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Abstract—Energy-efficient building operation requires 

accurate prediction and optimization of dynamic thermal loads 

under noisy IoT data streams. We propose an integrated 

framework that combines 1) mutual-information–based online 

feature selection to filter redundant signals, 2) an attention-

enhanced LSTM forecaster to capture nonlinear spatiotemporal 

dependencies, and 3) multi-agent cooperative reinforcement 

learning for zone-level HVAC control, deployed within an edge–
cloud architecture. Experiments on three heterogeneous real-

world datasets (office, residential, campus) show that the method 

achieves 21.7% median energy savings (IQR 18.9 – 23.1%), 

improving over MADDPG by +5.8 percentage points (p=0.004, 

Wilcoxon). Forecasting accuracy is also improved, with MAE 

reduced by 16.7% (95% CI 12.4 – 20.1%) compared with 

Seq2Seq+Attention. Comfort deviations are maintained within ±

1° C (median absolute deviation 0.32° C). Robustness tests 

indicate graceful degradation under σ≤0.2 Gaussian noise and 

≤20% missing data, while ablation confirms the contribution of 

each module. Feasibility is demonstrated in a hardware-in-the-

loop testbed under the stated compute and latency budget; 

validation on real buildings and broader climate conditions 

remains future work. This study contributes to smart building 

energy management, IoT-based HVAC control, and sustainable 

operation optimization. 
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I. INTRODUCTION 

The demand for energy-efficient buildings has intensified 
interest in dynamic thermal load management, as it directly 
influences both occupant comfort and energy performance [1]. 
Low-energy buildings, central to sustainable urban 
development, depend on accurate prediction and optimization 
of thermal loads under diverse outdoor conditions and 
occupancy patterns [2]. The rapid deployment of Internet of 
Things (IoT) sensors enables the collection of large-scale real-
time data, creating opportunities to move beyond static, 
physics-based models toward adaptive, data-driven 
frameworks [3]. 

However, current optimization methods remain limited. 
Physics-based models are computationally intensive and 
struggle with nonlinear interactions among loads, weather, and 
occupancy [4 – 5]. Data-driven approaches often overfit, 

generalize poorly across building types, and lack integration of 
domain knowledge [6]. Moreover, most studies treat 
forecasting and control separately, neglecting subsystem 
interactions across HVAC, lighting, and occupant-driven 

adjustments [7]. These limitations highlight the need for a 
unified solution that combines predictive accuracy, adaptive 
feature selection, and collaborative optimization. 

To address these gaps, this study proposes an IoT-enabled 
collaborative optimization framework with three contributions: 
1) an attention-enhanced forecasting module that captures 
spatiotemporal dependencies in sensor data; 2) an MI-guided 
adaptive feature selection module that filters redundant inputs 
for efficiency and interpretability; and 3) a multi-agent 
cooperative optimization module that jointly optimizes HVAC 
operations while balancing energy and comfort. Evaluations on 
three real-world datasets from office, residential, and campus 
buildings show improved forecasting accuracy, energy savings, 
and robustness under noise, missing data, and transfer 
scenarios. These findings provide empirical evidence for 
integrating IoT sensing, machine learning, and cooperative 
optimization in building energy research. 

The remainder of this paper is organized as follows. 
Section II reviews related works. Section III details the 
proposed methodology including forecasting, feature selection, 
and optimization. Section IV presents the experimental setup 
and results. Section V discusses the findings and limitations, 
and Section VI concludes the study. 

II. RELATED WORKS 

A. Application Scenarios and Challenges 

Dynamic thermal load forecasting and optimization form 
the core of building energy management, particularly in low-
energy buildings, smart campuses, and residential or 
commercial complexes [8]. Typical tasks include forecasting 
heating and cooling loads at different time scales, maintaining 
comfort within temperature and humidity constraints, and 
scheduling HVAC or ventilation to minimize energy cost [9]. 
Public datasets such as the UCI Building Energy Dataset, 
ASHRAE Great Energy Predictor, and campus-scale testbeds 
are widely adopted [10]. Metrics range from forecasting 
accuracy (MAE, RMSE, MAPE, R²) to operational efficiency 
indicators (energy savings, comfort index, cost reduction, 
convergence stability) [11]. 

However, practical challenges remain: data heterogeneity 
and missing values across zones, generalization difficulties 
across building types, and real-time control requirements under 
multi-subsystem interactions (HVAC, lighting, occupancy-
driven devices) [12]. These limitations underline the necessity 
for solutions that are both robust to noisy IoT inputs and 
scalable across real environments. 
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B. Mainstream Methods: Strengths and Weaknesses 

In recent years, thermal load forecasting and control in 
buildings have increasingly adopted machine learning and 
reinforcement learning techniques [13]. IoT-driven deep 
learning frameworks, for example, have shown strong potential 
in residential contexts by jointly optimizing air-conditioning 
energy use and thermal comfort through real-time sensor 
streams [14]. These approaches demonstrate the capacity of 
data-driven methods to improve operational efficiency, but 
their scope is often restricted to single subsystems, which limits 
coordination across multiple building zones. 

Another stream of work has employed multi-agent deep 
reinforcement learning (MARL) to coordinate building energy 
systems, particularly in scenarios with renewable energy 
integration [15]. Such methods address the challenge of agent 
coordination effectively; however, they tend to rely on 
relatively simple forecasting modules that do not adequately 
capture the dynamics of load variations under volatile outdoor 
and occupancy conditions. Similarly, multi-objective 
optimization approaches such as those based on Multi-Agent 
Deep Deterministic Policy Gradient (MADDPG) have been 
applied in multi-zone office buildings with promising 
outcomes [16]. Yet, these results are typically obtained in 
simulation environments, where assumptions of clean data and 
stable inputs may not reflect the noisy and heterogeneous 
nature of real IoT deployments. 

