
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

350 | P a g e  
www.ijacsa.thesai.org 

Multimodal Deep Learning for Tuberculosis 

Detection Using Cough Audio and Clinical Data with 

Health Acoustic Representations (HeAR)

Rinaldi Anwar Buyung*, Widi Nugroho 

Department of Data Science, Seleris Meditekno Internasional, Jakarta, Indonesia 
 
 

Abstract—Tuberculosis (TB) remains a significant global 

health challenge, necessitating rapid and accessible screening 

methods. This study proposes a multimodal deep learning model 

for non-invasive TB detection by fusing acoustic features from 

cough sounds with clinical metadata. We utilize the pre-trained 

Health Acoustic Representations (HeAR) model as a powerful 

backbone to extract features from mel-spectrograms of cough 

audio. These acoustic features are combined with clinical data, 

including sex, age, and key symptoms through a late-fusion 

architecture. The model was trained and evaluated on a balanced 

dataset of 16,000 samples derived from the CODA TB DREAM 

Challenge dataset. Our proposed multimodal approach achieved 

a high overall accuracy of 90% on the unseen test set, with 

balanced precision, recall, specificity, and F1-scores of 0.90 for 

both TB-positive and non-TB classes. These results demonstrate 

the effectiveness of using cough sound as a non-invasive vocal 

biomarker, amplified by combining advanced acoustic 

representations with clinical context. This highlights the potential 

of our method as a robust, low-cost, and scalable tool for early 

TB screening. 
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I. INTRODUCTION 

Tuberculosis (TB) continues to be a devastating global 
health crisis. It is caused by the bacterium Mycobacterium 
tuberculosis, the disease primarily affects the lungs (pulmonary 
TB) and spreads through the air when an infected person 
coughs, sneezes, or speaks [1]. In 2023 alone, an estimated 
10.8 million people fell ill with the disease, and it claimed the 
lives of 1.25 million people, reaffirming its status as a leading 
cause of death from a single infectious agent worldwide. The 
epidemic's immense scale underscores the critical need for 
global efforts to combat TB. These efforts align with the 
United Nations Sustainable Development Goal of ending the 
epidemic by 2030 [2]. The burden of this disease is unevenly 
distributed, with the majority of cases occurring in developing 
countries. Indonesia ranks as the country with the second-
highest TB burden in the world after India, which underscores 
the urgency to develop more effective, rapid, and accessible 
screening and diagnostic methods within the country [3]. 

Conventional diagnostic methods for TB, such as sputum 
smear microscopy, bacterial culture, and rapid molecular tests 
(e.g., Xpert MTB/RIF), often have limitations. Sputum smear 
microscopy has variable sensitivity and may fail to detect cases 
with a low bacterial load. Bacterial culture, while being the 

gold standard, requires several weeks to yield results, which 
can delay treatment and increase the risk of transmission [4]. 
Meanwhile, molecular tests and radiological examinations like 
chest X-rays, although more accurate, require expensive 
laboratory infrastructure, specialized equipment, and expert 
personnel that are not always available in primary healthcare 
facilities or remote areas. These limitations hinder efforts for 
early detection and massive-scale containment of TB spread 
[5]. 

The pathological progression of pulmonary TB 
significantly alters the respiratory system's mechanics and 
acoustics. The formation of granulomas, inflammation of the 
airways, and accumulation of fluid or sputum change the 
physical properties of the lungs and trachea. These changes 
directly impact the sound produced during a cough, which is a 
forceful expulsion of air [6]. Consequently, coughs from TB-
infected individuals can exhibit distinct acoustic patterns, such 
as variations in spectral energy, frequency components, and 
temporal characteristics compared to those from healthy 
individuals [7]. This acoustic signature provides a 
physiological basis for using cough sound as a non-invasive 
biomarker for TB screening [8]. 

