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Abstract—Facial expression recognition (FER) under partial
occlusion remains a challenging task, especially when key regions
of the face, such as the mouth and nose, are covered by medical
masks. Such conditions significantly reduce the discriminative
features available for accurate emotion recognition, limiting the
effectiveness of conventional full-face approaches. To address this
issue, this study proposes a part-based learning framework that
partitions the face into multiple regions, allowing the model to
exploit unoccluded areas for expressionrecognition. The proposed
method employs Support Vector Machine (SVM) classifiers
trained on Histogram of Oriented Gradients (HoG) features
extracted from 2, 3, 4, and 6 facial partitions. Each part-based
model is trained independently, and their outputs are combined
through a weighted soft voting ensemble mechanism to generate
the final prediction. The experiments were conducted on the
MaskedFER2013 dataset, which contains 31,116 grayscale facial
images (48x48 pixels) distributed across seven emotion classes.
The results demonstrate that the four-part model achieves the best
performance, reaching an accuracy of 45%, outperforming both
single-part models and full-face baselines under occlusion
scenarios. These findings confirm that the proposed part-based
ensemble approach enhances the robustness of FER systems by
effectively leveraging complementary regional features, thereby
providing a promising solution for real-world applications, where
facial occlusion is unavoidable.
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I INTRODUCTION

Facial expressions are among the most critical indicators of
human emotion in visual communication, serving as an essential
channel for conveying affective states such as happiness,
sadness, anger, fear, surprise, and disgust [1]. Unlike verbal
communication, facial expressions provide immediate and
universal cues that enable individuals to understand others'
emotional states. FER has become an important research field
with applications in human-computer interaction, healthcare,
affective computing, surveillance, driver fatigue detection, and
entertainment systems [2]. Integrating FER into modern
intelligent systems enhances their adaptability, naturalness, and
responsiveness, allowing machines to interact more effectively
with humans.

Despite its broad potential, FER remains a challenging task,
particularly in scenarios where faces are partially occluded.
Objects such as sunglasses, hands, or medical face masks often
obstruct critical regions of the face, reducing the discriminative
power of visual features. This problem has become even more
critical during and after the COVID-19 pandemic, when the
widespread use of medical masks made occlusion a common
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condition in everyday environments [3], [4]. Since key regions
like the mouth and chin play a central role in expressing
emotions, their absence poses significant difficulties for
conventional FER models that assume complete face visibility.
Occlusion of critical regions such as the mouth and chin
significantly degrades recognition accuracy because traditional
FER models are typically trained on unobstructed faces and rely
on holistic features.

Recent research has focused on developing robust methods
under occlusion to address these challenges. Several occlusion-
specific datasets, such as MaskedFER2023 [5], have been
introduced to reflect real-world scenarios where masks and other
obstacles hide facial features. These datasets provide valuable
benchmarks for advancing FER systems that must operate
reliably in post-pandemic conditions. Moreover, traditional
holistic approaches have been increasingly complemented by
part-based learning strategies, which divide the face into
localized regions (e.g., upper face, lower face, or quadrants) [6].
It allows the system to extract meaningful features from the
visible areas even when some parts are hidden.

The main contribution of this study is introducing a Partial
PartModel (PPM) combined with ensemble learning to enhance
FER under partial occlusion. Unlike previous approaches that
treat the face as a whole, the proposed method divides the face
into multiple regions, allowing the system to preserve and
exploit discriminative features from visible areas while ignoring
occluded regions. Feature extraction is performed using HoG,
which ensures computational efficiency and robustness against
variations in illumination and scale. Each facial part is
independently classified using SVM, chosen for their strong
performance in small- to medium-sized datasets and their
interpretability [7], [8]. However, its performance tends to
deteriorate markedly when facial images are affected by partial
occlusion. This degradation occurs because SVM typically
relies on global feature representations, making it sensitive to
missing or distorted regions. When essential facial areas such as
the mouth are covered by objects like medical masks, the
resulting feature vectors become less discriminative and less
representative of the true facial expression. Consequently, a
major challenge arises in enhancing the robustness of SVM-
based systems to maintain reliable recognition performance
under occluded conditions [9]. The outputs of these classifiers
are then aggregated through a soft voting ensemble strategy,
producing a final decision that leverages complementary
information across regions.

This study is organized as follows: Section II presents the
theoretical background and related works on FER and occlusion
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handling methods. Section III describes the proposed
methodology, including the Partial Part Model, feature
extraction process, and ensemble learning strategy. Section [V
details the experimental setup, dataset description, and
evaluation metrics used in this study. It also discusses the
experimental results and provides an analysis of the model’s
performance under partial occlusion. Section V concludes the
study.

