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Abstract—Static traffic signal timings often cause severe delays 

for emergency vehicles, including ambulances at junctions in 

urban areas, putting lives at risk. To highlight this, the present 

study proposes an intelligent traffic control system that 

dynamically adjusts traffic signals based on real-time monitoring. 

The system employs a yolov8-based deep learning model fine-

tuned through transfer learning for ambulance detection from live 

video. At an Intersection over Union (IoU) threshold of 0.5, the 

model achieves a mean Average Precision (mAP) of 0.860. To 

ensure continuous tracking, NORFair tracking is implemented to 

ensure constant detection across frames. Additionally, to improve 

explainability and, the frame incorporates Local Interpretable 

Model-Agnostic Explanation (LIME), providing visual signals into 

the model decision-making process. Once an ambulance is 

detected, the system instantly triggers a green-light activation for 

the ambulance's lane, enabling quick emergency response. Unlike 

conventional systems with fixed signal timing, this approach 

enables smart and adaptive traffic management in urban 

environment. However, the system's shortcomings in low-visibility 

situations, such as at night or in fog, despite its encouraging 

results, highlight the need for incorporating images taken at night 

and in foggy weather into the dataset. 

Keywords—Ambulance detection; YOLOV8; LIME; transfer 

learning; NorFair; urban area; traffic control; smart traffic 

management 

I. INTRODUCTION 

An efficient emergency response is crucial for saving lives, 
especially in developing countries where road networks 
struggle to keep pace with the increasing number of vehicles. 
Emergency response, which includes ambulances [1] and bikes 
[2], often faces significant delays due to heavy traffic 
congestion, particularly at intersections. Traditional traffic 
management systems operate on pre-installed cycles, failing to 
dynamically adapt to real-time emergencies, which minimizes 
response times and hinders the traversal of ambulances through 
intersections. As the number of vehicles increases by a million 

every decade [3], it has become a concern for many researchers 
to provide quality traffic management, particularly for 
ambulances, to mitigate response times for emergencies. 

Consequently, Machine learning and computer vision have 
unexpectedly enhanced intelligent systems, such as object 
detection [4], object tracking [5], vehicle counting [6], and 
traffic light detection [7]. Similar to detection and 
identification, computer vision algorithms have been adopted to 
calculate the vehicle speed [8] and pollution monitoring [9]. 
Furthermore, Machine learning algorithms are employed to 
control the path following of unmanned vehicles [10], robot 
navigation [11], and adaptive signal control [12]. While Deep 
learning models such as YOLO (You Only Look Once) [13] 
and R-CNN (Region-Based Convolutional Neural Networks) 
[14] have been effectively utilized for object detection, 
including the identification of emergency vehicles [15], 
adapting audio based location of vehicle [16]. Existing research 
primarily focuses on detection rather than integrating this 
detection into real-time, dynamic traffic control decision. Most 
prior studies lack the ability to autonomously manipulate traffic 
signals in response to ambulance localization, resulting in 
delayed emergency response and inefficient intersection 
management. Furthermore, explainable AI techniques have 
rarely been employed to interpret or validate the model’s 
decision-making process in such safety-critical applications 

The primary study of this article is based on an AI-driven 
traffic signal optimization framework that dynamically 
modifies vehicle routes upon detecting an approaching 
ambulance. The method adopted involves leveraging the LIME 
technique to enhance the confidentiality of the localization 
system while incorporating the tracking technique to improve 
traversal through the intersection. The core of this research lies 
in adopting a tailored object localization model, Yolov8, as a 
transfer learning approach. The model demonstrates 
outstanding performance, achieving a mean average precision 
of 0.85 at the threshold of 0.5. To improve signal optimization 
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beyond vehicle detection, tracking helps monitor the vehicle's 
trajectory and movement over time. Fig. 1 illustrates the overall 
system flow. 

 
Fig. 1. The flow of the system. 

The article presents a novel approach to improving 
ambulance localization explainability for optimizing 
ambulance traversal. The contribution of this article can be 
summarized as follows. 

1) Model modification and adaptation: A customized 

Yolov8 model was used for ambulance detection in a dynamic 

and active environment using transfer learning, offering robust 

accuracy and efficiency. Formerly, the model was customized 

for object localization to support navigation for visually 

impaired people. This deliberate modification is intended to 

reduce the parameter, making the model effective for operation, 

even for a small dataset. 

