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Abstract—Static traffic signal timings often cause severe delays
for emergency vehicles, including ambulances at junctions in
urban areas, putting lives at risk. To highlight this, the present
study proposes an intelligent traffic control system that
dynamically adjusts traffic signals based on real-time monitoring.
The system employs a yolov8-based deep learning model fine-
tuned through transfer learning for ambulance detection from live
video. At an Intersection over Union (IoU) threshold of 0.5, the
model achieves a mean Average Precision (mAP) of 0.860. To
ensure continuous tracking, NORFair tracking is implemented to
ensure constant detection across frames. Additionally, to improve
explainability and, the frame incorporates Local Interpretable
Model-Agnostic Explanation (LIME), providing visual signals into
the model decision-making process. Once an ambulance is
detected, the system instantly triggers a green-light activation for
the ambulance's lane, enabling quick emergency response. Unlike
conventional systems with fixed signal timing, this approach
enables smart and adaptive traffic management in urban
environment. However, the system's shortcomings in low-visibility
situations, such as at night or in fog, despite its encouraging
results, highlight the need for incorporating images taken at night
and in foggy weather into the dataset.

Keywords—Ambulance detection; YOLOVS; LIME; transfer
learning; NorFair; urban area; traffic control; smart traffic
management

I.  INTRODUCTION

An efficient emergency response is crucial for saving lives,
especially in developing countries where road networks
struggle to keep pace with the increasing number of vehicles.
Emergency response, which includes ambulances [ 1] and bikes
[2], often faces significant delays due to heavy traffic
congestion, particularly at intersections. Traditional traffic
management systems operate on pre-installed cycles, failing to
dynamically adapt to real-time emergencies, which minimizes
response times and hinders the traversal of ambulances through
intersections. As the number of vehicles increases by a million

every decade [3], it has become a concern for many researchers
to provide quality traffic management, particularly for
ambulances, to mitigate response times for emergencies.

Consequently, Machine learming and computer vision have
unexpectedly enhanced intelligent systems, such as object
detection [4], object tracking [5], vehicle counting [6], and
traffic light detection [7]. Similar to detection and
identification, computervisionalgorithms have beenadoptedto
calculate the vehicle speed [8] and pollution monitoring [9].
Furthermore, Machine learning algorithms are employed to
control the path following of unmanned vehicles [10], robot
navigation [11], and adaptive signal control [12]. While Deep
learning models such as YOLO (You Only Look Once) [13]
and R-CNN (Region-Based Convolutional Neural Networks)
[14] have been effectively utilized for object detection,
including the identification of emergency vehicles [15],
adaptingaudiobased location of vehicle [ 16]. Existingresearch
primarily focuses on detection rather than integrating this
detection into real-time, dynamic traffic control decision. Most
prior studies lack the ability to autonomously manipulate traffic
signals in response to ambulance localization, resulting in
delayed emergency response and inefficient intersection
management. Furthermore, explainable Al techniques have
rarely been employed to interpret or validate the model’s
decision-making process in such safety-critical applications

The primary study of this article is based on an Al-driven
traffic signal optimization framework that dynamically
modifies vehicle routes upon detecting an approaching
ambulance. The method adopted involves leveraging the LIME
technique to enhance the confidentiality of the localization
system while incorporating the tracking technique to improve
traversal through the intersection. The core of this research lies
in adopting a tailored object localization model, Yolov8, as a
transfer learning approach. The model demonstrates
outstanding performance, achieving a mean average precision
0f0.85 at the threshold of 0.5. To improve signal optimization
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beyond vehicle detection, tracking helps monitor the vehicle's
trajectory and movement over time. Fig. 1 illustrates the overall
system flow.
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Fig. 1. The flow of the system.

The article presents a novel approach to improving
ambulance localization explainability for optimizing
ambulance traversal. The contribution of this article can be
summarized as follows.

1) Model modification and adaptation: A customized
Yolov8 model was used for ambulance detection in a dynamic
and active environment using transfer learning, offering robust
accuracy and efficiency. Formerly, the model was customized
for object localization to support navigation for visually
impaired people. This deliberate modification is intended to
reduce the parameter, makingthe model effective for operation,
even for a small dataset.

