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Abstract—As artificialintelligence (AI) advances in healthcare,
its use in maternal health shows promise but faces challenges of
trust due to the black-box nature of many models. Gestational
diabetes mellitus (GDM), a transient yet high-risk condition,
demands accurate and interpretable prediction tools. However,
existing GDM prediction studies often rely on opaque models or
post-hoc explanation techniques applied after training, which
limits transparency and reduces their clinical applicability. This
highlights an urgent need for models that unify high predictive
performance with interpretability by design. This study
introduces EYE-GDM, a case-specific application of our
Enhanced Interpretability Ensemble (EYE) framework, designed
to predict GDM risk with clinically meaningful explanations. The
pipeline evaluates multiple algorithms and selects Decision Tree
(DT), k-Nearest Neighbors (k-NN), and Gradient Boosting (GB) as
the best-performing base learners. These are integrated with
SHAP and a logistic regression (LR) meta-model to construct
EYE-GDM, embedding interpretability by weighting learner
outputs with LR coefficients. This yields global (population-level)
and local (patient-level) explanations consistent with medical
knowledge. Tested on a dataset of 3,525 pregnancies, EYE-GDM
achieved strong performance (accuracy = 0.9789, AUC-ROC =
0.9981) and provided insights into risk patterns, thresholds, and
feature interactions relevant to GDM. By embedding
explainability within the ensemble construction, EYE-GDM
achieves transparent and clinically aligned reasoning without
compromising predictive performance. Thus, EYE-GDM
demonstrates how explainable AI (XAI) can translate from
technical innovation to practical value in maternal care,
supporting earlier risk identification and more informed clinical
decisions.

Keywords—Explainable  Artificial  Intelligence (XAl
interpretable machine learning (IML); Gestational diabetes mellitus
(GDM); maternal health; healthcare AI; GDM risk prediction;
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I. INTRODUCTION

Artificial intelligence (Al) is increasingly being used in
healthcare to support early risk detection and guide clinical
decision-making [1]. Yet, despite its growing presence, many
Al models, especially high-performing ones such as deep
learning and ensemble methods, suffer from the black-box
problem and remain difficult for clinicians to trust and use [2].

In areas such as maternal health, where model predictions can
directly affect outcomes for both mother and child,
transparency is not optional. Clinicians need more than just a
prediction; they need a clear rationale they can understand and
explain. In this context, integrating explainable Al (XAI) into
decision support systems is essential, as it can significantly
affect clinicians’ trust and the extentto which they follow Al-
driven recommendations [3].

Gestational diabetes mellitus (GDM) affects a substantial
number of pregnancies worldwide and is linked to serious
complications such as preeclampsia, macrosomia, neonatal
hypoglycaemia, and future type 2 diabetes. Its transient nature
and rapid physiological onset during pregnancy create a narrow
window for timely risk identification and intervention [4]. In
addition, GDM has been associated with adverse pregnancy
outcomes including preterm birth, hypertensive disorders,
shoulder dystocia, hyperbilirubinemia, stillbirth, and caesarean
delivery [5], [6], [7]. Therefore, there is an urgent need for
clinically interpretable machine learning methods tailored to
GDM patients, so that predictions can be understood and
applied meaningfully in practice [8].

Although machine learning (ML) has been widely applied
to GDM prediction, many models rely on post-hoc
explainability methods such as SHAP (Shapley Additive
Explanations) or LIME (Local Interpretable Model-agnostic
Explanations). These approaches provide some insight but do
so after the model has been trained, treating explanation as a
separate process. This separation often limits clinical
usefulness, as the reasoning behind predictions may not fully
reflect the model’s internal decision logic [9], [ 10]; see Section
II for related work and research gap.

To address thedual challenge of predictive performance and
interpretability, we previously introduced the Enhanced
Interpretability Ensemble (EYE) framework [11]. EYE is a
structured methodology that embeds interpretability throughout
the model development pipeline, from defining the clinical
application and preparing data to selecting base learners,
integrating explanation methods, and constructing ensembles
that remain transparent by design. Unlike post hoc approaches,
EYE aligns interpretability with the model’s internal reasoning.
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We first implemented this framework in EYE-WD [11],
focused on diabetes risk predictionin women, where it achieved
competitive performance across multiple datasets while
uncovering clinically consistent explanations. This work
highlighted the value of building Al systems that capture health
patterns shaped by gender-specific factors, ensuring that
predictive tools serve populations often overlooked in women’s
and maternal health research.

Building on this foundation, the present work applies the
EYE framework to gestational diabetes mellitus (GDM), a
transient but high-risk condition unique to pregnancy, resulting
in EYE-GDM. The ensemble integrates Decision Tree (DT), k-
Nearest Neighbors (k-NN), and Gradient Boosting (GB) as base
learners, combined through a logistic regression (LR) meta-
model with SHAP explanations embedded in training. Applied
to a dataset of 3,525 pregnancies, EYE-GDM achieved an
accuracy of 97.89%, F1-score of 97.90%, precision of 97.47%,
recall of 98.33%, and an AUC-ROC of 0.9981. Beyond these
results, interpretability analyses produced clinically meaningful
insights. Global SHAP patterns revealed thresholds such as
elevated risk at BMI values above 25 and OGTT values
exceeding 160 mg/dL, while HDL levels above 35 mg/dL were
protective. Interactions between features, for example, high
BMI with low HDL or multiple pregnancies with elevated
blood pressure, revealed clusters of maternal risk factors. Local
explanations further traced patient-specific outcomes,
distinguishing protective from adverse profiles in a transparent
way.

In doing so, this study advances GDM risk assessment and
supports the broader goal of developing XAl that can be
integrated into real-world maternal-care workflows [12]. By
presenting EYE-GDM alongside the earlier EYE-WD
implementation, we demonstrate both the flexibility and
clinical relevance of the EYE framework and its potential to
address critical challenges in women’s and maternal health,
providingcontributions that are meaningful to technical experts
and healthcare professionals alike.