II. RELATED WORK

FER under partial occlusion, particularly with face masks,
has gained increasing attention recently. In [ 10], masked facial
datasets were introduced, and recognition performance was
evaluated, reporting an accuracy of 51.9%, which highlights the
difficulty of the task. Building on this, [5] proposed two new
datasets, MaskedFER2023 and MaskedCK+, demonstrating
improved accuracies of 61% and 63%, respectively. These
studies emphasizethe need formorerobustapproaches tohandle
occluded facial regions.

In [5], the authors also discussed three previously proposed
approaches: the Region Attention Network (RAN) [11], which
achieved an accuracy of 53%; the Attention-CNN (ACNN) [12],
which obtainedan accuracy of 57%; and the Occlusion Adaptive
Deep Network (OADN) proposed [13], which achieved an
accuracy of 59%. These results highlight the incremental
progress in addressing facial expression recognition under
occlusion and the ongoing need for more robust and generalized
solutions.

Beyond dataset development, several works have explored
different modeling strategies for FER under mask occlusion. In
[14], a dual-model framework was proposed: one model detects
mask presence, while another predicts emotions. The system
achieved 95% accuracy in mask detection, while expression
recognition performance varied between 42% and 83%. CNNs
were employed for feature extraction, and Haar cascade
classifiers for classification. Meanwhile, [15] combined CNN-
based FaceNet feature extraction with SVM classification,
achieving an accuracy of 98.93%, outperforming conventional
methods. Theseapproaches highlight the potential of combining
deep feature extraction with classical machine learning
classifiers to improve robustness in occluded FER scenarios.

In parallel, traditional FER datasets without occlusion have
significantly contributed to the progress of the field, including
CK+[16],JAFFE [17],and FER2013 [18]. FER2013 provides
alarge-scale collection of 28,709 training, 3,589 validation, and
3,589 testimages across seven emotion categories. In this study,
the Masked FER2013 dataset is adopted, which extends
FER2013 with mask occlusion and consists of approximately
35,900 images with variations in orientation, race, and gender.
This dataset serves as the foundation for our experiments.

Despite these advancements, previous research still faces
notable limitations. Most methods rely on holistic facial
representations, making them vulnerable when critical regions
like the mouth or chin are obscured. Deep leaming approaches,
while powerful, often require large-scale annotated datasets and
substantial computational resources, limiting theirpracticality in
real-time or low-resource applications. Moreover, hybrid
approaches combining CNN with SVM, although effective,
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typically treat the face as a single unit rather than considering
the independent contribution of visible sub-regions.

To address these gaps, this study proposes PPM integrated
with ensemble learning, designed to enhance the robustness of
FER under partial occlusion. The proposed method divides the
face into multiple regions, extracts local features using HOG,
and classifies each region independently using SVM. The
outputs are then aggregated through a soft voting strategy,
enabling the system to leverage complementary information
from visible regions while minimizing the impact of occluded
areas.

III. METHODOLOGY

This section presents the methodology for developing the
proposed FER system under partial occlusion. The approach is
based on a PPM combined with ensemble learning using SVM.
The methodology addresses the challenges of occluded facial
regions, particularly those covered by masks, by partitioning the
face into multiple sub-regions and leveraging localized
information for robust emotion classification. The following
subsections describe the architecture of the ensemble and PPM,
as well as the detailed algorithmic workflow of the system.

A. The Design of the Algorithm

The workflow ofthe proposed system is illustrated in Fig, 1,
which outlines the step-by-step process for handling FER partial
occlusion. After preprocessing, the images are partitioned into
multiple regions (2, 3,4, or 6), enabling the system to focus on
localized areas that remain visible despite occlusion. This stepis
critical because certain facial regions, such as the eyes or upper
face, often retain discriminative features even when the lower
face is masked.

In the training phase, HoG features are extracted fromeach
partitioned region to capture essential texture and edge
information, which is then fed into SVM) classifiers. Each SVM
is trained independently on its corresponding region, ensuring
that localized characteristics are learned effectively. The
independent models are then aggregated using an ensemble
learning strategy with weighted soft voting, where weights are
derived from the classification performance of each sub-model.
This approach ensures that more reliable regions contribute
more strongly to the final decision.

In the testing phase, the same preprocessing, partitioning,
and feature extraction procedures areapplied to unseen data. The
outputs (probability vectors) from all regional SVM classifiers
are aggregated through the ensemble mechanism to produce the
final emotion prediction. This ensures consistency between
training and inference, while also maintaining robustness
against varying occlusion levels.