2) LIME for explainability: A significant novelty of this
work is the amalgamation of LIME (Local Interpretable Model-
Agnostic Explanation) [17] to provide understanding into the
model's decision-making process. Integrating LIME into the
localization model's prediction, we were able to understand and
explain the spatial regions of the image that meaningfully
influenced the model’s decision to categorize an object as an
ambulance.

3) Modeltransparency: We discussed theblack-box nature
of'the deep learmning model by applying LIME [17], making the
localization model's predictions more understandable. The
LIME explanations discovered which specific visual features
helped the model’s detection of an ambulance, offering
transparency into the decision-making process.

4) Validation and real-world scenario: We demonstrate
the practical utility of this approach by using the model on real-
world video, including complex situations where ambulances
are shown partially. This demonstrates the capability of the
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detection model, combined with LIME, to provide both
accurate and explainable results across various conditions,
making the approach suitable for deployment in real-world
applications.

5) Optimizingthe ambulance traversal: Unlike theexisting
system, which depends on fixed turns. Our approach focuses on
enabling autonomous signal manipulation based on emergency
or ambulance detection.

Section II of this article presents a literature review,
providing a comprehensive examination of prior literature.
Section III details the materials & methods, including dataset
justification and selection, as well as the adopted methodology
and training process. Additionally, Section IV presents the
performance evaluation of the proposed framework, outlining
the metrics and parameters used to assess its effectiveness.
Section V highlights the results derived from the implemented
methodology, while Section V1 offers a detailed discussion and
interpretation of these findings in relation to existing studies.
Finally, Section VII concludes the paper with insights and
outlines potential future direction for improving system
performance under challenging conditions such as low
visibility or heavy traffic.

II. LITERATURE SURVEY

The escalation of traffic congestion in urban areas,
particularly in developing countries, has brought significant
challenges to the emergency response system [ 18]. Traditional
traffic signal system [19], operates on predefined fixed-time
cycles, oftenfailingto adaptdynamically to real-timescenarios,
which leads to delays in emergency vehicle transit such as
ambulance. While these conventional systems are simple and
cost effective, their lack of adaptability makes them unsuitable
for modern, high density urban networks where emergency
response time is critical.

Previous research highlights the successful application of
artificial intelligence and its various branches across diverse
fields [20], [21], [22], [23], [24], [25]. In the context of
intelligent transport system ( ITS) deep learning models have
been employed for task such as object localization,
classification and traffic pattern prediction,[4], [26]. Among
these YOLO (You Only Look Once) [13] and its successive
versions have been recognized for their high speed and
accuracy in real time object detection. The newest iteration,
YOLOvS [27], suggests enhanced precision and speed, making
it suitable for reliable real-time applications in dynamic
environments. Likewise, the model is used successfully and
precisely for locating emergency vehicles [18], most studies
stop at detection and don’t address how this information can be
used to actively manage to manipulate traffic signals in
response. This limited their practical impact on improving
emergency response time.

To refine ambulance detection, researchers have explored
multimodal fusion approach that combines visual data with
audio cues [16], such as a siren, enhancing detection accuracy
under diverse environmental conditions. Furthermore, a hybrid
system utilizing an LSTM network for audio signal processing
and a ResNet-18 for visual data was suggested [27] have
demonstrated higher localization accuracy under noisy or low
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visibility conditions. These models, however, are often
computationally expensive and difficult to deploy in real -time
citywide traffic systems, especially in developing regions,
where hardware resources are limited.

In addition to advancements in detection and tracking, the
nature of deep learning models still raises concerns about the
decision-making processes they employ which limit trust and
interpretability in safety critical applications such as emergency
response. To mitigate this, Explainable Artificial Intelligence
(XAI) techniques, such as LIME [28], Grad-CAM [29], have
been proposed to make model decision more interpretable.
Recent studies have applied XAl in traffic signal optimization
[30]. Allowing engineers to better understand and validate
model decisions. However, most of these approaches remain
experimental and havenot yet been integrated into end-to-end
real-time ambulance detection.

