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Abstract—As artificial intelligence (AI) advances in healthcare, 

its use in maternal health shows promise but faces challenges of 

trust due to the black-box nature of many models. Gestational 

diabetes mellitus (GDM), a transient yet high-risk condition, 

demands accurate and interpretable prediction tools. However, 

existing GDM prediction studies often rely on opaque models or 

post-hoc explanation techniques applied after training, which 

limits transparency and reduces their clinical applicability. This 

highlights an urgent need for models that unify high predictive 

performance with interpretability by design. This study 

introduces EYE-GDM, a case-specific application of our 

Enhanced Interpretability Ensemble (EYE) framework, designed 

to predict GDM risk with clinically meaningful explanations. The 

pipeline evaluates multiple algorithms and selects Decision Tree 

(DT), k-Nearest Neighbors (k-NN), and Gradient Boosting (GB) as 

the best-performing base learners. These are integrated with 

SHAP and a logistic regression (LR) meta-model to construct 

EYE-GDM, embedding interpretability by weighting learner 

outputs with LR coefficients. This yields global (population-level) 

and local (patient-level) explanations consistent with medical 

knowledge. Tested on a dataset of 3,525 pregnancies, EYE-GDM 

achieved strong performance (accuracy = 0.9789, AUC-ROC = 

0.9981) and provided insights into risk patterns, thresholds, and 

feature interactions relevant to GDM. By embedding 

explainability within the ensemble construction, EYE-GDM 

achieves transparent and clinically aligned reasoning without 

compromising predictive performance. Thus, EYE-GDM 

demonstrates how explainable AI (XAI) can translate from 

technical innovation to practical value in maternal care, 

supporting earlier risk identification and more informed clinical 

decisions. 

Keywords—Explainable Artificial Intelligence (XAI); 

interpretable machine learning (IML); Gestational diabetes mellitus 

(GDM); maternal health; healthcare AI; GDM risk prediction; 

transparency; trust 

I. INTRODUCTION 

Artificial intelligence (AI) is increasingly being used in 
healthcare to support early risk detection and guide clinical 
decision-making [1]. Yet, despite its growing presence, many 
AI models, especially high-performing ones such as deep 
learning and ensemble methods, suffer from the black-box 
problem and remain difficult for clinicians to trust and use [2]. 

In areas such as maternal health, where model predictions can 
directly affect outcomes for both mother and child, 
transparency is not optional. Clinicians need more than just a 
prediction; they need a clear rationale they can understand and 
explain. In this context, integrating explainable AI (XAI) into 
decision support systems is essential, as it can significantly 
affect clinicians’ trust and the extent to which they follow AI-
driven recommendations [3]. 

Gestational diabetes mellitus (GDM) affects a substantial 
number of pregnancies worldwide and is linked to serious 
complications such as preeclampsia, macrosomia, neonatal 
hypoglycaemia, and future type 2 diabetes. Its transient nature 
and rapid physiological onset during pregnancy create a narrow 
window for timely risk identification and intervention [4]. In 
addition, GDM has been associated with adverse pregnancy 
outcomes including preterm birth, hypertensive disorders, 
shoulder dystocia, hyperbilirubinemia, stillbirth, and caesarean 
delivery [5], [6], [7]. Therefore, there is an urgent need for 
clinically interpretable machine learning methods tailored to 
GDM patients, so that predictions can be understood and 
applied meaningfully in practice [8]. 

Although machine learning (ML) has been widely applied 
to GDM prediction, many models rely on post-hoc 
explainability methods such as SHAP (Shapley Additive 
Explanations) or LIME (Local Interpretable Model-agnostic 
Explanations). These approaches provide some insight but do 
so after the model has been trained, treating explanation as a 
separate process. This separation often limits clinical 
usefulness, as the reasoning behind predictions may not fully 
reflect the model’s internal decision logic [9], [10]; see Section 
II for related work and research gap. 

To address the dual challenge of predictive performance and 
interpretability, we previously introduced the Enhanced 
Interpretability Ensemble (EYE) framework [11]. EYE is a 
structured methodology that embeds interpretability throughout 
the model development pipeline, from defining the clinical 
application and preparing data to selecting base learners, 
integrating explanation methods, and constructing ensembles 
that remain transparent by design. Unlike post hoc approaches, 
EYE aligns interpretability with the model’s internal reasoning. 
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We first implemented this framework in EYE-WD [11], 
focused on diabetes risk prediction in women, where it achieved 
competitive performance across multiple datasets while 
uncovering clinically consistent explanations. This work 
highlighted the value of building AI systems that capture health 
patterns shaped by gender-specific factors, ensuring that 
predictive tools serve populations often overlooked in women’s 
and maternal health research. 

Building on this foundation, the present work applies the 
EYE framework to gestational diabetes mellitus (GDM), a 
transient but high-risk condition unique to pregnancy, resulting 
in EYE-GDM. The ensemble integrates Decision Tree (DT), k-
Nearest Neighbors (k-NN), and Gradient Boosting (GB) as base 
learners, combined through a logistic regression (LR) meta-
model with SHAP explanations embedded in training. Applied 
to a dataset of 3,525 pregnancies, EYE-GDM achieved an 
accuracy of 97.89%, F1-score of 97.90%, precision of 97.47%, 
recall of 98.33%, and an AUC-ROC of 0.9981. Beyond these 
results, interpretability analyses produced clinically meaningful 
insights. Global SHAP patterns revealed thresholds such as 
elevated risk at BMI values above 25 and OGTT values 
exceeding 160 mg/dL, while HDL levels above 35 mg/dL were 
protective. Interactions between features, for example, high 
BMI with low HDL or multiple pregnancies with elevated 
blood pressure, revealed clusters of maternal risk factors. Local 
explanations further traced patient-specific outcomes, 
distinguishing protective from adverse profiles in a transparent 
way. 

In doing so, this study advances GDM risk assessment and 
supports the broader goal of developing XAI that can be 
integrated into real-world maternal-care workflows [12]. By 
presenting EYE-GDM alongside the earlier EYE-WD 
implementation, we demonstrate both the flexibility and 
clinical relevance of the EYE framework and its potential to 
address critical challenges in women’s and maternal health, 
providing contributions that are meaningful to technical experts 
and healthcare professionals alike. 

The remainder of this study is organized as follows: 
Section II reviews the related work. Section III provides the 
methodology. Section IV reports the performance results of 
EYE-GDM, while Section V provides clinically oriented 
interpretations, including dataset-specific risk patterns, feature 
interactions, data-driven thresholds, and patient-level 
interpretations. Section VI provides a discussion, and 
Section VII concludes the study with directions for future work. 

II. RELATED WORK 

GDM has received growing attention from both clinical and 
computational research communities. In particular, a 
substantial body of work has applied machine learning 
techniques to develop predictive models for GDM, aiming to 
support early diagnosis and timely intervention that can 
improve maternal and neonatal outcomes. Section II A reviews 

studies that develop machine learning and deep learning models 
to identify women at risk of GDM. Section II.B examines a 
growing body of work on making these predictions 
understandable to clinicians. 

