Algorithm 

The workflow of the proposed system is illustrated in Fig. 1, 
which outlines the step-by-step process for handling FER partial 
occlusion. After preprocessing, the images are partitioned into 
multiple regions (2, 3, 4, or 6), enabling the system to focus on 
localized areas that remain visible despite occlusion. This step is 
critical because certain facial regions, such as the eyes or upper 
face, often retain discriminative features even when the lower 
face is masked. 

In the training phase, HoG features are extracted from each 
partitioned region to capture essential texture and edge 
information, which is then fed into SVM) classifiers. Each SVM 
is trained independently on its corresponding region, ensuring 
that localized characteristics are learned effectively. The 
independent models are then aggregated using an ensemble 
learning strategy with weighted soft voting, where weights are 
derived from the classification performance of each sub-model. 
This approach ensures that more reliable regions contribute 
more strongly to the final decision. 

In the testing phase, the same preprocessing, partitioning, 
and feature extraction procedures are applied to unseen data. The 
outputs (probability vectors) from all regional SVM classifiers 
are aggregated through the ensemble mechanism to produce the 
final emotion prediction. This ensures consistency between 
training and inference, while also maintaining robustness 
against varying occlusion levels. 

Finally, the performance of the proposed system is 
quantitatively evaluated using standard metrics, including 
accuracy, precision, recall, and F1-score. These metrics provide 
a comprehensive assessment of the system’s effectiveness, 
capturing not only its correctness in emotion classification but 
also its ability to remain stable and reliable under different 
occlusion conditions. Together, these evaluations validate the 
robustness and generalization capability of the proposed PPM 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

278 | P a g e  
www.ijacsa.thesai.org 

combined with ensemble learning for FER under partial 
occlusion. 

 
Fig. 1. Workflow of the algorithm. 

B. Ensemble and Partial Part Models 

Fig. 2 illustrates the architecture of the PPM using an 
Ensemble SVM approach for FER under partial occlusion [19]. 
The input facial image is first divided into multiple predefined 
regions (e.g., top-left, bottom-right), each capturing different 
parts of the face. These sub-regions are processed independently 
by separate SVM classifiers, with each model trained to 
recognize emotional patterns based on its corresponding part. 

Each SVM generates a probability distribution over the 
emotion classes. These outputs are then aggregated using a soft 
voting strategy, where the final predicted label is determined by 
averaging the class probabilities across all SVMs and selecting 
the class with the highest average score. This strategy improves 
robustness by allowing the model to focus on visible and 
informative facial areas, compensating for parts affected by 
occlusion. It also ensures that even if certain regions are 
occluded or carry less expression-relevant information, other 
regions can effectively contribute to the final decision. The 
architecture is shown in Fig. 2. 

C. Dataset and Preprocessing 

The MaskedFER2013 dataset, containing 31,116 images 
sized 48×48 pixels, was used. Images were labeled into seven 

emotion classes: angry, disgust, fear, and many more. Each 
image underwent grayscale normalization and was partitioned 
into regions (2, 3, 4, or 6 parts) representing different facial areas 
[5]. This preprocessing phase is crucial, as it directly influences 
the quality of features that the model can extract. In this context, 
dominant features come from the eye and eyebrow regions, 
which typically display subtle variations across different 
emotions. Therefore, standardizing image size and format is 
essential to ensure consistent inputs for the classification model. 

 
Fig. 2. Architecture of ensemble learning and partial part models. 

Facial images were divided into several partitions to address 
the challenges posed by facial occlusion, particularly due to the 
use of masks. This partitioning strategy enables extracting 
localized features from different facial regions, which are 
combined to improve classification performance. 