Along with advancements in digital technology, sound 
analysis using artificial intelligence (AI) has emerged as a 
promising alternative solution. Deep learning, a subset of 
machine learning, enables systems to learn from data and 
understand complex concepts without explicit programming 
[9]. By learning from experience, computers can autonomously 
perform tasks, making them highly suitable for analyzing 
complex patterns in medical data. In previous studies, for 
instance, deep learning particularly Convolutional Neural 
Networks (CNNs) was successfully employed to detect 
diabetic retinopathy using retinal fundus images [10], [11]. 
Similarly, cough sounds, as a primary symptom of TB, contain 
rich acoustic information and can serve as a non-invasive vocal 
biomarker [12]. This capability offers the potential for a low-
cost, rapid, and remotely deployable screening tool using 
common devices such as smartphones [13]. 

To maximize the potential of audio analysis, this study 
proposes the use of Health Acoustic Representations (HeAR), a 
foundation model developed by Google AI specifically for 
health-related sounds. HeAR is built on a transformer-based 
architecture and employs a self-supervised learning strategy, 
having been pre-trained on over 300 million two-second audio 
clips encompassing sounds like coughs and breaths. This 
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extensive pre-training enables HeAR to generate powerful and 
generalized acoustic embeddings. In benchmark evaluations, 
simple linear classifiers trained on HeAR embeddings achieved 
state-of-the-art or competitive performance across various 
health tasks, including the detection of conditions like COVID-
19 and the inference of smoking status from cough recordings 
[14]. 

By leveraging these rich representations as a backbone, this 
study aims to build a robust classifier for TB [15]. 
Furthermore, this study adopts a multimodal approach by not 
only relying on cough sounds but also integrating essential 
clinical data such as sex, age, and key symptoms (hemoptysis, 
night sweats, weight loss, and fever). The combination of 
advanced acoustic features from HeAR and contextual clinical 
information is expected to significantly improve detection 
accuracy and reliability, leading to a more holistic and accurate 
screening model [16]. 

This study makes several key contributions. First, we 
introduce a multimodal deep learning architecture that 
effectively fuses powerful pre-trained acoustic features from 
the HeAR model with essential clinical metadata. Second, we 
validate our approach on a large, balanced dataset, 
demonstrating its robustness and high accuracy. The remainder 
of this paper is organized as follows: Section II reviews related 
work in acoustic-based TB detection. Section III details the 
dataset, preprocessing steps, and our proposed model 
architecture. Section IV presents the experimental results and 
analysis. Finally, Section V discusses the clinical implications 
of our findings. Section VI concludes the study, and outlines 
directions for future research. 

II. RELATED WORK 

The use of cough sound analysis as a low-cost, non-
invasive tool for tuberculosis (TB) screening has been an active 
area of research. Early studies established the foundational 
potential of this approach by applying traditional machine 
learning models to handcrafted acoustic features. For instance, 
Botha et al. employed statistical classifiers like Logistic 
Regression on short-term spectral features combined with 
clinical data, achieving a sensitivity of 96% at a specificity of 
72% on a dataset of 518 coughs. While pioneering, this work 
relied on manually engineered features (e.g., MFCC), which 
may not fully capture the complex, subtle acoustic patterns 
indicative of TB [17]. 

Subsequent research shifted towards deep learning to 
automate feature extraction and improve performance. Xu et al.  
developed a sophisticated fusion model using a Bidirectional 
Long Short-Term Memory (Bi-LSTM) network combined with 
a Convolutional Neural Network (CNN). Their approach, 
which fused traditional features like MFCC and Zero-Crossing 
Rate (ZCR) with features learned from spectrograms, reported 
a very high accuracy of 96.33%. However, this impressive 
result was obtained from a relatively small and homogenous 
dataset of 456 coughs from a limited number of participants. 
This raises important questions about the model's scalability 
and ability to generalize to more diverse, real-world 
populations [18]. 

In contrast, recent studies have demonstrated the power of 
simpler architecture when applied to large-scale datasets. 
Yadav et al. utilized a massive dataset of over 500,000 cough 
recordings and found that a simple 1D CNN trained on Mel-
Frequency Cepstral Coefficients (MFCCs) achieved a high 
accuracy of 91%, exceeding the WHO's requirements for a 
screening test. This work underscores that with sufficient data, 
less complex models can be highly effective. Similarly, 
Kafentzis et al.  also worked with a large, real-world dataset, 
achieving a respectable Area Under the Curve (AUC) of 
approximately 0.80 by combining audio features with clinical 
metadata, further highlighting the importance of a multimodal 
approach [19]. 

