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Abstract—Tuberculosis (TB) remains a significant global
health challenge, necessitating rapid and accessible screening
methods. This study proposes a multimodal deep learning model
for non-invasive TB detection by fusing acoustic features from
cough sounds with clinical metadata. We utilize the pre-trained
Health Acoustic Representations (HeAR) model as a powerful
backbone to extract features from mel-spectrograms of cough
audio. These acoustic features are combined with clinical data,
including sex, age, and key symptoms through a late-fusion
architecture. The model was trained and evaluated on a balanced
dataset of 16,000 samples derived from the CODA TB DREAM
Challenge dataset. Our proposed multimodal approach achieved
a high overall accuracy of 90% on the unseen test set, with
balanced precision, recall, specificity, and F1-scores of 0.90 for
both TB-positive and non-TB classes. These results demonstrate
the effectiveness of using cough sound as a non-invasive vocal
biomarker, amplified by combining advanced acoustic
representations with clinical context. This highlights the potential
of our method as a robust, low-cost, and scalable tool for early
TB screening.

Keywords—Tuberculosis; cough detection; Health Acoustic
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I INTRODUCTION

Tuberculosis (TB) continues to be a devastating global
health crisis. It is caused by the bacterium Mycobacterium
tuberculosis, the disease primarily affects the lungs (pulmonary
TB) and spreads through the air when an infected person
coughs, sneezes, or speaks [1]. In 2023 alone, an estimated
10.8 million people fell ill with the disease, and it claimed the
lives of 1.25 million people, reaffirming its status as a leading
cause of death from a single infectious agent worldwide. The
epidemic's immense scale underscores the critical need for
global efforts to combat TB. These efforts align with the
United Nations Sustainable Development Goal of ending the
epidemic by 2030 [2]. The burden of this disease is unevenly
distributed, with the majority of cases occurring in developing
countries. Indonesia ranks as the country with the second-
highest TB burden in the world after India, which underscores
the urgency to develop more effective, rapid, and accessible
screening and diagnostic methods within the country [3].

Conventional diagnostic methods for TB, such as sputum
smear microscopy, bacterial culture, and rapid molecular tests
(e.g., Xpert MTB/RIF), often have limitations. Sputum smear
microscopy has variable sensitivity and may fail to detect cases
with a low bacterial load. Bacterial culture, while being the
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gold standard, requires several weeks to yield results, which
can delay treatment and increase the risk of transmission [4].
Meanwhile, molecular tests and radiological examinations like
chest X-rays, although more accurate, require expensive
laboratory infrastructure, specialized equipment, and expert
personnel that are not always available in primary healthcare
facilities or remote areas. These limitations hinder efforts for
early detection and massive-scale containment of TB spread

[5].

The pathological progression of pulmonary TB
significantly alters the respiratory system's mechanics and
acoustics. The formation of granulomas, inflammation of the
airways, and accumulation of fluid or sputum change the
physical properties of the lungs and trachea. These changes
directly impact the sound produced during a cough, which is a
forceful expulsion of air [6]. Consequently, coughs from TB-
infected individuals can exhibit distinct acoustic patterns, such
as variations in spectral energy, frequency components, and
temporal characteristics compared to those from healthy
individuals [7]. This acoustic signature provides a
physiological basis for using cough sound as a non-invasive
biomarker for TB screening [8].

Along with advancements in digital technology, sound
analysis using artificial intelligence (AI) has emerged as a
promising altemative solution. Deep learning, a subset of
machine learning, enables systems to learn from data and
understand complex concepts without explicit programming
[9]. By leamning from experience, computers can autonomously
perform tasks, making them highly suitable for analyzing
complex patterns in medical data. In previous studies, for
instance, deep learning particularly Convolutional Neural
Networks (CNNs) was successfully employed to detect
diabetic retinopathy using retinal fundus images [10], [11].
Similarly, cough sounds, as a primary symptom of TB, contain
rich acoustic information and can serve as a non-invasive vocal
biomarker [12]. This capability offers the potential for a low-
cost, rapid, and remotely deployable screening tool using
common devices such as smartphones [13].

