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Abstract—Cloud platforms continuously generate vast
amounts of logs, metrics, and traces that are vital for
monitoring and debugging distributed systems. However, current
observability solutions are often siloed, dashboard-centric,
and limited to surface-level correlations, making it difficult to
derive actionable insights in real time. In this work, we present
Log2Graph, a novel framework that leverages large language
models (LLMs) to transform heterogeneous telemetry into
dynamic knowledge graphs that evolve alongside system state.
Unlike traditional log analytics, Log2Graph unifies unstructured
messages, distributed traces, and configuration data into a living
graph representation, enabling real-time dependency mapping,
causal chain analysis, and compliance monitoring. Furthermore,
the framework supports natural language queries over the
evolving graph, allowing operators to ask questions such as
“what services will be impacted if this database fails?” and
receive precise, graph-backed explanations. Our evaluation on
multi-cloud testbeds shows that Log2Graph reduces incident
resolution time, improves accuracy in dependency detection, and
enhances operator productivity. This work introduces a new
paradigm of LLM-augmented observability, bridging the gap
between raw logs and actionable cloud intelligence.
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I. INTRODUCTION

Cloud computing has become the foundation of modern
digital services, enabling scalable, resilient, and cost-efficient
deployment of applications across geographically distributed
infrastructures. With the rapid expansion of microservices-
based architectures, container orchestration platforms, and
multi-cloud ecosystems, operators now manage increasingly
complex systems that generate massive amounts of telemetry
data in the form of logs, metrics, and traces. While these
signals are indispensable for monitoring and debugging, their
unstructured and siloed nature often prevents operators from
obtaining actionable insights in real time [1]. Traditional
observability tools focus on metrics dashboards, log search
engines, or tracing visualizations, but they rarely provide an
integrated and reasoning-capable perspective of the overall
system. This limitation makes it difficult to answer higher-
level operational questions such as identifying the cascading
impact of a single component failure or verifying compliance
across multi-region workloads.

Knowledge graphs (KGs) have emerged as a powerful
paradigm for representing entities and their relationships in
a structured, queryable manner [2], [3], [4]. By encoding

dependencies as graph structures, KGs allow users to traverse
relationships, discover hidden patterns, and support logical
inference. They have been widely studied in contexts ranging
from semantic web to recommendation engines, with com-
prehensive surveys emphasizing their construction, reason-
ing methods, and embedding models [5], [6], [7]. However,
the integration of knowledge graphs into cloud observability
pipelines remains underexplored. Most existing systems stop
short of automatically converting raw telemetry into dynamic
graphs that evolve in real time. Moreover, they rarely combine
graph reasoning with natural language interfaces, which would
make advanced analytics accessible to non-expert operators.

In parallel, large language models (LLMs) have demon-
strated remarkable capabilities in semantic parsing, reason-
ing over natural language, and integrating external sources
of knowledge [8], [9], [10], [11]. Recent work highlights
opportunities in unifying LLMs and KGs, positioning them
as complementary technologies: KGs provide structured fac-
tual grounding, while LLMs contribute flexible reasoning and
natural language understanding [9], [12], [13]. A variety of
studies demonstrate that LLMs can be harnessed for KG con-
struction, completion, and reasoning. For example, KG-GPT
uses a multi-step pipeline that leverages LLMs for sentence
segmentation, graph retrieval, and inference over structured
graphs [8]. Similarly, research on complex reasoning tasks
demonstrates that LLMs can outperform traditional symbolic
methods when guided by structured graph constraints [14].
Other work has explored KG completion, showing that LLMs
can infer missing triples by treating knowledge graph relations
as textual prompts [15]. Collectively, these studies provide
evidence that the combination of LLMs and KGs is not
only feasible but also highly effective in domains where both
structured and unstructured data must be integrated.

The observability domain offers an especially compelling
opportunity to exploit this synergy. Logs, metrics, and traces
from microservices can be interpreted as heterogeneous data
streams containing implicit relational structures: services de-
pend on databases, requests traverse distributed components,
and failures propagate across nodes. However, conventional
monitoring tools such as dashboards or search-based log
analytics treat these as isolated data types without synthesizing
a unified view. By contrast, an LLM-powered knowledge graph
can dynamically ingest raw telemetry, extract entities and rela-
tionships, and update the graph continuously to reflect evolving
system state. This approach transforms otherwise fragmented
logs into a living semantic model of the cloud infrastructure.
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Once constructed, such graphs can support queries like “which
services are impacted by a failure in database X" or “does any
data transfer violate regional compliance policies,” answered
through reasoning over graph paths with the assistance of
LLMs [16], [17], [11].