Addressing the need for larger and more diverse datasets, 
Kafentzis et al.  utilized a substantial dataset of over 9,000 
coughs collected "in the wild" via a mobile application. Using 
a combination of spectral features and clinical metadata, their 
statistical models achieved a respectable Area Under the Curve 
(AUC) of approximately 0.80 [20]. Their work highlighted the 
feasibility of large-scale data collection but also demonstrated 
that performance on noisy, real-world data remains a 
significant challenge, suggesting that more powerful feature 
representation is needed. A summary of these key studies is 
presented in Table I. 

TABLE I.  STATE-OF-THE-ART 

Study Methodology 
Audio 

Features 
Dataset 

Evaluation 

Metrics 

[17] 
Logist ic 

Regression 

MFCC, Log 

Spectral 

Energies, 

Clinical Data  

518 Coughs 

Sensitiv ity = 

96% 

Specificity = 

72% 

[18] 
BiLSTM + 

Conv2D 

MFCC, ZCR, 

RMS, 

Chroma 

Cens, Short 

Time Energy, 

Spectrogram 

456 Coughs 

Accuracy = 

96.33% 

Specificity = 

94.99% 

[19] 1D CNN MFCC 
502,252 

Coughs 

Accuracy = 

91% 

AUC = 0.8 

[20] CNN 
LLDs, 

Clinical Data  
9772 Coughs AUC = 0.8 

While these studies have established the potential of cough 
sound analysis for TB screening, clear research gaps remain. 
Previous works have either relied on handcrafted features or 
custom-trained CNNs. Furthermore, these investigations were 
often conducted on considerably smaller datasets, which may 
not capture the full complexity of acoustic biomarkers and 
could limit the generalizability of their findings. 

To our knowledge, the application of a specialized, pre-
trained health acoustic foundation model like HeAR within a 
multimodal framework on a large-scale dataset for TB 
detection has not yet been thoroughly investigated. This study 
aims to fill these gaps by evaluating the performance of HeAR 
as a powerful feature extractor, combined with clinical data on 
a large and diverse dataset of 16,000 samples, to potentially set 
a new benchmark for accuracy and robustness in non-invasive 
TB screening. 
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III. DATA AND METHODOLOGY 

This section details the data sources and methodological 
approaches employed to address the core objectives of this 
research. Fig. 1 illustrates the procedural framework guiding 
this study. 

 
Fig. 1. Research workflow. 

A. Dataset 

The dataset employed in this research is the CODA TB 
DREAM Challenge dataset [21], a comprehensive collection of 
solicited cough recordings designed to advance TB triage 
testing. The dataset comprises 29,768 cough recordings from 
individuals across seven countries: India, the Philippines, 
South Africa, Uganda, Vietnam, Tanzania, and Madagascar. 

Each recording is accompanied by detailed metadata, 
including the participant's confirmed TB status (positive or 
negative) and a range of demographic and clinical information. 

To address the class imbalance often present in medical 
datasets, we performed random undersampling on the majority 
class. This process resulted in a balanced final dataset for our 
study, consisting of 8,000 samples for the TB-positive class 

and 8,000 samples for the TB-negative class, thereby 
preventing potential model bias towards the more frequent 
class. The dataset is illustrated in Fig. 2. While this strategy is 
effective for balancing classes, we acknowledge that it may 
discard potentially useful data from the majority class. 
Alternative techniques, such as the Synthetic Minority Over-
sampling Technique (SMOTE) or using focal loss during 
training, were considered but random undersampling was 
chosen for its simplicity and computational efficiency in this 
initial large-scale study. The richness and scale of this balanced 
16,000-sample dataset, sourced from seven diverse countries, 
provide a robust foundation for training a generalizable AI-
based screening tool. 

 

Fig. 2. Dataset distribution. 