2) LIME for explainability: A significant novelty of this 

work is the amalgamation of LIME (Local Interpretable Model-

Agnostic Explanation) [17] to provide understanding into the 

model's decision-making process. Integrating LIME into the 

localization model's prediction, we were able to understand and 

explain the spatial regions of the image that meaningfully 

influenced the model’s decision to categorize an object as an 

ambulance. 

3) Model transparency: We discussed the black-box nature 

of the deep learning model by applying LIME [17], making the 

localization model's predictions more understandable. The 

LIME explanations discovered which specific visual features 
helped the model’s detection of an ambulance, offering 

transparency into the decision-making process. 

4) Validation and real-world scenario: We demonstrate 

the practical utility of this approach by using the model on real-

world video, including complex situations where ambulances 

are shown partially. This demonstrates the capability of the 

detection model, combined with LIME, to provide both 

accurate and explainable results across various conditions, 

making the approach suitable for deployment in real-world 

applications. 

5) Optimizing the ambulance traversal: Unlike the existing 

system, which depends on fixed turns. Our approach focuses on 

enabling autonomous signal manipulation based on emergency 

or ambulance detection. 

Section II of this article presents a literature review, 
providing a comprehensive examination of prior literature. 
Section III details the materials & methods, including dataset 
justification and selection, as well as the adopted methodology 
and training process. Additionally, Section IV presents the 
performance evaluation of the proposed framework, outlining 
the metrics and parameters used to assess its effectiveness. 
Section V highlights the results derived from the implemented 
methodology, while Section VI offers a detailed discussion and 
interpretation of these findings in relation to existing studies. 
Finally, Section VII concludes the paper with insights and 
outlines potential future direction for improving system 
performance under challenging conditions such as low 
visibility or heavy traffic. 

II. LITERATURE SURVEY 

The escalation of traffic congestion in urban areas, 
particularly in developing countries, has brought significant 
challenges to the emergency response system [18]. Traditional 
traffic signal system [19], operates on predefined fixed-time 
cycles, often failing to adapt dynamically to real-time scenarios, 
which leads to delays in emergency vehicle transit such as 
ambulance. While these conventional systems are simple and 
cost effective, their lack of adaptability makes them unsuitable 
for modern, high density urban networks where emergency 
response time is critical. 

Previous research highlights the successful application of 
artificial intelligence and its various branches across diverse 
fields [20], [21], [22], [23], [24], [25].  In the context of 
intelligent transport system ( ITS)  deep learning models have 
been employed for task such as object localization, 
classification and traffic pattern prediction,[4], [26]. Among 
these YOLO (You Only Look Once) [13] and its successive 
versions have been recognized for their high speed and 
accuracy in real time object detection. The newest iteration, 
YOLOv8 [27], suggests enhanced precision and speed, making 
it suitable for reliable real-time applications in dynamic 
environments. Likewise, the model is used successfully and 
precisely for locating emergency vehicles [18], most studies 
stop at detection and don’t address how this information can be 
used to actively manage to manipulate traffic signals in 
response. This limited their practical impact on improving 
emergency response time. 

To refine ambulance detection, researchers have explored 
multimodal fusion approach that combines visual data with 
audio cues [16], such as a siren, enhancing detection accuracy 
under diverse environmental conditions. Furthermore, a hybrid 
system utilizing an LSTM network for audio signal processing 
and a ResNet-18 for visual data was suggested [27] have 
demonstrated higher localization accuracy under noisy or low 
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visibility conditions. These models, however, are often 
computationally expensive and difficult to deploy in real-time 
citywide traffic systems, especially in developing regions, 
where hardware resources are limited. 

In addition to advancements in detection and tracking, the 
nature of deep learning models still raises concerns about the 
decision-making processes they employ which limit trust and 
interpretability in safety critical applications such as emergency 
response. To mitigate this, Explainable Artificial Intelligence 
(XAI) techniques, such as LIME [28], Grad-CAM [29], have 
been proposed to make model decision more interpretable. 
Recent studies have applied XAI in traffic signal optimization 
[30]. Allowing engineers to better understand and validate 
model decisions. However, most of these approaches remain 
experimental and have not yet been integrated into end-to-end 
real-time ambulance detection. 