To maximize the potential of audio analysis, this study
proposes the use of Health Acoustic Representations (HeAR), a
foundation model developed by Google Al specifically for
health-related sounds. HeAR is built on a transformer-based
architecture and employs a self-supervised learning strategy,
having been pre-trained on over 300 million two-second audio
clips encompassing sounds like coughs and breaths. This
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extensive pre-training enables HeAR to generate powerful and
generalized acoustic embeddings. In benchmark evaluations,
simple linear classifiers trained on HeAR embeddings achieved
state-of-the-art or competitive performance across various
health tasks, including the detection of conditions like COVID-
19 and the inference of smoking status from cough recordings
[14].

By leveraging these rich representations as a backbone, this
study aims to build a robust classifier for TB [15].
Furthermore, this study adopts a multimodal approach by not
only relying on cough sounds but also integrating essential
clinical data such as sex, age, and key symptoms (hemoptysis,
night sweats, weight loss, and fever). The combination of
advanced acoustic features from HeAR and contextual clinical
information is expected to significantly improve detection
accuracy and reliability, leading to a more holistic and accurate
screening model [16].

This study makes several key contributions. First, we
introduce a multimodal deep leaming architecture that
effectively fuses powerful pre-trained acoustic features from
the HeAR model with essential clinical metadata. Second, we
validate our approach on a large, balanced dataset,
demonstrating its robustness and high accuracy. The remainder
of this paper is organized as follows: Section Il reviews related
work in acoustic-based TB detection. Section III details the
dataset, preprocessing steps, and our proposed model
architecture. Section IV presents the experimental results and
analysis. Finally, Section V discusses the clinical implications
of our findings. Section VI concludes the study, and outlines
directions for future research.

II.  RELATED WORK

The use of cough sound analysis as a low-cost, non-
invasive tool for tuberculosis (TB) screening has been an active
area of research. Early studies established the foundational
potential of this approach by applying traditional machine
learning models to handcrafted acoustic features. For instance,
Botha et al. employed statistical classifiers like Logistic
Regression on short-term spectral features combined with
clinical data, achieving a sensitivity of 96% at a specificity of
72% on a dataset of 518 coughs. While pioneering, this work
relied on manually engineered features (e.g., MFCC), which
may not fully capture the complex, subtle acoustic patterns
indicative of TB [17].

Subsequent research shifted towards deep learning to
automate feature extraction and improve performance. Xu et al.
developed a sophisticated fusion model using a Bidirectional
Long Short-Term Memory (Bi-LSTM) network combined with
a Convolutional Neural Network (CNN). Their approach,
which fused traditional features like MFCC and Zero-Crossing
Rate (ZCR) with features learned from spectrograms, reported
a very high accuracy of 96.33%. However, this impressive
result was obtained from a relatively small and homogenous
dataset of 456 coughs from a limited number of participants.
This raises important questions about the model's scalability
and ability to generalize to more diverse, real-world
populations [18].
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In contrast, recent studies have demonstrated the power of
simpler architecture when applied to large-scale datasets.
Yadav et al. utilized a massive dataset of over 500,000 cough
recordings and found that a simple 1D CNN trained on Mel-
Frequency Cepstral Coefficients (MFCCs) achieved a high
accuracy of 91%, exceeding the WHO's requirements for a
screening test. This work underscores that with sufficient data,
less complex models can be highly effective. Similarly,
Kafentzis et al. also worked with a large, real-world dataset,
achieving a respectable Area Under the Curve (AUC) of
approximately 0.80 by combining audio features with clinical
metadata, further highlighting the importance of a multimodal
approach [19].