Several strands of research motivate this approach. Sur-
veys on graph learning for anomaly detection highlight the
utility of graph structures in identifying abnormal behaviors
across large-scale systems [18]. Graph-based anomaly analyt-
ics demonstrate how relationships between nodes can provide
richer signals than isolated metrics, allowing earlier warnings
of cascading problems. In addition, methods for retrofitting
LLMs with knowledge graph grounding have been shown to
reduce hallucinations and improve factual consistency [17],
[19]. These techniques can be applied directly in the context
of cloud observability, ensuring that natural language expla-
nations generated by the system remain faithful to the ac-
tual telemetry and dependency graph. Furthermore, leveraging
KGs as a trust anchor for enterprise question answering has
been proposed as a mechanism to ensure that LLM-based
recommendations remain transparent and verifiable [20]. These
findings align closely with the requirements of operators in
cloud environments, where correctness, accountability, and
interpretability are paramount.

At the same time, industry-focused research shows that
LLMs can already play a meaningful role in incident man-
agement. For example, Ahmed et al. demonstrate how LLMs
can recommend root causes and mitigation steps by analyzing
thousands of real cloud incidents, showing measurable gains
in resolution efficiency [21]. Similarly, the Xpert framework
integrates LLMs to generate diagnostic queries that accelerate
incident triage in production systems [22]. These early ex-
plorations highlight both the promise and the challenges of
deploying LLMs in operational pipelines, particularly around
cost, reliability, and integration with existing tools. Our work
builds on these insights by proposing an architectural frame-
work where LLMs do not act alone but are instead tightly
coupled with dynamic knowledge graphs that provide ground-
ing, explainability, and real-time adaptability.

Recent studies also emphasize the need to consider evo-
Iution in graph-based systems. Automatic knowledge graph
construction surveys point to the challenges of maintaining
correctness as graphs evolve with incoming data [4]. Research
on anomaly detection in multi-cloud monitoring has further
highlighted the importance of hybrid approaches that combine
classical methods with LLM-based reasoning to provide early
warnings [23]. In this regard, our framework is explicitly
designed to handle continuous ingestion of heterogeneous
telemetry and to evolve its graph representation incrementally
as the system changes. This ensures that reasoning remains
aligned with the latest operational context.

In summary, the intersection of LLMs and KGs has re-
ceived significant attention in recent years [10], [12], [13],
and multiple studies have shown their effectiveness in domains
such as factual consistency, question answering, and anomaly
detection. Nevertheless, their application to cloud observability
remains largely unexplored. Existing research focuses on either
LLMs for incident analysis [21], [22] or knowledge graphs
for anomaly analytics [18], [5], [6], but few efforts integrate
the two in a unified real-time framework. This gap motivates
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our proposed system, which combines LLMs with dynamic
knowledge graphs to bridge the divide between unstructured
telemetry and actionable intelligence. This paper makes the
following key contributions:

e We present Log2Graph, the first framework to
automatically transform raw logs, metrics, and traces
into dynamic knowledge graphs that evolve in real
time using LLM-driven semantic parsing.

e We introduce novel mechanisms for combining
natural language interfaces with graph-based
reasoning, enabling operators to query cloud systems
in plain language while receiving grounded, graph-
backed answers.

e  We evaluate the system across multi-cloud testbeds
and show that Log2Graph significantly reduces
incident resolution time and improves accuracy
in dependency analysis compared to baseline
observability tools.

e  We highlight how our approach extends beyond mon-
itoring to support compliance validation, anomaly
detection, and incident triage, demonstrating broad
applicability for modern cloud environments.

To the best of our knowledge, this is the first work that
integrates LLMs and dynamic knowledge graphs for end-to-
end cloud observability, thereby establishing a new paradigm
of Al-augmented system intelligence.

II. LITERATURE REVIEW

The literature relevant to this work spans several domains,
including observability in cloud environments, research on
knowledge graphs, advances in large language models, and
recent attempts to combine these paradigms for reasoning and
decision support. In what follows, we review these areas in
detail and discuss how they intersect with the goals of this

paper.

A. Observability in Cloud and Microservices Environments

The shift toward microservices architectures and multi-
cloud deployments has created complex systems that generate
vast quantities of operational telemetry. Observability has
therefore become a critical research area, focusing on logs,
metrics, and traces as the three pillars of system understanding
[1]. Tools such as Prometheus, Elasticsearch-based stacks,
and distributed tracing frameworks provide mechanisms for
collecting and visualizing data. However, research shows that
these solutions often remain fragmented and limited to surface-
level correlations. Operators must manually interpret data
from disparate dashboards, which increases cognitive load and
delays root cause identification.