Compared with recent MARL-based HVAC control 
methods reporting 13–17% energy savings [20, 21, 25], our 

framework achieved a median 21.7%, representing a relative 
improvement of 5–8 percentage points under comparable 

comfort constraints. 

Parallel efforts have focused on load prediction across 
varied climates using classical and machine learning models 
such as XGBoost, SVM, and ELM [17]. These studies report 
high coefficients of determination and low error rates, thereby 
confirming the forecasting potential of statistical and machine 
learning approaches. Nevertheless, such research usually 
concentrates on prediction alone and does not integrate 
forecasts into downstream optimization, thereby missing 
opportunities for end-to-end system improvement. Hybrid soft 
computing approaches, which combine neural networks with 
metaheuristic optimizers, have also been explored to estimate 
annual thermal energy demand with remarkable accuracy [18]. 
Despite their predictive performance, they lack system-level 
coordination mechanisms and provide limited interpretability 
for dynamic operations. Collectively, the literature illustrates 
substantial methodological advances but continues to face 
unresolved challenges in noise handling, cross-zone 
collaboration, and practical validation [19]. 

C. Most Similar Research: Comparative Perspective 

The most relevant studies to the present work can be 
grouped into three categories. First, MADDPG-based control 
methods for office buildings have established a reference point 
for multi-zone HVAC optimization [20]. While these studies 
demonstrate that collaborative control can balance energy 
efficiency and comfort, their reliance on simplified forecasting 
and input designs constrains their applicability to real-world 

conditions [21]. Second, MARL frameworks integrating 
renewable energy into residential building management 
highlight the benefits of agent coordination [22]. However, 
their forecasting modules remain coarse and their treatment of 
sensor uncertainty and feature redundancy is limited. Third, 
recent advances in forecasting methods have achieved high 
accuracy across diverse climatic conditions using advanced 
machine learning models [23]. These contributions provide 
valuable insights into prediction, yet they remain detached 
from downstream optimization and do not explore system-level 
coordination. 

Taken together, these approaches tackle individual aspects 
of the broader challenge—accurate forecasting, agent 
coordination, or renewable integration—but none offers a 
comprehensive solution that simultaneously addresses 
forecasting under sensor noise, adaptive feature selection for 
efficiency and interpretability, and multi-agent optimization 
validated in deployment-level settings. 

D. Summary and Need for this Work 

The above review suggests that while the field of building 
energy optimization has made notable progress, significant 
gaps remain. Most existing studies address forecasting and 
optimization as separate tasks, thereby creating opportunities 
for error propagation across modules. Few approaches 
explicitly handle the challenges of noisy, heterogeneous, or 
redundant sensor data, leaving feature selection and 
interpretability underexplored in real IoT contexts. 
Furthermore, collaborative optimization across multiple 
subsystems is rarely validated beyond simulation, with limited 
evidence from hardware-in-the-loop or edge–cloud 
deployments. 

These gaps motivate the present study, which advances 
beyond prior work by unifying attention-based spatiotemporal 
forecasting, mutual information–guided feature selection, and 
multi-agent collaborative optimization under a single objective. 
The framework is empirically validated on multiple real-world 
datasets and tested under noisy, missing, and transfer 
conditions, providing a more comprehensive and deployment-
oriented contribution to energy-efficient building management. 

III. METHODOLOGY 

A. Problem Formulation 

A set of low-energy buildings is considered, equipped with 
IoT sensor networks that continuously monitor environmental 
and operational parameters. Let the set of buildings be denoted 
as ℬ = {B1 ,B2 , … , BN} . Each building Bi  is partitioned into 
multiple thermal zones, where the thermal load dynamics 
depend on both external and internal factors. The objective is 
to forecast the dynamic thermal load and optimize system 
operations collaboratively to minimize energy consumption 
while maintaining comfort. 

Let Xt ∈ ℝd represent the sensor feature vector at time step 
t , where d  is the dimensionality of inputs including indoor 
temperature, humidity, CO2  concentration, outdoor weather, 
occupancy, and control signals. The corresponding dynamic 
thermal load is denoted as yt ∈ ℝ. The goal of forecasting is to 
learn a mapping function 
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fθ: {Xt−L+1, … , Xt} ↦ ŷt+1                           (1) 

where L  is the look-back window, ŷt+1  is the predicted 
thermal load, and θ\thetaθ denotes model parameters. 

For collaborative optimization, each zone z ∈ Zi of building 
Bi  is modeled as an agent. The agent receives state st

z , 
including forecasted load ŷt

z, occupancy, and current indoor 
temperature, and selects action at

z  corresponding to HVAC 
control (cooling/heating power, airflow). The reward function 
balances energy efficiency and comfort: 

rt
z = −αEt

z − βCt
z                                 (2) 

where Et
z is energy consumption, Ct

z is comfort deviation 
(difference between actual and target comfort index), and 
α, β > 0 are weighting coefficients. The optimization objective 
is to maximize expected cumulative reward across all zones 
and time: 

max
π

𝔼 [∑ ∑ ∑ rt
z

z∈Zi

N
i=1

T
t=1 ]                           (3) 

where π denotes the joint policy of all agents. 

Thus, the problem integrated two coupled tasks: 1) accurate 
forecasting of thermal loads using IoT data streams, and 
2) collaborative optimization of HVAC control across zones 
via multi-agent reinforcement learning. 

B. Overall Framework 

The proposed framework consists of three interconnected 
modules. 

1) Spatiotemporal Forecasting Module captures nonlinear 

temporal dependencies in IoT data streams to predict short-

term zone-level thermal loads. 