A. Machine Learning and Deep Learning for GDM 

Sumathi et al. [13], [14] constructed a GDM dataset, which 
includes 3,525 pregnant women’s data. Using deep learning, 
they introduced a deep stacked autoencoder based on outlier 
detection process (OD-DSAE), achieving 96.18% accuracy 
[13], and later proposed an ensemble voting strategy combining 
k-nearest neighbours (k-NN), Random Forest (RF), and LR 
models, reaching 94.24% accuracy [14]. Jader et al. [15] 
employed an ensemble approach using lab records from Iraq-
Kurdistan, achieving 92% accuracy through majority voting 
with Decision Tree (DT), RF, Support Vector Machine (SVM), 
k-NN, LR, and Naïve Bayes (NB). Gallardo-Rincón et al. [16] 
developed and evaluated an Artificial Neural Network (ANN) 
model, achieving 70.3% accuracy in recognizing women at 
high risk of developing GDM. This model was based on data 
from 1,709 pregnant Mexican women who participated in the 
‘Cuido mi embarazo’ study. Zheng et al. [17] collected data on 
4,771 Chinese pregnant women from Xinhua Hospital. They 
applied Multivariate LR using Bayesian inference and achieved 
an accuracy of 64% and an AUC of 0.766. Shen et al. [18] 
evaluated several machine learning algorithms, including LR, 
SVM, RF, AdaBoost, DT, NB, k-NN, XGBoost, and Gradient 
Boosting Decision Tree (GBDT), to predict GDM in areas with 
limited resources. The algorithms were trained on 12,304 cases 
from the First Affiliated Hospital of Jinan University and were 
validated on 1,655 pregnant patients at the Prince of Wales 
Hospital. At 0.78 AUC, SVM showed the best performance. 

Wu et al. [19] et al. utilized LR, k-NN, SVM, and deep 
neural network (DNN) for early GDM prediction. They 
evaluated these machine learning models using data from the 
International Peace Maternal and Child Health Hospital at 
Shanghai Jiao Tong University School of Medicine, which 
included 32,190 pregnant patients. DNN obtained the best AUC 
of 0.8, followed by LR with an AUC of 0.77. For predicting 
GDM, Hu et al. [20] utilized and compared between traditional 
LR method and the XGBoost machine learning model on a total 
of 925 pregnant women. They demonstrated that XGBoost 
outperformed LR with an AUC of 0.946 and an accuracy of 
87.5%. Through the Japan Environment and Children’s Study 
(JECS), Watanabe et al. [21] gathered GDM data from 82,698 
expectant women. They employed LR, SVM, GBDT, and RF 
for gestational diabetes detection. They demonstrated that 
GBDT produced the best AUC of 0.74. 

Table I summarizes machine learning and deep learning 
research used to predict women at risk of GDM. The first two 
columns provide the reference number and a summary of each 
work. The third column presents the reported performance, 
while the fourth column records limitations and key 
observations.
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TABLE I. SUMMARY OF WORKS ON GDM PREDICTION 

Ref Work Summary Performance Limitations / Observations 

[13] Developed a deep learning model using a stacked autoencoder with outlier detection (OD-

DSAE). 

Accuracy: 96.18% 

• Lack interpretability 
[14] Constructed an ensemble voting model using k-NN, RF, and LR. Accuracy: 94.24% 

[15] Trained and evaluated an ensemble of six classifiers (DT, RF, SVM, k-NN, LR, NB) on 

data from Iraq-Kurdistan using majority voting. 

Accuracy: 92% 

[16] Evaluated the ANN model on data from 1,709 pregnant Mexican women. Accuracy: 70.3% 

• Low performance 

• Lack interpretability 

[17] Applied Multivariate LR using Bayesian inference on 4,771 Chinese pregnant women from 

Xinhua Hospital. 

Accuracy: 64%, 

AUC: 0.766 

[18] Compared nine ML models (LR, SVM, RF, AdaBoost, DT, NB, k-NN, XGBoost, and 

GBDT) trained on 12,304 cases and were validated on 1,655 pregnant patients. 

AUC: 0.78 

(SVM best) 

[19] Evaluated LR, k-NN, SVM, and DNN on the Shanghai dataset (32,190 pregnant patients). AUC: 0.8 

(DNN best) • Moderate performance 

• Lack interpretability [20] Compared LR and XGBoost on 925 pregnant women. Accuracy: 87.5% 

(XGB best) 

[21] Assessed a large-scale Japanese cohort (82,698 pregnant women) with four models LR, 

SVM, GBDT, and RF. 

AUC: 0.74 

(GBDT best) 

• Low performance 

• Lack interpretability 

B. Explainability and Interpretability in GDM Prediction 

Despite these advances in predictive performance, most 
previous works did not incorporate interpretability into their 
predictive models. To the best of our knowledge, only a limited 
number of studies have explicitly integrated explainability. For 
instance, Du et al. [22] applied SHAP with multiple machine 
learning models (AdaBoost, LR, SVM, RF, XGBoost) and used 
Synthetic Minority Oversampling (SMOTE) to balance the 
data. They reported an accuracy of 76.1%, with SVM 
performing the best. Khanna et al. [23] evaluated several 
machine learning pipelines and data balancing strategies for 
GDM prediction, where a stacking ensemble trained on 
SMOTE-ENN (Synthetic Minority Oversampling using Edited 
Nearest Neighbour) data achieved the best performance with an 
accuracy of 96% and an AUC of 0.96. They applied five post-
hoc methods, including SHAP, LIME, ELI5, Qlattice, and 
Anchor, which confirmed the links between visceral fat levels, 
the child’s birth weight, and GDM. 

Zaky et al. [24] explored a range of algorithms, from 
traditional models such as LR and DT to advanced ensembles 
such as RF, Gradient Boosting (GB), CatBoost, XGBoost, and 
LightGBM, and then combined them in a stacking framework 
with LR as the meta-classifier. The stacked model trained on 26 
selected features gave the best results with an accuracy of 
88.8%, outperforming all individual models. SHAP was 
applied as a post-hoc tool to interpret predictions and highlight 
key biomarkers. While these contributions have advanced 
GDM prediction, they largely treat explainability as an 
afterthought rather than a property embedded within the model 
itself. 

Table II summarizes prior works on GDM prediction that 
incorporate explainability or interpretability. Column 1 lists the 
reference; Column 2 summarizes the work; Column 3 reports 

performance metrics; Column 4 notes limitations and 
observations. 

C. Research Gap 

Nevertheless, the studies that do incorporate explainability 
rely mainly on post-hoc methods such as SHAP and LIME, 
applied only after the model has been trained. While these 
approaches offer valuable insights, they do not influence the 
model’s internal structure or learning process, so 
interpretability remains an add-on rather than a built-in 
property. 

Our overarching aim is to deliver accurate and transparent 
decision support in high-stakes domains by embedding 
interpretability across the full modelling workflow, aligning 
design and evaluation with stakeholder requirements to 
strengthen accountability, and enabling real-world use without 
sacrificing predictive performance. We previously introduced 
the FIXAIH framework [25], which articulates six well-defined 
design priorities to guide the development of trustworthy, 
interpretable AI for healthcare. Within this vision, we also 
proposed the EYE framework [11], which operationalizes 
selected FIXAIH priorities into a concrete architecture, 
providing interpretability by design, clinical validation, and 
transparent model development. We initially implemented EYE 
for diabetes risk in women (EYE-WD). 

In this work, we extend EYE to GDM and refer to this 
implementation as EYE-GDM. Our approach integrates SHAP 
within the training pipeline, combining base-model outputs via 
meta-model weights to produce both local and global 
explanations that reflect the model’s internal structure and how 
predictions are formed, while maintaining strong predictive 
performance by employing top-performing base learners during 
model construction. This work improves GDM risk assessment 
while contributing to the wider aim of building XAI systems 
suitable for integration into routine maternal-care workflows.
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TABLE II.  SUMMARY OF RELATED WORKS ON GDM PREDICTION INCORPORATING EXPLAINABILITY 

Ref Work Summary Performance Limitations / Observations 

[22] Applied SHAP with multiple ML models: AdaBoost, LR, SVM, RF, and 

XGBoost with SVM performing the best. 