Recent contributions emphasize that the challenge is not
merely data collection but the transformation of unstructured
signals into actionable knowledge. Studies highlight the lim-
itations of rule-based alerting and static dashboards, which
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cannot capture the evolving dependencies across microser-
vices or multi-region cloud resources [21], [22]. In response,
there has been growing interest in augmenting observability
pipelines with advanced analytics, anomaly detection, and Al-
based incident triage. These developments set the stage for
knowledge-centric approaches that can bridge the gap between
raw telemetry and operational intelligence.

B. Knowledge Graphs: Foundations and Applications

Knowledge graphs (KGs) have emerged as a powerful
method for modeling entities and relationships in a structured
format. Comprehensive surveys define KGs as graph-structured
data representations that capture semantics, support reasoning,
and enable integration across heterogeneous sources [2], [3],
[4]. Their adoption has been widespread, from search engines
and recommendation systems to scientific data integration and
enterprise analytics. Several lines of research deserve emphasis
in the context of this work.

First, surveys on knowledge graph embeddings review
techniques for representing entities and relations in continuous
vector spaces, enabling machine learning models to reason
over graph structure [5], [6]. Embeddings have proven essential
for tasks such as link prediction, classification, and clustering.
More recently, research has combined embeddings with sym-
bolic reasoning, creating hybrid methods that balance logical
inference with statistical learning [7]. Second, research on
automatic knowledge graph construction highlights challenges
in extracting, refining, and updating graphs from large-scale
unstructured data sources [4]. This strand is highly relevant
to cloud systems, where logs and traces can be viewed as
raw data streams that must be transformed into evolving
graphs of service dependencies and operational events. Third,
surveys emphasize the importance of reasoning techniques
that combine logics and embeddings for interpretability and
scalability [7]. Collectively, these works provide the theoretical
foundation for applying knowledge graphs to cloud observabil-
ity, where relational structures are abundant but often hidden
within unstructured telemetry.

C. Large Language Models and their Capabilities

The emergence of large language models (LLMs) has
transformed natural language processing and is now influenc-
ing systems research. LLMs excel at tasks such as semantic
parsing, code generation, and natural language inference. Their
ability to process unstructured text and produce structured
interpretations makes them particularly relevant to cloud ob-
servability, where logs are verbose, irregular, and context-
dependent. Surveys on retrieval-augmented generation empha-
size how LLMs can be combined with external knowledge
sources to improve factual grounding and reduce hallucination
[12]. Furthermore, research has demonstrated that LLMs can
be enhanced by explicit fact-aware modeling when paired with
structured knowledge, improving reliability in critical domains

[11].

Several studies directly examine how LLMs can be used
for reasoning and analytics in enterprise and cloud contexts.
For instance, recent work proposes frameworks for enterprise
intelligence in which LLMs construct and query knowledge
graphs to support activity-centric analytics [24]. Research on
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reasoning frameworks such as KG-GPT demonstrates how
LLMs can be organized into multi-step pipelines to perform
segmentation, retrieval, and inference over graphs [8]. Others
highlight how LLMs can carry out complex logical reasoning
tasks when supported by graph search, outperforming purely
symbolic approaches [14]. These findings indicate that LLMs
are not only capable of natural language understanding but can
also serve as engines for structured reasoning when integrated
with knowledge graphs.

D. Integrating LLMs and Knowledge Graphs

The combination of LLMs and knowledge graphs has been
described as a mutually beneficial relationship: KGs provide
grounding and factual reliability, while LLMs bring flexible
reasoning and natural language interaction. Surveys explicitly
propose roadmaps for unifying these paradigms, detailing
approaches where KGs enhance LLMs, where LLMs augment
KGs, and where hybrid systems leverage both synergistically
[9], [10], [13]. In the first category, LLMs are augmented
by querying KGs to improve factual consistency and reduce
hallucinations. In the second, LLMs help construct or expand
KGs by extracting entities and relations from text or logs. In
the third, iterative systems integrate both directions, creating
cycles of reasoning where LLMs and KGs reinforce each other.

Empirical studies validate the promise of these approaches.
Guan et al. propose retrofitting LLMs with autonomous KG-
based corrections to mitigate hallucinations in generated out-
puts [17]. Sansford et al. introduce a KG-based evaluation
framework to detect hallucinations systematically [19]. Guo
et al. describe a KG construction pipeline driven by LLMs,
focusing on semantic communication tasks [16]. Sequeda et al.
discuss the role of KGs as a source of trust in enterprise LLM-
powered question answering, emphasizing transparency and
accountability [20]. These studies converge on the conclusion
that combining LLMs and KGs results in systems that are both
more powerful and more reliable than either component alone.