Fig. 3 illustrates the partitioning strategies applied to facial 
images with partial occlusion to improve emotion recognition. 
Each row represents an emotion class (Angry, Disgust, Fear, 
Happy, Neutral, Sad, and Surprise), while the columns show the 
original preprocessed image and its partitioned forms. The two-
partition scheme divides the face into upper and lower regions, 
separating the eye and mouth areas. The three-partition scheme 
adds a middle section for finer detail. In contrast, the four-
partition scheme splits the face into quadrants (top-left, top-
right, bottom-left, bottom-right), enabling localized feature 
capture across both facial halves. This partitioning helps the 
model to differentiate features between the left and right sides of 
the face. The six-partition scheme further subdivides the image 
into top-left, top-middle, top-right, bottom-left, bottom-middle, 
and bottom-right regions, providing a highly localized 
representation at the cost of global context. These strategies 
enable complementary regional feature extraction, which 
enhances recognition performance under occlusion when 
integrated via ensemble learning. Overall, this figure 
demonstrates how different partitioning strategies will allow the 
model to capture both local and global discriminative features 
from unoccluded regions of the face. By leveraging these 
complementary partitions through ensemble learning, the 
system becomes more robust in recognizing emotions despite 
partial occlusion caused by masks. The results of the processed 
images and partition are shown in Fig. 3. 
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Fig. 3. Preprocessing and partition results. 

D. Feature Extraction 

In this stage, features were extracted from each partitioned 
image using the HoG method. HoG is particularly effective for 
capturing local edge orientations, gradient intensity, and texture 
patterns essential for distinguishing facial expressions, even 
under partial occlusion such as masks. By focusing on edge 
structures rather than pixel intensity, HoG can represent critical 
facial cues (e.g., eye contour, eyebrow shape, and forehead 
wrinkles) proper for emotion recognition. Each image partition 
produced a feature descriptor vector, which was later used as 
input for the classifiers [20]. 

E. Ensemble Prediction 

Each SVM classifier generated prediction probabilities for 
the possible emotion classes during the testing phase. Instead of 
relying on a single classifier, the outputs from all SVMs were 
aggregated using a weighted soft voting mechanism. In soft 
voting, the predicted probabilities from individual classifiers 
were averaged, and the class with the highest average probability 
was selected as the final decision. This ensemble approach 
provided robustness, combining complementary information 
from different facial regions, reducing the impact of occlusion 
or local noise. Consequently, the ensemble prediction often 
yielded better overall performance compared to relying on a 
single model [21]. 

IV. EXPERIMENTAL RESULTS 

In this study, the dataset used is MaskedFER2013, which 
includes grayscale images with masks applied to simulate real-
world occlusions. The dataset is split into two main groups to 
build and evaluate the model effectively: training data and 
testing data. From the full dataset, 80% is allocated to the 
training set and 20% to the testing set. Furthermore, the training 
set is subdivided into training and validation data, with an 80:20 
ratio. The training data is used to train each SVM model on each 
facial partition. In contrast, the validation data is used during 
hyperparameter tuning to determine the optimal configuration 
for each SVM classifier before final training. 

A. The Effect of Hyperparameter Tuning  

A comprehensive hyperparameter tuning process was 
conducted to optimize the performance of SVM classifiers 
across different image partitioning strategies. The key 
hyperparameters tuned include the kernel type, regularization 
parameter (C), and kernel coefficient (gamma). 

For the partial two-region approach, which divides the image 
into top and bottom sections, both models achieved the best 
results using the RBF kernel. The SVM Top model performed 
best with C = 5 and gamma = 1, reaching an accuracy of 31.19%, 
while the SVM Bottom model used C = 1 and gamma = 1, 
achieving 30.12%. This result indicates that both regions still 
hold significant emotional information despite mask occlusion, 
with the top region slightly outperforming the bottom. The 
optimal hyperparameter for the partial 2-Region SVM is shown 
in Table I. 

TABLE I.  OPTIMAL HYPERPARAMETER FOR PARTIAL 2 SVM 

Model Kernel C Gamma Accuracy 

SVM Top 

Linear 1 0.01 27.57% 

Poly 5 0.1 28.25% 

Rbf 5 1 31.19% 

Sigmoid 5 0.1 26.81% 

SVM Bottom 

Linear 1 0.1 26.99% 

Poly 1 0.1 28.09% 

Rbf 1 1 30.12% 

Sigmoid 0.1 0.01 26.51% 

In the three-region partitioning (Top, Mid, and Bottom), the 
RBF kernel again yielded the best performance across all 
sections. The SVM Mid model stood out with C = 1 and gamma 
= 1, achieving an accuracy of 30.54%, higher than the Top 
(28.96%) and Bottom (28.13%) regions. This result implies that 
the middle portion of the face, typically including the eyes and 
nose bridge, contains richer emotional features under partial 
occlusion. The optimal hyperparameter for the partial 3-Region 
SVM is shown in Table II. 