Accuracy: 76.1% 

Post-hoc explainability only; not 

embedded 

[23] 
Evaluated multiple ML pipelines and data balancing strategies. A stacking 

ensemble trained on SMOTE-ENN gave the best results. SHAP, LIME, ELI5, 

Qlattice, and Anchor were applied to interpret results. 

Accuracy: 96%, 

AUC: 0.96 

[24] 
Explored a wide range of ML models (LR, DT, NB, RF, GB, CatBoost, 

XGBoost, LIGHTGBM), combined in a stacking framework with LR as meta-

classifier. SHAP was used to explain predictions and rank biomarkers. 

Accuracy: 88.8% 

EYE-

GDM 

Constructed an interpretable ensemble using EYE framework, integrating top-

performing base learners, SHAP tool, and LR as meta -model. SHAP is applied 

internally during training, combining base learner outputs via meta -model 

weights to generate explanations. 

Accuracy: 97.89%, 

AUC: 0.99 

• Implementation of EYE framework 

• Embedded interpretability 

• Competitive performance 

 

III. METHODOLOGY AND DESIGN 

In this section, we present the methodology and design of 
the EYE-GDM system. Owing to space limitations, only a 
summary is provided here. A detailed description of the 
methodology, the EYE framework, and its initial 
implementation in EYE-WD can be found in [11]. EYE-GDM 
builds upon this foundation by extending the EYE framework 
into a domain-specific configuration tailored for gestational 
diabetes. The methodological refinements include optimizing 
the selection of ensemble base learners for pregnancy-related 
data characteristics, applying explanation-weighted meta-
learning to integrate model reasoning with prediction, and 
aligning interpretability evaluation with pregnancy-specific 
clinical variables and thresholds. These adaptations expand the 
framework’s methodological scope while preserving its 
interpretability-by-design foundation. Fig. 1 shows the 
architecture of the EYE-GDM system, which consists of eight 
components. 

The Application Selection (APS) targets GDM risk 
prediction. In Data Preparation and Management (DPM), we 
use a publicly available dataset of 3,525 patients described by 
15 clinical and demographic features, labelled into two classes: 
2,153 non-GDM and 1,372 GDM cases. The dataset was 
collected by researchers at SASTRA Deemed to be University, 
Kumbakonam, Tamil Nadu, India, in collaboration with a 
consultant obstetrician and gynaecologist from Anbu Hospital 
and Nalam Clinic. It is publicly available on Kaggle under the 
CC BY-NC-SA 4.0 license [26] and was previously used in [13] 
and [14] to develop and evaluate GDM prediction models. The 
features are Age, Body Mass Index (BMI), Hemoglobin, 
Systolic Blood Pressure (Sys BP), Diastolic Blood Pressure 
(Dia BP), Oral Glucose Tolerance Test (OGTT), Prediabetes, 
Polycystic Ovary Syndrome (PCOS), Family History, 
Sedentary Lifestyle, Number of Pregnancies, Large Child or 
Birth Defect, Gestation in Previous Pregnancy, Unexplained 
Prenatal Loss, and High-Density Lipoprotein (HDL) (see 
Table III). All features are continuous or binary (0/1); binaries 
use 0 for absence and 1 for presence. We apply class-wise 
imputation for missing values, treat outliers using interquartile 
range (IQR) rules, scale features, and create a stratified train-
test split to preserve class distribution. 

Base-Model Evaluation and Selection (BMES) evaluates 
LR, Ridge Classifier (RC), DT, k-NN, NB, RF, AdaBoost, GB, 
Histogram Gradient Boost (HGB), and XGBoost on the training 
split using stratified k-fold cross-validation with 
hyperparameter tuning. We record AUC-ROC, F1-score, 
precision, recall, and accuracy, then select the top-performing 
models as the base learners for EYE-GDM. 

Interpretable Meta-Model Selection (IM2S) uses LR as the 
stack combiner because it provides readable coefficients, well-
calibrated probability scores, and efficient training and 
inference [27]. Explainability Tool Selection (XTS) adopts 
SHAP since it is model-agnostic, grounded in game-theoretic 
principles, supports dataset-level and patient-level views, and 
explains how features move a prediction from a baseline [28], 
[29]. 

TABLE III. DESCRIPTION OF FEATURES IN GDM DATASET 

Feature Description 

Age Maternal age at time of pregnancy 

BMI Body Mass Index 

Hemoglobin Hemoglobin level 

Sys BP Systolic Blood Pressure 

Dia BP Diastolic Blood Pressure 

OGTT Oral Glucose Tolerance Test result 

Prediabetes History of prediabetes 

PCOS Polycystic Ovary Syndrome diagnosis 

Family History Family history of diabetes 

Sedentary Lifestyle Lack of regular physical activity 

No of Pregnancy Number of prior pregnancies 

Large Child or Birth 

Default 
Previous large baby or complicated delivery 

Gestation in Previous 

Pregnancy 
Prior gestational diabetes or complications 

Unexplained prenatal loss 
History of miscarriage or fetal loss without 

known cause 

HDL High-Density Lipoprotein cholesterol 
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Fig. 1. The EYE-GDM System: An implementation of the EYE framework for gestational diabetes.

Building the Ensemble (BEM) constructs the interpretable 
ensemble. During training, each base learner yields SHAP 
values and expected values. We standardize these values to 
make magnitudes comparable, then form a single explanation 
by weighing each model’s SHAP vector with the learned LR 
coefficients. This produces consolidated local and global 
explanations aligned with the ensemble’s decision rule. Within 
BEM, these explanations are rendered as SHAP summary plots 
(global interpretations), dependence plots (pairwise effects and 
thresholds), and waterfall plots (patient-level breakdown). 

Inference, Interpretation, and Performance (I2P) uses these 
plots and prediction scores to deliver clinically relevant, fused 
explanations at both patient and dataset levels, clarifying which 
factors raise or lower risk, identifying data-driven thresholds, 
and characterizing feature interactions. Validation and 
Enhancement (VE) validates both technical and clinical 
outcomes: technical validation benchmarks performance 
against prior studies and includes review by technical experts, 

while clinical validation is conducted by clinical experts to 
assess alignment with medical standards. Their evaluation 
focused on adherence to medical knowledge, consistency with 
clinical practice, validity of diagnostic reasoning, clarity of 
explanations, and recommendations for improvement. 
Accepted adjustments are then applied and re-tested on the 
held-out split. 

IV. EYE-GDM: RESULTS 

In this section, we present results from the BMES 
component, which evaluates multiple ML algorithms to identify 
the top-performing base learners for constructing EYE-GDM. 
Fig. 2 shows performance across five metrics (accuracy, F1, 
precision, recall, and AUC-ROC). DT, k-NN, and GB achieved 
the highest accuracies, with AUC-ROC values around 0.98, 
indicating clear separation between diabetic and non-diabetic 
cases. These three models were therefore selected as the 
ensemble’s base learners. During the training phase, the LR 
meta-model determined contribution weights for each base 
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learner according to its influence on the overall ensemble 
output. The resulting coefficients were 6.96 for DT, 1.86 for k-
NN, and 0.77 for GB, reflecting their relative influence in the 
final prediction. These weights were then applied to combine 
the base learners’ explanation outputs, ensuring that the 
ensemble’s interpretability aligns with its internal decision 
logic. 

We evaluated EYE-GDM on the GDM dataset and 
compared its predictive performance with prior works that used 
the same data. As shown in Table IV, the reference models 
achieved accuracies of 96.18% [13] and 94.24% [14]. However, 

those studies reported only performance and did not provide 
interpretability or clinical explanations. In contrast, EYE-GDM 
achieved an accuracy of 97.89%, an F1-score of 97.90%, a 
precision of 97.47%, a recall of 98.33%, and an AUC-ROC of 
0.9981. These results highlight that the framework shows 
competitive performance compared to previously reported 
baselines in predictive reliability. More importantly, it does so 
while also offering transparent and clinically meaningful 
explanations of its predictions, which prior models lacked. This 
dual capability of competitive performance and interpretability 
forms the basis for the subsequent analysis of GDM risk factors.