Finally, the performance of the proposed system is
quantitatively evaluated using standard metrics, including
accuracy, precision, recall, and F1 -score. These metrics provide
a comprehensive assessment of the system’s effectiveness,
capturing not only its correctness in emotion classification but
also its ability to remain stable and reliable under different
occlusion conditions. Together, these evaluations validate the
robustness and generalization capability of the proposed PPM
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combined with ensemble leamning for FER under partial
occlusion.
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Fig. 1. Workflow of the algorithm.

B. Ensemble and Partial Part Models

Fig. 2 illustrates the architecture of the PPM using an
Ensemble SVM approach for FER under partial occlusion [19].
The input facial image is first divided into multiple predefined
regions (e.g., top-left, bottom-right), each capturing different
parts of the face. These sub-regions are processed independently
by separate SVM classifiers, with each model trained to
recognize emotional patterns based on its corresponding part.

Each SVM generates a probability distribution over the
emotion classes. These outputs are then aggregated using a soft
voting strategy, where the final predicted label is determined by
averaging the class probabilities across all SVMs and selecting
the class with the highest average score. This strategy improves
robustness by allowing the model to focus on visible and
informative facial areas, compensating for parts affected by
occlusion. It also ensures that even if certain regions are
occluded or carry less expression-relevant information, other
regions can effectively contribute to the final decision. The
architecture is shown in Fig. 2.

C. Dataset and Preprocessing

The MaskedFER2013 dataset, containing 31,116 images
sized 48x48 pixels, was used. Images were labeled into seven
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emotion classes: angry, disgust, fear, and many more. Each
image underwent grayscale normalization and was partitioned
intoregions(2,3,4,or 6 parts) representing different facial areas
[5]. This preprocessing phase is crucial, as it directly influences
the quality of features that the model can extract. In this context,
dominant features come from the eye and eyebrow regions,
which typically display subtle variations across different
emotions. Therefore, standardizing image size and format is
essential to ensure consistent inputs for the classification model.

TEL

SVM-(N-1)

SVM-1 SVM-2 T

I I I |

A

Weight Determination
(Soft Voting)

SVM-N

Fig.2. Architecture of ensemble learning and partial part models.

Facial images were divided into several partitions to address
the challenges posed by facial occlusion, particularly due to the
use of masks. This partitioning strategy enables extracting
localized features from different facial regions, which are
combined to improve classification performance.

Fig. 3 illustrates the partitioning strategies applied to facial
images with partial occlusion to improve emotion recognition.
Each row represents an emotion class (Angry, Disgust, Fear,
Happy, Neutral, Sad, and Surprise), while the columns show the
original preprocessed image and its partitioned forms. The two-
partition scheme divides the face into upper and lower regions,
separating the eye and mouth areas. The three-partition scheme
adds a middle section for finer detail. In contrast, the four-
partition scheme splits the face into quadrants (top-left, top-
right, bottom-left, bottom-right), enabling localized feature
capture across both facial halves. This partitioning helps the
model to differentiate features between the left and right sides of
the face. The six-partition scheme further subdivides the image
into top-left, top-middle, top-right, bottom-left, bottom-middle,
and bottom-right regions, providing a highly localized
representation at the cost of global context. These strategies
enable complementary regional feature extraction, which
enhances recognition performance under occlusion when
integrated via ensemble learning. Overall, this figure
demonstrates how different partitioning strategies will allow the
model to capture both local and global discriminative features
from unoccluded regions of the face. By leveraging these
complementary partitions through ensemble learning, the
system becomes more robust in recognizing emotions despite
partial occlusion caused by masks. The results of the processed
images and partition are shown in Fig. 3.
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Fig. 3. Preprocessing and partition results.

D. Feature Extraction

In this stage, features were extracted from each partitioned
image using the HoG method. HoG is particularly effective for
capturing local edge orientations, gradient intensity, and texture
pattemns essential for distinguishing facial expressions, even
under partial occlusion such as masks. By focusing on edge
structures rather than pixel intensity, HoG can represent critical
facial cues (e.g., eye contour, eyebrow shape, and forchead
wrinkles) proper for emotion recognition. Each image partition
produced a feature descriptor vector, which was later used as
input for the classifiers [20].

E. Ensemble Prediction

Each SVM classifier generated prediction probabilities for
the possible emotion classes during the testing phase. Instead of
relyingon a single classifier, the outputs from all SVMs were
aggregated using a weighted soft voting mechanism. In soft
voting, the predicted probabilities from individual classifiers
were averaged, and the class withthehighest average probability
was selected as the final decision. This ensemble approach
provided robustness, combining complementary information
from different facial regions, reducing the impact of occlusion
or local noise. Consequently, the ensemble prediction often
yielded better overall performance compared to relying on a
single model [21].