For this study, the TB status will serve as the primary target 
label for classification. To develop our multimodal model, we 
will utilize both the cough audio recordings, and the following 
supplementary clinical data provided in the metadata: sex, age, 
and the presence of key TB-related symptoms, namely 
hemoptysis (coughing up blood), night sweats, weight loss, and 
fever. The richness and diversity of this dataset make it an ideal 
resource for training and validating a robust, generalizable AI-
based screening tool for tuberculosis. 

B. Data Preprocessing and Augmentation 

This study applied several data preprocessing techniques, 
including the following: 

• Resampling: This process involves adjusting the 
sampling rate to match the model’s requirements, 
ensuring input consistency, reducing memory usage, 
and improving computational efficiency [22]. In this 
study, we used a sampling rate of 16,000 Hz. 

• Padding and Truncation: Padding and truncation are 
processes used to standardize the duration of audio 
samples, ensuring that they can be uniformly processed 
by the model. Padding involves adding zero values to 
audio samples that are shorter than the target length, 
whereas truncation trims samples that exceed the 
specified duration. In this study, the audio length was 
set to 2 seconds according to the model specification. 

• Mel-PCEN Spectrogram Conversion: To create a 
suitable input representation for the model, the 
standardized waveforms are converted into a mel-
spectrogram format. This process involves applying the 
Short-Time Fourier Transform (STFT) to decompose 
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the audio into its frequency components over time, as 
defined in Eq. (1). 

𝑋(𝑚, 𝑤) = ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−𝑗𝑤𝑛

∞

𝑛=−∞

 (1) 

where, 𝑥[𝑛]is the input signal, 𝑤[𝑛] is the window 
function, and the output 𝑋(𝑚, 𝑤) is the complex value 
for the frequency bin w at time frame m. Subsequently, 
the spectrogram is mapped onto the Mel scale, which 
more closely aligns with human auditory perception by 
emphasizing lower frequencies. Following this, Per-
Channel Energy Normalization (PCEN) is applied as an 
advanced dynamic range compression method to 
enhance signal robustness against noise and volume 
variations [23]. In this study, the conversion utilized a 
frame length of 400 samples, a frame step of 160 
samples, and generated 128 mel bands. 

• Input Resizing: To ensure a consistent input size for the 
deep learning model, the final mel-PCEN spectrogram 
was resized to a fixed dimension of 192x128, 
representing time and frequency axes, respectively. 

• SpecAugment: To enhance data diversity and improve 
the model's generalization capabilities, we applied 
SpecAugment to the training set. This data 
augmentation technique operates directly on the 
spectrogram by randomly applying time masking 
(obscuring a range of consecutive time steps) and 
frequency masking (hiding a block of consecutive mel 
frequency channels). This process encourages the 
model to learn more robust features and reduces the risk 
of overfitting [24]. 

C. Building Model 

This study adopts a multimodal deep learning approach that 
leverages both acoustic features from cough sounds and 
structured clinical data for TB classification. The architecture 
consists of two parallel processing streams: one for audio and 
one for clinical metadata which are then combined through a 
fusion mechanism before a final classification is made. 

The audio processing stream utilizes the pre-trained HeAR 
model as its feature extraction backbone. The choice of HeAR 
is deliberate; as a foundation model pre-trained on over 300 
million health-related audio clips, it provides powerful and 
generalized acoustic embeddings, allowing us to achieve high 
performance without training a deep architecture from scratch. 
Architecturally, HeAR is a transformer-based model, like a 
Vision Transformer (ViT), designed to process audio 
spectrograms as images [25]. The Vision Transformer 
architecture described in Fig. 3. 

The input 192x128 mel-PCEN spectrogram is first divided 
into a sequence of smaller, non-overlapping patches 𝑃𝑖. 

Mathematically, for each patch, the embedding vector 𝐸𝑖 is 
computed using a linear projection, as defined in Eq. (2). 