 

Fig. 2. Performance comparison across candidate base learners.

TABLE IV. PERFORMANCE COMPARISON OF EYE-GDM AGAINST PRIOR 

STUDIES ON THE SAME DATASET 

Work Accuracy F1-score Precision Recall AUC-ROC 

[13] 0.9618 0.9741 0.9617 0.9869 - 

[14] 0.9424 0.9400 0.9400 0.9400 - 

EYE-GDM 0.9789 0.9790 0.9747 0.9833 0.9981 

V. EYE-GDM: CLINICAL INTERPRETATIONS 

In this section, we provide interpretations at both the 
dataset-specific and the individual patient-specific, alongside 
an analysis of feature interactions and dataset-specific 
thresholds. Different datasets, representing distinct 
populations, may yield unique thresholds influenced by 
lifestyle and other population-specific factors [30]. Therefore, 
the thresholds identified here should be regarded as dataset-
specific, and validation across different populations is 
necessary. In Section V A, we use a SHAP summary plot to 
interpret global feature contributions to GDM risk prediction, 
thereby identifying dataset-specific interpretations. SHAP 
dependence plots are then applied in Section V B to capture 
feature interactions and define dataset-specific thresholds. 
Finally, in Section V C, we illustrate patient-level interpretation 

by selecting a representative patient case and applying a SHAP 
waterfall plot. In these SHAP plots, positive SHAP values 
indicate a higher likelihood of GDM, whereas negative SHAP 
values reflect a lower predicted risk. 

A. Dataset-Specific Interpretations 

The SHAP summary plot (Fig. 3) illustrates the global 
feature contributions to GDM risk predictions across the 
dataset. It offers a compact view of how feature values shift the 
prediction toward or away from GDM for all patients. The y-
axis lists features, while the x-axis shows SHAP values, which 
represent a feature’s impact on the model output for each case: 
positive values push the prediction toward GDM, negative 
values toward non-GDM, and values farther from zero indicate 
stronger effects. Each dot corresponds to one patient’s 
contribution for that feature. Dot color encodes the raw feature 
value for that patient, with blue indicating low values and red 
indicating high values as shown in the legend. When red points 
cluster on the positive side, higher feature values are associated 
with higher predicted risk; when red points cluster on the 
negative side, higher values are associated with lower predicted 
risk; mixed colors on both sides suggest non-linear or context-
dependent effects. 

Accuracy F1-Score Precision Recall AUC-ROC

LR 0.9698 0.9614 0.9545 0.9684 0.9884

RC 0.9603 0.9489 0.9512 0.9466 0.9808

DT 0.9802 0.9751 0.9536 0.9976 0.9985

KNN 0.9735 0.9671 0.9384 0.9976 0.9874

NB 0.9650 0.9558 0.9412 0.9709 0.9815

RF 0.9688 0.9614 0.9278 0.9976 0.9833

AdaBoost 0.9716 0.9645 0.9401 0.9903 0.9964

GB 0.9754 0.9692 0.9468 0.9927 0.9979

HGB 0.9707 0.9631 0.9461 0.9806 0.9974

XGBoost 0.9707 0.9632 0.9420 0.9854 0.9975

0.88

0.90

0.92

0.94

0.96

0.98

1.00
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From a general health perspective, higher BMI continues to 
exhibit a strong and consistent positive SHAP trend, confirming 
that elevated adiposity contributes directly to higher GDM risk. 
In contrast, maternal age presents a less uniform pattern: while 
younger age values tend to cluster around zero and negative 
SHAP values (indicating lower predicted risk), older age values 
are associated with a wider SHAP range, suggesting that age 
may either increase or decrease risk depending on the presence 
of co-occurring factors such as BMI or blood pressure. Higher 
Hemoglobin levels are associated with increased predicted 
GDM risk, whereas moderate and lower levels generally 
correspond to lower SHAP values, indicating reduced model-
predicted risk. 

 

Fig. 3. SHAP summary plot. 

For cardiovascular status, both Sys BP and Dia BP display 
positive SHAP values at elevated readings, indicating that 
hypertensive disorders in pregnancy often co-occur with insulin 
resistance and elevated GDM risk. From a metabolic and 
endocrine perspective, elevated OGTT values substantially 

increase the predicted risk of GDM. Similarly, the presence of 
PCOS contributes strong positive SHAP values, indicating 
higher risk. In contrast, HDL shows a clear inverse association, 
where lower levels correspond to an increased likelihood of 
GDM. 

Features related to obstetric and reproductive history 
include Gestation in Previous Pregnancy and Number of 
Pregnancies, both of which tend to show positive contributions 
at higher values. A positive history of Unexplained Prenatal 
Loss is also associated with increased predicted risk. In 
contrast, Large Child or Birth Default exhibits a more 
ambiguous pattern, with both its presence and absence 
producing mixed SHAP contributions. This suggests a feature 
interaction, where the model may shift predictive importance to 
other highly correlated variables, such as BMI, maternal age, or 
parity, thereby diminishing the apparent effect of this obstetric 
factor. 

Finally, Prediabetes, Family History and Sedentary 
Lifestyle show SHAP patterns where their presence typically 
contributes to a higher predicted risk of GDM. However, in a 
small number of cases, even when these risk factors are present, 
they are linked to lower SHAP values (lower GDM risk), likely 
due to the dominant influence of other protective factors or 
interactions that offset their individual impact. 

B. Factor Interactions and Dataset-Specific Thresholds 

This subsection highlights how clinical and obstetric factors 
interact to shape the model’s GDM risk predictions. SHAP 
dependence plots (Fig. 4 to Fig. 18) show how the effect of one 
feature varies with another’s value and surface the strongest 
interactions, helping to spot practical thresholds and non-linear 
links useful for clinical review. In each plot, the x-axis is the 
primary feature value, the y-axis is its SHAP value (its 
contribution to predicted risk), each point is a single case, and 
a blue-to-red color scale encodes the value of a second 
interacting feature. Read together, these plots clarify combined 
patterns such as high BMI with low HDL, or multiple 
pregnancies with elevated blood pressure, that contribute to 
higher predicted risk and are expressed in familiar clinical 
terms to support decision-making.

 

 

Fig. 4. SHAP dependence plot (BMI & HDL). 

 

 

Fig. 5. SHAP dependence plot (Age & Dia BP). 

 

 

 

Fig. 6. SHAP dependence plot (Hemoglobin & 

OGTT). 
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Fig. 7. SHAP dependence plot (Dia BP & Prediabetes). 

 

 

Fig. 8. SHAP dependence plot (Sys BP & HDL). 

In Fig. 4, BMI shows a clear threshold around 25. Below 
this value, SHAP contributions are typically negative, often 
accompanied by high HDL levels, indicating lower risk. 
Beyond 25, SHAP values rise sharply, especially in individuals 
with low HDL. For Maternal Age (Fig. 5), younger women tend 
to have neutral or slightly negative SHAP values, whereas 
women above 40 years consistently show positive contributions 
and are associated with elevated Dia BP. In Fig. 6, Hemoglobin 
contributes positively to GDM risk between 13 and 16 g/dL, but 
only when OGTT values are elevated, whereas lower OGTT 
levels are linked to reduced risk. At levels above 16 g/dL, 
Hemoglobin consistently shows positive contributions to GDM 
risk and is associated with high OGTT values. This pattern is 
important and may be explained by physiological changes such 
as increased blood viscosity [31], indicating that both factors 
are likely working together rather than high Hemoglobin level 
alone. 

