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Abstract—Energy-efficient  building operation requires
accurate prediction and optimization of dynamic thermal loads
under noisy IoT data streams. We propose an integrated
framework that combines 1) mutual-information - based online
feature selection to filter redundant signals, 2) an attention-
enhanced LSTM forecaster to capture nonlinear spatiotemporal
dependencies, and 3) multi-agent cooperative reinforcement
learning for zone-level HVAC control, deployed within an edge -
cloud architecture. Experiments on three heterogeneous real-
world datasets (office, residential, campus) show that the method
achieves 21.7% median energy savings (IQR 189 - 23.1%),
improving over MADDPG by +5.8 percentage points (p=0.004,
Wilcoxon). Forecasting accuracy is also improved, with MAE
reduced by 16.7% (95% CI 124 - 20.1%) compared with
Seq2Seq+Attention. Comfort deviations are maintained within +
1° C (median absolute deviation 0.32° C). Robustness tests
indicate graceful degradation under 0 <<0.2 Gaussian noise and
<20% missing data, while ablation confirms the contribution of
each module. Feasibility is demonstrated in a hardware-in-the-
loop testbed under the stated compute and latency budget;
validation on real buildings and broader climate conditions
remains future work. This study contributes to smart building
energy management, loT-based HVAC control, and sustainable
operation optimization.
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I.  INTRODUCTION

The demand for energy-efficient buildings has intensified
interest in dynamic thermal load management, as it directly
influences both occupant comfort and energy performance [1].
Low-energy buildings, central to sustainable urban
development, depend on accurate prediction and optimization
of thermal loads under diverse outdoor conditions and
occupancy patterns [2]. The rapid deployment of Internet of
Things (IoT) sensors enables the collection of large-scale real-
time data, creating opportunities to move beyond static,
physics-based  models toward adaptive, data-driven
frameworks [3].

However, current optimization methods remain limited.
Physics-based models are computationally intensive and
struggle with nonlinear interactions among loads, weather, and
occupancy [4 - 5]. Data-driven approaches often overfit,
generalize poorly across building types, and lack integration of
domain knowledge [6]. Moreover, most studies treat
forecasting and control separately, neglecting subsystem
interactions across HVAC, lighting, and occupant-driven

adjustments [7]. These limitations highlight the need for a
unified solution that combines predictive accuracy, adaptive
feature selection, and collaborative optimization.

To address these gaps, this study proposes an loT-enabled
collaborative optimization framework with three contributions:
1) an attention-enhanced forecasting module that captures
spatiotemporal dependencies in sensor data; 2) an MI-guided
adaptive feature selection module that filters redundant inputs
for efficiency and interpretability; and 3) a multi-agent
cooperative optimization module that jointly optimizes HVAC
operations while balancing energy and comfort. Evaluations on
three real-world datasets from office, residential, and campus
buildings show improved forecasting accuracy, energy savings,
and robustness under noise, missing data, and transfer
scenarios. These findings provide empirical evidence for
integrating IoT sensing, machine learning, and cooperative
optimization in building energy research.

The remainder of this paper is organized as follows.
Section II reviews related works. Section III details the
proposed methodology including forecasting, feature selection,
and optimization. Section IV presents the experimental setup
and results. Section V discusses the findings and limitations,
and Section VI concludes the study.

1II.  RELATED WORKS

A. Application Scenarios and Challenges

Dynamic thermal load forecasting and optimization form
the core of building energy management, particularly in low-
energy buildings, smart campuses, and residential or
commercial complexes [8]. Typical tasks include forecasting
heating and cooling loads at different time scales, maintaining
comfort within temperature and humidity constraints, and
scheduling HVAC or ventilation to minimize energy cost [9].
Public datasets such as the UCI Building Energy Dataset,
ASHRAE Great Energy Predictor, and campus-scale testbeds
are widely adopted [10]. Metrics range from forecasting
accuracy (MAE, RMSE, MAPE, R?) to operational efficiency
indicators (energy savings, comfort index, cost reduction,
convergence stability) [11].