The remainder of this study is organized as follows:
Section II reviews the related work. Section Il provides the
methodology. Section IV reports the performance results of
EYE-GDM, while Section V provides clinically oriented
interpretations, including dataset-specific risk pattemns, feature
interactions, data-driven thresholds, and patient-level
interpretations. Section VI provides a discussion, and
Section VII concludesthe study with directions for future work.

II.  RELATED WORK

GDM hasreceived growingattention from both clinical and
computational research communities. In particular, a
substantial body of work has applied machine learning
techniques to develop predictive models for GDM, aiming to
support early diagnosis and timely intervention that can
improve maternal and neonatal outcomes. Section Il A reviews
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studies that develop machineleamingand deep learning models
to identify women at risk of GDM. Section IL.B examines a
growing body of work on making these predictions
understandable to clinicians.

A. Machine Learning and Deep Learning for GDM

Sumathi etal. [13],[14] constructed a GDM dataset, which
includes 3,525 pregnant women’s data. Using deep learning,
they introduced a deep stacked autoencoder based on outlier
detection process (OD-DSAE), achieving 96.18% accuracy
[13],and later proposedan ensemble votingstrategy combining
k-nearest neighbours (k-NN), Random Forest (RF), and LR
models, reaching 94.24% accuracy [14]. Jader et al. [15]
employed an ensemble approach using lab records from Iraq-
Kurdistan, achieving 92% accuracy through majority voting
with Decision Tree (DT), RF, Support Vector Machine (SVM),
k-NN, LR, and Naive Bayes (NB). Gallardo-Rincén et al. [16]
developed and evaluated an Artificial Neural Network (ANN)
model, achieving 70.3% accuracy in recognizing women at
high risk of developing GDM. This model was based on data
from 1,709 pregnant Mexican women who participated in the
‘Cuido mi embarazo’ study. Zheng et al. [17] collected data on
4,771 Chinese pregnant women from Xinhua Hospital. They
applied Multivariate LR using Bayesian inference and achieved
an accuracy of 64% and an AUC of 0.766. Shen et al. [18]
evaluated several machine learning algorithms, including LR,
SVM, RF, AdaBoost, DT, NB, k-NN, XGBoost, and Gradient
Boosting Decision Tree (GBDT), to predict GDM in areas with
limited resources. The algorithms were trained on 12,304 cases
from the First Affiliated Hospital of Jinan University and were
validated on 1,655 pregnant patients at the Prince of Wales
Hospital. At 0.78 AUC, SVM showed the best performance.

Wu et al. [19] et al. utilized LR, k-NN, SVM, and deep
neural network (DNN) for early GDM prediction. They
evaluated these machine learning models using data from the
International Peace Maternal and Child Health Hospital at
Shanghai Jiao Tong University School of Medicine, which
included 32,190 pregnant patients. DNN obtained the best AUC
of 0.8, followed by LR with an AUC of 0.77. For predicting
GDM, Hu et al. [20] utilized and compared between traditional
LR method and the XGBoost machine learningmodel on a total
of 925 pregnant women. They demonstrated that XGBoost
outperformed LR with an AUC of 0.946 and an accuracy of
87.5%. Through the Japan Environment and Children’s Study
(JECS), Watanabe et al. [21] gathered GDM data from 82,698
expectant women. They employed LR, SVM, GBDT, and RF
for gestational diabetes detection. They demonstrated that
GBDT produced the best AUC of 0.74.

Table I summarizes machine learning and deep leaming
researchused to predict women at risk of GDM. The first two
columns provide the reference number and a summary of each
work. The third column presents the reported performance,
while the fourth column records limitations and key
observations.

359 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 10, 2025

TABLE L SUMMARY OF WORKS ON GDM PREDICTION
Ref Work Summary Performance Limitations / Observations
[13] Developed a deep learning modelusing a stacked autoencoder with outlier detection (OD- | Accuracy: 96.18%
DSAE).
o . R . 0,
[14] Constructed an ensemble voting model using k-NN, RF, and LR. Accuracy: 94.24% o Lack interpretability
[15] Trained and evaluated an ensemble of six classifiers (DT, RF, SVM, k-NN, LR, NB) on | Accuracy: 92%
data from Iraq-Kurdistan using majority voting.
[16] Evaluated the ANN model on data from 1,709 pregnant Mexican women. Accuracy: 70.3%
[17] Applied Multivariate LR using Bayesian inference on 4,771 Chinese pregnant women from | Accuracy: 64%, e Low performance
Xinhua Hospital. AUC: 0.766 e Lack interpretability
[18] Compared nine ML models (LR, SVM, RF, AdaBoost, DT, NB, k-NN, XGBoost, and | AUC: 0.78
GBDT) trained on 12,304 cases and were validated on 1,655 pregnant patients. (SVM best)
[19] Evaluated LR,k-NN, SVM, and DNN on the Shanghaidataset (32,190 pregnant patients). [ AUC: 0.8
(DNN best) e Moderate performance
[20] Compared LR and XGBoost on 925 pregnant women. Accuracy: 87.5% o Lack interpretability
(XGB best)
[21] Assessed a large-scale Japanese cohort (82,698 pregnant women) with four models LR, [ AUC: 0.74 e Low performance
SVM, GBDT, and RF. (GBDT best) e Lack interpretability

B. Explainability and Interpretability in GDM Prediction

Despite these advances in predictive performance, most
previous works did not incorporate interpretability into their
predictive models. To the best of our knowledge, only a limited
number of studies have explicitly integrated explainability. For
instance, Du et al. [22] applied SHAP with multiple machine
learningmodels(AdaBoost, LR, SVM, RF, XGBoost) andused
Synthetic Minority Oversampling (SMOTE) to balance the
data. They reported an accuracy of 76.1%, with SVM
performing the best. Khanna et al. [23] evaluated several
machine learning pipelines and data balancing strategies for
GDM prediction, where a stacking ensemble trained on
SMOTE-ENN (Synthetic Minority Oversampling using Edited
Nearest Neighbour) data achieved the best performance with an
accuracy of 96% and an AUC of 0.96. They applied five post-
hoc methods, including SHAP, LIME, ELI5, Qlattice, and
Anchor, which confirmed the links between visceral fat levels,
the child’s birth weight, and GDM.