In the cardiovascular domain, both Dia BP and Sys BP 
exhibit clear threshold behaviour. Fig. 7 illustrates that Dia BP 
values above 85 mmHg are associated with positive SHAP 
contributions, particularly in individuals with prediabetes, 
whereas values below 80 mmHg in the absence of prediabetes 
indicate lower risk. Similarly, Fig. 8 shows that Sys BP 
contributes to higher risk beyond 130 mmHg, with stronger 
effects observed in patients with low HDL. In contrast, values 

below 120 mmHg combined with high HDL levels are 
generally linked to lower risk. 

Among metabolic and endocrine features, Fig. 9 shows that 
OGTT values rise sharply in SHAP contributions beyond 160 
mg/dL, particularly in patients with high Sys BP, whereas 
values below 150 mg/dL are considered protective. In Fig. 10, 
PCOS consistently contributes to higher predicted risk when 
present, with its effect being stronger in individuals with high 
BMI. Fig. 11 illustrates that HDL values below 35 mg/dL are 
associated with increased risk, especially in women with prior 
gestations, while values above 35 mg/dL correspond to 
protective SHAP contributions. This pattern suggests that HDL 
remains a reliable marker of metabolic health, regardless of 
gestational history. 

Obstetric and reproductive history features show 
interpretable patterns. Fig. 12 illustrates that Gestation in 
Previous Pregnancy contributes positively when equal to or 
greater than two, particularly in patients with elevated Dia BP. 
Fig. 13 shows that Number of Pregnancies follows a similar 
upward trend, with risk increasing beyond three. Fig. 14 
indicates that Unexplained Prenatal Loss, when present, raises 
the probability of GDM, although its absence does not 
necessarily imply low risk. Fig. 15 demonstrates that 
Prediabetes, when combined with high BMI, is linked to higher 
GDM risk, whereas its absence together with low BMI is 
associated with reduced risk.

 

Fig. 9. SHAP dependence plot (OGTT & Sys BP). 

 

 

Fig. 10. SHAP dependence plot (PCOS & BMI). 

 

 

Fig. 11. SHAP dependence plot (HDL & gestation 

in previous pregnancy). 
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In contrast, Fig. 16 to Fig. 18 (Large Child or Birth Default, 
Family History, and Sedentary Lifestyle) show less consistent 
behavior. Their SHAP contributions vary widely, suggesting 
that their predictive influence may be partly absorbed by 
stronger correlated factors. 

Collectively, these dependence plots reveal that individual 
factors influence risk through threshold effects and interaction 
with other variables. They reinforce clinical understanding of 
GDM risk while offering finer-grained, data-driven insight into 
how multiple features combine to shape the model’s 
predictions. Table V summarizes these insights by aligning the 
data-derived thresholds from SHAP analysis with established 
clinical reference ranges, highlighting key feature interactions 
and their associated GDM risk. This comparative view helps 
contextualize model behavior against known medical 
standards, reinforcing the interpretability and clinical relevance 
of EYE-GDM results. 

 

Fig. 12. SHAP dependence plot (gestation in previous pregnancy & Dia BP). 

 

Fig. 13. SHAP dependence plot (number of pregnancy & HDL). 

 

Fig. 14. SHAP dependence plot (unexplained prenatal loss & OGTT). 

 

Fig. 15. SHAP dependence plot (prediabetes & BMI). 

 

Fig. 16. SHAP dependence plot (large child or birth default & Dia BP). 

 

Fig. 17. SHAP dependence plot (family history & BMI). 

 

Fig. 18. SHAP dependence plot (sedentary lifestyle & sys BP). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

367 | P a g e  
www.ijacsa.thesai.org 

TABLE V. DATASET-DERIVED THRESHOLDS, INTERACTING FACTORS, 

AND CLINICAL NORMAL RANGES FOR KEY GDM PREDICTORS 

Feature Clinical Cutoff / 

Normal Range 

Data-

driven 

Threshold 

Interacts 

with 

GDM 

Risk 

BMI 18.5–24.9 kg/m² [32], 

[33] 

> 25 Low HDL High 

< 25 High HDL Low 

Age 
- 

> 40 years High Dia 

BP 

High 

Hemoglobin 12-16 g/dL [34] 13-16 g/dL High 

OGTT 

> 16 g/dL - 

Dia BP < 80 mmHg (normal), 

80-89 mmHg (Stage 1 

hypertension), 

≥ 90 mmHg (Stage 2 

hypertension) [35] 

> 85 mmHg Prediabetes 

Presence 

< 80 mmHg Prediabetes 

Absence 

Low 

Sys BP < 120 mmHg (normal), 

120-129 mmHg 

(elevated), 

130-139 mmHg (Stage 1 

hypertension), 

≥ 140 mmHg (Stage 2 

hypertension) [35] 

> 130 

mmHg 

Low HDL High 

< 120 

mmHg 

High HDL Low 

OGTT 75-g 2-h: <153 mg/dL 

[32] 

> 160 

mg/dL 

High Sys 

BP 

High 

< 150 

mg/dL 
- 

Low 

PCOS 
- 

Presence High BMI 

High 
HDL 50-80 mg/dL (women) 

[36] 

< 35 mg/dL Gestational 

History 

> 35 mg/dL 
- 

Low 

Gestation in 

Previous 

Pregnancy 

- 

≥ 2 High Dia 

BP 

High 
No of 

Pregnancies 
- 

≥ 3 
- 

Unexplained 

Prenatal Loss 
- 

Presence 
- 

Prediabetes 
- 

Presence High BMI 

C. Patient-Specific Interpretations 

To complement the global insights, we examine the model’s 
local reasoning with SHAP waterfall plots. A waterfall plot 
(Fig. 19) decomposes one patient’s prediction by starting at the 
baseline E[f(x)] (the model’s expected output over the training 
background) and then applying each feature’s SHAP 
contribution in sequence until it reaches the patient’s final 
prediction f(x). The x-axis represents the model output scale, so 
movement to the right increases the prediction and movement 
to the left decreases it; the y-axis lists the patient’s features with 
their observed values. Bars show the size and direction of each 
contribution, with red increasing risk and blue decreasing risk. 

For this patient, a 24-year-old woman with BMI 23.69 and 
no sedentary lifestyle, PCOS, prediabetes, or family history 
(see Table VI), the predicted probability of GDM is f(x) = 
0.001, well below the dataset baseline E[f(x)] = 0.612, 
indicating a low-risk profile. The model arrives at this result 
through several negative contributions: the absence of 
unexplained prenatal loss (−0.09), BMI below 25, systolic 
blood pressure 117 mmHg (below 130 mmHg), and OGTT 
140.32 mg/dL (below clinical and data-driven thresholds). 

Additional decreases come from HDL 53 mg/dL (above 
threshold) and diastolic blood pressure 80 mmHg (below 85 
mmHg). 

Her parity of two is below the higher-risk cutoff of three, 
and the absence of PCOS further reduces risk. Although 
hemoglobin is 9.8 g/dL, which is below the range where 
positive SHAP effects were observed in this dataset (>16 g/dL), 
it does not raise predicted GDM risk here; however, it remains 
clinically low and may warrant separate attention during 
pregnancy. 

This case is consistent with the data-driven thresholds that 
we presented earlier in Table V: none of her values exceed the 
risk cutoffs, and several interacting protective features (such as 
high HDL, normal blood pressure, and OGTT below threshold) 
contribute cumulatively to a low-risk prediction. This case 
highlights how the model synthesizes individual-level clinical 
factors to make well-reasoned predictions. It also demonstrates 
SHAP’s utility in explaining not only high-risk cases but also 
in identifying low-risk profiles by tracing the impact of 
protective factors. 