Results from integrating XAI approaches into traffic 
management systems have been encouraging [31]. Existing 
research still lacks a unified framework that combines all the 
real-time ambulance localization, tracking and interpretable 
model decisions to dynamically adjust traffic signal. Few 
studies have attempted to bridge detection and action 
translating ambulance recognition directly into automated 
signal manipulation. Addressing this gap, the present study our 
process focuses on leveraging costumed yolov8 for ambulance 
localization through transfer learning, incorporating a tracking 
algorithm for trajectory monitoring, while employing LIME for 
model Interpretability. This contributes to enhancing 
emergency response times by ensuring that the traffic signal 
dynamically adapts to the presence of an ambulance, 
facilitating their passage through the intersection. 

III. MATERIAL AND METHODS 

This research article presents an ambulance traversal 
mechanism through the intersection. The system enhances the 
dynamic manipulation of the signal by detecting vehicles. 
Additionally, it provides tracking for monitoring the 
ambulance's trajectory and LIME for a detailed understanding 
of why the vehicle was identified as an ambulance. 

A. Dataset Overview 

To train and evaluate our ambulance traversal system 
through the intersection, we utilized a publicly available dataset 
sourced from the Roboflow platform 
[https://universe.roboflow.com/himank-vpetc/ambulance-
4bova/dataset/1]. This dataset was specifically selected for its 
relevance to real-world situations where the timely localization 
of vehicles, such as ambulances, is vital for dynamic signal 
manipulation and the quick passage of ambulances through 
intersections.  The dataset comprises a diverse set of images 
featuring ambulances in various backgrounds, lighting 
conditions, and angles, providing robust variability that 
supports generalization during model training. In addition, the 
photos are annotated using rectangle bounding boxes that label 
instances of the ambulances, enabling our customized object 
detection model to learn spatial and visual features for efficient 
identification. 

B. Dataset Specifications 

1) Source: Roboflow Universe [31] 
2) Category: Object detection (Single class "Ambulance") 
3) Number of images: We used a dataset of 6,432 images, 

each with dimensions 640 × 640 pixels and 3 color channels, 

for training the object detection model. 
4) Annotation Format: YOLO rectangle bounding box 

5) Image Resolution: The images were down sampled and 

standardized to a resolution of 640 × 640 pixels  

6) Environment Type: Urban outdoor scenes, roads 

7) Data Split: 70% training, 20% validation, 10% test. The 

approach is employed to gather a balance trade-off between the 

training and validation performance evaluation and the final test 

accuracy. 

8) Additionally, this uniform split ensures a consistent 

distribution across subsets, which aids in maintaining a 

representative sample and preventing overfitting. 

C. Justification for Database Selection 

The needs of our study, which centered on the real-time 
detection of ambulances at urban intersections to enable 
dynamic traffic signal control, led to the selection of the 
"Ambulance" dataset from Roboflow [31]. This dataset, 
specifically curated for ambulance recognition, differs from 
general-purpose object detection datasets in that it offers a 
focused and domain-relevant collection of annotated images 
under various real-world scenarios. 

The dataset is ideal for training a robust detection model that 
can operate reliably in live surveillance setups, as ambulances 
are present in a variety of backgrounds, including junctions, 
roadside settings, and diverse lighting conditions. Since our 
suggested solution directly initiates the dynamic 
reconfiguration of traffic signals to prioritize the passage of 
emergency vehicles, accurate and timely ambulance 
recognition is essential. 

This dataset aligns well with our research aim, operational, 
and technical objectives due to its excellent bounding box 
annotations and conformity to the customized ambulance 
detection training format. As a result, its applicability and 
compatibility with real-time, vision-based smart traffic control 
systems are. 

D. Model Architecture and Training Process 

1) Model selection and justification: In this article, we 

employed customized YOLOv8 architecture previously 

modified to highlight the challenges associated with limited data 

availability. To address the constraints posed by small dataset 

sizes, a deliberate customization was introduced by reducing the 

convolutional kernel size from the conventional 3×3 to a more 

compact 2×2 configuration. This systematic manipulation 

allows the model to analyze minute details more effectively 

while concurrently reducing the number of learnable 

parameters, thus mitigating the risk of overfitting and improving 

generalization performance. 
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Furthermore, the padding function was modernized to 
match the reduced kernel size, confirming proper padding and 
spatial consistency across layers. The customized convolutional 
layers combined 64 filters with a stride of 2 × 2 and padding of 
1, keeping the dimension of the feature maps. Furthermore, the 
rectified linear unit (ReLU) activation function was used to 
increase the discriminative power of feature extraction. 