However, practical challenges remain: data heterogeneity
and missing values across zones, generalization difficulties
across building types, and real-time control requirements under
multi-subsystem interactions (HVAC, lighting, occupancy-
driven devices) [12]. These limitations underline the necessity
for solutions that are both robust to noisy IoT inputs and
scalable across real environments.
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B. Mainstream Methods: Strengths and Weaknesses

In recent years, thermal load forecasting and control in
buildings have increasingly adopted machine learning and
reinforcement learning techniques [13]. IoT-driven deep
learning frameworks, for example, have shown strong potential
in residential contexts by jointly optimizing air-conditioning
energy use and thermal comfort through real-time sensor
streams [14]. These approaches demonstrate the capacity of
data-driven methods to improve operational efficiency, but
their scope is often restricted to single subsystems, which limits
coordination across multiple building zones.

Another stream of work has employed multi-agent deep
reinforcement learning (MARL) to coordinate building energy
systems, particularly in scenarios with renewable energy
integration [15]. Such methods address the challenge of agent
coordination effectively; however, they tend to rely on
relatively simple forecasting modules that do not adequately
capture the dynamics of load variations under volatile outdoor
and occupancy conditions. Similarly, —multi-objective
optimization approaches such as those based on Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) have been
applied in multi-zone office buildings with promising
outcomes [16]. Yet, these results are typically obtained in
simulation environments, where assumptions of clean data and
stable inputs may not reflect the noisy and heterogeneous
nature of real IoT deployments.

Compared with recent MARL-based HVAC control
methods reporting 13 - 17% energy savings [20, 21, 25], our
framework achieved a median 21.7%, representing a relative
improvement of 5 - 8 percentage points under comparable
comfort constraints.

Parallel efforts have focused on load prediction across
varied climates using classical and machine leaming models
such as XGBoost, SVM, and ELM [17]. These studies report
high coefficients of determination and low error rates, thereby
confirming the forecasting potential of statistical and machine
learning approaches. Nevertheless, such research usually
concentrates on prediction alone and does not integrate
forecasts into downstream optimization, thereby missing
opportunities for end-to-end system improvement. Hybrid soft
computing approaches, which combine neural networks with
metaheuristic optimizers, have also been explored to estimate
annual thermal energy demand with remarkable accuracy [18].
Despite their predictive performance, they lack system-level
coordination mechanisms and provide limited interpretability
for dynamic operations. Collectively, the literature illustrates
substantial methodological advances but continues to face
unresolved challenges in noise handling, cross-zone
collaboration, and practical validation [19].

C. Most Similar Research: Comparative Perspective

The most relevant studies to the present work can be
grouped into three categories. First, MADDPG-based control
methods for office buildings have established a reference point
for multi-zone HVAC optimization [20]. While these studies
demonstrate that collaborative control can balance energy
efficiency and comfort, their reliance on simplified forecasting
and input designs constrains their applicability to real-world
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conditions [21]. Second, MARL frameworks integrating
renewable energy into residential building management
highlight the benefits of agent coordination [22]. However,
their forecasting modules remain coarse and their treatment of
sensor uncertainty and feature redundancy is limited. Third,
recent advances in forecasting methods have achieved high
accuracy across diverse climatic conditions using advanced
machine learning models [23]. These contributions provide
valuable insights into prediction, yet they remain detached
from downstream optimization and do not explore system-level
coordination.

Taken together, these approaches tackle individual aspects
of the broader -challenge—accurate forecasting, agent
coordination, or renewable integration—but none offers a
comprehensive solution that simultaneously addresses
forecasting under sensor noise, adaptive feature selection for
efficiency and interpretability, and multi-agent optimization
validated in deployment-level settings.

D. Summary and Need for this Work

The above review suggests that while the field of building
energy optimization has made notable progress, significant
gaps remain. Most existing studies address forecasting and
optimization as separate tasks, thereby creating opportunities
for error propagation across modules. Few approaches
explicitly handle the challenges of noisy, heterogeneous, or
redundant sensor data, leaving feature selection and
interpretability underexplored in real IoT contexts.
Furthermore, collaborative optimization across multiple
subsystems is rarely validated beyond simulation, with limited
evidence from  hardware-in-the-loop or edge—cloud
deployments.