2) Adaptive Feature Selection Module filters redundant or 

noisy sensor inputs based on mutual information, enhancing 

generalization and interpretability. 

3) Collaborative Optimization Module employs multi-

agent reinforcement learning to coordinate HVAC operations 

across zones while balancing energy efficiency and occupant 

comfort. 

The overall workflow proceeds as follows: raw IoT data are 
first preprocessed and passed to the forecasting module, which 
generates accurate zone-level load predictions. These predicted 
loads, together with adaptively selected key features, are then 
provided to the collaborative optimization module, where 
agents determine optimal HVAC actions. All three modules are 
supported by an edge-cloud infrastructure: edge devices 
perform lightweight preprocessing and feature filtering, while 
cloud servers handle computationally intensive reinforcement 
learning optimization. The final outputs are optimal HVAC 
control commands delivered to building management systems, 
ensuring both energy-efficient operation and comfort 
preservation. The complete workflow, including inputs, 
interconnected modules, edge-cloud support, and final outputs, 
is illustrated in Fig. 1, which provides a visual overview of the 
system architecture and data flow. 

 
Fig. 1. Overall framework of the proposed IoT-enabled collaborative optimization system. 

C. Module Descriptions 

1) Spatiotemporal forecasting module motivation: 

Building loads exhibit nonlinear temporal dependencies 

influenced by occupancy, weather, and device interactions. 

Standard recurrent networks struggle with long-range 

dependencies, while CNNs are less effective at sequential 

modeling. To address this, the study employ an LSTM 

enhanced with attention (see Fig. 2). 
Principle. Let hidden states of LSTM at time t be ht. The 

attention score for each past step k is computed as: 

et,k = v⊤ tanh( Whhk + Wsht)                       (4) 

αt,k =
exp(et,k)

∑ exp(j et,j)
                               (5) 

ct = ∑ αt,kk hk                                (6) 

where Wh , Ws ,  v  are trainable parameters, ct  is context 
vector. The final prediction is ŷt+1 = σ(Wc[ct;ht] + b). 

Implementation. The module is trained on IoT sensor 
sequences with MSE loss: 

ℒforecast =
1

T
∑ (t yt − ŷt)2                         (7) 
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Fig. 2. Architecture of the spatiotemporal forecasting module. 

The module integrated LSTM encoding with an attention 
mechanism to capture nonlinear temporal dependencies in IoT 
sensor sequences. Context vectors are combined with hidden 
states to generate load predictions, while training is guided by 
an MSE loss to ensure accuracy and stability. 

2) Adaptive feature selection module: Motivation. IoT 

data streams are high-dimensional and noisy; redundant 

features degrade generalization and increase computational 

load (see Fig. 3). 

Principle. The study adopt mutual information (MI) 
between feature Xj and target Y: 

I(Xj;Y) = ∑ px,y (x, y) log
p(x,y)

p(x)p(y)
                   (8) 

Features with MI below threshold δ are pruned. To 
maintain interpretability, selected features are ranked. 

Implementation. The feature selector operates online by 
updating MI estimates over sliding windows, ensuring 
adaptability to nonstationary conditions. 

 
Fig. 3. Architecture of the adaptive feature selection module. 

Raw sensor features are evaluated using mutual 
information I(Xj;Y) [Eq. (8)], with low-scoring inputs pruned 

under threshold δ. Remaining candidates are ranked to enhance 
interpretability, producing selected key features. Online 
sliding-window updates ensure adaptability to nonstationary 
conditions before passing features to the optimization stage. 

3) Collaborative optimization module: Motivation. 

Independent control of zones leads to inefficiencies; 

coordination across zones enables shared energy saving. 
Principle. Each zone z  is an agent in a multi-agent 

reinforcement learning framework. State st
z  includes load 

predictions and zone measurements. Action at
z  is continuous 

HVAC control. The policy πϕ
z (a | s)  is parameterized by 

neural networks. Joint optimization uses centralized training 
with decentralized execution. 

Implementation. The study adopt Multi-Agent Deep 
Deterministic Policy Gradient (MADDPG). Actor update: 

∇ϕJ(ϕ) =
1

M
∑ ∇ϕ

M
i=1 πϕ(si)∇aQψ(si ,a)|a=πϕ(si)

        (9) 

Critic update: 

ℒQ =
1

M
∑ (Qψ(si ,ai) − (ri + γQψ′(si+1, πϕ′(si+1))))i

2
(10) 
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Fig. 4. Architecture of the collaborative optimization module based on MADDPG. 

As shown in Fig. 4, each zone acts as an agent with state st
z 

and continuous action at
z . Decentralized actor networks 

generate HVAC control actions, while a centralized critic 
evaluates joint policies using Eq. (9)-(10). This structure 
enables centralized training with decentralized execution, 
ensuring coordinated energy-efficient operation. 

Algorithm 1 outlines the training procedure of the multi-
agent collaborative optimization, where each agent selects 
actions based on local states, stores experiences, and updates 
actor–critic networks through replay buffer sampling and 
deterministic policy gradients. 

Algorithm 1. Multi-Agent Collaborative Optimization 

Initialize actor networks πφz and critic Qψ with parameters 
φ, ψ 

for each episode do 

    for each time step t do 

        for each agent z do 

            observe state stz 

            select action atz ~ πφz(stz) 

        execute actions, obtain rewards rtz and next states 

        store transitions in replay buffer 

    end for 

    sample minibatch from buffer 

    update critic by minimizing LQ 

    update actors using deterministic policy gradient 

end for 

D. Objective Function and Optimization 

The optimization objective of the proposed framework 
integrated three tightly coupled components: forecasting 
accuracy, feature selection regularization, and collaborative 
control performance. Formally, the global loss function is 
expressed as, 

ℒtotal = λ1ℒforecast + λ2ℒfeature − λ3J(π)                 (11) 

where λ1 , λ2 , λ3 ∈ ℝ+ are balancing coefficients. The first 
term evaluates the prediction accuracy of the spatiotemporal 
forecasting module, the second penalizes unstable feature 
selection, and the third rewards high-performing policies in 
multi-agent optimization. 