This precisely customized layer design aimed to optimize 
feature representation while preserving model efficiency. 
Building upon this foundation, the customized yolov8 model 
was used through transfer learning to fine-tune it on the 
ambulance detection job. 

E. Training Setup 

For transfer learning, the model was retrained using an 
explicit configuration on the openly available ambulance 
detection dataset to facilitate transfer learning. The input frames 
were down sampled to 640 × 640 pixels, and the training 
process was carried out for 50 epochs, applying a CUDA GPU 
to quicken the process. To conserve formerly learned generic 
features, the first ten layers of the network were frozen, 
allowing only the subsequent layers to fine-tune for ambulance-
specific localization. To minimize overfitting, Stochastic 
Gradient Descent (SGD) was employed, utilizing a learning 
rate of 0.01, a momentum of 0.9, and a weight decay of 0.001.  
In addition to visual inspection of predicted bounding boxes, 
the mean Average Precision (mAP) measure on the validation 
set was used to track model performance during training. Using 
an Intersection over Union (IoU) criterion of 0.5, the test set's 
final evaluation yielded encouraging results with a mean 
Average Precision (mAP) score of 0.85 shown in PR curve, 
indicating a high intersection ambulance detection ability . 

During training, the model’s performance on the validation 
set was continuously monitored using the mean average 
precision (mAP) metric. In addition, visual inspection of the 
model’s predictions was conducted to qualitatively assess its 
accuracy. Upon completion of training, the test set was used to 
evaluate the model’s performance using the same metrics as the 
validation set. Evaluation was performed at an intersection over 
union (IoU) threshold of 0.5. The trained model achieved an 
impressive mAP of 0.850, demonstrating its strong object 
detection capability. The results of the model are shown in 
Fig. 2. 

 
Fig. 2. Test set. 

For the evaluation of our intelligent traffic management 
system while incorporating real-time ambulance localization, 
tracking, with explainable AI, for efficient vehicle traversal, the 
camera continuously captures the video data to locate the 
ambulances from the intersection point. Capitalizing on the 
detection model and the Norfair tracker for persistent object 
localization—even during occlusions or temporary detection 
losses—the system reliably monitors ambulance movement. 
Upon detection, the system triggers the simulated traffic signal 
to transition to green, allowing for smooth passage. In addition 
to improving transparency, Local Interpretable Model-agnostic 
Explanations (LIME) produces visual rationales that capture 
the most influential frame region, which contributes to model 
classification. Periodic LIME explanations for high-confidence 
localization depict insight into the decision-making process, 
while the Norfair tracker maintains robust trajectory estimation 
by incorporating location across frames. This integration of 
state-of-the-art localization, persistent tracking, and 
explainable AI establishes a responsive and trustworthy 
emergency vehicle priority system for the urban environment 
shown in Real-time detection of an ambulance (Fig. 3). 

 
Fig. 3. Real-time detection of an ambulance. 

This ambulance passage, combined with ambulance 
localization, tracker, and LIME, aims to enhance the dynamic 
management of traffic lights, allowing for reducing response 
time and improving the traversal of the ambulance through the 
intersection. The flow of the work is depicted Proposed system 
architecture (Fig. 4). 

 
Fig. 4. Proposed system architecture. 

IV. PERFORMANCE EVALUATION 

To assess the model’s effectiveness, the author employed 
standard performance metrics, namely Precision, Recall, and 
the F1 score. Precision is the proportion of correctly predicted 
positive instances to the total predicted positive cases. 

Recall is the proportion of correctly identified positive 
instances to the actual number of positive cases provided to the 
model. 
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The formulas for precision and recall are given as: 

Precision = True Positive / (True Positive + False Positive) (1) 

Recall = True Positive / (True Positive + False Negative)  (2) 

The F1 score denotes the harmonic mean of precision and 
recall and is computed by applying the following formula: 

F1 Score = (2 × Precision × Recall) / (Precision + Recall)  (3) 

V. RESULT 

The ambulance detection model used in the current paper 
was precisely trained on an openly available dataset of 
ambulance frames captured under diverse environmental 
conditions, including varying lights, angel and background 
scenarios. The model exhibited extraordinary performance on 
this dataset, achieving a mean average precision (mAP) of 0.85 
at an IoU threshold of 0.5. This striking result highlights the 
model’s capability to accurately detect ambulances, even in 
complex urban scenes with background distractions. The 
consistent bounding box predictions observed during testing 
further confirm the robustness of the transfer learning approach 
adopted in this study. Fig. 5 shows PR curve (training result) 
and Fig. 6 shows the confusion matrix. 