 

Fig. 19. SHAP waterfall plot for a representative patient. 

TABLE VI. PATIENT-LEVEL FEATURE VALUES FOR LOCAL EXPLANATION 

Feature Value 

Age 24 

No. of Pregnancy 2 

Gestation in previous pregnancy None 

BMI 23.96 

HDL 53 

Family History None 

Unexplained prenatal loss None 

Large Child or Birth Default None 

PCOS None 

Sys BP 117 

Dia BP 80 

OGTT 140.32 

Hemoglobin 9.8 

Sedentary Lifestyle None 

Prediabetes None 
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VI. DISCUSSION 

This work demonstrates how interpretable ensemble 
modelling, implemented via the EYE-GDM system, can 
support risk prediction in the context of GDM. We specifically 
selected GDM as the application focus for several reasons. 
First, GDM presents a clinically significant yet temporally 
constrained condition, with substantial risks for both mother 
and infant, including preeclampsia, macrosomia, neonatal 
hypoglycaemia, and long-term progression to type 2 diabetes 
[4]. Its transient onset during pregnancy necessitates timely and 
explainable risk assessments that clinicians can trust. 

From a scientific perspective, the contributions of this work 
lie in the methodological refinements introduced in EYE-GDM, 
including the reconfigured ensemble structure, the explanation-
weighted meta-learning approach, and the domain-aligned 
interpretability evaluation. These represent technical 
extensions of the EYE framework. The applied contribution lies 
in demonstrating these methodological advances within the 
maternal health domain, where EYE-GDM provides clinically 
interpretable risk assessments, data-driven thresholds, and 
patient-level insights specific to gestational diabetes. 

EYE-GDM supports interpretation at both the dataset and 
patient levels. At the dataset level, SHAP summary plots and 
dependence plots allow for the identification of global risk 
patterns, data-driven thresholds, and feature interactions. These 
insights capture not only the individual impact of clinical 
features but also how their interactions influence GDM risk. 
Such results can inform strategic clinical guidelines, such as 
refining screening protocols for high-risk groups. In contrast, 
patient-level explanations, visualized through SHAP waterfall 
plots, help clinicians understand why a specific patient is 
predicted to be at risk, thereby supporting individualized 
intervention planning. Together, these interpretation levels 
enhance the model’s clinical utility and support population-
level decision-making and personalized care. 

The predictive performance of EYE-GDM is competitive, 
achieving an accuracy of 0.9789, an F1-score of 0.9790, a 
precision of 0.9747, a recall of 0.9833, and an AUC-ROC of 
0.9981. These results outperform previously reported models 
on the same dataset while simultaneously offering transparent 
explanations. Compared with conventional ensemble or deep-
learning models used for GDM prediction, EYE-GDM provides 
distinct advantages by integrating interpretability directly 
within the training process rather than applying it as a separate 
post-hoc step. This ensures that explanations remain consistent 
with the ensemble’s internal reasoning. In addition, the model 
combines global and patient-level reasoning within a single 
framework, enabling both population insights and individual 
clinical interpretation, which is rarely achieved by previous 
methods. Furthermore, incorporating expert clinical feedback 
during validation strengthens the model’s credibility and aligns 
its explanations with real-world diagnostic reasoning and 
clinical practice. 

More importantly, the interpretations derived from SHAP 
analysis are well-aligned with established medical knowledge, 
confirming the validity of the model’s outputs. SHAP values 
for Age increase after 40, consistent with the clinical evidence 
that advanced maternal age is a GDM risk factor [37], [38]. Risk 

rises significantly for BMI values above 25, aligning with 
WHO thresholds for overweight [32], [33]. OGTT values show 
a sharp SHAP increase beyond 160 mg/dL, supporting 
diagnostic thresholds for impaired glucose tolerance [32]. 
Hemoglobin contributes to risk in the 13–16 g/dL range only 
when OGTT is also elevated, underscoring the need to interpret 
it contextually. HDL levels above 35 mg/dL exhibit protective 
SHAP values, matching its known cardiometabolic role [36]. 
Similarly, Sys BP starts contributing to higher risk beyond 
130 mmHg, with stronger effects in patients who have low 
HDL. This pattern reflects the well-known clustering of high 
blood pressure, abnormal lipids, and elevated glucose seen in 
metabolic syndrome [39]. Prediabetes and PCOS both 
contribute positively to GDM risk, consistent with medical 
literature [40], [41]. Finally, obstetric history factors such as 
prior gestation with complications and a higher number of 
pregnancies display threshold-based patterns, reinforcing their 
importance in GDM prognosis [42], [43]. 

The interpretability results revealed clinically consistent yet 
subtle patterns. Interactions such as BMI with HDL and blood 
pressure with metabolic indicators showed that GDM risk 
emerges from the combined effects of metabolic and 
cardiovascular factors rather than single predictors. The model 
also identified context-dependent relationships, where certain 
features influence risk only in combination with others, 
reflecting the complexity of gestational physiology. The close 
alignment between model-derived thresholds (BMI 25 kg/m², 
Dia BP 85 mmHg, Sys BP 130 mmHg) and established 
reference ranges supports the clinical credibility of EYE-GDM 
outputs. These findings illustrate how interpretable AI can 
mirror clinical reasoning in maternal health, providing insights 
that clarify how metabolic, cardiovascular, and obstetric factors 
interact to shape individual risk. In practice, the identified 
thresholds can inform more targeted antenatal screening and 
help refine early intervention strategies for high-risk patients. 
The variability observed in lifestyle and family-history features 
highlights the need for broader, standardized datasets to 
enhance robustness and ensure the generalizability of model 
insights across populations. 

Clinician validation further reinforced these interpretations. 
The clinicians confirmed that the model’s predictions were 
consistent with established GDM risk factors and reflected the 
multifactorial nature of clinical practice, where risk factors 
interact rather than act independently. They noted, however, 
that hemoglobin alone is not an independent risk factor for 
GDM, whereas HbA1c is a more reliable predictor. The 
observed association between elevated hemoglobin levels and 
higher OGTT values in this dataset was considered important, 
potentially reflecting physiological mechanisms such as 
increased blood viscosity [31], suggesting that these factors act 
in combination rather than through hemoglobin alone. The 
clinicians also emphasized the need for clearer dataset 
documentation and recommended involving clinical experts in 
the data collection process to ensure the inclusion of key GDM 
biomarkers, such as HbA1c and different OGTT test types. The 
validation was regarded as valuable both for strengthening trust 
and for guiding iterative refinement. 

While the model showed strong alignment with clinical 
reasoning, certain limitations remain. This work extends prior 
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validation of the EYE framework (EYE-WD) to a distinct 
clinical population, demonstrating its adaptability across 
domains. However, because the dataset represents a single 
regional population, sociocultural and healthcare-access factors 
that influence screening and diagnosis may have affected model 
behavior. Future work will focus on validating the model across 
multi-centre and demographically diverse GDM cohorts as 
such datasets become available. 

The results of this work highlight the importance of 
embedding interpretability directly into model design for 
maternal healthcare. EYE-GDM demonstrates how 
interpretable models can uncover clinically relevant patterns 
that align with established medical knowledge, advancing 
maternal health AI by combining high predictive accuracy with 
clinically grounded explanations. 

VII. CONCLUSION AND FUTURE WORK 

EYE-GDM, an implementation of the EYE framework for 
gestational diabetes risk prediction, delivers strong predictive 
performance together with clinically meaningful and 
interpretable outputs. It directly addresses two long-standing 
gaps in prior work: the tendency to prioritize predictive 
accuracy without producing explanations that clinicians can 
apply, and the reliance on post-hoc interpretability methods that 
fail to capture how models reason internally. By embedding 
SHAP explanations into the training pipeline, EYE-GDM 
ensures that each base learner is explained individually and that 
their contributions are integrated through logistic regression 
weights, producing ensemble-level reasoning consistent with 
the model’s internal decision logic. 