Zaky et al. [24] explored a range of algorithms, from
traditional models suchas LR and DT to advanced ensembles
such as RF, Gradient Boosting (GB), CatBoost, XGBoost, and
LightGBM, and then combined them in a stacking framework
with LR asthe meta-classifier. The stacked model trained on26
selected features gave the best results with an accuracy of
88.8%, outperforming all individual models. SHAP was
applied as a post-hoc tool to interpret predictions and highlight
key biomarkers. While these contributions have advanced
GDM prediction, they largely treat explainability as an
afterthought rather than a property embedded within the model
itself.

Table II summarizes prior works on GDM prediction that
incorporate explainability or interpretability. Column I lists the
reference; Column 2 summarizes the work; Column 3 reports

performance metrics; Column 4 notes limitations and
observations.

C. Research Gap

Nevertheless, the studies that do incorporate explainability
rely mainly on post-hoc methods such as SHAP and LIME,
applied only after the model has been trained. While these
approaches offer valuable insights, they do not influence the
model’s internal structure or learning process, so
interpretability remains an add-on rather than a built-in

property.

Our overarching aim is to deliveraccurate and transparent
decision support in high-stakes domains by embedding
interpretability across the full modelling workflow, aligning
design and evaluation with stakeholder requirements to
strengthen accountability, and enabling real-world use without
sacrificing predictive performance. We previously introduced
the FIXAIH framework [25], which articulates six well-defined
design priorities to guide the development of trustworthy,
interpretable Al for healthcare. Within this vision, we also
proposed the EYE framework [11], which operationalizes
selected FIXAIH priorities into a concrete architecture,
providing interpretability by design, clinical validation, and
transparent model development. We initially implemented EYE
for diabetes risk in women (EYE-WD).

In this work, we extend EYE to GDM and refer to this
implementation as EYE-GDM. Our approach integrates SHAP
within the training pipeline, combining base-model outputs via
meta-model weights to produce both local and global
explanations thatreflect the model’s internal structure and how
predictions are formed, while maintaining strong predictive
performanceby employingtop-performingbase learners during
model construction. This work improves GDM risk assessment
while contributing to the wider aim of building XAI systems
suitable for integration into routine maternal-care workflows.
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TABLE IL SUMMARY OF RELATED WORKS ON GDM PREDICTION INCORPORATING EXPLAINABILITY
Ref ‘Work Summary Performance Limitations / Observations
[22] Applied SHAP with multiple ML models: AdaBoost, LR, SVM, RF, and | Accuracy: 76.1%
XGBoost with SVM performing the best.
23] Evaluated m'ultiple ML pipelines and data balancing strategies. A stacking Accuracy: 96%,
ensemble trained on SMOTE-ENN gave the best results. SHAP, LIME, ELIS5, AUC: 096 Post-hoc  explainability only; not
Qlattice, and Anchor were applied to interpret results. Y embedded
Explored a wide range of ML models (LR, DT, NB, RF, GB, CatBoost,
(24] XGBoost, LIGHTGBM), combined in a stacking framework with LR asmeta- | Accuracy: 88.8%
classifier. SHAP was used to explain predictions and rank biomarkers.
Constructed an interpretable ensemble using EYE framework, integrating top - .

- . . . Impl tat fEYE fr: k
EYE performing base learners, SHAP tool, and LR asmeta-model. SHAPis applied | Accuracy: 97.89%, ¢ Tmplemen a- rono . amewor
GDM . . .. .. . e Embedded interpretability

internally during training, combining base learner outputs via meta-model | AUC: 0.99 .
. . e Competitive performance
weights to generate explanations.

III. METHODOLOGY AND DESIGN

In this section, we present the methodology and design of
the EYE-GDM system. Owing to space limitations, only a
summary is provided here. A detailed description of the
methodology, the EYE framework, and its initial
implementation in EYE-WD can be found in [11]. EYE-GDM
builds upon this foundation by extending the EYE framework
into a domain-specific configuration tailored for gestational
diabetes. The methodological refinements include optimizing
the selection of ensemble base learners for pregnancy-related
data characteristics, applying explanation-weighted meta-
learning to integrate model reasoning with prediction, and
aligning interpretability evaluation with pregnancy-specific
clinical variables and thresholds. These adaptations expand the
framework’s methodological scope while preserving its
interpretability-by-design foundation. Fig. 1 shows the
architecture of the EYE-GDM system, which consists of eight
components.

The Application Selection (APS) targets GDM risk
prediction. In Data Preparation and Management (DPM), we
use a publicly available dataset of 3,525 patients described by
15 clinical and demographic features, labelled into two classes:
2,153 non-GDM and 1,372 GDM cases. The dataset was
collected by researchers at SASTRA Deemed to be University,
Kumbakonam, Tamil Nadu, India, in collaboration with a
consultant obstetrician and gynaecologist from Anbu Hospital
and Nalam Clinic. It is publicly available on Kaggle under the
CCBY-NC-SA4.0license [26] and was previously usedin [13]
and [14] to develop and evaluate GDM prediction models. The
features are Age, Body Mass Index (BMI), Hemoglobin,
Systolic Blood Pressure (Sys BP), Diastolic Blood Pressure
(Dia BP), Oral Glucose Tolerance Test (OGTT), Prediabetes,
Polycystic Ovary Syndrome (PCOS), Family History,
Sedentary Lifestyle, Number of Pregnancies, Large Child or
Birth Defect, Gestation in Previous Pregnancy, Unexplained
Prenatal Loss, and High-Density Lipoprotein (HDL) (see
Table III). All features are continuous or binary (0/1); binaries
use 0 for absence and 1 for presence. We apply class-wise
imputation for missing values, treat outliers using interquartile
range (IQR) rules, scale features, and create a stratified train-
test split to preserve class distribution.