Results from integrating XAl approaches into traffic
management systems have been encouraging [31]. Existing
research still lacks a unified framework that combines all the
real-time ambulance localization, tracking and interpretable
model decisions to dynamically adjust traffic signal. Few
studies have attempted to bridge detection and action
translating ambulance recognition directly into automated
signal manipulation. Addressing this gap, the present study our
process focuses on leveraging costumed yolov8 for ambulance
localization through transfer learning, incorporating a tracking
algorithmfor trajectory monitoring, while employing LIME for
model Interpretability. This contributes to enhancing
emergency response times by ensuring that the traffic signal
dynamically adapts to the presence of an ambulance,
facilitating their passage through the intersection.

III. MATERIAL AND METHODS

This research article presents an ambulance traversal
mechanism through the intersection. The system enhances the
dynamic manipulation of the signal by detecting vehicles.
Additionally, it provides tracking for monitoring the
ambulance's trajectory and LIME for a detailed understanding
of why the vehicle was identified as an ambulance.

A. Dataset Overview

To train and evaluate our ambulance traversal system
through the intersection, we utilized a publicly available dataset
sourced from the Roboflow platform
[https://universe.roboflow.com/himank-vpetc/ambulance-
4bova/dataset/1]. This dataset was specifically selected for its
relevance to real-world situations where the timely localization
of vehicles, such as ambulances, is vital for dynamic signal
manipulation and the quick passage of ambulances through
intersections. The dataset comprises a diverse set of images
featuring ambulances in various backgrounds, lighting
conditions, and angles, providing robust variability that
supports generalization during model training. In addition, the
photos are annotated using rectangle bounding boxes that label
instances of the ambulances, enabling our customized object
detection model to learn spatial and visual features for efficient
identification.
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B. Dataset Specifications

1) Source: Roboflow Universe [31]

2) Category: Object detection (Single class "Ambulance")

3) Number of images: We used a datasetof 6,432 images,
each with dimensions 640 x 640 pixels and 3 color channels,
for training the object detection model.

4) Annotation Format: YOLO rectangle bounding box

5) Image Resolution: The images were down sampled and
standardized to a resolution of 640 x 640 pixels

6) Environment Type: Urban outdoor scenes, roads

7) Data Split: 70% training, 20% validation, 10% test. The
approachis employed to gather a balance trade-off between the
trainingand validation performanceevaluation andthe final test
accuracy.

8) Additionally, this uniform split ensures a consistent
distribution across subsets, which aids in maintaining a
representative sample and preventing overfitting.

C. Justification for Database Selection

The needs of our study, which centered on the real-time
detection of ambulances at urban intersections to enable
dynamic traffic signal control, led to the selection of the
"Ambulance" dataset from Roboflow [31]. This dataset,
specifically curated for ambulance recognition, differs from
general-purpose object detection datasets in that it offers a
focused and domain-relevant collection of annotated images
under various real-world scenarios.

The datasetis ideal for traininga robust detectionmodel that
can operatereliably in live surveillance setups, as ambulances
are present in a variety of backgrounds, including junctions,
roadside settings, and diverse lighting conditions. Since our
suggested solution directly initiates the dynamic
reconfiguration of traffic signals to prioritize the passage of
emergency vehicles, accurate and timely ambulance
recognition is essential.

This dataset aligns well with our research aim, operational,
and technical objectives due to its excellent bounding box
annotations and conformity to the customized ambulance
detection training format. As a result, its applicability and
compatibility with real-time, vision-based smart traffic control
systems are.

D. Model Architecture and Training Process

1) Model selection and justification: In this article, we
employed customized YOLOvVS architecture previously
modified to highlight the challenges associated with limited data
availability. To address the constraints posed by small dataset
sizes,a deliberate customization was introduced by reducing the
convolutional kernel size from the conventional 3x3 to a more
compact 2x2 configuration. This systematic manipulation
allows the model to analyze minute details more effectively
while concurrently reducing the number of leamable
parameters, thus mitigatingthe riskof overfitting and improving
generalization performance.
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Furthermore, the padding function was modernized to
match the reduced kernel size, confirming proper padding and
spatial consistency acrosslayers. The customized convolutional
layers combined 64 filters with a stride of 2 % 2 and padding of
1, keeping the dimension of the feature maps. Furthermore, the
rectified linear unit (ReLU) activation function was used to
increase the discriminative power of feature extraction.