𝐸𝑖 = 𝑊 ∙ 𝑣𝑒𝑐(𝑃𝑖) + 𝑏 (2) 

 
Fig. 3. Vision transformer architecture. 

where, 𝑊  denotes the projection weight matrix, 𝑏 
represents the bias vector, and 𝑃𝑖 corresponds to the flattened 
image patch. To retain spatial information, a learnable 
positional encoding is then added to each embedding vector. 
These encodings provide the model with information about the 
position of each patch in the sequence, using sine and cosine 
functions of different frequencies, as defined in Eq. (3). 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

100000
2𝑖
𝑑

) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = sin(
𝑝𝑜𝑠

100000
2𝑖
𝑑

) 

(3) 

where, 𝑝𝑜𝑠  denotes the position index, 𝑖  represents the 
dimension index, and 𝑑 is the embedding dimension. 

The resulting sequence of vectors is then processed by 24 
transformer encoder layers. Each layer comprises a multi-head 
self-attention mechanism with 16 attention heads, followed by 
a position-wise feed-forward network (FFN) with a hidden size 
of 4096. The self-attention mechanism calculates attention 
scores based on the query 𝑄, key 𝐾, and value 𝑉 to weigh the 
importance of different patches relative to each other, allowing 
the model to capture complex dependencies across the 
spectrogram as defined in Eq. (4). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (4) 

where, 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices, 
and 𝑑𝑘 is the dimension of the key. 

Following the attention sub-layer, the output is passed to an 
FFN. This network consists of two linear transformations with 
a GELU activation in between as shown in Eq. (5). 

𝐹𝐹𝑁(𝑥) = 𝐺𝐸𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (5) 

where, 𝑥 denotes the input token representation, 𝑊1  and 𝑊2 
are learnable weight matrices, 𝑏1 and 𝑏2 are the corresponding 
bias vectors, and GELU is the Gaussian Error Linear Unit 
activation as defined in Eq. (6). 
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𝐺𝐸𝐿𝑈(𝑥) = 𝑥 ∙ Φ(𝑥) = 

𝑥 ∙
1

2
(1 + tanh (√

2

𝜋
(𝑥 + 0.044715𝑥3))) 

(6) 

where, Φ(𝑥)  is the standard Gaussian cumulative 
distribution function. The FFN allows for nonlinear 
transformations and enhances the model’s capacity to learn 
complex representations. Residual connections are applied 
around each of the two sub-layers, followed by layer 
normalization, as defined in Eq. (7). This step is crucial for 
stabilizing the training of deep networks. 

𝐿𝑎𝑦𝑒𝑟𝑛𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) (7) 

For this study, the output embedding from the final 
transformer layer is used as the acoustic feature 
representations, and the weights of the HeAR backbone are 
kept frozen. The output which is a 512-dimensional embedding 
vector is then passed through a dedicated audio branch, which 
consists of a linear layer that projects the features from 512 to 
128 dimensions, followed by Batch Normalization, a ReLU 
activation, a dropout layer with a rate of 0.4, and a final linear 
layer that outputs a 64-dimensional audio feature vector. 

Concurrently, the clinical data stream handles the tabular 
metadata. After preprocessing (one-hot encoding for 
categorical features and standard scaling for age), the vector is 
fed into a clinical branch. This branch is composed of a linear 
layer mapping the input to 64 dimensions, followed by a ReLU 
activation, a dropout layer with a rate of 0.3, and another linear 
layer that produces a 32-dimensional clinical feature vector. 

In the fusion stage, the 64-dimensional audio vector and the 
32-dimensional clinical vector are concatenated, creating a 
combined 96-dimensional feature vector. This vector is then 
passed to the final classifier which consists of a Batch 
Normalization layer, a ReLU activation, a high-rate dropout 
layer (0.5) for regularization, and a final linear layer that 
outputs the logits for the two classes (TB-positive and TB-
negative). The final prediction probabilities are obtained using 
a softmax function, as shown in Eq. (8). 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 (8) 

where, 𝑧 is the input vector of logits and 𝐾 is the number of 
classes. The entire model is trained end-to-end using a cross-
entropy loss function to quantify the difference between the 
predicted probability and the actual class labels, as defined in 
Eq. (9). 

ℒ = − ∑ 𝑦𝑖 log(𝑦𝑖)

1

𝑖=0

 (9) 

D. Training Setup 

The AdamW optimizer was used to train the models, 
incorporating a weight decay of 0.01 and an initial learning rate 
of 1 × 10−4. Training was conducted for 50 epochs with a 
batch size of 32. The objective function was cross-entropy loss. 