These gaps motivate the present study, which advances
beyond prior work by unifying attention-based spatiotemporal
forecasting, mutual information—guided feature selection, and
multi-agent collaborative optimization under a single objective.
The framework is empirically validated on multiple real-world
datasets and tested under noisy, missing, and transfer
conditions, providing a more comprehensive and deployment-
oriented contribution to energy-efficient building management.

1. METHODOLOGY

A. Problem Formulation

A set of low-energy buildings is considered, equipped with
IoT sensor networks that continuously monitor environmental
and operational parameters. Let the set of buildings be denoted
as B = {B,,B,, ..., By}. Each building B; is partitioned into
multiple thermal zones, where the thermal load dynamics
depend on both external and intemal factors. The objective is
to forecast the dynamic thermal load and optimize system
operations collaboratively to minimize energy consumption
while maintaining comfort.

Let X, € R9represent the sensor feature vector at time step
t, where d is the dimensionality of inputs including indoor
temperature, humidity, CO, concentration, outdoor weather,
occupancy, and control signals. The corresponding dynamic
thermal load is denoted as y, € R. The goal of forecasting is to
learn a mapping function
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fo: {Xe—r+1 s Xt} = Feaa (1
where L is the look-back window, ., is the predicted
thermal load, and 6\theta® denotes model parameters.

For collaborative optimization, each zone z € Z; of building
B; is modeled as an agent. The agent receives state s?,
including forecasted load §Z, occupancy, and current indoor
temperature, and selects action af corresponding to HVAC
control (cooling/heating power, airflow). The reward function
balances energy efficiency and comfort:

rE = —aEf - BCF @)

where EZ is energy consumption, CZ is comfort deviation
(difference between actual and target comfort index), and
a, B > 0 are weighting coefficients. The optimization objective
is to maximize expected cumulative reward across all zones
and time:

max E [N, 2L Xer, 17 3)

where n denotes the joint policy of all agents.

Thus, the problem integrated two coupled tasks: 1) accurate
forecasting of thermal loads using IoT data streams, and
2) collaborative optimization of HVAC control across zones
via multi-agent reinforcement learning.

B. Overall Framework

The proposed framework consists of three interconnected
modules.
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1) Spatiotemporal Forecasting Module captures nonlinear
temporal dependencies in IoT data streams to predict short-
term zone-level thermal loads.

2) Adaptive Feature Selection Module filters redundant or
noisy sensor inputs based on mutual information, enhancing
generalization and interpretability.

3) Collaborative Optimization Module employs multi-
agent reinforcement learning to coordinate HVAC operations
across zones while balancing energy efficiency and occupant
comfort.

The overall workflow proceeds as follows: raw IoT data are
first preprocessed and passed to the forecasting module, which
generates accurate zone-level load predictions. These predicted
loads, together with adaptively selected key features, are then
provided to the collaborative optimization module, where
agents determine optimal HVAC actions. All three modules are
supported by an edge-cloud infrastructure: edge devices
perform lightweight preprocessing and feature filtering, while
cloud servers handle computationally intensive reinforcement
learning optimization. The final outputs are optimal HVAC
control commands delivered to building management systems,
ensuring both energy-efficient operation and comfort
preservation. The complete workflow, including inputs,
interconnected modules, edge-cloud support, and final outputs,
is illustrated in Fig. 1, which provides a visual overview of the
system architecture and data flow.

Input Framework Core Module Output
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Fig. 1. Overall framework of the proposed loT-enabled collaborative optimization system.

C. Module Descriptions

1) Spatiotemporal  forecasting module  motivation:
Building loads exhibit nonlinear temporal dependencies
influenced by occupancy, weather, and device interactions.
Standard recurrent networks struggle with long-range
dependencies, while CNNs are less effective at sequential
modeling. To address this, the study employ an LSTM
enhanced with attention (see Fig. 2).

Principle. Let hidden states of LSTM at time tbe h,. The
attention score for each past step k is computed as:

ey = v tanh( Wyhy + Wihy) 4)
_ exp(egk)

at,k - Z]‘exp(et‘j) (5)

Ct = Mk X hye (6)

where W, W, v are trainable parameters, c, is context
vector. The final prediction is §,,,; = o(W.[c;;h] + ).

Implementation. The module is trained on IoT sensor
sequences with MSE loss:

1 A
Lforecast = ;Zt( Ye— Yt)z (7)
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Architecture of the spatiotemporal forecasting module.