Addressing the need for larger and more diverse datasets,
Kafentzis et al. utilized a substantial dataset of over 9,000
coughs collected "in the wild" via a mobile application. Using
a combination of spectral features and clinical metadata, their
statistical models achieved a respectable Area Under the Curve
(AUC) of approximately 0.80 [20]. Their work highlighted the
feasibility of large-scale data collection but also demonstrated
that performance on noisy, real-world data remains a
significant challenge, suggesting that more powerful feature
representation is needed. A summary of these key studies is
presented in Table 1.

TABLE 1. STATE-OF-THE-ART
Audio Evaluation
Study Methodology Features Dataset Metrics
MFCC, Log Sensitivity =
Logistic Spectral 96%
(7] Regression Energies, 518 Coughs Specificity =
Clinical Data 72%
MFCC, ZCR,
RMS, Accuracy =
BIiLSTM + | Chroma 96.33%
(18] Conv2D Cens, Short 456 Coughs Specificity =
Time Energy, 94.99%
Spectrogram
Accuracy =
[19] 1D CNN MFCC é?)i;fsz 91%
AUC =0.8
LLDs, _
[20] CNN Clinical Data 9772 Coughs | AUC =0.8

While these studies have established the potential of cough
sound analysis for TB screening, clear research gaps remain.
Previous works have either relied on handcrafted features or
custom-trained CNNs. Furthermore, these investigations were
often conducted on considerably smaller datasets, which may
not capture the full complexity of acoustic biomarkers and
could limit the generalizability of their findings.

To our knowledge, the application of a specialized, pre-
trained health acoustic foundation model like HeAR within a
multimodal framework on a large-scale dataset for TB
detection has not yet been thoroughly investigated. This study
aims to fill these gaps by evaluating the performance of HeAR
as a powerful feature extractor, combined with clinical data on
a large and diverse dataset of 16,000 samples, to potentially set
a new benchmark for accuracy and robustness in non-invasive
TB screening.
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III. DATA AND METHODOLOGY

This section details the data sources and methodological
approaches employed to address the core objectives of this
research. Fig. 1 illustrates the procedural framework guiding
this study.

Dataset Clinical,
Data Splitting

v ¥ v v

Dataset Audio Dataset Clinical Dataset Audio Dataset Clinical
Train Train Test Test
I
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Y

SpecAugment

1]
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Fig. 1. Research workflow.

A. Dataset

The dataset employed in this research is the CODA TB
DREAM Challenge dataset [21], a comprehensive collection of
solicited cough recordings designed to advance TB triage
testing. The dataset comprises 29,768 cough recordings from
individuals across seven countries: India, the Philippines,
South Africa, Uganda, Vietnam, Tanzania, and Madagascar.

Each recording is accompanied by detailed metadata,
including the participant's confirmed TB status (positive or
negative) and a range of demographic and clinical information.

To address the class imbalance often present in medical
datasets, we performed random undersampling on the majority
class. This process resulted in a balanced final dataset for our
study, consisting of 8,000 samples for the TB-positive class
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and 8,000 samples for the TB-negative class, thereby
preventing potential model bias towards the more frequent
class. The dataset is illustrated in Fig. 2. While this strategy is
effective for balancing classes, we acknowledge that it may
discard potentially useful data from the majority class.
Alternative techniques, such as the Synthetic Minority Over-
sampling Technique (SMOTE) or using focal loss during
training, were considered but random undersampling was
chosen for its simplicity and computational efficiency in this
initial large-scale study. The richness and scale of this balanced
16,000-sample dataset, sourced from seven diverse countries,
provide a robust foundation for training a generalizable Al-
based screening tool.

Unbalanced Dataset Balanced Dataset

8431
8000 8000
21337

= TBPositive = TB Negative = TBPositive = TB Negative

Fig.2. Dataset distribution.