The forecasting error is measured by mean squared error 
between the ground-truth thermal load and the predicted load at 
each time step. This is written as, 

ℒforecast =
1

T
∑ (T

t=1 yt − ŷt)2   (12) 

where yt ∈ ℝ is the actual thermal load at time step t, ŷt is 
the corresponding predicted value, and T is the total number of 
prediction steps in the horizon. 

The feature selection component is defined by the mutual 
information criterion. If a feature contributes insufficient 
information relative to the prediction target, its corresponding 
weight is penalized to encourage dimensionality reduction. The 
regularization term is formulated as, 

ℒfeature = ∑ ωj
d
j=1 ⋅ 𝟙(I(Xj;Y) < δ)                    (13) 

where d is the dimensionality of the feature space, I(Xj;Y) 

denotes the mutual information between the j-th feature Xj and 

the target Y, δ is the selection threshold, 𝟙(·) is the indicator 
function, and ωj is the penalty weight associated with feature j. 

The reinforcement learning objective seeks to maximize the 
long-term discounted return accumulated across all zones and 
time steps. The expected return under joint policy π is given by  

J(π) = 𝔼[∑ γtT
t=1 ∑ ∑ rt

z
z∈Zi

N
i=1 ]                      (14) 

where γ ∈ (0,1) is the discount factor, N is the number of 
buildings, Zi denotes the set of thermal zones in building Bi , 
and rt

z is the reward obtained by zone z at time t. 

The zone-level reward function balances energy 
consumption and thermal comfort deviation. It is 
mathematically expressed as 

rt
z = −αEt

z − βCt
z                           (15) 

where Et
z  denotes the energy consumed by the HVAC 

system in zone z at time t, Ct
z is the absolute deviation between 
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actual and target comfort index, and α,β ∈ ℝ+ are the 
respective weighting factors. 

Energy consumption in each zone is quantified as 

Et
z = Pt

z ⋅ Δt                                (16) 

where Pt
z is the instantaneous electrical power drawn by the 

HVAC equipment in zone z  and Δt  is the duration of the 
control interval. 

Comfort deviation is formally defined as 

Ct
z = |Tt

z − Ttarget
z |                              (17) 

where Tt
z is the actual measured indoor temperature of zone 

z  at time t , and Ttarget
z  is the predefined target temperature 

range based on thermal comfort standards. 

Finally, the critic network in the collaborative optimization 
module is trained using a Bellman equation, where the target 
value for state–action pair (si+1,ai+1) is given by 

yi = ri + γQψ′(si+1 ,ai+1)                        (18) 

with ri  being the observed reward, Qψ′  the target critic 

parameterized by ψ′, si+1 the next state, and ai+1  the action 
generated by the target actor. This equation ensures stability in 
multi-agent training by constraining updates with delayed 
target networks. 

The collaborative optimization problem is solved via a 
multi-agent deep reinforcement learning (MADDPG) 
framework rather than MILP or convex optimization, since the 
HVAC control space is continuous and nonconvex. Each 
training epoch (10 ³  iterations, batch size 256) required 

approximately 1.8 GPU-hours on dual NVIDIA A100 GPUs, 
while edge deployment inference runs at 50 ms latency per 
control cycle. 

In summary, the optimization problem jointly minimizes 
forecasting and feature selection losses while maximizing 
reinforcement learning returns. Each parameter and variable is 
grounded in physically interpretable terms, thermal load, 
energy consumption, comfort deviation, and HVAC power, 
ensuring that the proposed mathematical formulation not only 
captures predictive accuracy but also delivers operationally 
meaningful optimization outcomes. 

IV. EXPERIMENT AND RESULTS 

A. Experimental Setup 

To rigorously evaluate the proposed IoT-enabled data-
driven collaborative optimization framework, experiments 
were conducted across three representative datasets and 
deployed on an edge–cloud testbed. The datasets cover diverse 
building types and climate zones, enabling a comprehensive 
assessment of forecasting accuracy, optimization efficiency, 
and robustness. As summarized in Table I, Office-A, Res-B, 
and Campus-C differ in geography, duration, and sensor 
modalities, thus providing comprehensive coverage of 
operational contexts. 

TABLE I.  DATASET OVERVIEW 

Dataset Type Location Duration Sensors 
Granula

rity 

Number 

of 

Zones 

Target 

Variable 

Office-A 

Office 

Buildi

ng 

Beijing

, China 

Jan-

Dec 

2023 

Temp, 

Humidit

y, CO₂, 

Weather

, HVAC 

15 min 12 

Cooling

/Heatin

g Load 

(kW) 

Res-B 

Resid

ential 

Comp

lex 

Singapore 

Mar–

Dec 

2023 

Temp, 

Humidi

ty, 

Occupa

ncy, 

Weathe

r 

10 min 8 

Cooling 

Load 

(kW) 

Campus

-C 

Unive

rsity 

Camp

us 

Boston, 

USA 

Sep 

2023

–Jun 

2024 

Temp, 

Humidi

ty, 

CO₂, 

Weathe

r, 

Occupa

ncy, 

Lightin

g 

30 min 20 

HVAC 

Energy 

Consu

mption 

(kWh) 

The computational infrastructure used for both model 
training and deployment is presented in Table II, which 
includes high-performance cloud servers with dual A100 GPUs 
as well as low-power edge devices such as Jetson Nano and 
Raspberry Pi. This configuration reflects realistic smart 
building deployments, balancing computational intensity with 
on-site responsiveness. 