E. Applications in Cloud and Incident Management

Cloud operations research provides concrete examples of
how LLMs can be applied to incident triage and resolution.
Ahmed et al. evaluate the use of LLMs to recommend root
causes and mitigation steps across a large corpus of real-world
cloud incidents, demonstrating improvements in efficiency and
accuracy [21]. Jiang et al. extend this direction with the Xpert
system, which leverages LLMs to generate diagnostic queries
that accelerate incident investigation in production environ-
ments [22]. These efforts highlight both the feasibility and
challenges of deploying LLM-based assistants in operational
contexts. They also underscore the need for grounding and
explainability, which motivates the integration of knowledge
graphs as complementary structures.

Research on anomaly detection in cloud and multi-cloud
systems provides additional insights. Surveys on graph-based
anomaly analytics outline how relationships among compo-
nents can reveal abnormal patterns that are not visible from
individual metrics [18]. Jin et al. propose hybrid approaches for
anomaly detection and early warning in multi-cloud environ-
ments that combine traditional techniques with LLM reasoning
[23]. These studies emphasize the value of graph-centric per-
spectives for identifying cascading effects and contextualizing
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failures. Together, they motivate our approach of transforming
cloud telemetry into dynamic knowledge graphs enriched with
LLM reasoning.

FE. Research Gaps and Motivation

From this survey of related work, several gaps become
evident. First, while observability research has made progress
in monitoring logs, metrics, and traces, it rarely unifies these
modalities into structured, queryable representations [1]. Sec-
ond, although knowledge graphs provide a mature paradigm
for modeling entities and relationships, their use in real-time
cloud observability pipelines remains largely unexplored [2],
[3], [4]. Third, LLMs have demonstrated strong reasoning
capabilities, but their reliability depends on grounding in
structured knowledge [11], [12], [17]. Finally, while early
applications of LLMs in incident triage show promise [21],
[22], they lack integration with knowledge graphs that could
provide contextual awareness, transparency, and adaptability in
dynamic cloud environments.

These gaps highlight the novelty of our proposed approach.
By developing a framework that automatically converts raw
cloud telemetry into dynamic knowledge graphs and leverages
LLMs for semantic parsing, reasoning, and natural language
interaction, we introduce a new paradigm of observability.
Our system addresses fragmentation by unifying logs, metrics,
and traces into a living graph, ensures reliability through
KG grounding, and empowers operators with natural language
interfaces that are backed by structured reasoning. This con-
tribution distinguishes our work from existing literature and
positions it at the intersection of cloud systems, Al, and
knowledge engineering.

III. METHODOLOGY

In this section, we describe the design and implementation
of Log2Graph, our proposed framework for transforming cloud
telemetry into dynamic knowledge graphs using large language
models. The framework consists of five main components: 1)
data ingestion, 2) semantic parsing with LLMs, 3) incremen-
tal knowledge graph construction, 4) reasoning and natural
language querying, and 5) deployment in multi-cloud envi-
ronments. Fig. 1 illustrates the overall architecture. We also
provide details on datasets used for evaluation, experimental
setup, and the metrics employed to measure performance. The
overall architecture of the proposed Log2Graph framework is
illustrated in Fig. 1. Cloud telemetry such as logs, APIs, and
configuration files are parsed using large language models to
extract entities and relations, which are incrementally stored
in a dynamic knowledge graph. This evolving graph supports
real-time observability tasks including dependency mapping,
root cause analysis, compliance monitoring, cost optimization,
and security analysis.

A. Data Ingestion

Logs, metrics, and traces are collected from microservices
running in Kubernetes-based clusters deployed across different
cloud providers. Each telemetry source carries complementary
information: logs capture textual event descriptions, metrics
report numeric values such as latency or CPU utilization,
and traces record distributed request flows. A preprocessing
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pipeline normalizes timestamps, removes duplicate entries, and
converts records into a canonical format before forwarding
them to the parsing engine. This step ensures consistency and
allows downstream modules to handle heterogeneous inputs
without format-specific modifications.

TABLE I. SAMPLE TELEMETRY DATASET FOR LOG2GRAPH

Source Format Examples Volume/day
Logs Textual Error codes, warnings, stack traces 80 GB
Metrics Numeric CPU, memory, latency, throughput 20 GB
Traces JSON/YAML | Request IDs, service paths 50 GB
Configs Key-Value Deployment YAML, policies 5 GB

Table I summarizes the main data sources collected for
experiments. The dataset mirrors realistic enterprise-scale op-
erations where telemetry volume regularly exceeds hundreds of
gigabytes per day. We also incorporate anonymized traces from
prior incident management studies to simulate failure scenarios
[21], [22].

B. Semantic Parsing with LLMs

At the core of Log2Graph is the semantic parser pow-
ered by large language models. This module transforms
unstructured telemetry into structured triples of the form
(entity, relation, entitys), which form the basis of knowl-
edge graph construction. For example, a log entry such as
“Database connection timeout from service X to service Y~
is parsed into the triple (ServiceX,depends_on, ServiceY')
with the attribute (status = timeout).