For this study, the TB status will serve as the primary target
label for classification. To develop our multimodal model, we
will utilize both the cough audio recordings, and the following
supplementary clinical data provided in the metadata: sex, age,
and the presence of key TB-related symptoms, namely
hemoptysis (coughing up blood), night sweats, weight loss, and
fever. The richness and diversity of this dataset make it an ideal
resource for training and validating a robust, generalizable Al-
based screening tool for tuberculosis.

B. Data Preprocessing and Augmentation

This study applied several data preprocessing techniques,
including the following:

e Resampling: This process involves adjusting the
sampling rate to match the model’s requirements,
ensuring input consistency, reducing memory usage,
and improving computational efficiency [22]. In this
study, we used a sampling rate of 16,000 Hz.

e Padding and Truncation: Padding and truncation are
processes used to standardize the duration of audio
samples, ensuring that they can be uniformly processed
by the model. Padding involves adding zero values to
audio samples that are shorter than the target length,
whereas truncation trims samples that exceed the
specified duration. In this study, the audio length was
set to 2 seconds according to the model specification.

e Mel-PCEN Spectrogram Conversion: To create a
suitable input representation for the model, the
standardized waveforms are converted into a mel-
spectrogram format. This process involves applying the
Short-Time Fourier Transform (STFT) to decompose
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the audio into its frequency components over time, as
defined in Eq. (1).

(o)

X(mw) = z x[nlw[n — mle~/wn (1)

n=-—oo

where, x[n]is the input signal, w[n] is the window
function, and the output X(m, w) is the complex value
for the frequency bin w at time frame m. Subsequently,
the spectrogram is mapped onto the Mel scale, which
more closely aligns with human auditory perception by
emphasizing lower frequencies. Following this, Per-
Channel Energy Normalization (PCEN) is applied as an
advanced dynamic range compression method to
enhance signal robustness against noise and volume
variations [23]. In this study, the conversion utilized a
frame length of 400 samples, a frame step of 160
samples, and generated 128 mel bands.

e Input Resizing: To ensure a consistent input size for the
deep leamning model, the final mel-PCEN spectrogram
was resized to a fixed dimension of 192x128,
representing time and frequency axes, respectively.

e SpecAugment: To enhance data diversity and improve
the model's generalization capabilities, we applied
SpecAugment to the training set. This data
augmentation technique operates directly on the
spectrogram by randomly applying time masking
(obscuring a range of consecutive time steps) and
frequency masking (hiding a block of consecutive mel
frequency channels). This process encourages the
model to learn more robust features and reduces the risk
of overfitting [24].

C. Building Model

This study adopts a multimodal deep learning approach that
leverages both acoustic features from cough sounds and
structured clinical data for TB classification. The architecture
consists of two parallel processing streams: one for audio and
one for clinical metadata which are then combined through a
fusion mechanism before a final classification is made.

The audio processing stream utilizes the pre-trained HeAR
model as its feature extraction backbone. The choice of HeAR
is deliberate; as a foundation model pre-trained on over 300
million health-related audio clips, it provides powerful and
generalized acoustic embeddings, allowing us to achieve high
performance without training a deep architecture from scratch.
Architecturally, HeAR is a transformer-based model, like a
Vision Transformer (ViT), designed to process audio
spectrograms as images [25]. The Vision Transformer
architecture described in Fig. 3.

The input 192x128 mel-PCEN spectrogram is first divided
into a sequence of smaller, non-overlapping patches P;.

Mathematically, for each patch, the embedding vector E; is
computed using a linear projection, as defined in Eq. (2).

E; =W -vec(P,)+b (2)
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Fig. 3. Vision transformer architecture.

where, W denotes the projection weight matrix, b
represents the bias vector, and P; corresponds to the flattened
image patch. To retain spatial information, a learnable
positional encoding is then added to each embedding vector.
These encodings provide the model with information about the
position of each patch in the sequence, using sine and cosine
functions of different frequencies, as defined in Eq. (3).

i pos
PE(pOS,Zi) = Sin —Zl
100000d

3)
) pos
PE(pos,2i+1) = Sin <—21>
100000d
where, pos denotes the position index, I represents the
dimension index, and d is the embedding dimension.