Base-Model Evaluation and Selection (BMES) evaluates
LR, Ridge Classifier (RC), DT, k-NN, NB, RF, AdaBoost, GB,
Histogram Gradient Boost (HGB), and XGBoost on the training
split using stratified k-fold cross-validation with
hyperparameter tuning. We record AUC-ROC, Fl-score,
precision, recall, and accuracy, then select the top-performing
models as the base learners for EYE-GDM.

Interpretable Meta-Model Selection (IM2S) uses LR as the
stack combiner because it provides readable coefficients, well-
calibrated probability scores, and efficient training and
inference [27]. Explainability Tool Selection (XTS) adopts
SHAP since it is model-agnostic, grounded in game-theoretic
principles, supports dataset-level and patient-level views, and
explains how features move a prediction from a baseline [28],
[29].

TABLE III. DESCRIPTION OF FEATURES IN GDM DATASET
Feature Description
Age Maternal age at time of pregnancy
BMI Body Mass Index

Hemoglobin Hemoglobin level

Sys BP Systolic Blood Pressure
Dia BP Diastolic Blood Pressure
OGTT Oral Glucose Tolerance Test result

Prediabetes History of prediabetes

PCOS Polycystic Ovary Syndrome diagnosis

Family History Family history of diabetes

Sedentary Lifestyle Lack of regular physical activity

No of Pregnancy Number of prior pregnancies

Large Child or Birth . . .
Default Previous large baby or complicated delivery
Gestation in  Previous Prior gestational diabetes or complications
Pregnancy

History of miscarriage or fetal loss without

Unexplained prenatal loss
P p known cause

HDL High-Density Lipoprotein cholesterol
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EYE-GDM: An Implementation of the EYE Framework for Gestational Diabetes Mellitus

Application Selection (APS)

Gestational Diabetes in Women

v

Data Preparation & Management (DPM)

ﬂ) Data Acquisition ——» Data Cleaning —» Data Transformation —3» Data Splitting

Base Model Evaluation & Selection (BMES)

Data
—_— Model Selection —»
MLAs |
DT
Interpretable Meta-Model LR
Selection (IM23)
3 Explainability Tool Selection SHApl
Explainability (XTS)
Tools

Hyperparameter Optimization &

v

—_— Top Model Selection

Model Evaluation

|
KNN  GB

Building Ensemble Model (BEM)

Ensemble Prerequisities 3 Ensemble Training: Baseline &
Assembly Weight Extraction

/|

Standardization & Weighted SHAP ¢ Ensemble Testing:

Global Visual Interpretation

o>

1

1

: Validation & Enhancement
: (VE)

: Vv
1 Technical Clinical Public
! Feedback Feedback  Feedback
1 - 1

1 1 1 :

L emm e m - e ————
Fig. 1.

Building the Ensemble (BEM) constructs the interpretable
ensemble. During training, each base learner yields SHAP
values and expected values. We standardize these values to
make magnitudes comparable, then form a single explanation
by weighing each model’s SHAP vector with the learned LR
coefficients. This produces consolidated local and global
explanations aligned with the ensemble’s decision rule. Within
BEM, these explanations are rendered as SHAP summary plots
(global interpretations), dependence plots (pairwise effects and
thresholds), and waterfall plots (patient-level breakdown).

Inference, Interpretation, and Performance (I2P) uses these
plots and prediction scores to deliver clinically relevant, fused
explanations at both patient and dataset levels, clarifying which
factors raise or lower risk, identifying data-driven thresholds,
and characterizing feature interactions. Validation and
Enhancement (VE) validates both technical and clinical
outcomes: technical validation benchmarks performance
against prior studies and includes review by technical experts,

T

The EYE-GDM System: An implementation of the EYE framework for gestational diabetes.
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while clinical validation is conducted by clinical experts to
assess alignment with medical standards. Their evaluation
focused on adherence to medical knowledge, consistency with
clinical practice, validity of diagnostic reasoning, clarity of
explanations, and recommendations for improvement.
Accepted adjustments are then applied and re-tested on the
held-out split.

IV. EYE-GDM: RESULTS

In this section, we present results from the BMES
component, whichevaluatesmultiple ML algorithmsto identify
the top-performing base learners for constructing EYE-GDM.
Fig. 2 shows performance across five metrics (accuracy, F1,
precision, recall, and AUC-ROC). DT, k-NN, and GB achieved
the highest accuracies, with AUC-ROC values around 0.98,
indicating clear separation between diabetic and non-diabetic
cases. These three models were therefore selected as the
ensemble’s base learners. During the training phase, the LR
meta-model determined contribution weights for each base
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learner according to its influence on the overall ensemble
output. The resulting coefficients were 6.96 for DT, 1.86 for k-
NN, and 0.77 for GB, reflecting their relative influence in the
final prediction. These weights were then applied to combine
the base learners’ explanation outputs, ensuring that the
ensemble’s interpretability aligns with its internal decision
logic.