This precisely customized layer design aimed to optimize
feature representation while preserving model efficiency.
Building upon this foundation, the customized yolov8 model
was used through transfer learning to fine-tune it on the
ambulance detection job.

E. Training Setup

For transfer learning, the model was retrained using an
explicit configuration on the openly available ambulance
detectiondataset to facilitatetransferlearning. The input frames
were down sampled to 640 x 640 pixels, and the training
process was carried out for 50 epochs, applyinga CUDA GPU
to quicken the process. To conserve formerly learned generic
features, the first ten layers of the network were frozen,
allowingonly thesubsequent layers to fine-tune for ambulance-
specific localization. To minimize overfitting, Stochastic
Gradient Descent (SGD) was employed, utilizing a learning
rate 0o 0.01,a momentum of 0.9, and a weight decay of 0.001.
In addition to visual inspection of predicted bounding boxes,
the mean Average Precision (mAP) measure on the validation
set was used to track model performance during training. Using
an Intersection over Union (IoU) criterion of 0.5, the test set's
final evaluation yielded encouraging results with a mean
Average Precision (mAP) score of 0.85 shown in PR curve,
indicating a high intersection ambulance detection ability.

During training, the model’s performance on the validation
set was continuously monitored using the mean average
precision (mAP) metric. In addition, visual inspection of the
model’s predictions was conducted to qualitatively assess its
accuracy. Upon completion of training, the test set was used to
evaluate the model’s performance usingthe same metrics asthe
validation set. Evaluation was performed atan intersectionover
union (IoU) threshold of 0.5. The trained model achieved an
impressive mAP of 0.850, demonstrating its strong object
detection capability. The results of the model are shown in

Fig. 2.

Test set.

Vol. 16, No. 10, 2025

For the evaluation of our intelligent traffic management
system while incorporating real-time ambulance localization,
tracking, with explainable AL, for efficient vehicle traversal, the
camera continuously captures the video data to locate the
ambulances from the intersection point. Capitalizing on the
detection model and the Norfair tracker for persistent object
localization—even during occlusions or temporary detection
losses—the system reliably monitors ambulance movement.
Upon detection, the system triggers the simulated traffic signal
to transition to green, allowing for smooth passage. In addition
to improving transparency, Local Interpretable Model-agnostic
Explanations (LIME) produces visual rationales that capture
the most influential frame region, which contributes to model
classification. Periodic LIME explanations for high-confidence
localization depict insight into the decision-making process,
while the Norfair tracker maintains robust trajectory estimation
by incorporating location across frames. This integration of
state-of-the-art  localization, persistent tracking, and
explainable Al establishes a responsive and trustworthy
emergency vehicle priority system for the urban environment
shown in Real-time detection of an ambulance (Fig. 3).

Fig. 3.

Real-time detection of an ambulance.

This ambulance passage, combined with ambulance
localization, tracker, and LIME, aims to enhance the dynamic
management of traffic lights, allowing for reducing response
time and improving the traversal of the ambulance through the
intersection. The flow of the work is depicted Proposed system
architecture (Fig. 4).
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Fig. 4.

Proposed system architecture.

IV. PERFORMANCE EVALUATION

To assess the model’s effectiveness, the author employed
standard performance metrics, namely Precision, Recall, and
the F1 score. Precision is the proportion of correctly predicted
positive instances to the total predicted positive cases.

Recall is the proportion of correctly identified positive
instances to the actual number of positive cases provided to the
model.
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The formulas for precision and recall are given as:
Precision= True Positive/ (True Positive + False Positive) (1)
Recall = True Positive / (True Positive + False Negative) (2)

The F1 score denotes the harmonic mean of precision and
recall and is computed by applying the following formula:

F1 Score = (2 x Precision x Recall) / (Precision + Recall) (3)

V. RESULT

The ambulance detection model used in the current paper
was precisely trained on an openly available dataset of
ambulance frames captured under diverse environmental
conditions, including varying lights, angel and background
scenarios. The model exhibited extraordinary performance on
this dataset, achieving a mean average precision (mAP) of 0.85
at an IoU threshold of 0.5. This striking result highlights the
model’s capability to accurately detect ambulances, even in
complex urban scenes with background distractions. The
consistent bounding box predictions observed during testing
further confirm the robustness of the transfer learning approach
adopted in this study. Fig. 5 shows PR curve (training result)
and Fig. 6 shows the confusion matrix.