The resulting sequence of vectors is then processed by 24
transformer encoder layers. Each layer comprises a multi-head
self-attention mechanism with 16 attention heads, followed by
a position-wise feed-forward network (FFN) with a hidden size
of 4096. The self-attention mechanism calculates attention
scores based on the query Q, key K, and value V to weigh the
importance of different patches relative to each other, allowing
the model to capture complex dependencies across the

spectrogram as defined in Eq. (4).
QK T)
|4 4
/i ®

k

Attention(Q,K,V) = Softmax<

where, @, K, and V are the query, key, and value matrices,
and d, is the dimension of the key.

Following the attention sub-layer, the output is passed to an
FFN. This network consists of two linear transformations with
a GELU activation in between as shown in Eq. (5).

FFN(x) = GELU(xW, + b, )W, + b, 5)

where, x denotes the input token representation, W, and W,
are learnable weight matrices, b; and b, are the corresponding
bias vectors, and GELU is the Gaussian Error Linear Unit
activation as defined in Eq. (6).
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GELU(x) = x - ®d(x) =

2 (6)
1+ tanh E(x + 0.044715x3)

&
N =

where, ®(x) is the standard Gaussian cumulative
distribution function. The FFN allows for nonlinear
transformations and enhances the model’s capacity to learn
complex representations. Residual connections are applied
around each of the two sub-layers, followed by layer
normalization, as defined in Eq. (7). This step is crucial for
stabilizing the training of deep networks.

Layernorm(x + Sublayer(x)) (7)

For this study, the output embedding from the final
transformer layer is used as the acoustic feature
representations, and the weights of the HeAR backbone are
kept frozen. The output which is a 512-dimensional embedding
vector is then passed through a dedicated audio branch, which
consists of a linear layer that projects the features from 512 to
128 dimensions, followed by Batch Normalization, a ReLU
activation, a dropout layer with a rate of 04, and a final linear
layer that outputs a 64-dimensional audio feature vector.

Concurrently, the clinical data stream handles the tabular
metadata. After preprocessing (one-hot encoding for
categorical features and standard scaling for age), the vector is
fed into a clinical branch. This branch is composed of a linear
layer mapping the input to 64 dimensions, followed by a ReLU
activation, a dropout layer with a rate of 0.3, and another linear
layer that produces a 32-dimensional clinical feature vector.

In the fusion stage, the 64-dimensional audio vector and the
32-dimensional clinical vector are concatenated, creating a
combined 96-dimensional feature vector. This vector is then
passed to the final classifier which consists of a Batch
Normalization layer, a ReLU activation, a high-rate dropout
layer (0.5) for regularization, and a final linear layer that
outputs the logits for the two classes (TB-positive and TB-
negative). The final prediction probabilities are obtained using
a softmax function, as shown in Eq. (8).

e’
K 7
Zj:le J

where, z is the input vector of logits and K is the number of
classes. The entire model is trained end-to-end using a cross-
entropy loss function to quantify the difference between the
predicted probability and the actual class labels, as defined in

Eq. (9).

o0(z); =

®)

1
£==) ylog#) ©)
=0

D. Training Setup

The AdamW optimizer was used to train the models,
incorporating a weight decay of 0.01 and an initial learning rate
of 1 X 10™*. Training was conducted for 50 epochs with a
batch size of 32. The objective function was cross-entropy loss.
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Early stopping was applied based on validation loss to prevent
overfitting, with a patience of 7 epochs and minimum delta of
0.001. Model performance was comprehensively evaluated
using several metrics, including accuracy, precision, recall, and
F1-score, with 80/10/10 train, validation and test dataset. All
experiments were conducted on a NVIDIA RTX A4000 GPU
with 16 GB VRAM.