TABLE II.  HARDWARE CONFIGURATION 

Component Specification 

Cloud Server 
Intel Xeon Gold 6338 (32 cores, 2.0 GHz), 256  

GB RAM, 2 × NVIDIA A100 GPUs 

Edge Devices 
NVIDIA Jetson Nano (4 GB RAM), Raspberry 

Pi 4B (8 GB RAM) 

Communication MQTT Protocol, 5G Gateway, 1 ms latency 

Software 
Python 3.11, PyTorch 2.1, CUDA 12.0, 

TensorRT 8.6 

Evaluation standards for forecasting, optimization, 
reinforcement learning, and robustness are listed in Table III, 
ensuring consistent comparisons across all baselines and 
proposed methods. Metrics such as MAE, RMSE, and MAPE 
quantify predictive accuracy, while energy savings and comfort 
index directly assess operational efficiency. 

TABLE III.  EVALUATION METRICS 

Task Metric Definition 

Forecasting MAE, RMSE, MAPE, R² 
Accuracy of load 

prediction 

Optimization 
Energy Saving (%), Comfort 

Index (0-1), Cost Reduction (%) 

Efficiency and 

comfort 

RL Training 
Convergence Rate, Reward 

Stability 
Policy stability 

Robustness 
Performance Drop (%) under 

noise or missing data  
Reliability 
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Unless otherwise noted, all metrics are reported as median 
[IQR] over n=15 runs (5 random seeds × 3 datasets). 95% 
confidence intervals are estimated via 1000× bootstrap 
resampling stratified by dataset. For between-method 
comparisons, we apply the paired Wilcoxon signed-rank test 
across datasets, and control the false discovery rate (FDR) at 
5% using the Benjamini–Hochberg procedure. This protocol 
ensures that performance differences are not only numerically 
but also statistically validated. 

The experimental scenario is further illustrated in Fig. 5, 
which presents a simulated building environment created for 
evaluation. The virtual laboratory integrated IoT sensor nodes, 
HVAC systems, and control gateways, producing realistic data 
streams and interaction dynamics consistent with real-world 
building operations. 

 
Fig. 5. Simulated experimental scene 

Fig. 5 depicts a virtual building laboratory with distributed 
IoT sensors and HVAC controllers, providing a controlled yet 
realistic testbed for dynamic thermal load optimization. This 
setup not only validates the framework under diverse 
operational contexts but also ensures that the experimental 
results can be meaningfully extrapolated to real-world building 
management systems, thereby reinforcing both the practicality 
and scalability of the proposed approach. 

B. Baselines 

To ensure a fair comparison, the study evaluate against a 
spectrum of classical, machine learning, deep learning, and 
reinforcement learning methods, as well as a physics-informed 
digital twin. Classical models (ARIMA, VAR) serve as linear 
baselines, while machine learning approaches (Random Forest, 
XGBoost) capture nonlinearity in static settings [24]. Deep 
learning models (LSTM, Seq2Seq+Attention) handle 
sequential dependencies, and reinforcement learning methods 
(DQN, PPO, MADDPG) optimize control strategies. The 
physics-informed digital twin (PIDT) provides an industry-
relevant reference. Together, these baselines represent 
established solutions in building energy research and allow 
comprehensive benchmarking. 

C. Quantitative Results 

The predictive accuracy of different methods is 
summarized in Table IV. Across the three datasets, the 
proposed framework achieves the lowest MAE, RMSE, and 
MAPE, with a median MAE of 1.65 kW (IQR 1.59–1.72). 
Compared with the best baseline (Seq2Seq+Attention), our 
method reduces MAE by 16.7% (95% CI 12.4–20.1%) and 
RMSE by 13.6% (95% CI 10.2–17.5%), with a Wilcoxon 
signed-rank test p=0.004 (n=15 runs). 

TABLE IV.  FORECASTING PERFORMANCE (AVERAGE ACROSS DATASETS) 

Method 

MA

E 

(kW) 

RMS

E 

(kW) 

MAP

E (%) 
R² 

Relative 

Gain vs. 

Best 

Baselin

e (%) 

Δ vs. 

2nd 

Best 

(pp) 

95% CI 

(bootstrap

, n=5 

seeds) 

ARIMA 3.25 4.87 14.2 0.72 – – – 

RF 2.81 4.32 12.7 0.78 – – – 

XGBoost 2.44 3.95 11.5 0.82 – – – 

LSTM 2.12 3.42 10.1 0.85 – – – 

Seq2Seq+Att

n 
1.98 3.25 9.3 0.87 baseline baseline baseline 

Proposed 1.65 2.81 7.8 
0.9

1 

+16.7% 

(MAE), 

+13.6% 

(RMSE

) 

−0.33 

MAE, 

−0.44 

RMS

E 

MAE 

[1.59–

1.72], 

RMSE 

[2.76–

2.89] 

Fig. 6 presents the forecasting performance comparison 
with 95% bootstrap confidence intervals (n=5 seeds). Shaded 
regions denote confidence bounds, while solid lines indicate 
medians. The proposed method consistently yields the lowest 
errors, confirming its robustness across datasets. 

This improved predictive accuracy reduces uncertainty in 
HVAC load prediction, thereby enabling building managers to 
plan energy use more reliably and minimize the risks of over- 
or under-provisioning. 

 
Fig. 6. Forecasting performance comparison across methods. 