Early stopping was applied based on validation loss to prevent 
overfitting, with a patience of 7 epochs and minimum delta of 
0.001. Model performance was comprehensively evaluated 
using several metrics, including accuracy, precision, recall, and 
F1-score, with 80/10/10 train, validation and test dataset. All 
experiments were conducted on a NVIDIA RTX A4000 GPU 
with 16 GB VRAM. 

IV. EXPERIMENTAL RESULTS 

A. Evaluation Parameters 

This study employed several evaluation metrics, including 
accuracy, F1-score, precision, and recall. The confusion matrix 
is a fundamental tool for assessing classification model 
performance, offering a comprehensive comparison between 
the model’s predictions and the actual labels. The confusion 
matrix comprises four components: True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives 
(FN). Precision quantifies the proportion of correctly predicted 
positive instances among all instances predicted as positive, 
thereby providing insight into the model’s susceptibility to 
false positive errors. Recall, on the other hand, evaluates the 
proportion of actual positive instances that the model correctly 
identified, thereby reflecting its effectiveness in minimizing 
false negative errors. Specificity measures the proportion of 
actual negatives that are correctly identified as such by the 
model. The F1-score, computed as the harmonic means of 
precision and recall, provides a balanced assessment of the 
model’s performance by simultaneously accounting for both 
FP and FN. These evaluation metrics are computed using the 
formulas presented in Eq. (10) through Eq. (14). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (14) 

B. Experimental Analysis 

In this study, simulations and model development for 
detecting TB based on cough sounds-, as well as the creation of 
a digital audio-based detection system-, were conducted using 
hardware and software with specific configurations. Table II 
presents the detailed specifications of the equipment and tools 
used. 

The authors configured the training process with 50 epochs, 
a learning rate of 0.0001, and a batch size of 32, using the 
AdamW optimizer. 

As shown in Table III, the proposed multimodal deep 
learning model demonstrated strong performance in classifying 
tuberculosis from cough audio and clinical data. The model 
achieved an overall accuracy of 90% on the test set. The results 
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show a well-balanced performance across both classes, with 
precision, recall, and F1-scores of 0.90 for both the "Non-TB" 
and "TB" classes. This symmetry indicates that the model is 
equally effective at identifying both positive and negative cases 
and is not biased towards any single class, which is a crucial 
attribute for a reliable medical screening tool. 

TABLE II.  DEVICE SPECIFICATION 

Specifications 

GPU NVIDIA RTX A4000 

GPU Memory 16 GB 

RAM 16 GB 

Disk 1 TB 

Programming Language Python 3.10 

TABLE III.  MODEL PERFORMANCE 

Class Accuracy Precision Recall F1-Score Specificity 

Non-TB 0.90 0.90 0.90 0.90 0.9 

TB 0.90 0.90 0.90 0.90 0.9 

Average 0.90 0.90 0.90 0.90 0.9 

The confusion matrix, shown in Fig. 4, provides a more 
granular view of the model's predictions. Out of 800 non-TB 
samples, the model correctly identified 723 as Non-TB (True 
Negatives) and misclassified 77 as TB (False Positives). 
Similarly, for the 800 TB samples, the model correctly 
identified 723 as TB (True Positives) and misclassified 77 as 
Non-TB (False Negatives). The low number of 
misclassifications for both classes further validates the model’s 
high accuracy and balanced predictive power. 

 
Fig. 4. Confusion matrix of the proposed model on the test set. 

 
Fig. 5. Training and validation loss and accuracy curves over 50 epochs. 

Fig. 5 illustrates the model's learning process over 50 
epochs. The training and validation loss curves show a 
consistent downward trend, indicating that the model was 
effectively learning from the data. Importantly, the validation 
loss closely follows the training loss without significant 
divergence, which suggests that the model generalized well to 
unseen data and was not overfitting. The accuracy curves 
mirror this positive trend, with both training and validation 
accuracy steadily increasing and converging to approximately 
90%. This stable training behavior highlights the effectiveness 
of the chosen architecture and regularization techniques (e.g., 
dropout) in building a robust classifier. 