IV. EXPERIMENTAL RESULTS

A. Evaluation Parameters

This study employed several evaluation metrics, including
accuracy, Fl-score, precision, and recall. The confusion matrix
is a fundamental tool for assessing classification model
performance, offering a comprehensive comparison between
the model’s predictions and the actual labels. The confusion
matrix comprises four components: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives
(FN). Precision quantifies the proportion of correctly predicted
positive instances among all instances predicted as positive,
thereby providing insight into the model’s susceptibility to
false positive errors. Recall, on the other hand, evaluates the
proportion of actual positive instances that the model correctly
identified, thereby reflecting its effectiveness in minimizing
false negative errors. Specificity measures the proportion of
actual negatives that are correctly identified as such by the
model. The Fl-score, computed as the harmonic means of
precision and recall, provides a balanced assessment of the
model’s performance by simultaneously accounting for both
FP and FN. These evaluation metrics are computed using the
formulas presented in Eq. (10) through Eq. (14).

Accuracy = TP+ TN (10)
TP+ FP +TN+ FN
TP
Recall = m (1 1)
L TP
Precision = TP+ FP (12)
2 X (precision X recall)
F1—Score = — (13)
precision + recall
o TN
Specificity = TN TFP (14)

B. Experimental Analysis

In this study, simulations and model development for
detecting TB based on cough sounds-, as well as the creation of
a digital audio-based detection system-, were conducted using
hardware and software with specific configurations. Table II
presents the detailed specifications of the equipment and tools
used.

The authors configured the training process with 50 epochs,
a learning rate of 0.0001, and a batch size of 32, using the
AdamW optimizer.

As shown in Table III, the proposed multimodal deep
learning model demonstrated strong performance in classifying
tuberculosis from cough audio and clinical data. The model
achieved an overall accuracy of 90% on the test set. The results
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show a well-balanced performance across both classes, with
precision, recall, and F1-scores of 0.90 for both the "Non-TB"
and "TB" classes. This symmetry indicates that the model is
equally effective at identifying both positive and negative cases
and is not biased towards any single class, which is a crucial
attribute for a reliable medical screening tool.

TABLEII. DEVICE SPECIFICATION
Specifications

GPU NVIDIA RTX A4000
GPU Memory 16 GB
RAM 16 GB
Disk 1TB
Programming Language Python 3.10

TABLE III. MODEL PERFORMANCE

Class Accuracy | Precision Recall F1-Score Specificity

Non-TB 0.90 0.90 0.90 0.90 0.9
B 0.90 0.90 0.90 0.90 0.9
Average | 0.90 0.90 0.90 0.90 0.9

The confusion matrix, shown in Fig. 4, provides a more
granular view of the model's predictions. Out of 800 non-TB
samples, the model correctly identified 723 as Non-TB (True
Negatives) and misclassified 77 as TB (False Positives).
Similarly, for the 800 TB samples, the model correctly
identified 723 as TB (True Positives) and misclassified 77 as
Non-TB  (False Negatives). The low number of
misclassifications for both classes further validates the model’s
high accuracy and balanced predictive power.

Confusion Matrix

Non-TB

True label

Non-TB B
Predicted label

Fig. 4. Confusion matrix of the proposed model on the test set.

Training & Validation Loss Training & Validation Accuracy

0654 | — Train Loss

\ Val Loss N

Accuracy

: 'CI 1'0 Z'CI 30 Z'O 3'0
Epoch Epoch

Fig.5. Training and validation loss and accuracy curves over 50 epochs.
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Fig. 5 illustrates the model's learning process over 50
epochs. The training and validation loss curves show a
consistent downward trend, indicating that the model was
effectively learning from the data. Importantly, the validation
loss closely follows the training loss without significant
divergence, which suggests that the model generalized well to
unseen data and was not overfitting. The accuracy curves
mirror this positive trend, with both training and validation
accuracy steadily increasing and converging to approximately
90%. This stable training behavior highlights the effectiveness
of the chosen architecture and regularization techniques (e.g.,
dropout) in building a robust classifier.