IV. EXPERIMENTAL RESULTS

In this study, the dataset used is MaskedFER2013, which
includes grayscale images with masks applied to simulate real-
world occlusions. The dataset is split into two main groups to
build and evaluate the model effectively: training data and
testing data. From the full dataset, 80% is allocated to the
training setand 20% to the testing set. Furthermore, the training
set is subdivided into training and validation data, with an 80:20
ratio. The trainingdata is used to train each SVM model on each
facial partition. In contrast, the validation data is used during
hyperparameter tuning to determine the optimal configuration
for each SVM classifier before final training.
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A. The Effect of Hyperparameter Tuning

A comprehensive hyperparameter tuning process was
conducted to optimize the performance of SVM classifiers
across different image partitioning strategies. The key
hyperparameters tuned include the kernel type, regularization
parameter (C), and kernel coefficient (gamma).

Forthe partialtwo-region approach, whichdivides the image
into top and bottom sections, both models achieved the best
results using the RBF kernel. The SVM Top model performed
bestwith C=5and gamma=1,reachinganaccuracyof31.19%,
while the SVM Bottom model used C = 1 and gamma = 1,
achieving 30.12%. This result indicates that both regions still
hold significant emotional information despite mask occlusion,
with the top region slightly outperforming the bottom. The
optimal hyperparameter for the partial 2-Region SVM is shown
in Table L.

TABLEI. OPTIMAL HYPERPARAMETER FOR PARTIAL 2 SVM
Model Kernel C Gamma Accuracy
Linear 1 0.01 27.57%
Poly 5 0.1 28.25%
SVM Top
Rbf 5 1 31.19%
Sigmoid 5 0.1 26.81%
Linear 1 0.1 26.99%
Poly 1 0.1 28.09%
SVM Bottom
Rbf 1 1 30.12%
Sigmoid 0.1 0.01 26.51%

In the three-region partitioning (Top, Mid, and Bottom), the
RBF kernel again yielded the best performance across all
sections. The SVM Mid model stood out with C=1 and gamma
= 1, achieving an accuracy of 30.54%, higher than the Top
(28.96%) and Bottom (28.13%) regions. This resultimplies that
the middle portion of the face, typically including the eyes and
nose bridge, contains richer emotional features under partial
occlusion. The optimal hyperparameter for the partial 3-Region
SVM is shown in Table II.

TABLEII. OPTIMAL HYPERPARAMETER FOR PARTIAL 3 SVM
Model Kernel C Gamma Accuracy
Linear 0.1 0.01 26.47%
Poly 5 0.1 27.19%
SVM Top
Rbf 5 1 28.96%
Sigmoid 0.1 0.01 26.51%
Linear 1 0.01 27.57%
Poly 5 0.1 29.52%
SVM Mid
Rbf 1 1 30.54%
Sigmoid 0.1 0.01 26.51%
Linear 0.1 0.01 26.51%
Poly 1 0.1 26.65%
SVM Bottom
Rbf 1 1 28.13%
Sigmoid 0.1 0.01 26.51%
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The four-region partitioning (Top Left, Top Right, Bottom
Left, and Bottom Right) showed a consistent trend where all
best-performing models used the RBF kernel with C = 5 and
gamma = 1. Accuracies in this configuration ranged from
29.64% to 31.05%, indicating symmetrical and localized facial
features still provide valuable information for classification
when the face is divided into quadrants. The optimal
hyperparameters for the partial 4-Region SVM are shown in
Table IIL

TABLE III. OPTIMAL HYPERPARAMETER FOR PARTIAL 4 SVM
Model Kernel C Gamma Accuracy
Linear 0.1 0.01 28.13%
Poly 1 0.1 30.14%
SVM Top Left
Rbf 5 1 30.72%
Sigmoid 1 0.1 26.63%
Linear 0.1 0.1 28.37%
Poly 1 0.1 30.36%
SVM Top Right
Rbf 5 1 31.05%
Sigmoid 0.1 0.01 26.51%
Linear 1 0.1 27.67%
Poly 1 0.1 28.68%
SVM Bottom Left
Rbf 5 1 29.66%
Sigmoid 0.1 0.01 26.51%
Linear 0.1 0.1 27.27%
Poly 1 0.1 29.36%
SVM Bottom Right
Rbf 5 1 29.64%
Sigmoid 1 0.1 26.67%

The RBF kernel againdominated in performancein the most
detailed six-region partitioning (Top Left, Top Mid, Top Right,
Bottom Left, Bottom Mid, and Bottom Right). Most regions
achieved optimal results with C=15 and gamma = 1, except for
the Top Mid region, which achieved better accuracy using C =
1. This suggests that the Top Mid region, including the eyes,
eyebrows, and forehead, contains more complex features and
benefits from lower regularization to avoid overfitting
Accuraciesin thisconfigurationranged from 28.56%to 30.22%.
The optimal hyperparameter for the partial 6-Region SVM is
shown in Table IV.