Optimization results are shown in Table V. The proposed 
framework achieves median 21.7% (IQR 18.9–23.1%) energy 
savings and a comfort index of 0.85, significantly surpassing 
MADDPG (+5.8 pp, p=0.004). Relative to the second-best 
method, the proposed approach improves cost reduction by 
+5.7 pp, with a 95% CI [+4.3, +7.2]. 
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TABLE V.  OPTIMIZATION PERFORMANCE (AVERAGE ACROSS DATASETS) 

Method 

Energ

y 

Savin

g (%) 

Comfo

rt 

Index 

Cost 

Reductio

n (%) 

Relative 

Gain vs. 

Best 

Baselin

e (%) 

Δ vs. 

2nd 

Best 

(pp) 

95% CI 

(bootstra

p, n=5 

seeds) 

DQN 9.8 0.71 8.3 – – – 

PPO 12.4 0.74 11.2 – – – 

PIDT 14.6 0.75 12.8 – – – 

MADDP

G 
15.9 0.78 13.5 baseline 

baselin

e 
baseline 

Proposed 

21.7 

[18.9–

23.1] 

0.85 

19.2 

[17.5–

20.6] 

+36.5% 

(Energy

), +7.0 

pp 

Comfort 

+5.8 

pp 

Energy

, +5.7  

pp 

Cost 

Energy 

[20.1–

22.6], 

Comfort 

[0.82–

0.87] 

Fig. 7 illustrates optimization outcomes with confidence 
intervals. The proposed framework achieves median 21.7% 
energy savings (IQR 18.9–23.1%) and a comfort index of 0.85 
[0.82–0.87], which are +5.8 pp and +0.07 higher than 
MADDPG respectively (Wilcoxon, p=0.004, n=15 runs). 
These statistically significant gains indicate that integrating 
attention-enhanced forecasting with cooperative optimization 
yields consistent improvements across the three tested datasets. 

Results should be interpreted within scope: evaluation was 
limited to three building datasets and a hardware-in-the-loop 
testbed. While findings suggest potential cost reduction and 
comfort preservation, confirmation in real-building 
deployments and broader climates remains future work. 

 
Fig. 7. Optimization performance comparison across methods. Blue bars 

denote median energy savings (%), orange bars comfort index (0–1). Error 

bars represent 95% bootstrap confidence intervals over n=5 seeds. The 

proposed framework achieves significantly higher energy savings and comfort 

compared with baselines (Wilcoxon, p<0.01). 

Training stability is illustrated in Fig. 8, where the proposed 
method converges faster and exhibits smoother cumulative 
reward trajectories compared to PPO and MADDPG. 

 
Fig. 8. Convergence curves. 

Fig. 8 illustrates the convergence behavior of reinforcement 
learning methods. The proposed framework achieves higher 
cumulative rewards with notably faster convergence compared 
to PPO and MADDPG. This improvement indicates that the 
attention-enhanced forecasting and cooperative optimization 
modules provide more stable policy updates, thereby 
accelerating learning efficiency. The smoother reward 
trajectory also demonstrates robustness to stochastic 
fluctuations, suggesting that the proposed method is better 
suited for real-time building control scenarios. Such stability is 
critical for deployment in dynamic environments, where 
reliable convergence directly translates into more predictable 
and trustworthy building energy management. 

D. Qualitative Results 

Load prediction curves in Fig. 9 illustrate that the proposed 
forecasting module closely follows actual values, while LSTM 
and XGBoost deviate significantly during peak fluctuations. 

 
Fig. 9. Predicted vs. Actual loads. 

Fig. 9 illustrates the comparative performance of 
forecasting models against ground-truth loads. The proposed 
method exhibits the closest alignment with actual dynamics, 
maintaining stability during both peak and valley periods. In 
contrast, LSTM demonstrates moderate deviations, particularly 
at peak demand intervals, while XGBoost consistently 
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underestimates loads with larger fluctuations. These results 
confirm that the proposed forecasting module substantially 
improves accuracy and responsiveness, which is critical for 
enabling reliable HVAC control and ensuring energy-efficient 
building operations. Such predictive precision is especially 
valuable for real-world building management systems, where 
timely and accurate forecasts directly support proactive energy 
scheduling and reduce the risk of comfort violations. 

Indoor temperature trajectories under different control 
policies are shown in Fig. 10, where the proposed optimization 
maintains stable comfort within the target range. 

 
Fig. 10. Indoor temperature profiles. 

Fig. 10 presents indoor temperature trajectories under 
different control policies. The proposed optimization maintains 
stable comfort within the ±1 °C target band, exhibiting only 
minor fluctuations around the reference temperature. In 
contrast, MADDPG shows larger deviations during high-
demand intervals, occasionally breaching comfort thresholds, 
while PPO produces pronounced oscillations that frequently 
exceed the acceptable range. These findings confirm that the 
proposed framework substantially reduces comfort deviation, 
ensuring both thermal stability and practical feasibility for real-
time building management. This ability to sustain comfort 
within strict thresholds highlights the framework’s readiness 
for deployment in large office buildings or residential 
complexes, where occupant satisfaction is as critical as energy 
efficiency. 

E. Comparison with Baseline Rule-Based Controls 

To contextualize the performance gains of the proposed 
framework, additional experiments were conducted against two 
common business-as-usual (BAU) strategies widely used in 
building HVAC systems: (i) a Static Schedule control and (ii) a 
Rule-Based PID control. Both approaches represent practical 
baselines implemented in conventional Building Management 
Systems (BMS). 

Static Schedule (BAU). Each zone maintained a fixed 
temperature set-point of 22 ° C during occupied hours 

(08:00–18:00) and 26 °C otherwise, with HVAC units 

operating on a predefined on/off timetable regardless of 
occupancy or weather fluctuations. 

Rule-Based PID Control. A simple proportional –
integral–derivative controller adjusted cooling/heating power 

in response to real-time indoor temperature deviations from the 
target, without considering predicted thermal loads or inter-
zone interactions. 