TABLE II.  OPTIMAL HYPERPARAMETER FOR PARTIAL 3 SVM 

Model Kernel C Gamma Accuracy 

SVM Top 

Linear 0.1 0.01 26,47% 

Poly 5 0.1 27.19% 

Rbf 5 1 28.96% 

Sigmoid 0.1 0.01 26.51% 

SVM Mid 

Linear 1 0.01 27.57% 

Poly 5 0.1 29.52% 

Rbf 1 1 30.54% 

Sigmoid 0.1 0.01 26.51% 

SVM Bottom 

Linear 0.1 0.01 26.51% 

Poly 1 0.1 26.65% 

Rbf 1 1 28.13% 

Sigmoid 0.1 0.01 26.51% 
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The four-region partitioning (Top Left, Top Right, Bottom 
Left, and Bottom Right) showed a consistent trend where all 
best-performing models used the RBF kernel with C = 5 and 
gamma = 1. Accuracies in this configuration ranged from 
29.64% to 31.05%, indicating symmetrical and localized facial 
features still provide valuable information for classification 
when the face is divided into quadrants. The optimal 
hyperparameters for the partial 4-Region SVM are shown in 
Table III. 

TABLE III.  OPTIMAL HYPERPARAMETER FOR PARTIAL 4 SVM 

Model Kernel C Gamma Accuracy 

SVM Top Left 

Linear 0.1 0.01 28.13% 

Poly 1 0.1 30.14% 

Rbf 5 1 30.72% 

Sigmoid 1 0.1 26.63% 

SVM Top Right 

Linear 0.1 0.1 28.37% 

Poly 1 0.1 30.36% 

Rbf 5 1 31.05% 

Sigmoid 0.1 0.01 26.51% 

SVM Bottom Left 

Linear 1 0.1 27.67% 

Poly 1 0.1 28.68% 

Rbf 5 1 29.66% 

Sigmoid 0.1 0.01 26.51% 

SVM Bottom Right 

Linear 0.1 0.1 27.27% 

Poly 1 0.1 29.36% 

Rbf 5 1 29.64% 

Sigmoid 1 0.1 26.67% 

The RBF kernel again dominated in performance in the most 
detailed six-region partitioning (Top Left, Top Mid, Top Right, 
Bottom Left, Bottom Mid, and Bottom Right). Most regions 
achieved optimal results with C = 5 and gamma = 1, except for 
the Top Mid region, which achieved better accuracy using C = 
1. This suggests that the Top Mid region, including the eyes, 
eyebrows, and forehead, contains more complex features and 
benefits from lower regularization to avoid overfitting. 
Accuracies in this configuration ranged from 28.56% to 30.22%. 
The optimal hyperparameter for the partial 6-Region SVM is 
shown in Table IV. 

Overall, the RBF kernel consistently produced the highest 
accuracies across all partitioning schemes, highlighting its 
effectiveness in modeling the non-linear nature of facial 
expression features. On the contrary, the sigmoid kernel showed 
the poorest performance in every scenario, indicating it is not 
suitable for this task. These findings support the hypothesis that 
local facial analysis, especially under occlusion like face masks, 
can reveal hidden expression patterns when combined with 
appropriate kernel functions and parameter settings. 

B. Result of the Evaluation Model 

To further evaluate the effectiveness of different approaches 
in handling FER under partial occlusion, a comparative analysis 
was conducted across several baseline CNN models, a non-

partial SVM, and ensemble-based partial SVM. Table V 
summarizes the performance comparison of each model and 
partitioning strategy. 