Overall, the RBF kernel consistently produced the highest
accuracies across all partitioning schemes, highlighting its
effectiveness in modeling the non-linear nature of facial
expression features. On the contrary, the sigmoid kernel showed
the poorest performance in every scenario, indicating it is not
suitable for this task. These findings support the hypothesis that
local facial analysis, especially under occlusion like face masks,
can reveal hidden expression patterns when combined with
appropriate kernel functions and parameter settings.

B. Result of the Evaluation Model

To furtherevaluate the effectiveness of differentapproaches
inhandling FER under partial occlusion,a comparative analysis
was conducted across several baseline CNN models, a non-
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partial SVM, and ensemble-based partial SVM. Table V
summarizes the performance comparison of each model and
partitioning strategy.

TABLEIV. OPTIMAL HYPERPARAMETER FOR PARTIAL 6 SVM
Model Kernel C Gamma Accuracy
Linear 1 1 27.15%
Poly 1 0.1 29.02%
SVM Top Left
Rbf 5 1 30.22%
Sigmoid 0.1 0.01 26.51%
Linear 0.1 0.1 28.31%
Poly 1 0.1 29.70%
SVM Top Mid
Rbf 5 1 29.38%
Sigmoid 1 0.1 26.99%
Linear 0.1 0.01 26.95%
Poly 1 0.1 28.96%
SVM Top Right
Rbf 5 1 29.94%
Sigmoid 5 0.01 26.55%
Linear 0.1 0.1 26.81%
Poly 1 0.1 27.37%
SVM Bottom Left
Rbf 5 1 28.66%
Sigmoid 5 0.01 26.53%
Linear 0.1 0.1 28.11%
Poly 1 0.1 29.10%
SVM Bottom Mid
Rbf 1 1 30.08%
Sigmoid 5 0.01 27.83%
Linear 0.1 0.1 26.65%
Poly 1 0.1 2741%
SVM Bottom Right
Rbf 5 1 28.56%
Sigmoid 1 0.1 26.53%
TABLE V. RESULT COMPARISON EVALUATION MODEL
Experiment Accuracy | Precision | Recall | F1-Score
Non-Partial VGG16 25% 15% 15% 10%
Non-Partial ResNet50 14% 2% 14% 3%
Non-Partial o o o o
MobileNetV2 21% 14% 15% 13%
Non-Partial SVM 44% 50% 40% 45%
Partial 2 SVM 43% 55% 37% 40%
Partial 3 SVM 40% 59% 33% 34%
Partial 4 SVM 45% 61% 39% 42%
Partial 6 SVM 43% 67% 36% 38%

Table V presents the comparative evaluation results of
several non-partial deep learning models (VGG16, ResNet50,
and MobileNetV2), a non-partial SVM model, and multiple
ensemble partial SVM models. These findings suggest that
without partial strategies or SVM integration, CNN models
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alone are less effective in recognizing facial emotions under
occlusion conditions such as masks.

In contrast, the SVM approach delivers significantly more
stable results. The Non-Partial SVM model achieves 44%
accuracy and 45% F1-score, nearly double the performance of
CNN-based models. The relatively higher F1-score indicates
thatthe SVM maintained a better balance between precisionand
recall, even though the dataset involved masked faces. This
finding can be attributed to SVM's ability to work well with
small- to medium-sized datasets and handcrafted features (e.g,
HoG), which are less data-hungry compared to CNNs. Using
non-partitioned images allowed the SVM to capture global
facial information (both visible and partially occluded regions),
providing a more holistic representation for classification.

Furthermore, ensemble-based partial SVM models reveal
distinct performance characteristics. The Partial 2 SVM records
43% accuracy with 55% precision, effectively reducing false
positives. Partial 3 SVM shows lower recall (33%) but higher
precision (59%), although its Fl-score remains relatively
modest at 34%. Partial 4 SVM stands out with the highest
accuracy (45%) and balanced performance across metrics,
achieving 61% precision, 39% recall, and 42% F1-score.
Meanwhile, Partial 6 SVM achieves the highest precision
(67%), but with lowerrecall (36%), resulting in an F1 -score of
38%.