Both baselines were evaluated on the same datasets and 
hardware platform described in Section IV-A, using identical 
comfort constraints (21–25 °C) and sampling intervals. 

Table VI summarizes the comparative results averaged across 
the three datasets. 

TABLE VI.  COMPARISON WITH BUSINESS-AS-USUAL (RULE-BASED) 
CONTROL STRATEGIES 

Method 
Energy Saving 

(%) 

Comfort Index 

(0–1) 
Remarks 

Static Schedule 

(BAU) 
0.0 0.82 

Reference 

operation with 

fixed set-points 

Rule-Based PID 

Control 
8.9 0.79 

Reactive 

adjustments 

without 

prediction 

MADDPG (Best 

baseline) 
15.9 0.78 

Multi-agent 

learning without 

attention 

Proposed 

Framework 
21.7 [18.9–23.1] 0.85 [0.82–0.87] 

Attention + 

Feature 

Selection + 

Cooperative RL 

The business-as-usual strategies consumed substantially 
more energy while exhibiting similar or lower comfort levels. 
The proposed method achieved a 21.7 % median energy saving
—+12.8 percentage points relative to rule-based control and 

+21.7 points compared with static scheduling — while 

maintaining comfort within ±1 °C of the target range. These 

improvements underscore the tangible operational benefits of 
incorporating predictive and cooperative optimization 
mechanisms. 

Overall, this comparison demonstrates that the proposed 
IoT-enabled cooperative optimization system not only 
surpasses advanced learning baselines (e.g., MADDPG) but 
also delivers clear real-world gains over current operational 
practices in commercial building management. 

F. Robustness 

Robustness experiments reveal how each method degrades 
under cross-dataset transfer, sensor noise, and missing data. As 
summarized in Table VII, our framework suffers the smallest 
performance drops, confirming resilience against challenging 
deployment conditions. 

TABLE VII.  ROBUSTNESS EVALUATION (PERFORMANCE DROP IN ENERGY 

SAVING %) 

Condition XGBoost+MADDPG PIDT Proposed 

Cross-dataset 

transfer 
-11.2% -9.6% -4.5% 

Gaussian noise 

(σ=0.1) 
-14.8% -12.5% -6.9% 

20% missing 

data  
-18.3% -15.4% -7.8% 
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The impact of Gaussian noise is further depicted in Fig. 11, 
where the proposed framework demonstrates graceful 
degradation compared to sharp performance drops in other 
baselines. 

 
Fig. 11. Robustness under noise. 

Fig. 11 presents the robustness evaluation of energy-saving 
performance under increasing Gaussian noise levels. The 
proposed framework demonstrates graceful degradation, 
maintaining more than 15% savings even at σ = 0.2. In 
contrast, PIDT exhibits moderate sensitivity, while 
XGBoost+MADDPG suffers sharp performance drops, falling 
below 5% savings at high noise levels. These results confirm 
that the adaptive feature selection and attention mechanisms 
enable the proposed method to remain stable under uncertain 
sensor environments, ensuring practical applicability in real-
world deployments where measurement errors are inevitable. 
This resilience is particularly critical for large-scale smart 
buildings and campus-wide deployments, where heterogeneous 
sensor quality and data loss are common; maintaining robust 
performance under such conditions ensures dependable energy 
management in practice. 

Gains stem primarily from attention’s long-horizon capture 
(Campus-C peak hours: ΔR² +0.33) and MI-filtering that 
halves the variance under σ=0.2 noise (drop −6.1 pp vs. −12.5 
pp for baselines). 

G. Ablation Study 

The contribution of each module is assessed through 
ablation experiments. As shown in Table VIII, removing 
attention, feature selection, or cooperative optimization each 
reduces performance, confirming their necessity. 

TABLE VIII.  ABLATION RESULTS (OFFICE-A DATASET) 

Variant MAE ↓ 
Energy Saving 

(%) ↑ 
Comfort Index ↑ 

w/o Attn 1.93 18.5 0.80 

w/o FS 1.89 19.2 0.81 

w/o Coop 1.72 15.6 0.77 

Full Model 1.65 21.7 0.85 

Comparative ablation outcomes are also visualized in 
Fig. 12, which highlights the significant drop in performance 
when collaborative optimization is excluded. 

 
Fig. 12. Ablation comparison. 

Fig. 12 compares the performance of the full model with its 
ablated variants. Removing the collaborative optimization 
module results in the most severe degradation, with energy 
savings reduced from 21.7% to 15.6% and comfort index 
dropping from 0.85 to 0.77. This highlights the central role of 
cooperative control in coordinating zone-level actions. 
Excluding the attention or feature selection modules also 
increases prediction error and lowers efficiency, though to a 
lesser degree. Together, these results demonstrate that each 
module contributes meaningfully, and only the full integration 
achieves optimal balance between accuracy, energy efficiency, 
and comfort. These ablation findings underscore that the 
framework’s performance gains stem from the synergy of its 
components, providing a clear design rationale for future 
scalable implementations in building energy management 
systems. Please refer to Appendix for notations. 

V. DISCUSSION 

The experimental results presented in this study offer 
several key insights into the effectiveness of the proposed IoT-
enabled data-driven collaborative optimization framework for 
dynamic thermal load management in low-energy buildings. 
Across three datasets representing diverse building types and 
climates, the proposed method consistently achieved superior 
forecasting accuracy and energy-saving performance compared 
to classical, machine learning, and reinforcement learning 
baselines. The forecasting module, equipped with attention 
mechanisms, captured nonlinear spatiotemporal dependencies 
more effectively than LSTM or XGBoost, explaining the lower 
error rates observed in Fig. 9. Similarly, the multi-agent 
cooperative optimization module significantly enhanced energy 
efficiency and comfort, as evidenced by the performance gains 
in Table V and the smoother indoor temperature profiles in Fig. 
10. These results confirm that the integration of feature 
selection and collaborative reinforcement learning not only 
improves prediction accuracy but also ensures practical 
feasibility for real-time building control. 