A comprehensive analysis of different yolo variants is
presented in Table I, summarizing the evaluation of Map,
precision, recall and F1 score. While Yolov5 achieved slightly
higher precision (0.90) and recall (0.95), our adapted model
achieved a balance performance with the highest Map (0.85)
and F1 score. This indicates thatthe proposed model offers an
optimal trade-off between precision and recall, meaning it can
locate ambulance accurately without significantly increasing
false positive or missing detections.

TABLE . COMPARISON OF YOLO MODELS
Models mAP Precision Recall F1-score
YOLOV5 0.84 0.90 0.95 0.84
YOLOv6 0.83 0.89 0.94 0.83
YOLOv7 0.78 0.92 0.94 0.78
YOLOX 0.82 0.86 0.93 0.82
Our Approach 0.85 0.75 0.83 0.85

Object localization serves a pivotal role in computer vision,
seeking to divide inputimages into a grid and predict bounding
boxes along with class probabilities for each grid cell. In a
typical object detection pipeline, the process commences by
segmentingthe image into a grid. Each grid cell is then assessed
to estimate the bounding box coordinates and the probability
that it contains a particular object. Each bounding box
prediction consists of four essential coordinates that accurately
outline its position within a grid cell. Alongside these
coordinates, a confidence score is offered, indicating the
likelihood that the predicted box contains an object. This
structured approach is a key element of many object
localization models, such as YOLOvS5 [32], YOLOv6 [33],
YOLOv7 [34] and YOLOX [35]. By utilizing this method,
these models attain efficient object detection and localization
across a broad spectrum of visual environments.

Vol. 16, No. 10, 2025

The confusion matrix illustrating the classification
performance of our transfer learning model across the
ambulance class is shown in Confusion matrix. A relative
summary of performance metrics—including mean average
precision (mAP), precision, recall, and FI-score—for
YOLOv7, YOLOv6, YOLOvS, YOLOX, and our adapted
model is given in Table I. The values for precision, recall, and
F1-score were derived using the optimal confidence threshold,
selected based on the highest F1-score performance.

The slightly lower precision (0.75) compared to other
models can be attributed to the model’s high sensitivity toward
complex backgrounds and reflections, which occasionally
resulted in false positives when vehicles had similar color
patterns or shapes. However, the high recall value (0.83)
indicates that the model effectively identifies almost all
ambulance instances in the scene, ensuring minimal missed
detections—a critical requirement for emergency response
systems. The higher F1-score (0.85) further suggests that our
proposedapproach achievesa strongbalancebetweendetection
accuracy and reliability. This performance demonstrates the
robustness of the transfer learning strategy employed,
confirming that YOLOV8’s architectural enhancements
contribute significantly to real-time and context-aware
ambulance detection, even under dynamically changing urban
environments. These findings underline the practical
applicability of the proposed system for intelligent traffic
management and emergency prioritization.
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From a practical standpoint, the proposed system
demonstrates  substantial  potential for  real-world
implementation within intelligent traffic control frameworks.
By accurately identifying and tracking ambulances in real time,
the model enables automatic signal adjustment, reducing
human dependency and minimizing emergency response
delays. The deployment of this system at metropolitan
intersections could significantly enhance ambulance traversal
efficiency, ensure timely medical assistance and ultimately save
lives. Furthermore, its adaptable framework allows integration
with existing surveillance infrastructure, making it a cost-
effective and scalable solution for developing urban areas

(Fig. 7).
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VI. DISCUSSION

The primary concern of this research article was to
introduce a dynamic ambulance traversal system through
intersections, particularly in urban areas, by incorporating
intelligent traffic signal manipulation based on real-time
ambulance detection. The proposed approach leverages a
customized YOLOvS8 detection model through transfer
learning, achieving a mean Average Precision (mAP) of 0.850
show in PR curve at an loU threshold of 0.5. This performance
was optimized by modifyingthe kernel sizeto enhance learning
on a smaller dataset, thereby improving generalization and
reducing overfitting.