EYE-GDM achieved competitive results, surpassing earlier 
reports on the same dataset. More importantly, its interpretable 
outputs were consistent with established medical knowledge, 
showing that the framework can provide reliable risk prediction 
while also generating explanations of practical value in 
maternal care. This combination strengthens confidence in the 
system as a tool that clinicians can trust. 

Beyond its technical contributions, EYE-GDM advances 
the field of explainable healthcare AI by demonstrating how 
interpretability can be embedded throughout the model 
development process rather than appended after training. This 
integration shifts explainability from a diagnostic tool to a 
design principle, enabling models that reason transparently 
while maintaining predictive strength. Within maternal health, 
EYE-GDM illustrates how such integration can transform 
complex risk prediction into a clinically meaningful, trust-
enhancing process, setting a foundation for future interpretable 
systems across other sensitive domains. 

Future work will continue engagement with clinical experts 
to refine interpretability outputs and ensure their clarity in 
practice. Additional directions include extending the 
framework to other healthcare conditions where interpretability 
is essential, optimizing it for real-time deployment, and 
evaluating its performance across diverse populations. 

The EYE framework builds on our earlier FIXAIH 
roadmap, which set out six design priorities for developing 
trustworthy and interpretable AI in healthcare. While FIXAIH 
defines high-level goals, EYE operationalizes selected 

elements into a structured and testable framework centered on 
interpretability by design, transparent development, and 
clinical validation. EYE-GDM demonstrates how these 
principles can be applied in maternal health, while EYE-WD 
shows their application in women’s diabetes. Together, these 
implementations highlight how domain-specific frameworks 
can serve as practical steps toward the broader FIXAIH vision, 
linking conceptual guidance with deployment-ready systems 
that advance clinical care while maintaining transparency and 
trust. 

ACKNOWLEDGMENT 

This study is derived from a research grant funded by the 
Research, Development, and Innovation Authority (RDIA), 
Kingdom of Saudi Arabia, with grant number 12615-iu-2023-
IU-R-2-1-EI. 

REFERENCES 

[1]  P. Rajpurkar, E. Chen, O. Banerjee, and E. J. Topol, “AI in health and 

medicine,” Nat Med, vol. 28, no. 1, pp. 31–38, 2022, doi: 

10.1038/s41591-021-01614-0. 

[2]  P. Kumar, S. Chauhan, and L. K. Awasthi, “Artificial Intelligence in 

Healthcare: Review, Ethics, Trust Challenges & Future Research 

Directions,” Eng Appl Artif Intell, vol. 120, p. 105894, Apr. 2023, doi: 

10.1016/J.ENGAPPAI.2023.105894. 

[3]  Y. Du, A. M. Antoniadi, C. McNestry, F. M. McAuliffe, and C. Mooney, 

“The Role of XAI in Advice-Taking from a Clinical Decision Support 

System: A Comparative User Study of Feature Contribution-Based and 

Example-Based Explanations,” Applied Sciences, vol. 12, no. 20, 2022, 

doi: 10.3390/app122010323. 

[4]  World Health Organisation (WHO), “Diabetes,” WHO. Accessed: Mar. 

01, 2024. [Online]. Available: https://www.who.int/news-room/fact-

sheets/detail/diabetes 

[5]  S. Feduniw, D. Sys, S. Kwiatkowski, and A. Kajdy, “Application of 

artificial intelligence in screening for adverse perinatal outcomes: A 

protocol for systematic review,” Medicine, vol. 99, no. 50, p. e23681, Dec. 

2020, doi: 10.1097/MD.0000000000023681. 

[6]  K. S. Lee and K. H. Ahn, “Application of artificial intelligence in early 

diagnosis of spontaneous preterm labor and birth,” Diagnostics, vol. 10, 

no. 9, p. 733, 2020, doi: 10.3390/diagnostics10090733. 

[7]  M. Becker et al., “Revealing the impact of lifestyle stressors on the risk 

of adverse pregnancy outcomes with multitask machine learning,” Front 

Pediatr, vol. 10, p. 933266, 2022, doi: 10.3389/fped.2022.933266. 

[8]  H. Y. Lu et al., “Digital Health and Machine Learning Technologies for 

Blood Glucose Monitoring and Management of Gestational Diabetes,” 

IEEE Rev Biomed Eng, vol. 17, pp. 98–117, 2024, doi: 

10.1109/RBME.2023.3242261. 

[9]  T. Miller, “Explanation in artificial intelligence: Insights from the social 

sciences,” Artif Intell, vol. 267, pp. 1–38, 2019, doi: 

10.1016/j.artint.2018.07.007. 

[10]  M. Ghassemi, L. Oakden-Rayner, and A. L. Beam, “The false hope of 

current approaches to explainable artificial intelligence in health care,” 

Lancet Digit Health, vol. 3, no. 11, pp. e745–e750, Nov. 2021, doi: 

10.1016/S2589-7500(21)00208-9. 

[11]  S. Alghamdi, R. Mehmood, F. Alqurashi, T. Alghamdi, A. AlAhmadi, and 

S. Ghazali, “EYE and EYE-WD: Clinically Validated, Interpretable 

Ensemble Learning for Women’s Diabetes,” SSRN Preprint, Aug. 2025, 

doi: 10.2139/ssrn.5386582. 

[12]  S. Tonekaboni, S. Joshi, M. D. McCradden, and A. Goldenberg, “What 

Clinicians Want: Contextualizing Explainable Machine Learning for 

Clinical End Use,” in Proceedings of the 4th Machine Learning for 

Healthcare Conference, F. Doshi-Velez, J. Fackler, K. Jung, D. Kale, R. 

Ranganath, B. Wallace, and J. Wiens, Eds., in Proceedings of Machine 

Learning Research, vol. 106. PMLR, Sep. 2019, pp. 359–380. [Online]. 

Available: https://proceedings.mlr.press/v106/tonekaboni19a.html  



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

370 | P a g e  
www.ijacsa.thesai.org 

[13]  A. Sumathi, S. Meganathan, and B. V. Ravisankar, “An Intelligent 

Gestational Diabetes Diagnosis Model Using Deep Stacked 

Autoencoder.,” Computers, Materials & Continua, vol. 69, no. 3, pp. 

3109–3126, Mar. 2021, doi: 10.32604/cmc.2021.017612. 

[14]  A. Sumathi and S. Meganathan, “Ensemble Classifier Technique to 

Predict Gestational Diabetes Mellitus (GDM).,” Computer Systems 

Science Engineering, vol. 40, no. 1, pp. 313–325, 2022, doi: 

10.32604/csse.2022.017484. 

[15]  R. Jader and S. Aminifar, “Predictive Model for Diagnosis of Gestational 

Diabetes in the Kurdistan Region by a Combination of Clustering and 

Classification Algorithms: An Ensemble Approach,” Applied 

Computational Intelligence and Soft Computing, vol. 2022, no. 1, 2022, 

doi: 10.1155/2022/9749579. 

[16]  H. Gallardo-Rincón et al., “MIDO GDM: an innovative artificial 

intelligence-based prediction model for the development of gestational 

diabetes in Mexican women,” Sci Rep, vol. 13, no. 1, 2023, doi: 

10.1038/s41598-023-34126-7. 

[17]  T. Zheng et al., “A simple model to predict risk of gestational diabetes 

mellitus from 8 to 20 weeks of gestation in Chinese women,” BMC 

Pregnancy Childbirth, vol. 19, no. 1, 2019, doi: 10.1186/s12884-019-

2374-8. 