TABLE IV.  OPTIMAL HYPERPARAMETER FOR PARTIAL 6 SVM 

Model Kernel C Gamma Accuracy 

SVM Top Left 

Linear 1 1 27.15% 

Poly 1 0.1 29.02% 

Rbf 5 1 30.22% 

Sigmoid 0.1 0.01 26.51% 

SVM Top Mid 

Linear 0.1 0.1 28.31% 

Poly 1 0.1 29.70% 

Rbf 5 1 29.38% 

Sigmoid 1 0.1 26.99% 

SVM Top Right 

Linear 0.1 0.01 26.95% 

Poly 1 0.1 28.96% 

Rbf 5 1 29.94% 

Sigmoid 5 0.01 26.55% 

SVM Bottom Left 

Linear 0.1 0.1 26.81% 

Poly 1 0.1 27.37% 

Rbf 5 1 28.66% 

Sigmoid 5 0.01 26.53% 

SVM Bottom Mid 

Linear 0.1 0.1 28.11% 

Poly 1 0.1 29.10% 

Rbf 1 1 30.08% 

Sigmoid 5 0.01 27.83% 

SVM Bottom Right 

Linear 0.1 0.1 26.65% 

Poly 1 0.1 27.41% 

Rbf 5 1 28.56% 

Sigmoid 1 0.1 26.53% 

TABLE V.  RESULT COMPARISON EVALUATION MODEL 

Experiment Accuracy Precision Recall F1-Score 

Non-Partial VGG16 25% 15% 15% 10% 

Non-Partial ResNet50 14% 2% 14% 3% 

Non-Partial 

MobileNetV2 
21% 14% 15% 13% 

Non-Partial SVM 44% 50% 40% 45% 

Partial 2 SVM 43% 55% 37% 40% 

Partial 3 SVM 40% 59% 33% 34% 

Partial 4 SVM 45% 61% 39% 42% 

Partial 6 SVM 43% 67% 36% 38% 

Table V presents the comparative evaluation results of 
several non-partial deep learning models (VGG16, ResNet50, 
and MobileNetV2), a non-partial SVM model, and multiple 
ensemble partial SVM models. These findings suggest that 
without partial strategies or SVM integration, CNN models 
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alone are less effective in recognizing facial emotions under 
occlusion conditions such as masks. 

In contrast, the SVM approach delivers significantly more 
stable results. The Non-Partial SVM model achieves 44% 
accuracy and 45% F1-score, nearly double the performance of 
CNN-based models. The relatively higher F1-score indicates 
that the SVM maintained a better balance between precision and 
recall, even though the dataset involved masked faces. This 
finding can be attributed to SVM's ability to work well with 
small- to medium-sized datasets and handcrafted features (e.g., 
HoG), which are less data-hungry compared to CNNs. Using 
non-partitioned images allowed the SVM to capture global 
facial information (both visible and partially occluded regions), 
providing a more holistic representation for classification. 

Furthermore, ensemble-based partial SVM models reveal 
distinct performance characteristics. The Partial 2 SVM records 
43% accuracy with 55% precision, effectively reducing false 
positives. Partial 3 SVM shows lower recall (33%) but higher 
precision (59%), although its F1-score remains relatively 
modest at 34%. Partial 4 SVM stands out with the highest 
accuracy (45%) and balanced performance across metrics, 
achieving 61% precision, 39% recall, and 42% F1-score. 
Meanwhile, Partial 6 SVM achieves the highest precision 
(67%), but with lower recall (36%), resulting in an F1-score of 
38%. 

The F1-score is the harmonic mean of precision and recall, 
reflecting the balance between these metrics. The Non-Partial 
SVM achieved the highest F1-score (45%) because it had access 
to the complete facial representation, enabling it to capture both 
global and local cues, even when some regions were occluded. 
In contrast, partition-based models suffered from an imbalance: 
while precision improved (e.g., 67% for the 6-partition SVM), 
recall decreased significantly (e.g., 36%), leading to a lower F1 
score. This result indicates that partition-based models were 
more "conservative" in their predictions (fewer false positives), 
but they missed many true cases (higher false negatives). The 
holistic non-partial approach helped the SVM achieve a better 
trade-off, resulting in the highest F1-score overall. 