Despite these encouraging outcomes, several limitations 
should be acknowledged. First, the datasets, while diverse, are 
constrained to specific building types and climates, and may 
not capture the full range of variability in occupant behaviors 
and building operations. Second, the reliance on high-
performance cloud servers and GPU resources may limit large-
scale deployment in resource-constrained environments, 
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although the inclusion of edge devices partly mitigates this 
issue. Third, the reinforcement learning framework requires 
substantial training time and may face stability challenges 
when scaled to hundreds of zones with heterogeneous 
dynamics. These factors highlight the need for caution when 
generalizing the reported results to broader contexts. 

Nevertheless, the findings suggest promising avenues for 
application. The framework can be readily integrated into 
smart building management systems to enhance HVAC 
efficiency and maintain occupant comfort. Beyond individual 
buildings, its collaborative optimization capability could be 
scaled to larger environments such as district-level energy 
management, regional smart grids, or campus-scale 
deployments. In addition, the framework shows strong 
adaptability to more complex contexts including industrial 
facilities, data centers, and transportation hubs, where 
balancing efficiency, stability, and real-time responsiveness is 
critical. To realize such deployments, future implementations 
will need to address integration with existing building 
management systems, interoperability standards, and cost-
effective edge–cloud coordination. Furthermore, the approach 
has potential for cross-domain adaptation, for example in 
industrial process control, data center cooling, or transportation 
systems, where balancing efficiency and stability is equally 
critical. 

Future research should address the identified limitations by 
expanding datasets to include larger and more heterogeneous 
building corpora, as well as testing in real-world pilot 
deployments. Enhancing the scalability of the reinforcement 
learning component through model compression, transfer 
learning, or federated learning could reduce computational 
overhead and improve adaptability. Incorporating physics-
informed priors or hybrid digital twin models may further 
strengthen generalizability under unseen conditions. Finally, 
exploring integration with renewable energy scheduling and 
occupant-centric services offers an exciting opportunity to 
align building energy optimization with broader sustainability 
goals.  

VI. CONCLUSION 

This study proposed an IoT-enabled, data-driven 
collaborative optimization framework for dynamic thermal 
load management in low-energy buildings. By integrating 
mutual-information–guided feature selection, attention-
enhanced forecasting, and multi-agent reinforcement learning 
under an edge–cloud architecture, the framework achieves 
median 21.7% energy savings (IQR 18.9–23.1%) across three 
heterogeneous datasets, corresponding to a +5.8 percentage 
point gain over MADDPG (p=0.004, Wilcoxon test). Comfort 
deviations are maintained within ±1 °C (median absolute 

deviation 0.32 °C). Robustness tests further show smaller 

performance degradation than baselines under σ  ≤  0.2 

Gaussian noise and ≤20% missing data. 

The methodological contribution lies in unifying 
forecasting, feature selection, and cooperative optimization 
within a single objective function, thereby reducing error 
propagation common in pipeline approaches. From an 
engineering perspective, feasibility was demonstrated in a 

hardware-in-the-loop testbed operating under the specified 
compute and latency budget; real-building trials and broader 
climatic contexts remain as future work. 

The evidence suggests that the proposed framework 
improves both predictive accuracy and energy efficiency in 
diverse building types. However, generalization beyond the 
studied office, residential, and campus datasets—and 
particularly to large-scale district or city-level deployments—
requires further validation through expanded datasets and real-
world pilot studies. Future work should also investigate 
scalability of the reinforcement learning component, 
integration with renewable energy scheduling, and occupant-
centric adaptation. 
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APPENDIX: NOTATION 

Symbol Definition Unit / Range 

B = B1, B2 , … , BN  Set of buildings – 

Xt ∈ Rd 
Sensor feature vector (temperature, humidity, CO₂, 

occupancy, weather, control signals) 
Various, often normalized (dimensionless) 

yt Actual dynamic thermal load (ground truth) kW or kWh 

yt Predicted thermal load kW or kWh 

L Look-back window length Number of time steps (min or h) 

st
z 

State vector of zone z  at time t  (predicted load, 

temperature, occupancy, etc.) 
– 

at
z  

Control action of zone z  at time t  (HVAC 

power/airflow) 
kW, m³/h 

rt
z Reward of zone z at time t – (dimensionless) 

Et
z Energy consumption of zone z at time t kWh 

Pt
z  Instantaneous HVAC power in zone z at time t kW 

Δt Control interval duration min or h 

Ct
z 

Comfort deviation (difference between actual and 

target temperature) 
°C 

Tt
z Actual indoor temperature of zone z at time t °C 

T\texttarget
z  Target indoor temperature of zone z °C 

α, β 
Weights for energy consumption and comfort 

deviation in reward function 
Positive real numbers 

γ Discount factor (0,1)  

λ1, λ2 , λ3 
Weights of forecasting, feature selection, and 

optimization terms in total loss 
Positive real numbers 

I(Xj ; Y) Mutual information between feature Xj  and target Y nats or bits 

δ 
Threshold for mutual information–based feature 

selection 
– 

MAE Mean Absolute Error kW 

RMSE Root Mean Square Error kW 

MAPE Mean Absolute Percentage Error % 

R2 Coefficient of determination [0,1] 

Energy Saving Energy saving rate % 

Comfort Index Thermal comfort index [0,1] 

Cost Reduction Cost Reduction Rate % 

 

 