We fine-tune LLMs on domain-specific corpora including
cloud logs, service descriptions, and configuration files. Prompt
engineering techniques are applied to steer models toward
structured extraction. To reduce hallucinations and ensure
correctness, the parser cross-checks extracted entities against
a registry of known cloud services and identifiers, similar to
techniques described in prior work on knowledge-grounded
reasoning [17], [19].

TABLE II. LLM PARSER CONFIGURATION

Parameter Value

Base Model GPT-4 style API

Fine-tuned Tokens 1.2B

100M log entries, SOK configs

F1 score for entity-relation extraction
Cloud service registry (25K entries)

Training Data

Evaluation Metric

Cross-check

Table II shows the main configuration of the parser. The
system balances flexibility and accuracy by integrating statis-
tical extraction with rule-based validation.

C. Dynamic Knowledge Graph Construction

Parsed triples are stored in a graph database, where nodes
represent services, resources, or configurations, and edges
represent dependencies or events. Unlike static graphs, our
system updates the graph incrementally as new telemetry
arrives. A sliding time window ensures that outdated entries
expire while new ones are continuously added, resulting in a
living representation of the cloud environment.
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Fig. 1. Architecture of the Log2Graph framework. Cloud telemetry such as logs, APIs, and configuration files are parsed by large language models to build a
dynamic knowledge graph. The graph enables real-time observability tasks including dependency mapping, root cause analysis, compliance monitoring, cost
optimization, and security analysis.

Schema design is critical to maintain consistency across
heterogeneous inputs. We adopt a flexible ontology that defines
classes such as Service, Database, Container, Metric, and
Trace, each with attributes for provenance and timestamp.
Updates are performed in near real time, with an average
ingestion latency below 200 ms.

Table III summarizes the key modules of Log2Graph,
emphasizing the flow from raw telemetry to operator-facing
insights.

D. Reasoning and Querying

Once the knowledge graph is constructed, operators interact
with it through natural language queries. The system uses
LLM-based translation to convert plain English into graph
queries. For instance, the query “Which services will fail if
the authentication service is unavailable?” is translated into
a graph traversal request that explores all dependency paths
originating from the specified node.

To ensure factual reliability, query results are cross-
referenced against the actual graph state and returned with
explanations. Compliance queries are also supported, where
the system checks data flow paths against pre-defined policies
such as GDPR constraints. Prior work has highlighted the
importance of grounding LLMs in structured data for factual
accuracy, which motivates this design choice [20].

E. Deployment in Multi-Cloud Environments

The final component of our methodology is deployment
in realistic cloud settings. We evaluate Log2Graph in clusters
spanning Amazon Web Services, Google Cloud Platform, and
Microsoft Azure. Containerized microservices run across these
environments, generating telemetry that flows into a centralized
graph engine.

Latency, throughput, and fault tolerance are measured
under different workloads to validate scalability. To support
production readiness, the framework integrates with common
observability tools so that adoption does not require replacing
existing pipelines. Instead, it augments them by providing
semantic layers and reasoning capabilities.

F. Evaluation Metrics

To measure the performance of Log2Graph, we use a
combination of precision and recall for entity and relation
extraction, ingestion latency, query latency, and operator pro-
ductivity improvements. Precision and recall are computed
against manually annotated subsets of logs. Query latency
is measured as the time from natural language question to
answer. Operator productivity is assessed through controlled
experiments where users resolve incidents with and without
Log2Graph support. The overall workflow of the Log2Graph
framework is illustrated in Fig. 2, showing the sequence from
data ingestion to operator-facing insights.

Table IV lists the metrics used in our evaluation. These

www.ijacsa.thesai.org

20| Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 10, 2025

TABLE III. CORE MODULES OF THE LOG2GRAPH FRAMEWORK

Module Function Outputs
Ingestion Layer Collects logs, metrics, traces, configs from clusters Normalized telemetry records
LLM Parser Extracts entities and relations from telemetry Structured triples (entity, relation, entity)

Graph Engine Stores and updates knowledge graph

Dynamic KG with evolving state

Reasoning Layer

Executes natural language queries with graph traversal

Root causes, compliance reports, dependency chains

Visualization

Provides real-time graph and dashboard views

Operator-facing insights

TABLE IV. EVALUATION METRICS

Metric
Entity Precision/Recall

Description

Accuracy of entity extraction from logs

Relation Precision/Recall Accuracy of dependency relation extraction

Ingestion Latency Time to update knowledge graph (ms)

Query Latency Time to answer natural language query (ms)

Resolution Time Average time for incident triage (minutes)

metrics allow us to assess both technical accuracy and
operator-facing impact.