C. The Effect of Ensemble 

Ensemble learning was employed in this study to enhance 
the robustness of FER under partial occlusion. Instead of relying 
on a single global model, multiple SVM classifiers were trained 
independently on different facial partitions. Each partition 
captures localized features from specific regions of the face 
(e.g., eyes, forehead, or partial cheek areas), which are 
particularly relevant when masks occlude other regions. During 
inference, the outputs of these individual classifiers were 
aggregated using the weighted soft voting technique. 

A generalized weighted soft voting scheme was adopted to 
ensure that the ensemble method remains applicable across 
different partitioning strategies (two, three, four, and six 
regions). Let each partition model 𝑖 ∈ {1, … , 𝑁} produce a class 
probability distribution 𝑃𝑖(𝑐)  for class 𝑐 ∈ 𝐶 . The relative 
contribution of each model is determined by its validation 
performance score 𝑠𝑖, which represents accuracy. These scores 
are normalized into weights as follows: 

𝜔 =  
𝑠𝑖

∑ 𝑆𝑗
𝑁
𝑗=1

, 𝑖 = 1, … , 𝑁   (1) 

 The ensemble probability distribution is then obtained 
through the weighted summation of the outputs of all partition 
models: 

𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑐) = ∑ 𝜔𝑖

𝑁

𝑖=1

𝑃𝑖(𝑐), ∀𝑐 ∈ 𝐶 (2) 

Finally, the predicted class label is assigned based on the 
maximum ensemble probability: 

𝑦 = arg max
𝑐 ∈ 𝐶

𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑐)   (3) 

This formulation enables the ensemble strategy to flexibly 
adapt to different partitioning schemes without modification to 
the core framework. In the case of equal weighting, setting all 
𝑠𝑖 = 1 yields the traditional unweighted soft voting. By 
leveraging performance-driven weighting, partitions that 
demonstrate higher discriminative capability are assigned 
greater influence in the final decision, thereby improving 
robustness under partial occlusion scenarios. 

Table VI to Table IX summarize the comparative 
performance between the single partial models and the ensemble 
approach. The results indicate that the ensemble strategy 
provides higher overall accuracy and better macro-level metrics 
compared to individual models. This result shows that weighted 
soft voting effectively combines complementary strengths from 
different facial regions. Consequently, the ensemble approach 
achieves a more balanced and reliable performance across all 
emotion classes. 

TABLE VI.  RESULT COMPARISON PARTIAL 2 MODEL 

Model Accuracy Precision Recall F1-Score 

SVM Top 0.42 0.50 0.38 0.40 

SVM Bottom 0.37 0.44 0.32 0.33 

Ensemble Partial 2 0.43 0.55 0.37 0.40 

TABLE VII.  RESULT COMPARISON PARTIAL 3 MODEL 

Model Accuracy Precision Recall F1-Score 

SVM Top 0.38 0.48 0.33 0.35 

SVM Mid 0.38 0.45 0.32 0.34 

SVM Bottom 0.35 0.48 0.28 0.29 

Ensemble Partial 3 0.40 0.59 0.33 0.34 

TABLE VIII.  RESULT COMPARISON PARTIAL 4 MODEL 

Model Accuracy Precision Recall F1-Score 

SVM Top Left 0.44 0.52 0.39 0.42 

SVM Top Right 0.43 0.51 0.38 0.41 

SVM Bottom Left 0.36 0.45 0.30 0.31 

SVM Bottom Right 0.37 0.44 0.30 0.31 

Ensemble Partial 4 0.45 0.61 0.39 0.42 
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TABLE IX.  RESULT COMPARISON PARTIAL 6 MODEL 