A comprehensive analysis of different yolo variants is 
presented in Table I, summarizing the evaluation of Map, 
precision, recall and F1 score. While Yolov5 achieved slightly 
higher precision (0.90) and recall (0.95), our adapted model 
achieved a balance performance with the highest Map (0.85) 
and F1 score. This indicates that the proposed model offers an 
optimal trade-off between precision and recall, meaning it can 
locate ambulance accurately without significantly increasing 
false positive or missing detections. 

TABLE I. COMPARISON OF YOLO MODELS 

Models mAP Precision Recall F1-score 

YOLOv5 0.84 0.90 0.95 0.84 

YOLOv6 0.83 0.89 0.94 0.83 

YOLOv7 0.78 0.92 0.94 0.78 

YOLOX 0.82 0.86 0.93 0.82 

Our Approach 0.85 0.75 0.83 0.85 

Object localization serves a pivotal role in computer vision, 
seeking to divide input images into a grid and predict bounding 
boxes along with class probabilities for each grid cell. In a 
typical object detection pipeline, the process commences by 
segmenting the image into a grid. Each grid cell is then assessed 
to estimate the bounding box coordinates and the probability 
that it contains a particular object. Each bounding box 
prediction consists of four essential coordinates that accurately 
outline its position within a grid cell. Alongside these 
coordinates, a confidence score is offered, indicating the 
likelihood that the predicted box contains an object. This 
structured approach is a key element of many object 
localization models, such as YOLOv5 [32], YOLOv6 [33], 
YOLOv7 [34] and YOLOX [35]. By utilizing this method, 
these models attain efficient object detection and localization 
across a broad spectrum of visual environments. 

The confusion matrix illustrating the classification 
performance of our transfer learning model across the 
ambulance class is shown in Confusion matrix. A relative 
summary of performance metrics—including mean average 
precision (mAP), precision, recall, and F1-score—for 
YOLOv7, YOLOv6, YOLOv5, YOLOX, and our adapted 
model is given in Table I. The values for precision, recall, and 
F1-score were derived using the optimal confidence threshold, 
selected based on the highest F1-score performance. 

The slightly lower precision (0.75) compared to other 
models can be attributed to the model’s high sensitivity toward 
complex backgrounds and reflections, which occasionally 
resulted in false positives when vehicles had similar color 
patterns or shapes. However, the high recall value (0.83) 
indicates that the model effectively identifies almost all 
ambulance instances in the scene, ensuring minimal missed 
detections—a critical requirement for emergency response 
systems. The higher F1-score (0.85) further suggests that our 
proposed approach achieves a strong balance between detection 
accuracy and reliability. This performance demonstrates the 
robustness of the transfer learning strategy employed, 
confirming that YOLOv8’s architectural enhancements 
contribute significantly to real-time and context-aware 
ambulance detection, even under dynamically changing urban 
environments. These findings underline the practical 
applicability of the proposed system for intelligent traffic 
management and emergency prioritization. 

 
Fig. 5. Training result. 

 
Fig. 6. Confusion matrix. 
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From a practical standpoint, the proposed system 
demonstrates substantial potential for real-world 
implementation within intelligent traffic control frameworks. 
By accurately identifying and tracking ambulances in real time, 
the model enables automatic signal adjustment, reducing 
human dependency and minimizing emergency response 
delays. The deployment of this system at metropolitan 
intersections could significantly enhance ambulance traversal 
efficiency, ensure timely medical assistance and ultimately save 
lives. Furthermore, its adaptable framework allows integration 
with existing surveillance infrastructure, making it a cost-
effective and scalable solution for developing urban areas 
(Fig. 7). 

 
Fig. 7. PR curve. 