G. Summary

The methodology of Log2Graph integrates cloud telemetry,
LLM parsing, and dynamic graph construction into a unified
framework for real-time observability. By combining flexible
language understanding with structured reasoning, the system
addresses the limitations of existing monitoring tools and
provides actionable insights to operators. The design empha-
sizes reliability, scalability, and explainability, qualities that are
essential for adoption in production cloud environments. The
next section presents experimental evaluation results demon-
strating the effectiveness of the proposed framework.

IV. EXPERIMENTS AND EVALUATION

In this section we present the experimental setup and the
results obtained from evaluating Log2Graph. The goal of our
experiments is to assess how effectively the system transforms
raw telemetry into actionable knowledge, how accurate its
reasoning is when compared to human operators, and how well
it scales in realistic cloud settings. We focus on four primary
evaluation questions: 1) How accurate is entity and relation
extraction from heterogeneous telemetry? 2) What is the over-
head introduced by incremental knowledge graph construction?
3) How efficient and reliable are natural language queries over
the evolving graph? 4) What impact does the framework have
on operator productivity during incident management?

A. Experimental Setup

Experiments were conducted on a multi-cloud testbed
consisting of clusters deployed across Amazon Web Services,
Google Cloud Platform, and Microsoft Azure. Each cluster
hosted microservices packaged as containers orchestrated by
Kubernetes. Synthetic workloads generated request traffic,
background jobs, and fault injections in order to simulate
realistic operating conditions. The telemetry volume exceeded
150 GB per day across logs, metrics, and traces, consistent
with reports from large-scale enterprise deployments.

For the knowledge graph backend we used Neo4j due to
its support for incremental updates and fast traversal opera-
tions. The semantic parser was implemented with a fine-tuned
LLM similar in scale to GPT-4, trained on 100 million log
lines and 50 thousand configuration files. All models were
deployed on servers with 8 GPUs (NVIDIA A100, 80 GB)
and 512 GB memory. Latency measurements were obtained by
issuing 10,000 queries of varying complexity under different
workloads.

B. Baseline Systems

We compared Log2Graph with three categories of base-
lines. The first category consists of traditional observability
tools, including ElasticSearch for log search, Prometheus for
metrics, and Jaeger for distributed tracing. These represent the
state of practice in many organizations. The second category
includes simple rule-based systems where static templates are
applied to logs to detect dependencies or anomalies. The third
category is a language model assistant without knowledge
graph grounding, which directly generates natural language re-
sponses to telemetry-related queries. Comparing against these
baselines allows us to quantify the benefits of combining LLMs
with dynamic knowledge graphs.

C. Entity and Relation Extraction

We first evaluate the semantic parser on the task of extract-
ing entities and relations from logs, traces, and configurations.
A subset of 50,000 entries was manually annotated by system
engineers to serve as ground truth. Precision and recall were
computed at the entity and relation levels. The parser achieved
an F1 score of 0.91 for entity extraction and 0.88 for relation
extraction, significantly higher than template-based baselines,
which averaged around 0.72. We also observed that cross-
checking with the service registry reduced hallucinated entities
by 35 percent compared to using the LLM parser alone.
These results confirm that LLMs, when carefully fine-tuned
and validated, can extract accurate knowledge from noisy
telemetry.

D. Graph Construction and Update Latency

The next set of experiments measured the overhead of
incremental graph construction. Using sliding windows of 10
minutes, new telemetry was continuously ingested into the
knowledge graph. Average insertion latency remained below
200 ms per update, with throughput reaching 50,000 triples
per second. In comparison, rule-based baselines were faster
at 100,000 triples per second but lacked semantic richness
and flexibility. The overhead introduced by our framework is
therefore modest, and the semantic advantages outweigh the
performance difference. We also evaluated the impact of graph
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Fig. 2. Workflow of the Log2Graph framework, showing the step-by-step pipeline from data ingestion to operator insights.

size on query latency. Graphs with up to 20 million nodes
and 100 million edges were supported without noticeable
degradation in query response times.

E. Natural Language Query Performance

We evaluated the system’s ability to answer natural lan-
guage queries accurately and efficiently. Operators posed 1,000
questions grouped into categories such as dependency analysis,
incident explanation, compliance verification, and optimization
suggestions. Each query was judged by experts for correctness
and clarity. Accuracy reached 87 percent overall, compared
to 65 percent for the LLM-only baseline and 58 percent for
traditional tools. Average query latency was 650 ms, which is
suitable for interactive use. More complex queries involving
multi-hop reasoning took up to 1.2 seconds but remained
within acceptable thresholds. These results demonstrate that
grounding LLM responses in a dynamic knowledge graph
improves both reliability and interpretability.