We evaluated EYE-GDM on the GDM dataset and
compared its predictive performance with prior works thatused
the same data. As shown in Table IV, the reference models
achievedaccuracies 0f96.18% [13]and 94.24% [ 14]. However,

1.00
0.98

Accuracy F1-Score

H LR 0.9698 0.9614
HRC 0.9603 0.9489
DT 0.9802 0.9751
B KNN 0.9735 0.9671
HNB 0.9650 0.9558
RF 0.9688 0.9614
H AdaBoost 09716 0.9645
HGB 0.9754 0.9692
H HGB 0.9707 0.9631
B XGBoost 0.9707 0.9632

Vol. 16, No. 10, 2025

those studies reported only performance and did not provide
interpretability or clinical explanations. In contrast, EYE-GDM
achieved an accuracy of 97.89%, an F1-score of 97.90%, a
precision 0f 97.47%, arecall 0f 98.33%, and an AUC-ROC of
0.9981. These results highlight that the framework shows
competitive performance compared to previously reported
baselines in predictive reliability. More importantly, it does so
while also offering transparent and clinically meaningful
explanations ofits predictions, which prior models lacked. This
dual capability of competitive performance and interpretability
forms the basis for thesubsequent analysisof GDMrisk factors.

0.96
0.94
0.92
0.90
0.88

Precision Recall AUC-ROC
0.9545 0.9684 0.9884
0.9512 0.9466 0.9808
0.9536 0.9976 0.9985
0.9384 0.9976 0.9874
0.9412 0.9709 0.9815
0.9278 0.9976 0.9833
0.9401 0.9903 0.9964
0.9468 0.9927 0.9979
0.9461 0.9806 0.9974
0.9420 0.9854 0.9975

Fig.2. Performance comparison across candidate base leamers.

TABLE IV.  PERFORMANCE COMPARISON OF EYE-GDM AGAINST PRIOR
STUDIES ON THE SAME DATASET
Work Accuracy | Fl-score | Precision | Recall | AUC-ROC
[13] 0.9618 0.9741 0.9617 0.9869 |-
[14] 0.9424 0.9400 0.9400 0.9400 |-
EYE-GDM | 0.9789 0.9790 0.9747 0.9833 |0.9981

V. EYE-GDM: CLINICAL INTERPRETATIONS

In this section, we provide interpretations at both the
dataset-specific and the individual patient-specific, alongside
an analysis of feature interactions and dataset-specific
thresholds. Different datasets, representing distinct
populations, may yield unique thresholds influenced by
lifestyle and other population-specific factors [30]. Therefore,
the thresholds identified here should be regarded as dataset-
specific, and validation across different populations is
necessary. In Section V A, we use a SHAP summary plot to
interpret global feature contributions to GDM risk prediction,
thereby identifying dataset-specific interpretations. SHAP
dependence plots are then applied in Section V B to capture
feature interactions and define dataset-specific thresholds.
Finally,in Section V C, we illustrate patient-level interpretation

by selecting a representative patient case and applyinga SHAP
waterfall plot. In these SHAP plots, positive SHAP values
indicate a higher likelihood of GDM, whereas negative SHAP

values reflect a lower predicted risk.

A. Dataset-Specific Interpretations

The SHAP summary plot (Fig. 3) illustrates the global
feature contributions to GDM risk predictions across the
dataset. It offers a compact view of how feature values shift the
prediction toward or away from GDM for all patients. The y-
axis lists features, while the x-axis shows SHAP values, which
represent a feature’s impact on the model output for each case:
positive values push the prediction toward GDM, negative
values toward non-GDM, and values farther from zero indicate
stronger effects. Each dot corresponds to one patient’s
contribution for that feature. Dot color encodes the raw feature
value for that patient, with blue indicating low values and red
indicating high values as shown in the legend. When red points
cluster on the positive side, higher feature values are associated
with higher predicted risk; when red points cluster on the
negative side, higher values are associated with lower predicted
risk; mixed colors on both sides suggest non-linear or context-
dependent effects.
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From a general health perspective, higher BMI continues to
exhibita strongand consistent positive SHAP trend, confirming
thatelevated adiposity contributes directly to higher GDM risk.
In contrast, maternal age presents a less uniform pattern: while
younger age values tend to cluster around zero and negative
SHAP values (indicatinglower predictedrisk), older age values
are associated with a wider SHAP range, suggesting that age
may either increase or decrease risk depending on the presence
of co-occurring factors such as BMI or blood pressure. Higher
Hemoglobin levels are associated with increased predicted
GDM risk, whereas moderate and lower levels generally
correspond to lower SHAP values, indicating reduced model-
predicted risk.

High
HDL .*. o e
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Fig.3. SHAP summary plot.

For cardiovascular status, both Sys BP and Dia BP display
positive SHAP values at elevated readings, indicating that
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resistance and elevated GDM risk. From a metabolic and
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sl HE
o, , L
L RSO 55
LI .

" . "1‘1 4

-~ LR 50
5 0 * 5
; [ 45 E 2
2 4 =
g = .‘ ) ‘g g:ﬂ
e Y Y 40 o
< <<
I I
[0} u

<

. -
“i:mg!*iillinp-l!
e cithe]

Vol. 16, No. 10, 2025

increase the predicted risk of GDM. Similarly, the presence of
PCOS contributes strong positive SHAP values, indicating
higher risk. In contrast, HDL shows a clear inverse association,
where lower levels correspond to an increased likelihood of
GDM.

Features related to obstetric and reproductive history
include Gestation in Previous Pregnancy and Number of
Pregnancies, both of which tend to show positive contributions
at higher values. A positive history of Unexplained Prenatal
Loss is also associated with increased predicted risk. In
contrast, Large Child or Birth Default exhibits a more
ambiguous pattern, with both its presence and absence
producing mixed SHAP contributions. This suggests a feature
interaction, where the model may shift predictive importance to
otherhighly correlated variables, such as BMI, maternal age, or
parity, thereby diminishing the apparent effect of this obstetric
factor.

Finally, Prediabetes, Family History and Sedentary
Lifestyle show SHAP patterns where their presence typically
contributes to a higher predicted risk of GDM. However, in a
small number of cases,even whenthese risk factors are present,
they are linked to lower SHAP values (lower GDM risk), likely
due to the dominant influence of other protective factors or
interactions that offset their individual impact.