Model Accuracy Precision Recall F1-Score 

SVM Top Left 0.41 0.52 0.37 0.40 

SVM Top Mid 0.36 0.41 0.30 0.31 

SVM Top Right 0.41 0.52 0.37 0.39 

SVM Bottom Left 0.36 0.47 0.29 0.30 

SVM Bottom Mid 0.35 0.46 0.28 0.28 

SVM Bottom Right 0.37 0.48 0.30 0.31 

Ensemble Partial 6 0.43 0.67 0.36 0.38 

The evaluation of different partitioning strategies (Table VI 
to Table IX) reveals varying levels of effectiveness in handling 
partial occlusion. The two-partition ensemble achieves only 
moderate performance (accuracy = 0.43), as the division into 
upper and lower regions often limits feature diversity when 
masks heavily occlude the lower half. Similarly, the three-
partition ensemble slightly improves accuracy to 0.40. However, 
the finer segmentation does not yield significant performance 
gains, as critical features may still be missing in one or more 
regions. 

The six-partition scheme demonstrates competitive 
precision (0.67); however, its overall accuracy (0.43) and F1 
score (0.38) remain lower, likely due to the fragmentation of 
global facial context into overly localized regions. In contrast, 
the four-partition ensemble strikes the most effective balance by 
capturing vertical and horizontal facial feature variations. With 
an accuracy of 0.45 and macro precision of 0.61, it consistently 
outperforms other partition strategies, confirming that the 
quadrant-based division provides complementary information 
while preserving sufficient contextual cues. 

Therefore, the four-partition ensemble is identified as the 
most robust approach for FER under partial occlusion, 
combining enhanced accuracy with improved precision while 
maintaining stable recall and F1-score performance. 

D. Discussion 

This study conducted a series of facial expression 
classification experiments using the SVM algorithm with 
different approaches: non-partial, partial two-part, partial three-
part, partial four-part, and partial six-part ensembles. The 
hyperparameter tuning process consistently showed that the 
best-performing configuration was C=5, gamma=1, with the 
RBF kernel, regardless of the number of partitions. For example, 
in the four-part approach (Top Left, Top Right, Bottom Left, 
Bottom Right), all models converged to the same parameter set. 

From the evaluation results, the Non-Partial SVM achieved 
the highest F1-score (43%), reflecting a balanced trade-off 
between precision and recall. This result indicates that the model 
is accurate and sensitive to detecting a wide range of classes, 
making it suitable for general-purpose applications such as 
human-computer interaction or assistive technologies. Such 
performance aligns with the findings of [12], who also reported 
that traditional CNN and SVM models perform well under full-
face visibility but degrade substantially when occlusion 
increases. 

In contrast, the Partial 6 SVM demonstrated the highest 
precision (67%), making it more reliable for applications 
requiring high-confidence predictions with minimal false 
positives. This conservative approach, although sacrificing 
recall, is valuable in contexts like early emotion disorder 
detection or security systems. Meanwhile, the Partial 4 SVM 
achieved the highest accuracy (45%), producing the most 
significant number of correct classifications overall. Although 
its F1-score is slightly lower than the non-partial model, this 
strength makes it suitable for scenarios where maximizing the 
number of accurate predictions is the main priority. Similar 
behavior was reported by [13], where models prioritizing 
confident regions yielded higher precision but lower recall under 
occluded conditions. 

Meanwhile, the Partial 4 SVM obtained the highest accuracy 
(45%), demonstrating a balanced trade-off between model 
complexity and region diversity. This configuration benefits 
from adequate regional representation (Top Left, Top Right, 
Bottom Left, Bottom Right) without introducing excessive 
fragmentation that might dilute local feature learning. The 
performance consistency across partitions suggests that the 
ensemble learning mechanism, through weighted soft voting, 
effectively integrates localized cues from multiple facial 
regions, thus maintaining reliability even under partial 
occlusion. This finding supports the concept of region-based 
feature fusion as highlighted in [11], which emphasized the 
importance of focusing on visible regions to improve 
recognition accuracy. 

To ensure that the model’s performance is consistent and not 
biased toward a specific subset of the data, a 3-fold cross-
validation was applied automatically during the hyperparameter 
tuning process using GridSearchCV from scikit-learn. This 
mechanism divides the dataset into three parts, where two folds 
are used for training and one for validation in each iteration. The 
cross-validation process helps evaluate the model’s 
generalization ability while selecting the best parameters for the 
Support Vector Machine (SVM). 