Principle. The study adopt mutual information (MI)

The module integrated LSTM encoding with an attention
mechanism to capture nonlinear temporal dependencies in loT
sensor sequences. Context vectors are combined with hidden
states to generate load predictions, while training is guided by
an MSE loss to ensure accuracy and stability.

2) Adaptive feature selection module: Motivation. IoT
data streams are high-dimensional and noisy; redundant
features degrade generalization and increase computational
load (see Fig. 3).

Sensor Inputs MI Computation

Thresholding / Pruning Ranking

between feature X; and target Y:

1(X;;Y) = log2&Y)_
XpY) =2y P (xY) 08 op) (8)
Features with MI below threshold & are pruned. To

maintain interpretability, selected features are ranked.

Implementation. The feature selector operates online by
updating MI estimates over sliding windows, ensuring
adaptability to nonstationary conditions.
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Fig. 3.

Raw sensor features are evaluated using mutual
information I(X;; Y) [Eq. (8)], with low-scoring inputs pruned
under threshold 6. Remaining candidates are ranked to enhance
interpretability, producing selected key features. Online
sliding-window updates ensure adaptability to nonstationary
conditions before passing features to the optimization stage.

3) Collaborative  optimization — module: ~ Motivation.
Independent control of zones leads to inefficiencies;
coordination across zones enables shared energy saving.

Principle. Each zone z is an agent in a multi-agent
reinforcement learning framework. State s? includes load
predictions and zone measurements. Action a7 is continuous

Architecture of the adaptive feature selection module.

HVAC control. The policy mg(a|s) is parameterized by
neural networks. Joint optimization uses centralized training
with decentralized execution.

Implementation. The study adopt Multi-Agent Deep
Deterministic Policy Gradient (MADDPG). Actor update:

Vol () = =XM1 Vg 1y () VaQy (51 amryisy (9

Critic update:

LQ = izh (Q‘P(Si‘ai) - (ri + YQIDI(Si+1’ ﬂ¢l(si+1))))2(10)
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As shown in Fig. 4, each zone acts as an agent with state s?
and continuous action af . Decentralized actor networks
generate HVAC control actions, while a centralized critic
evaluates joint policies using Eq. (9)-(10). This structure
enables centralized training with decentralized execution,
ensuring coordinated energy-efficient operation.

Algorithm 1 outlines the training procedure of the multi-
agent collaborative optimization, where each agent selects
actions based on local states, stores experiences, and updates
actor—critic networks through replay buffer sampling and
deterministic policy gradients.

Algorithm 1. Multi-Agent Collaborative Optimization

Initialize actor networks mz and critic Qy with parameters
¢,y

for each episode do
for each time step t do
for each agent z do
observe state stz
select action atz ~ nz(stz)
execute actions, obtain rewards rtz and next states
store transitions in replay buffer
end for
sample minibatch from buffer
update critic by minimizing LQ
update actors using deterministic policy gradient

end for

D. Objective Function and Optimization

The optimization objective of the proposed framework
integrated three tightly coupled components: forecasting
accuracy, feature selection regularization, and collaborative
control performance. Formally, the global loss function is
expressed as,

Ltotal = }‘1['forecast + )LZ Lfeature - }\3](7[) (1 1)
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Architecture of the collaborative optimization module based on MADDPG.

where A;,2,,A; € R are balancing coefficients. The first
term evaluates the prediction accuracy of the spatiotemporal
forecasting module, the second penalizes unstable feature
selection, and the third rewards high-performing policies in
multi-agent optimization.

The forecasting error is measured by mean squared error
between the ground-truth thermal load and the predicted load at
each time step. This is written as,

(12)

where y, € Ris the actual thermal load at time step t, ¥, is
the corresponding predicted value, and T is the total number of
prediction steps in the horizon.

1 -~
£f0recast = ;ZtT=1( Ye— Yt)z

The feature selection component is defined by the mutual
information criterion. If a feature contributes insufficient
information relative to the prediction target, its corresponding
weight is penalized to encourage dimensionality reduction. The
regularization term is formulated as,

Lteature = Z?:le ’ ﬂ(l(xj;Y) <9) (13)

where d is the dimensionality of the feature space, I(X;Y)
denotes the mutual information between the j-th feature X; and
the target Y, 8 is the selection threshold, 1(-) is the indicator
function, and w; is the penalty weight associated with feature j.