[18]  J. Shen et al., “An innovative artificial intelligence-based app for the 

diagnosis of gestational diabetes mellitus (GDM-AI): Development 

study,” J Med Internet Res, vol. 22, no. 9, p. e21573, Sep. 2020, doi: 

10.2196/21573. 

[19]  Y. T. Wu et al., “Early Prediction of Gestational Diabetes Mellitus in the 

Chinese Population via Advanced Machine Learning,” Journal of Clinical 

Endocrinology & Metabolism, vol. 106, no. 3, 2021, doi: 

10.1210/clinem/dgaa899. 

[20]  X. Hu, X. Hu, Y. Yu, and J. Wang, “Prediction model for gestational 

diabetes mellitus using the XG Boost machine learning algorithm,” Front 

Endocrinol (Lausanne), vol. 14, 2023, doi: 10.3389/fendo.2023.1105062. 

[21]  M. Watanabe, A. Eguchi, K. Sakurai, M. Yamamoto, and C. Mori, 

“Prediction of gestational diabetes mellitus using machine learning from 

birth cohort data of the Japan Environment and Children’s Study,” Sci 

Rep, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-44313-1. 

[22]  Y. Du, A. R. Rafferty, F. M. McAuliffe, L. Wei, and C. Mooney, “An 

explainable machine learning-based clinical decision support system for 

prediction of gestational diabetes mellitus,” Sci Rep, vol. 12, no. 1, 2022, 

doi: 10.1038/s41598-022-05112-2. 

[23]  V. Vivek Khanna et al., “Explainable artificial intelligence-driven 

gestational diabetes mellitus prediction using clinical and laboratory 

markers,” Cogent Eng, vol. 11, no. 1, p. 2330266, Dec. 2024, doi: 

10.1080/23311916.2024.2330266. 

[24]  H. Zaky et al., “Machine learning based model for the early detection of 

Gestational Diabetes Mellitus,” BMC Med Inform Decis Mak, vol. 25, 

no. 1, p. 130, 2025, doi: 10.1186/s12911-025-02947-3. 

[25]  S. Alghamdi, R. Mehmood, F. A. Alqurashi, and A. Alzahrani, “Paving the 

Roadmap for XAI and IML in Healthcare: Data-Driven Discoveries and 

the FIXAIH Framework,” IEEE Access, vol. 13, pp. 174393–174427, 

2025, doi: 10.1109/ACCESS.2025.3616353. 

[26]  A.sumathi and S.Meganathan, “Gestational Diabetes Mellitus (GDM 

Dataset).” Accessed: Jul. 10, 2025. [Online]. Available: 

https://www.kaggle.com/dsv/3245285  

[27]  S. Sperandei, “Understanding logistic regression analysis,” Biochem Med 

(Zagreb), vol. 24, no. 1, pp. 12–18, 2014, doi: 10.11613/BM.2014.003. 

[28]  S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model 

predictions,” in Proceedings of the 31st International Conference on 

Neural Information Processing Systems, in NIPS’17. , Red Hook, NY, 

USA: Curran Associates Inc., 2017, pp. 4768–4777. 

[29]  S. M. Lundberg et al., “From local explanations to global understanding 

with explainable AI for trees,” Nat Mach Intell, vol. 2, no. 1, pp. 56–67, 

Jan. 2020, doi: 10.1038/S42256-019-0138-9. 

[30]  S. H. Golden, C. Yajnik, S. Phatak, R. L. Hanson, and W. C. Knowler, 

“Racial/ethnic differences in the burden of type 2 diabetes over the life 

course: a focus on the USA and India,” Diabetologia, vol. 62, no. 10, pp. 

1751–1760, 2019, doi: 10.1007/s00125-019-4968-0. 

[31]  S. Rafaqat and S. Rafaqat, “Role of hematological parameters in 

pathogenesis of diabetes mellitus: A review of the literature,” World 

Journal Hematology, vol. 10, no. 3, pp. 25–41, Mar. 2023, doi: 

10.5315/WJH.V10.I3.25. 

[32]  American Diabetes Association Professional Practice Committee, “2. 

Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—

2025,” Diabetes Care, vol. 48, no. Supplement_1, pp. S27–S49, Jan. 2025, 

doi: 10.2337/dc25-S002. 

[33]  World Health Organization, “Obesity and overweight,” May 2025. 

Accessed: Sep. 18, 2025. [Online]. Available: https://www.who.int/news-

room/fact-sheets/detail/obesity-and-overweight 

[34]  National Board of Medical Examiners, “Laboratory Reference Values,” 

Mar. 2025. Accessed: Oct. 18, 2025. [Online]. Available: 

https://www.nbme.org/laboratory-values 

[35]  P. K. Whelton et al., “2017 

ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA 

Guideline for the Prevention, Detection, Evaluation, and Management of 

High Blood Pressure in Adults: Executive Summary: A Report of the 

American College of Cardiology/American Heart Association Task Force 

on Clinical Practice Guidelines,” J Am Coll Cardiol, vol. 71, no. 19, pp. 

2199–2269, May 2018, doi: 10.1016/j.jacc.2017.11.005. 

[36]  Cleveland Clinic, “HDL: Why It’s ‘Good’ Cholesterol.” Accessed: Sep. 

10, 2025. [Online]. Available: 

https://my.clevelandclinic.org/health/articles/24395-hdl-cholesterol 

[37]  A. Bouzaglou et al., “Pregnancy at 40 years Old and Above: Obstetrical, 

Fetal, and Neonatal Outcomes. Is Age an Independent Risk Factor for 

Those Complications?,” Front Med (Lausanne), vol. 7, p. 208, May 2020, 

doi: 10.3389/fmed.2020.00208. 

[38]  E. A. AlJahdali and N. S. AlSinani, “Pregnancy outcomes at advanced 

maternal age in a tertiary Hospital, Jeddah, Saudi Arabia,” Saudi Med J, 

vol. 43, no. 5, p. 491, May 2022, doi: 10.15537/smj.2022.43.5.20220023. 

[39]  J. Kim, “Metabotype Risk Clustering Based on Metabolic Disease 

Biomarkers and Its Association with Metabolic Syndrome in Korean 

Adults: Findings from the 2016–2023 Korea National Health and 

Nutrition Examination Survey (KNHANES),” Diseases, vol. 13, no. 8, p. 

239, 2025, doi: 10.3390/diseases13080239. 

[40]  G. Wilkie, E. Delpapa, and H. Leftwich, “Early Diagnosis of Prediabetes 

among Pregnant Women that Develop Gestational Diabetes Mellitus and 

Its Influence on Perinatal Outcomes,” Am J Perinatol, vol. 41, no. 3, pp. 

343–348, 2024, doi: 10.1055/A-1682-2643. 

[41]  H. J. Kim, E. H. Kim, E. Ko, S. Park, and Y. Lee, “The Impact of 

Polycystic Ovary Syndrome on Gestational Diabetes Mellitus, Disease 

Knowledge, and Health Behaviors,” Healthcare, vol. 13, no. 7, 2025, doi: 

10.3390/healthcare13070717. 

[42]  J. Pukkila et al., “The recurrence risk of gestational diabetes according to 

the number of abnormal values in the oral glucose tolerance test,” Acta 

Obstet Gynecol Scand, vol. 104, no. 8, pp. 1452–1462, Aug. 2025, doi: 

10.1111/AOGS.15148. 

[43]  B. Liu et al., “Higher Numbers of Pregnancies Associated With an 

Increased Prevalence of Gestational Diabetes Mellitus: Results From the 

Healthy Baby Cohort Study,” J Epidemiol, vol. 30, no. 5, pp. 208–212, 

2020, doi: 10.2188/jea.JE20180245. 