The F1-scoreis the harmonic mean of precision and recall,
reflecting the balance between these metrics. The Non-Partial
SVM achievedthe highest F1-score (45%) becauseithad access
to the complete facial representation, enabling it to capture both
global and local cues, even when some regions were occluded.
In contrast, partition-based models suffered from an imbalance:
while precision improved (e.g., 67% for the 6-partition SVM),
recall decreased significantly (e.g., 36%), leading to a lower F1
score. This result indicates that partition-based models were
more "conservative" in their predictions (fewer false positives),
but they missed many true cases (higher false negatives). The
holistic non-partial approach helped the SVM achieve a better
trade-off, resulting in the highest F1-score overall.

C. The Effect of Ensemble

Ensemble leaming was employed in this study to enhance
therobustness of FER underpartial occlusion. Instead of relying
on a single global model, multiple SVM classifiers were trained
independently on different facial partitions. Each partition
captures localized features from specific regions of the face
(e.g., eyes, forehead, or partial cheek areas), which are
particularly relevant when masks occlude other regions. During
inference, the outputs of these individual classifiers were
aggregated using the weighted soft voting technique.

A generalized weighted soft voting scheme was adopted to
ensure that the ensemble method remains applicable across
different partitioning strategies (two, three, four, and six
regions). Let each partitionmodel i € {1, ..., N} producea class
probability distribution P;(c) for class ¢ € C . The relative
contribution of each model is determined by its validation
performance score s;, which represents accuracy. These scores
are normalized into weights as follows:
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The ensemble probability distribution is then obtained
through the weighted summation ofthe outputs of all partition
models:

N
Pensempre(€) = Z w; P,(c), VceC )
i=1

Finally, the predicted class label is assigned based on the
maximum ensemble probability:

y = argmax Pepsempre (€) 3)

This formulation enables the ensemble strategy to flexibly
adapt to different partitioning schemes without modification to
the core framework. In the case of equal weighting, setting all
s; =1 yields the traditional unweighted soft voting. By
leveraging performance-driven weighting, partitions that
demonstrate higher discriminative capability are assigned
greater influence in the final decision, thereby improving
robustness under partial occlusion scenarios.

Table VI to Table IX summarize the comparative
performance between the single partial models and the ensemble
approach. The results indicate that the ensemble strategy
provides higher overall accuracy and better macro-level metrics
compared to individual models. This result shows that weighted
soft voting effectively combines complementary strengths from
different facial regions. Consequently, the ensemble approach
achieves a more balanced and reliable performance across all
emotion classes.

TABLE VI. RESULT COMPARISON PARTIAL 2 MODEL
Model Accuracy | Precision Recall F1-Score
SVM Top 042 0.50 0.38 0.40
SVM Bottom 0.37 0.44 0.32 0.33
Ensemble Partial 2 0.43 0.55 0.37 0.40
TABLE VII. RESULT COMPARISON PARTIAL 3 MODEL
Model Accuracy | Precision Recall F1-Score
SVM Top 0.38 0.48 0.33 0.35
SVM Mid 0.38 045 0.32 0.34
SVM Bottom 0.35 0.48 0.28 0.29
Ensemble Partial 3 | 0.40 0.59 0.33 0.34

TABLE VIII. RESULT COMPARISON PARTIAL 4 MODEL

Model Accuracy | Precision Recall F1-Score
SVM Top Left 0.44 0.52 0.39 0.42
SVM Top Right 0.43 051 0.38 0.41
SVM Bottom Left 0.36 0.45 0.30 031
SVM Bottom Right | 0.37 0.44 0.30 031
Ensemble Partial 4 | 0.45 0.61 0.39 0.42
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TABLE IX. RESULT COMPARISON PARTIAL 6 MODEL
Model Accuracy | Precision Recall F1-Score
SVM Top Left 041 0.52 0.37 0.40
SVM Top Mid 0.36 041 0.30 0.31
SVM Top Right 0.41 0.52 0.37 0.39
SVM Bottom Left 0.36 0.47 0.29 0.30
SVM Bottom Mid 0.35 0.46 0.28 0.28
SVM Bottom Right | 0.37 0.48 0.30 0.31
Ensemble Partial 6 | 0.43 0.67 0.36 0.38

The evaluation of different partitioning strategies (Table VI
to Table IX) reveals varying levels of effectiveness in handling
partial occlusion. The two-partition ensemble achieves only
moderate performance (accuracy = 0.43), as the division into
upper and lower regions often limits feature diversity when
masks heavily occlude the lower half. Similarly, the three-
partition ensembleslightly improvesaccuracy to 0.40. However,
the finer segmentation does not yield significant performance
gains, as critical features may still be missing in one or more
regions.