B. Factor Interactions and Dataset-Specific Thresholds

This subsection highlights how clinical and obstetric factors
interact to shape the model’s GDM risk predictions. SHAP
dependence plots (Fig. 4 to Fig. 18) show how the effect of one
feature varies with another’s value and surface the strongest
interactions, helping to spot practical thresholds and non-linear
links useful for clinical review. In each plot, the x-axis is the
primary feature value, the y-axis is its SHAP value (its
contribution to predicted risk), each point is a single case, and
a blue-tored color scale encodes the value of a second
interacting feature. Read together, these plots clarify combined
patterns such as high BMI with low HDL, or multiple
pregnancies with elevated blood pressure, that contribute to
higher predicted risk and are expressed in familiar clinical
terms to support decision-making.
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In Fig. 4, BMI shows a clear threshold around 25. Below
this value, SHAP contributions are typically negative, often
accompanied by high HDL levels, indicating lower risk.
Beyond 25, SHAP valuesrise sharply, especially in individuals
withlow HDL. For Maternal Age (Fig. 5), younger women tend
to have neutral or slightly negative SHAP values, whereas
women above40 years consistently show positive contributions
and are associated with elevated Dia BP. In Fig. 6, Hemoglobin
contributespositivelyto GDMrisk between 13 and 16 g/dL, but
only when OGTT values are elevated, whereas lower OGTT
levels are linked to reduced risk. At levels above 16 g/dL,
Hemoglobin consistently shows positive contributions to GDM
risk and is associated with high OGTT wvalues. This patternis
important and may be explained by physiological changes such
as increased blood viscosity [31], indicating that both factors
are likely working together rather than high Hemoglobin level
alone.

In the cardiovascular domain, both Dia BP and Sys BP
exhibit clear threshold behaviour. Fig. 7 illustrates that Dia BP
values above 85 mmHg are associated with positive SHAP
contributions, particularly in individuals with prediabetes,
whereas values below 80 mmHg in the absence of prediabetes
indicate lower risk. Similarly, Fig. 8 shows that Sys BP
contributes to higher risk beyond 130 mmHg, with stronger
effects observed in patients with low HDL. In contrast, values
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below 120 mmHg combined with high HDL levels are
generally linked to lower risk.

Among metabolic and endocrine features, Fig. 9 shows that
OGTT valuesrise sharply in SHAP contributions beyond 160
mg/dL, particularly in patients with high Sys BP, whereas
values below 150 mg/dL are considered protective. In Fig. 10,
PCOS consistently contributes to higher predicted risk when
present, with its effect being stronger in individuals with high
BML Fig. 11 illustrates that HDL values below 35 mg/dL are
associated with increased risk, especially in women with prior
gestations, while values above 35 mg/dL correspond to
protective SHAP contributions. This pattern suggests that HDL
remains a reliable marker of metabolic health, regardless of
gestational history.

Obstetric and reproductive history features show
interpretable patterns. Fig. 12 illustrates that Gestation in
Previous Pregnancy contributes positively when equal to or
greater than two, particularly in patients with elevated Dia BP.
Fig. 13 shows that Number of Pregnancies follows a similar
upward trend, with risk increasing beyond three. Fig. 14
indicates that Unexplained Prenatal Loss, when present, raises
the probability of GDM, although its absence does not
necessarily imply low risk. Fig. 15 demonstrates that
Prediabetes, when combined with high BMI, is linked to higher
GDM risk, whereas its absence together with low BMI is
associated with reduced risk.
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In contrast, Fig. 16 to Fig. 18 (Large Child or Birth Default,
Family History, and Sedentary Lifestyle) show less consistent
behavior. Their SHAP contributions vary widely, suggesting
that their predictive influence may be partly absorbed by
stronger correlated factors.

Collectively, these dependence plots reveal that individual
factors influence risk through threshold effects and interaction
with other variables. They reinforce clinical understanding of
GDM risk while offering finer-grained, data-driven insight into
how multiple features combine to shape the model’s
predictions. Table V summarizes these insights by aligning the
data-derived thresholds from SHAP analysis with established
clinical reference ranges, highlighting key feature interactions
and their associated GDM risk. This comparative view helps
contextualize model behavior against known medical
standards, reinforcing the interpretability and clinical relevance
of EYE-GDM results.
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TABLE V. DATASET-DERIVED THRESHOLDS, INTERACTING FACTORS,
AND CLINICAL NORMAL RANGES FOR KEY GDM PREDICTORS
Feature Clinical Cutoff / Data- Interacts | GDM
Normal Range driven with Risk
Threshold
BMI 18.5-249 kg/m? [32],|>25 Low HDL | High
B3] <25 High HDL | Low
Age >40 years |High Dia
| BP
Hemoglobin | 12-16 g/dL [34] 13-16 g/dL | High
OGTT :
>16 g/dL High
Dia BP < 80 mmHg (normal), > 85 mmHg| Prediabetes
80-89 mmHg (Stage 1 Presence
hypertension), <80 mmHg| Prediabetes | Low
> 90 mmHg (Stage 2 Absence
hypertension) [35]
Sys BP <120 mmHg (normal), |> 130 | Low HDL | High
120-129 mmHg| mmHg
(elevated), < 120 | High HDL | Low
130-139 mmHg (Stage 1 | mmHg
hypertension),
> 140 mmHg (Stage 2
hypertension) [35]
OGTT 75-g 2-h: <153 mg/dL|> 160 | High  Sys [ High
[32] mg/dL BP
< 150 Low
mg/dL ]
PCOS R Presence High BMI
HDL 50-80 mg/dL (women)| <35 mg/dL | Gestational High
[36] History
>35mg/dL | _ Low
Gestation in >2 High Dia
Previous - BP
Pregnancy
No of >3
Pregnancies ) ) High
Unexplained Presence
Prenatal Loss ) )
Prediabetes B Presence High BMI

C. Patient-Specific Interpretations

To complementthe global insights, we examine the model’s
local reasoning with SHAP waterfall plots. A waterfall plot
(Fig. 19) decomposes one patient’s prediction by starting at the
baseline E[f(x)] (the model’s expected output over the training
background) and then applying each feature’s SHAP
contribution in sequence until it reaches the patient’s final
prediction f(x). The x-axis represents the model output scale, so
movementto the right increases the prediction and movement
tothe left decreases it; the y-axis lists the patient’s features with
their observed values. Bars show the size and direction of each
contribution, with red increasing risk and blue decreasing risk.