To further analyze class-wise performance and model 
consistency, confusion matrices were generated for each 
regional SVM classifier, as shown in Fig. 4 to Fig. 7. The 
matrices illustrate that the model performs consistently across 
multiple emotion categories, with the highest correct 
classifications observed in neutral and happy classes. This 
analysis confirms that the model maintains balanced recognition 
performance across visible facial regions despite partial 
occlusion. 

These matrices clearly show that the “happy” class 
dominates the correctly classified samples, which aligns with the 
fact that the “happy” expression has the largest number of 
samples in the MaskedFER2013 dataset. This class imbalance 
makes the model more confident in recognizing “happy” 
features, even under partial occlusion. In contrast, the “disgust” 
and “fear” classes exhibit noticeably lower recognition rates, 
often being misclassified as sad or angry. This misclassification 
trend occurs because these emotions share similar upper-face 
features (such as eyebrow contraction), which become more 
dominant when the lower face is covered by a mask. 
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Fig. 4. Confusion matrix (Top Left Partial 4 SVM). 

 
Fig. 5. Confusion matrix (Top Right Partial 4 SVM). 

 
Fig. 6. Confusion matrix (Bottom Left Partial 4 SVM). 

 
Fig. 7. Confusion matrix (Bottom Right Partial 4 SVM). 

Additionally, the “neutral” and “surprise” expressions 
display moderate accuracy, as these emotions retain distinctive 
cues around the eye and forehead regions that remain visible 
even with occlusion. Misclassifications between neutral and 
happy are also frequent, indicating that when the mouth region 
is hidden, the model sometimes relies too heavily on the upper-
face features, leading to overlapping interpretations. 

The relatively consistent diagonal dominance across the four 
regional SVM (Top Left, Top Right, Bottom Left, and Bottom 
Right) confirms that the approach maintains robust and 
regionally stable behavior. This suggests that the ensemble 
structure successfully mitigates the performance degradation 
typically caused by partial occlusion, allowing the system to 
retain a reasonable level of accuracy and interpretability. 

Despite these promising results, several limitations remain. 
First, the proposed method relies heavily on handcrafted features 
(HOG), which may not fully capture complex spatial and 
emotional variations compared to deep learning representations. 
Second, the partitioning strategy is fixed and non-adaptive; 
dynamic or attention-based segmentation could better capture 
relevant visible regions under real-world occlusion patterns. 
Finally, the dataset used (MaskedFER2013) represents a 
constrained environment with limited occlusion diversity, which 
may not generalize to unconstrained or in the wild scenarios. 

For future research should focus on integrating deep feature 
extraction with the ensemble SVM architecture, enabling richer 
and more abstract representations of partially visible faces. 
Additionally, adaptive region partitioning using attention maps 
or saliency detection could further enhance robustness by 
dynamically identifying the most informative facial regions. 
Expanding the evaluation to include cross-dataset testing (e.g., 
MaskedFER2023 or MaskedCK+) will also help assess 
generalization capability. Lastly, incorporating temporal 
information from video sequences could provide a more 
comprehensive understanding of emotional dynamics under 
occlusion. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

284 | P a g e  
www.ijacsa.thesai.org 

V. CONCLUSION 

Based on the comparative analysis, no single model can be 
regarded as the absolute best across all evaluation metrics. 
Instead, each ensemble configuration demonstrates specific 
contextual strengths depending on the performance metric 
prioritized in real-world applications. The Non-Partial SVM 
model shows a more balanced performance regarding F1-score 
and recall, making it well-suited for general-purpose use, where 
both correctness and coverage are equally important. In contrast, 
the Partial-6 SVM ensemble achieves the highest precision, 
which indicates its suitability for applications that demand high-
confidence decision-making, where minimizing false positives 
is a priority. Meanwhile, the Partial-4 SVM ensemble yields the 
highest overall accuracy, suggesting that it is most effective in 
scenarios where maximizing the total number of correct 
classifications is the primary objective. These findings highlight 
that model selection should not rely solely on a single metric, 
but rather be aligned with the intended application context and 
performance requirements. 
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