V. DISCUSSION 

Our proposed model achieved a strong overall accuracy of 
90%, with balanced performance across all key metrics. This 
section discusses the interpretation of these findings, the 
study's limitations, and challenges for real-world deployment. 

A. Interpretation of Results and Clinical Implications 

Our model's 90% overall accuracy, with balanced 
precision, recall, and F1-scores of 0.90 across both TB and 
non-TB classes, demonstrates its reliability and lack of bias. 
For clinical applications, this performance is highly promising. 
The 90% sensitivity is crucial for identifying most positive 
cases early, aiding in timely treatment and reducing 
transmission. Simultaneously, the 90% specificity effectively 
rules out the disease in most healthy individuals, minimizing 
unnecessary follow-up tests, patient anxiety, and healthcare 
costs. While the 10% false-negative rate requires further work 
to mitigate public health risks, these findings strongly validate 
that fusing advanced acoustic features with clinical data offers 
a holistic and accurate approach for a scalable TB screening 
tool. 

B. Real-World Implementation Scenarios and Challenges 

For deployment in real-world TB screening, several 
challenges must be addressed. Data privacy is paramount, 
requiring secure data handling. The model's robustness to 
background noise in uncontrolled environments needs rigorous 
testing. Furthermore, hardware variability, particularly the 
quality of microphones in different smartphones, could impact 
performance and requires investigation to ensure consistent 
results. 

C. Limitations 

A primary limitation is our use of random undersampling, 
which, as noted, may discard potentially useful data. Future 
studies could address this by implementing alternative 
balancing techniques like SMOTE or focal loss. 

VI. CONCLUSION AND FUTURE WORK 

This study successfully demonstrated the effectiveness of a 
multimodal deep learning approach for tuberculosis detection 
by combining cough audio signals with clinical metadata. By 
leveraging the powerful Health Acoustic Representations 
(HeAR) model as a feature extractor and integrating it with key 
patient symptoms, our proposed model achieved an impressive 
accuracy of 90% on a balanced test set. The balanced 
precision, recall, and F1-scores further underscore the model's 
capability to reliably identify both Non-TB and TB cases, 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

356 | P a g e  
www.ijacsa.thesai.org 

highlighting its potential as a robust and unbiased screening 
tool. These findings confirm that the fusion of advanced 
acoustic features with contextual clinical data provides a more 
holistic and accurate representation for diagnosis than either 
modality alone. 

From a clinical perspective, the balance between sensitivity 
(recall) and specificity is critical for a screening tool. The 
model's 90% sensitivity indicates that it successfully identifies 
9 out of 10 individuals with TB, which is vital for early 
treatment initiation. However, the 10% of cases missed (false 
negatives) represent a significant public health concern, as 
these individuals may unknowingly continue to transmit the 
disease. Conversely, the 90% specificity means that 9 out of 10 
healthy individuals are correctly identified, but the 10% of 
false positives would be subjected to unnecessary follow-up 
tests, causing patient anxiety and burdening healthcare 
resources. For a preliminary screening tool, this performance 
represents a promising balance, but future work should 
prioritize further reducing the false-negative rate to maximize 
the tool's public health impact. 

Several avenues for future research can be explored to build 
upon these promising results. First, extensive hyperparameter 
tuning of the fusion model, including the architecture of the 
audio and clinical branches as well as the dropout rates, could 
further optimize performance. Second, exploring different 
fusion strategies, such as attention-based mechanisms, may 
allow the model to dynamically weigh the importance of audio 
versus clinical features for each sample. Additionally, 
evaluating the model's generalization on external, unseen 
datasets from different demographic or geographic populations 
is crucial to ensure its real-world applicability. Finally, 
incorporating explainable AI (XAI) techniques is crucial for 
clinical adoption. By providing insights into which acoustic or 
clinical features most influence the model's predictions, XAI 
can build trust among healthcare professionals, aid in 
validating the model's decision-making process, and facilitate 
its integration into clinical workflows. The development of 
such a tool holds significant promise for creating an accessible, 
low-cost, and scalable solution to support global efforts in early 
TB detection and containment. 
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