For this patient, a 24-year-old woman with BMI23.69 and
no sedentary lifestyle, PCOS, prediabetes, or family history
(see Table VI), the predicted probability of GDM is f(x) =
0.001, well below the dataset baseline E[f(x)] = 0.612,
indicating a low-risk profile. The model arrives at this result
through several negative contributions: the absence of
unexplained prenatal loss (—0.09), BMI below 25, systolic
blood pressure 117 mmHg (below 130 mmHg), and OGTT
140.32 mg/dL (below clinical and data-driven thresholds).

Vol. 16, No. 10, 2025

Additional decreases come from HDL 53 mg/dL (above
threshold) and diastolic blood pressure 80 mmHg (below 85
mmHg).

Her parity of two is below the higher-risk cutoff of three,
and the absence of PCOS further reduces risk. Although
hemoglobin is 9.8 g/dL, which is below the range where
positive SHAP effects were observedin this dataset (>16 g/dL),
it does not raise predicted GDM risk here; however, it remains
clinically low and may warrant separate attention during

pregnancy.

This case is consistent with the data-driven thresholds that
we presented earlier in Table V: none of her values exceed the
risk cutoffs, and several interacting protective features (such as
high HDL, normal blood pressure, and OGTT below threshold)
contribute cumulatively to a low-risk prediction. This case
highlights how the model synthesizes individual-level clinical
factors to make well-reasoned predictions. It also demonstrates
SHAP’s utility in explaining not only high-risk cases but also
in identifying low-risk profiles by tracing the impact of
protective factors.
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Fig. 19. SHAP waterfall plot for a representative patient.

TABLE VI. PATIENT-LEVEL FEATURE VALUES FOR LOCAL EXPLANATION
Feature Value
Age 24
No. of Pregnancy 2
Gestation in previous pregnancy None
BMI 23.96
HDL 53
Family History None
Unexplained prenatal loss None
Large Child or Birth Default None
PCOS None
Sys BP 117
Dia BP 80
OGTT 140.32
Hemoglobin 9.8
Sedentary Lifestyle None
Prediabetes None
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VI. DISCUSSION

This work demonstrates how interpretable ensemble
modelling, implemented via the EYE-GDM system, can
support risk prediction in the context of GDM. We specifically
selected GDM as the application focus for several reasons.
First, GDM presents a clinically significant yet temporally
constrained condition, with substantial risks for both mother
and infant, including preeclampsia, macrosomia, neonatal
hypoglycaemia, and long-term progression to type 2 diabetes
[4].1ts transient onset during pregnancy necessitates timely and
explainable risk assessments that clinicians can trust.

From a scientific perspective, the contributions ofthis work
lie in the methodological refinements introducedin EYE-GDM,
includingthe reconfigured ensemble structure, the explanation-
weighted meta-leamning approach, and the domain-aligned
interpretability evaluation. These represent technical
extensions ofthe EYE framework. The applied contribution lies
in demonstrating these methodological advances within the
maternal health domain, where EYE-GDM provides clinically
interpretable risk assessments, data-driven thresholds, and
patient-level insights specific to gestational diabetes.

EYE-GDM supports interpretation at both the dataset and
patient levels. At the dataset level, SHAP summary plots and
dependence plots allow for the identification of global risk
patterns, data-driven thresholds, and feature interactions. These
insights capture not only the individual impact of clinical
features but also how their interactions influence GDM risk.
Such results can inform strategic clinical guidelines, such as
refining screening protocols for high-risk groups. In contrast,
patient-level explanations, visualized through SHAP waterfall
plots, help clinicians understand why a specific patient is
predicted to be at risk, thereby supporting individualized
intervention planning. Together, these interpretation levels
enhance the model’s clinical utility and support population-
level decision-making and personalized care.

The predictive performance of EYE-GDM is competitive,
achieving an accuracy of 0.9789, an F1-score of 0.9790, a
precision of 0.9747, a recall of 0.9833, and an AUC-ROC of
0.9981. These results outperform previously reported models
on the same dataset while simultaneously offering transparent
explanations. Compared with conventional ensemble or deep-
learningmodels used forGDM prediction, EYE-GDM provides
distinct advantages by integrating interpretability directly
within the training process rather than applying it as a separate
post-hoc step. This ensures that explanations remain consistent
with the ensemble’s internal reasoning. In addition, the model
combines global and patient-level reasoning within a single
framework, enabling both population insights and individual
clinical interpretation, which is rarely achieved by previous
methods. Furthermore, incorporating expert clinical feedback
during validation strengthens the model’s credibility and aligns
its explanations with real-world diagnostic reasoning and
clinical practice.