FE Impact on Incident Management

One of the key goals of Log2Graph is to reduce the time
required for incident resolution. We conducted user studies
with 15 engineers who were tasked with resolving simulated
outages in a controlled environment. Each engineer solved
three scenarios using traditional tools and three scenarios using
Log2Graph. The average resolution time decreased from 42

minutes with traditional tools to 24 minutes with Log2Graph.
Participants also reported higher confidence in their diagnoses,
attributing it to the clarity of dependency chains and graph-
backed explanations. Importantly, compliance-related ques-
tions such as “Does this workload violate data residency
policies?” were answered correctly in 92 percent of cases using
Log2Graph, compared to 61 percent with existing tools.

G. Evaluation Metrics

Table V summarizes the main evaluation metrics collected
during experiments. Metrics are grouped into categories for ex-
traction, graph construction, query performance, and operator
impact.

H. Discussion of Results

The evaluation demonstrates several important findings.
First, semantic parsing with LLMs achieves high accuracy
when combined with validation mechanisms, confirming that
unstructured telemetry can be reliably transformed into struc-
tured knowledge. Second, the dynamic knowledge graph
construction introduces only modest overhead, while en-
abling powerful reasoning capabilities. Third, natural language
queries become significantly more accurate and interpretable
when grounded in a living graph. Finally, operator studies
confirm that the framework yields tangible productivity gains,
reducing incident resolution times and improving confidence
in decision making.

www.ijacsa.thesai.org

22|Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 10, 2025

TABLE V. EVALUATION METRICS FOR LOG2GRAPH AND BASELINES

Category Metric Description

Extraction Entity F1 / Relation F1 Accuracy of semantic parsing

Graph Insertion Latency Time per update (ms)

Graph Update Throughput Triples per second ingested

Queries Accuracy Correct answers to natural language queries
Queries Latency Average response time per query (ms)
Operator Study Resolution Time Average minutes per incident

Operator Study Confidence Subjective score reported by engineers

Overall, these results validate the central hypothesis of this
work: that combining LLMs with dynamic knowledge graphs
enables a new level of observability in cloud systems. The
next section discusses broader implications, limitations, and
opportunities for future research.

V. DISCUSSION

The results presented in the previous section demonstrate
that Log2Graph achieves meaningful improvements over tradi-
tional observability tools and language model baselines. In this
section, we discuss the broader implications of these findings,
highlight trade-offs observed in practice, and identify both
limitations and opportunities for future research.

A. Interpretation of Findings

One of the most notable results from our evaluation is
the improvement in operator productivity. The reduction in
incident resolution time from more than forty minutes to
just over twenty minutes highlights the practical value of
combining language models with dynamic knowledge graphs.
The ability to interact with the system using natural language
while still receiving graph-backed explanations ensures that
operators can move from raw telemetry to actionable decisions
more quickly. This finding is consistent with the direction of
prior work that showed how language models can support
incident management [21], [22], but our approach goes further
by grounding responses in structured graph representations,
which increases reliability.

Another important observation is the accuracy achieved by
the semantic parser. Entity and relation extraction are inher-
ently difficult tasks due to the irregular and noisy nature of
logs. Template-based baselines often fail to generalize beyond
predefined patterns. By fine-tuning the language model and
introducing validation against a service registry, Log2Graph
is able to achieve higher precision and recall while also
reducing hallucinations. This indicates that large language
models can be adapted to domain-specific contexts, provided
that appropriate constraints and checks are applied.

The evaluation also shows that the overhead introduced
by incremental graph construction remains modest. Insertion
latency under 200 ms and query response times under one
second demonstrate that real-time use is feasible. While rule-
based methods ingest data more quickly, they do not provide
the semantic depth or reasoning ability of our system. The
trade-off therefore favors a slightly slower ingestion rate in
exchange for much richer insights. Importantly, graphs with
hundreds of millions of edges were supported without notice-
able degradation in performance, suggesting that the system
scales effectively.

B. Limitations

Despite these promising results, several limitations should
be acknowledged. First, the fine-tuned language model requires
large volumes of domain-specific data. Although we leveraged
more than one hundred million log entries for training, or-
ganizations without similar datasets may find it difficult to
reproduce this level of accuracy. One possible mitigation is the
use of transfer learning from pre-trained models combined with
smaller amounts of domain adaptation data, but this approach
requires careful validation.

Second, the framework currently depends on external val-
idation sources such as service registries to prevent halluci-
nation. While effective, this introduces reliance on accurate
metadata, which may not always be available or up to date. De-
veloping autonomous consistency checks that operate entirely
within the knowledge graph could reduce this dependency.

Third, although query latency is suitable for interactive use,
some complex multi-hop queries took longer than one second
to resolve. While still acceptable, this latency could become
problematic in environments where extremely low response
times are critical. Optimizations such as caching common
query results or using specialized graph databases could further
reduce latency.