Unlike train, addition to traffic management systems that
operate on fixed signal timing, our approach enables dynamic
control, ensuring immediate clearance of lanes for ambulances
upon detection. To track ambulance movement across multiple
frames and maintain continuity, NORFair tracking was
employed, enhancing the system’s temporal awareness and
robustness inreal-world scenarios. Furthermore, the integration
of LIME (Local Interpretable Model-agnostic Explanations)
provides visual interpretability by highlighting the features
contributing to the model's decision, thereby increasing its
transparency and reliability in safety-critical applications.

However, certain limitations persist, including reduced
effectiveness during nighttime and foggy weather conditions.
These challenges necessitate future research that incorporates
thermal imaging and low-light datasets to enhance the
reliability of detection. Additionally, the study acknowledges
threats to validity, such as dataset bias due to environment-
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specific data, limited generalization to rural or unstructured
settings, and dependency on specific hardware configurations
for real-time inference. From a construct validity standpoint,
reliance solely on mAP@0.5 as the evaluation metric may not
fully capture practical deployment outcomes, highlighting the
need for real-world testing and user-centric assessments to
validate the system's effectiveness.

Beyond addressing visibility limitations, future work could
explore integrating multi-modal sensor fusion (visual, infrared,
and audio) to strengthen detection reliability across diverse
conditions. Furthermore, extending the framework to multi-
intersection coordination through reinforcement learning could
optimize city-wide ambulance routing and signal control.
Deploying the model on low-power edge devices such as
NVIDIA Jetson would further support real-time scalability and
facilitate deployment within smart city infrastructures

VII. CONCLUSION AND FUTURE WORK

This research article presents a specialized smart traffic
signal system designed to ensure the timely and uninterrupted
passage of ambulances through urban intersections. The core
objective is to overcome the delays commonly experienced by
emergency vehicles at traffic signals by dynamically
controlling traffic lights in real-time based on ambulance
detection. The system integrates advanced computer vision
techniques usinga custom-trained YOLOv8 model as a transfer
learning approach, optimized with a reduced kernel size to
enhance performance on a limited dataset. This configuration
enables the precise identification of ambulances, even in
congested urban environments.

Upon detecting an ambulance, the system immediately
manipulates the traffic signals to prioritize the ambulance's
lane, ensuring its swift traversal through the intersection.
NORFair tracking is employed to maintain continuous
monitoring of the ambulance across multiple frames, which is
critical for consistent traffic control decisions. Additionally, to
enhance the reliability and interpretability of the model, LIME
(Local Interpretable Model-Agnostic Explanations) is utilized
to visualize and validate the features used for ambulance
detection, thereby increasing system transparency.

The proposed solution significantly advances traditional
traffic systems, which rely on fixed-timing schedules that often
fail to accommodate emergency scenarios. However, while the
system demonstrates robust performance during daylight and
clear conditions, limitations persist in nighttime or foggy
weather, where detection accuracy may degrade. These
challenges underscore the need for future enhancements, such
as expanding the dataset to encompass diverse lighting and
weather conditions and incorporating thermal or infrared
imaging to facilitate detection in low-visibility environments.

In addition to enhancing detection under low-visibility
conditions, subsequent research could focus on combining
multiple sensing modalities, such as visual, infrared, and audio
signals, to further strengthen system reliability. Expanding the
framework to manage multiple intersections simultaneously
and incorporating intelligent learning strategies could allow
more efficient city-wide ambulance routes. Finally,
implementing the system on compact, real-time edge devices
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would facilitate practical deployment in smart city
environments, ensuring low-latency and scalable performance

Overall, this research contributes to the development of a
responsive, intelligent traffic management system that can
enhance emergency response efficiency and potentially save
lives by minimizing delays at intersections. It lays the
groundwork for future smart city infrastructures that prioritize
safety and real-time adaptability in urban mobility systems.
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