VI. DISCUSSION 

The primary concern of this research article was to 
introduce a dynamic ambulance traversal system through 
intersections, particularly in urban areas, by incorporating 
intelligent traffic signal manipulation based on real-time 
ambulance detection. The proposed approach leverages a 
customized YOLOv8 detection model through transfer 
learning, achieving a mean Average Precision (mAP) of 0.850 
show in PR curve at an IoU threshold of 0.5. This performance 
was optimized by modifying the kernel size to enhance learning 
on a smaller dataset, thereby improving generalization and 
reducing overfitting. 

Unlike train, addition to traffic management systems that 
operate on fixed signal timing, our approach enables dynamic 
control, ensuring immediate clearance of lanes for ambulances 
upon detection. To track ambulance movement across multiple 
frames and maintain continuity, NORFair tracking was 
employed, enhancing the system’s temporal awareness and 
robustness in real-world scenarios. Furthermore, the integration 
of LIME (Local Interpretable Model-agnostic Explanations) 
provides visual interpretability by highlighting the features 
contributing to the model's decision, thereby increasing its 
transparency and reliability in safety-critical applications. 

However, certain limitations persist, including reduced 
effectiveness during nighttime and foggy weather conditions. 
These challenges necessitate future research that incorporates 
thermal imaging and low-light datasets to enhance the 
reliability of detection. Additionally, the study acknowledges 
threats to validity, such as dataset bias due to environment-

specific data, limited generalization to rural or unstructured 

settings, and dependency on specific hardware configurations 
for real-time inference. From a construct validity standpoint, 
reliance solely on mAP@0.5 as the evaluation metric may not 
fully capture practical deployment outcomes, highlighting the 
need for real-world testing and user-centric assessments to 
validate the system's effectiveness. 

Beyond addressing visibility limitations, future work could 
explore integrating multi-modal sensor fusion (visual, infrared, 
and audio) to strengthen detection reliability across diverse 
conditions. Furthermore, extending the framework to multi-
intersection coordination through reinforcement learning could 
optimize city-wide ambulance routing and signal control. 
Deploying the model on low-power edge devices such as 
NVIDIA Jetson would further support real-time scalability and 
facilitate deployment within smart city infrastructures 

VII. CONCLUSION AND FUTURE WORK 

This research article presents a specialized smart traffic 
signal system designed to ensure the timely and uninterrupted 
passage of ambulances through urban intersections. The core 
objective is to overcome the delays commonly experienced by 
emergency vehicles at traffic signals by dynamically 
controlling traffic lights in real-time based on ambulance 
detection. The system integrates advanced computer vision 
techniques using a custom-trained YOLOv8 model as a transfer 
learning approach, optimized with a reduced kernel size to 
enhance performance on a limited dataset. This configuration 
enables the precise identification of ambulances, even in 
congested urban environments. 

Upon detecting an ambulance, the system immediately 
manipulates the traffic signals to prioritize the ambulance's 
lane, ensuring its swift traversal through the intersection. 
NORFair tracking is employed to maintain continuous 
monitoring of the ambulance across multiple frames, which is 
critical for consistent traffic control decisions. Additionally, to 
enhance the reliability and interpretability of the model, LIME 
(Local Interpretable Model-Agnostic Explanations) is utilized 
to visualize and validate the features used for ambulance 
detection, thereby increasing system transparency. 

The proposed solution significantly advances traditional 
traffic systems, which rely on fixed-timing schedules that often 
fail to accommodate emergency scenarios. However, while the 
system demonstrates robust performance during daylight and 
clear conditions, limitations persist in nighttime or foggy 
weather, where detection accuracy may degrade. These 
challenges underscore the need for future enhancements, such 
as expanding the dataset to encompass diverse lighting and 
weather conditions and incorporating thermal or infrared 
imaging to facilitate detection in low-visibility environments. 

In addition to enhancing detection under low-visibility 
conditions, subsequent research could focus on combining 
multiple sensing modalities, such as visual, infrared, and audio 
signals, to further strengthen system reliability. Expanding the 
framework to manage multiple intersections simultaneously 
and incorporating intelligent learning strategies could allow 
more efficient city-wide ambulance routes. Finally, 
implementing the system on compact, real-time edge devices 
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would facilitate practical deployment in smart city 
environments, ensuring low-latency and scalable performance 

Overall, this research contributes to the development of a 
responsive, intelligent traffic management system that can 
enhance emergency response efficiency and potentially save 
lives by minimizing delays at intersections. It lays the 
groundwork for future smart city infrastructures that prioritize 
safety and real-time adaptability in urban mobility systems. 
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