More importantly, the interpretations derived from SHAP
analysis are well-aligned with established medical knowledge,
confirming the validity of the model’s outputs. SHAP values
for Age increase after 40, consistent with the clinical evidence
thatadvancedmaternal age isa GDMrisk factor [37],[38]. Risk
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rises significantly for BMI values above 25, aligning with
WHO thresholds for overweight [32], [33]. OGTT values show
a sharp SHAP increase beyond 160 mg/dL, supporting
diagnostic thresholds for impaired glucose tolerance [32].
Hemoglobin contributes to risk in the 13—16 g/dL range only
when OGTT is also elevated, underscoring the need to interpret
it contextually. HDL levels above 35 mg/dL exhibit protective
SHAP values, matching its known cardiometabolic role [36].
Similarly, Sys BP starts contributing to higher risk beyond
130 mmHg, with stronger effects in patients who have low
HDL. This pattern reflects the well-known clustering of high
blood pressure, abnormal lipids, and elevated glucose seen in
metabolic syndrome [39]. Prediabetes and PCOS both
contribute positively to GDM risk, consistent with medical
literature [40], [41]. Finally, obstetric history factors such as
prior gestation with complications and a higher number of
pregnancies display threshold-based patterns, reinforcing their
importance in GDM prognosis [42], [43].

The interpretability results revealed clinically consistentyet
subtle patterns. Interactions such as BMI with HDL and blood
pressure with metabolic indicators showed that GDM risk
emerges from the combined effects of metabolic and
cardiovascular factors rather than single predictors. The model
also identified context-dependent relationships, where certain
features influence risk only in combination with others,
reflecting the complexity of gestational physiology. The close
alignment between model-derived thresholds (BMI 25 kg/m?,
Dia BP 85 mmHg, Sys BP 130 mmHg) and established
reference ranges supports the clinical credibility of EYE-GDM
outputs. These findings illustrate how interpretable Al can
mirror clinical reasoning in maternal health, providing insights
that clarifyhowmetabolic, cardiovascular, and obstetric factors
interact to shape individual risk. In practice, the identified
thresholds can inform more targeted antenatal screening and
help refine early intervention strategies for high-risk patients.
The variability observed in lifestyle and family-history features
highlights the need for broader, standardized datasets to
enhance robustness and ensure the generalizability of model
insights across populations.

Clinician validation further reinforced these interpretations.
The clinicians confirmed that the model’s predictions were
consistent with established GDM risk factors and reflected the
multifactorial nature of clinical practice, where risk factors
interact rather than act independently. They noted, however,
that hemoglobin alone is not an independent risk factor for
GDM, whereas HbAlc is a more reliable predictor. The
observed association between elevated hemoglobin levels and
higher OGTT valuesin this dataset was considered important,
potentially reflecting physiological mechanisms such as
increased blood viscosity [31], suggesting that these factors act
in combination rather than through hemoglobin alone. The
clinicians also emphasized the need for clearer dataset
documentation and recommended involving clinical experts in
the data collection process to ensure the inclusion of key GDM
biomarkers, suchas HbAlc and different OGTT test types. The
validation was regarded as valuable both for strengthening trust
and for guiding iterative refinement.

While the model showed strong alignment with clinical
reasoning, certain limitations remain. This work extends prior
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validation of the EYE framework (EYE-WD) to a distinct
clinical population, demonstrating its adaptability across
domains. However, because the dataset represents a single
regional population, sociocultural and healthcare-access factors
thatinfluencescreeningand diagnosis may have affected model
behavior. Future work will focus on validatingthe model across
multi-centre and demographically diverse GDM cohorts as
such datasets become available.

The results of this work highlight the importance of
embedding interpretability directly into model design for
maternal healthcare. EYE-GDM  demonstrates how
interpretable models can uncover clinically relevant patterns
that align with established medical knowledge, advancing
maternal health Al by combining high predictive accuracy with
clinically grounded explanations.

VII. CONCLUSION AND FUTURE WORK

EYE-GDM, an implementation of the EYE framework for
gestational diabetes risk prediction, delivers strong predictive
performance together with clinically meaningful and
interpretable outputs. It directly addresses two long-standing
gaps in prior work: the tendency to prioritize predictive
accuracy without producing explanations that clinicians can
apply,and the reliance on post-hocinterpretability methods that
fail to capture how models reason internally. By embedding
SHAP explanations into the training pipeline, EYE-GDM
ensures thateach base learner is explained individually and that
their contributions are integrated through logistic regression
weights, producing ensemble-level reasoning consistent with
the model’s internal decision logic.

EYE-GDM achieved competitive results, surpassing earlier
reports on the same dataset. More importantly, its interpretable
outputs were consistent with established medical knowledge,
showingthatthe framework canprovidereliable risk prediction
while also generating explanations of practical value in
maternal care. This combination strengthens confidence in the
system as a tool that clinicians can trust.

Beyond its technical contributions, EYE-GDM advances
the field of explainable healthcare Al by demonstrating how
interpretability can be embedded throughout the model
development processrather than appended after training. This
integration shifts explainability from a diagnostic tool to a
design principle, enabling models that reason transparently
while maintaining predictive strength. Within maternal health,
EYE-GDM illustrates how such integration can transform
complex risk prediction into a clinically meaningful, trust-
enhancing process, setting a foundation for future interpretable
systems across other sensitive domains.

Future work will continue engagement with clinical experts
to refine interpretability outputs and ensure their clarity in
practice. Additional directions include extending the
framework to other healthcare conditions where interpretability
is essential, optimizing it for real-time deployment, and
evaluating its performance across diverse populations.

The EYE framework builds on our earlier FIXAIH
roadmap, which set out six design priorities for developing
trustworthy and interpretable Al in healthcare. While FIXAIH
defines high-level goals, EYE operationalizes selected

Vol. 16, No. 10, 2025

elements into a structured and testable framework centered on
interpretability by design, transparent development, and
clinical validation. EYE-GDM demonstrates how these
principles can be applied in maternal health, while EYE-WD
shows their application in women’s diabetes. Together, these
implementations highlight how domain-specific frameworks
can serve as practical steps toward the broader FIXAIH vision,
linking conceptual guidance with deployment-ready systems
that advance clinical care while maintaining transparency and
trust.
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