The six-partition scheme demonstrates competitive
precision (0.67); however, its overall accuracy (0.43) and F1
score (0.38) remain lower, likely due to the fragmentation of
global facial context into overly localized regions. In contrast,
the four-partition ensemble strikes the most effective balance by
capturing vertical and horizontal facial feature variations. With
an accuracy of 0.45 and macro precision of 0.61, it consistently
outperforms other partition strategies, confirming that the
quadrant-based division provides complementary information
while preserving sufficient contextual cues.

Therefore, the four-partition ensemble is identified as the
most robust approach for FER under partial occlusion,
combining enhanced accuracy with improved precision while
maintaining stable recall and F1-score performance.

D. Discussion

This study conducted a series of facial expression
classification experiments using the SVM algorithm with
different approaches: non-partial, partial two-part, partial three-
part, partial four-part, and partial six-part ensembles. The
hyperparameter tuning process consistently showed that the
best-performing configuration was C=5, gamma=1, with the
RBF kernel,regardless of thenumber of partitions. For example,
in the four-part approach (Top Left, Top Right, Bottom Left,
Bottom Right), all models converged to the same parameter set.

From the evaluation results, the Non-Partial SVM achieved
the highest F1-score (43%), reflecting a balanced trade-off
betweenprecision and recall. This result indicates that the model
is accurate and sensitive to detecting a wide range of classes,
making it suitable for general-purpose applications such as
human-computer interaction or assistive technologies. Such
performance aligns with the findings of [ 12], who also reported
that traditional CNN and SVM models perform well under full-
face visibility but degrade substantially when occlusion
increases.
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In contrast, the Partial 6 SVM demonstrated the highest
precision (67%), making it more reliable for applications
requiring high-confidence predictions with minimal false
positives. This conservative approach, although sacrificing
recall, is valuable in contexts like early emotion disorder
detection or security systems. Meanwhile, the Partial 4 SVM
achieved the highest accuracy (45%), producing the most
significant number of correct classifications overall. Although
its F1-score is slightly lower than the non-partial model, this
strength makes it suitable for scenarios where maximizing the
number of accurate predictions is the main priority. Similar
behavior was reported by [13], where models prioritizing
confidentregions yielded higher precisionbutlowerrecall under
occluded conditions.

Meanwhile, the Partial 4 SVM obtained the highest accuracy
(45%), demonstrating a balanced trade-off between model
complexity and region diversity. This configuration benefits
from adequate regional representation (Top Left, Top Right,
Bottom Left, Bottom Right) without introducing excessive
fragmentation that might dilute local feature learning. The
performance consistency across partitions suggests that the
ensemble learning mechanism, through weighted soft voting,
effectively integrates localized cues from multiple facial
regions, thus maintaining reliability even under partial
occlusion. This finding supports the concept of region-based
feature fusion as highlighted in [11], which emphasized the
importance of focusing on visible regions to improve
recognition accuracy.

To ensure that the model’s performance is consistent and not
biased toward a specific subset of the data, a 3-fold cross-
validation was applied automatically during the hyperparameter
tuning process using GridSearchCV from scikit-learn. This
mechanism divides the dataset into three parts, where two folds
are used for trainingand one for validationin eachiteration. The
cross-validation process helps evaluate the model’s
generalization ability while selecting the best parameters for the
Support Vector Machine (SVM).

To further analyze class-wise performance and model
consistency, confusion matrices were generated for each
regional SVM classifier, as shown in Fig. 4 to Fig. 7. The
matrices illustrate that the model performs consistently across
multiple emotion categories, with the highest correct
classifications observed in neutral and happy classes. This
analysisconfirmsthat the model maintains balanced recognition
performance across visible facial regions despite partial
occlusion.

These matrices clearly show that the “happy” class
dominates thecorrectly classified samples, whichaligns with the
fact that the “happy” expression has the largest number of
samples in the MaskedFER2013 dataset. This class imbalance
makes the model more confident in recognizing “happy”
features, even under partial occlusion. In contrast, the “disgust”
and “fear” classes exhibit noticeably lower recognition rates,
often being misclassified as sad or angry. This misclassification
trend occurs because these emotions share similar upper-face
features (such as eyebrow contraction), which become more
dominant when the lower face is covered by a mask.