V. DISCUSSION

Our proposed model achieved a strong overall accuracy of
90%, with balanced performance across all key metrics. This
section discusses the interpretation of these findings, the
study's limitations, and challenges for real-world deployment.

A. Interpretation of Results and Clinical Implications

Our model's 90% overall accuracy, with balanced
precision, recall, and F1-scores of 0.90 across both TB and
non-TB classes, demonstrates its reliability and lack of bias.
For clinical applications, this performance is highly promising.
The 90% sensitivity is crucial for identifying most positive
cases early, aiding in timely treatment and reducing
transmission. Simultaneously, the 90% specificity effectively
rules out the disease in most healthy individuals, minimizing
unnecessary follow-up tests, patient anxiety, and healthcare
costs. While the 10% false-negative rate requires further work
to mitigate public health risks, these findings strongly validate
that fusing advanced acoustic features with clinical data offers
a holistic and accurate approach for a scalable TB screening
tool.

B. Real-World Implementation Scenarios and Challenges

For deployment in real-world TB screening, several
challenges must be addressed. Data privacy is paramount,
requiring secure data handling. The model's robustness to
background noise in uncontrolled environments needs rigorous
testing. Furthermore, hardware variability, particularly the
quality of microphones in different smartphones, could impact
performance and requires investigation to ensure consistent
results.

C. Limitations

A primary limitation is our use of random undersampling,
which, as noted, may discard potentially useful data. Future
studies could address this by implementing alternative
balancing techniques like SMOTE or focal loss.

VI. CONCLUSION AND FUTURE WORK

This study successfully demonstrated the effectiveness of a
multimodal deep learning approach for tuberculosis detection
by combining cough audio signals with clinical metadata. By
leveraging the powerful Health Acoustic Representations
(HeAR) model as a feature extractor and integrating it with key
patient symptoms, our proposed model achieved an impressive
accuracy of 90% on a balanced test set. The balanced
precision, recall, and F1-scores further underscore the model's
capability to reliably identify both Non-TB and TB cases,
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highlighting its potential as a robust and unbiased screening
tool. These findings confirm that the fusion of advanced
acoustic features with contextual clinical data provides a more
holistic and accurate representation for diagnosis than either
modality alone.

From a clinical perspective, the balance between sensitivity
(recall) and specificity is critical for a screening tool. The
model's 90% sensitivity indicates that it successfully identifies
9 out of 10 individuals with TB, which is vital for early
treatment initiation. However, the 10% of cases missed (false
negatives) represent a significant public health concem, as
these individuals may unknowingly continue to transmit the
disease. Conversely, the 90% specificity means that 9 out of 10
healthy individuals are correctly identified, but the 10% of
false positives would be subjected to unnecessary follow-up
tests, causing patient anxiety and burdening healthcare
resources. For a preliminary screening tool, this performance
represents a promising balance, but future work should
prioritize further reducing the false-negative rate to maximize
the tool's public health impact.

Several avenues for future research can be explored to build
upon these promising results. First, extensive hyperparameter
tuning of the fusion model, including the architecture of the
audio and clinical branches as well as the dropout rates, could
further optimize performance. Second, exploring different
fusion strategies, such as attention-based mechanisms, may
allow the model to dynamically weigh the importance of audio
versus clinical features for each sample. Additionally,
evaluating the model's generalization on external, unseen
datasets from different demographic or geographic populations
is crucial to ensure its real-world applicability. Finally,
incorporating explainable Al (XAI) techniques is crucial for
clinical adoption. By providing insights into which acoustic or
clinical features most influence the model's predictions, XAl
can build trust among healthcare professionals, aid in
validating the model's decision-making process, and facilitate
its integration into clinical workflows. The development of
such a tool holds significant promise for creating an accessible,
low-cost, and scalable solution to support global efforts in early
TB detection and containment.
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