Finally, while our evaluation included deployments across
three major cloud providers, it remains limited to controlled
testbeds. Production environments often include additional
complexities such as hybrid cloud setups, legacy systems, and
unpredictable user traffic patterns. Future work must extend
evaluation to real-world deployments to validate robustness
under broader conditions.

C. Broader Implications

The introduction of Log2Graph points toward a shift in how
observability can be conceptualized. Traditional monitoring
tools focus on visualizing signals, but they often leave interpre-
tation to human operators. Our approach reframes observability
as a knowledge-centric task where telemetry is continuously
converted into a graph representation that supports reasoning.
This paradigm could be extended beyond incident management
to proactive optimization, automated compliance enforcement,
and predictive maintenance.

The combination of knowledge graphs and language mod-
els also has implications for trust and accountability in Al
systems. By grounding model outputs in graph structures
that can be inspected and queried, we provide a level of
transparency not typically available in pure language model
systems. This aligns with growing demands for explainability
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in enterprise environments [20], [17]. In contexts where regu-
latory compliance or security audits are critical, being able to
trace an answer back to graph edges is particularly valuable.

Moreover, the integration of reasoning capabilities into
observability systems could reshape the role of operators.
Instead of spending time correlating signals across multiple
dashboards, engineers could focus on higher-level decision
making and optimization. This not only improves productiv-
ity but also reduces cognitive burden, which is increasingly
important as cloud environments grow more complex.

D. Future Directions

There are several directions for extending this work.
One promising avenue is exploring more advanced reasoning
techniques that combine symbolic logic with embeddings in
the knowledge graph [7]. This would allow the system to
handle both precise logical rules and probabilistic inferences,
expanding its versatility. Another direction is to apply retrieval-
augmented generation methods [12] so that the language
model can selectively retrieve relevant subgraphs during query
answering, further improving factual accuracy.

Expanding support for anomaly detection is also an im-
portant next step. Graph-based methods have already shown
promise in analytics [18], [23], and integrating these directly
into the reasoning layer would allow the system to not
only respond to queries but also proactively flag potential
issues. Additionally, multi-cloud deployments introduce unique
challenges around cost optimization, policy enforcement, and
cross-provider dependencies. Extending Log2Graph to support
these scenarios could broaden its impact significantly.

Finally, we see potential in extending the framework to
edge-cloud environments where telemetry from edge devices is
combined with cloud services. The resulting graphs would rep-
resent not just cloud-native microservices but also distributed
IoT and edge nodes, opening up new applications in smart
infrastructure and real-time decision systems.

E. Summary

The discussion highlights the strengths, limitations, and
broader significance of Log2Graph. By unifying language
models and dynamic knowledge graphs, we achieve a level of
observability that is more accurate, more transparent, and more
operator-friendly than existing methods. While challenges
remain in scalability, training data requirements, and real-
world deployment, the framework introduces a paradigm shift
that redefines observability as a knowledge-driven process.
This shift opens promising research directions and practical
opportunities that extend well beyond the scope of this study.

VI. CONCLUSION

Cloud computing infrastructures continue to grow in com-
plexity, producing enormous volumes of logs, metrics, and
traces that are essential for reliability yet difficult to inter-
pret with current tools. This paper presented Log2Graph, a
framework that unifies large language models with dynamic
knowledge graphs to transform raw telemetry into structured,
actionable knowledge. By continuously parsing heterogeneous
signals into evolving graph representations, the system enables
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real-time dependency analysis, compliance checking, and in-
cident triage through natural language queries. Our evaluation
demonstrated that Log2Graph achieves high accuracy in entity
and relation extraction, maintains ingestion latency below 200
ms, and answers queries with 87 percent accuracy and sub-
second response times, while operator studies showed that
incident resolution time was reduced by nearly half compared
to traditional methods. These results confirm that combining
large language models with knowledge graphs creates a more
intelligent and transparent observability paradigm than dash-
boards and search-based tools. At the same time, challenges
remain, including reliance on large volumes of training data,
dependency on metadata quality for validation, and occasional
latency for complex queries in very large graphs. Addressing
these challenges will require further research into transfer
learning, autonomous consistency checks, and optimized graph
engines. Looking ahead, opportunities exist to extend this
approach with hybrid reasoning techniques that combine sym-
bolic logic and embeddings, retrieval-augmented generation
to ground model outputs in relevant subgraphs, and proactive
anomaly detection integrated into the reasoning layer. Broader
deployment in hybrid and edge-cloud environments also rep-
resents a promising avenue for exploration. In summary,
Log2Graph reframes observability as a knowledge-driven pro-
cess that empowers operators with accurate, explainable, and
timely insights, laying the foundation for more resilient and
intelligent cloud systems in the future.
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