282 |Page

www.ijacsa.thesai.org



True Label

True Label

249

angry

10

disgust

fear

65

64

True Label
happy

71

neutral

BE

sad

23

SUrprise

angry

Confusion Matrix (SVM Top Left)

33

0

disgust

ar

3z

'
fear

346

B6

409 113

163

52

' |
happy  neutral

Predicted Label

118

100

104

3z

sacl

(IJACSA) International Journal of Advanced Computer Science and Applications,

93

433

surprise

Fig. 4. Confusion matrix (Top Left Partial 4 SVM).

e

= - 226
£

=

&

- 11
Z

&

© 54
5

.

= HE
2

m

5- 63
g

?E 73
@

=

E- 24
E

2

angry

Confusion Matrix (SVYM Top Right)

2

30

0

disgust

48

199

a6

37

'
fear

351
304

521

165

' '
happy  neutral

Predicted Label

85

rrd

153

334

a7

52

125

14

118

137

26

sad

26

55

431

SUrprise

Fig.5. Confusion matrix (Top Right Partial 4 SVM).

& 101
=
5
-
7
2- 0
5
= 30
5-
-
2. w
2
®
5- 39
g
2 27
o
v
8- 1
S
!
angry

Confusion Matrix (SVM Bottom Left)

1

22

disgust

48

136

55

a9

47

50

fear

503
51

467

249

i l
happy  neutral

Predicted Label

114

11

90

201

291

120

43

51

43

66

62

108

21

sad

45

wn

80

76

31

30

352

surprise

Fig. 6. Confusion matrix (Bottom Left Partial 4 SVM).

Vol. 16, No. 10, 2025

Confusion Matrix (SVM Bottom Right)

E— 102 2 34 502 110 57 56
@
A
- 3 17 10 40 16 4 13
£
E - 33 0 155 401 102 73 B2
]
2 =
J g- 43 0 55 172 103 67
gE
=]
E
B
s - 36 1 36 287 60 46
¢
E - =) 3 47 567 112 132 23
i
E- 15 0 36 235 52 20 377
=
7
' ' ' ' | i '
angry disgust fear happy  neutral sad surprise

Predicted Label

Fig. 7. Confusion matrix (Bottom Right Partial 4 SVM).

Additionally, the “neutral” and “surprise” expressions
display moderate accuracy, as these emotions retain distinctive
cues around the eye and forehead regions that remain visible
even with occlusion. Misclassifications between neutral and
happy are also frequent, indicating that when the mouth region
is hidden, the model sometimes relies too heavily on the upper-
face features, leading to overlapping interpretations.

Therelatively consistent diagonal dominance across the four
regional SVM (Top Left, Top Right, Bottom Left, and Bottom
Right) confirms that the approach maintains robust and
regionally stable behavior. This suggests that the ensemble
structure successfully mitigates the performance degradation
typically caused by partial occlusion, allowing the system to
retain a reasonable level of accuracy and interpretability.

Despite these promising results, several limitations remain.
First, the proposed method reliesheavily onhandcrafted features
(HOG), which may not fully capture complex spatial and
emotional variations compared to deep learning representations.
Second, the partitioning strategy is fixed and non-adaptive;
dynamic or attention-based segmentation could better capture
relevant visible regions under real-world occlusion patterns.
Finally, the dataset used (MaskedFER2013) represents a
constrained environment with limited occlusiondiversity, which
may not generalize to unconstrained or in the wild scenarios.

For future research should focus on integrating deep feature
extraction with the ensemble SVM architecture, enabling richer
and more abstract representations of partially visible faces.
Additionally, adaptive region partitioning using attention maps
or saliency detection could further enhance robustness by
dynamically identifying the most informative facial regions.
Expanding the evaluation to include cross-dataset testing (e.g,
MaskedFER2023 or MaskedCK+) will also help assess
generalization capability. Lastly, incorporating temporal
information from video sequences could provide a more
comprehensive understanding of emotional dynamics under
occlusion.
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V. CONCLUSION

Based on the comparative analysis, no single model can be
regarded as the absolute best across all evaluation metrics.
Instead, each ensemble configuration demonstrates specific
contextual strengths depending on the performance metric
prioritized in real-world applications. The Non-Partial SVM
model shows a more balanced performance regarding F1-score
and recall, making it well-suited for general-purpose use, where
both correctness and coverage are equally important. In contrast,
the Partial-6 SVM ensemble achieves the highest precision,
which indicates its suitability for applications that demand high-
confidence decision-making, where minimizing false positives
is a priority. Meanwhile, the Partial-4 SVM ensemble yields the
highest overall accuracy, suggesting that it is most effective in
scenarios where maximizing the total number of correct
classifications is the primary objective. These findings highlight
that model selection should not rely solely on a single metric,
but rather be aligned with the intended application context and
performance requirements.
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