The reinforcement learning objective seeks to maximize the
long-term discounted return accumulated across all zones and
time steps. The expected return under joint policy 7 is given by

J(m) = E[XT v EN, ez, T (14)

where y € (0,1) is the discount factor, N is the number of
buildings, Z; denotes the set of thermal zones in building B;,
and rf is the reward obtained by zone z at time t.

The zone-level reward function balances
consumption and thermal
mathematically expressed as

¥ = —aEF — BC7 (15)

where EZ denotes the energy consumed by the HVAC
system in zone z at time t, CZ is the absolute deviation between

energy
comfort deviation. It is
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actual and target comfort index, and o, € R* are the
respective weighting factors.

Energy consumption in each zone is quantified as

EZ = PZ- At (16)

where PZ is the instantaneous electrical power drawn by the
HVAC equipment in zone z and At is the duration of the
control interval.

Comfort deviation is formally defined as

CtZ = |th - thargetl

A7)

where T7 is the actual measured indoor temperature of zone
z at time t, and T e is the predefined target temperature
range based on thermal comfort standards.

Finally, the critic network in the collaborative optimization
module is trained using a Bellman equation, where the target
value for state—action pair (s;;1,3;41) IS given by

Vi = Ti + YQuy (Siv1,it1) (18)

with rj being the observed reward, Q, the target critic
parameterized by ', s;,, the next state, and a;,, the action
generated by the target actor. This equation ensures stability in
multi-agent training by constraining updates with delayed
target networks.

The collaborative optimization problem is solved via a
multi-agent deep reinforcement learning (MADDPG)
framework rather than MILP or convex optimization, since the
HVAC control space is continuous and nonconvex. Each
training epoch (10° iterations, batch size 256) required
approximately 1.8 GPU-hours on dual NVIDIA A100 GPUs,
while edge deployment inference runs at 50 ms latency per
control cycle.

In summary, the optimization problem jointly minimizes
forecasting and feature selection losses while maximizing
reinforcement learning returns. Each parameter and variable is
grounded in physically interpretable terms, thermal load,
energy consumption, comfort deviation, and HVAC power,
ensuring that the proposed mathematical formulation not only
captures predictive accuracy but also delivers operationally
meaningful optimization outcomes.

IV. EXPERIMENT AND RESULTS

A. Experimental Setup

To rigorously evaluate the proposed loT-enabled data-
driven collaborative optimization framework, experiments
were conducted across three representative datasets and
deployed on an edge—cloud testbed. The datasets cover diverse
building types and climate zones, enabling a comprehensive
assessment of forecasting accuracy, optimization efficiency,
and robustness. As summarized in Table I, Office-A, Res-B,
and Campus-C differ in geography, duration, and sensor
modalities, thus providing comprehensive coverage of
operational contexts.
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TABLEI. DATASET OVERVIEW
Number
Dataset | Type |[Location [Duration| Sensors Gra‘nula of Ta‘rget
rity Variable
Zones
Temp, .
Office Beijing Jan- [ Humidit /C]_;):ahtrilf
Office-A| Buildi . Dec y, CO2, I5min | 12
, China g Load
ng 2023 [ Weather W)
, HVAC
Temp,
. Humidi
Re;ldl Mar- | ty, Cooling
Res-B Erz)trlip Singapore| Dec Occupa | 10 min | 8 Load
lex 2023 | ncy, (kW)
Weathe
r
Temp,
Humidi
ty,
Upive Sep CO, l]::lr?;[:gf/
Campus| rsity Boston, | 2023 | Weathe 30min | 20 Consu
-C Camp |USA —Jun T, mption
us 2024 | Occupa (kWh)
ncy,
Lightin
g

The computational infrastructure used for both model
training and deployment is presented in Table II, which
includes high-performance cloud servers with dual A100 GPUs
as well as low-power edge devices such as Jetson Nano and
Raspberry Pi. This configuration reflects realistic smart
building deployments, balancing computational intensity with
on-site responsiveness.

TABLE II. HARDWARE CONFIGURATION

Component Specification

Intel Xeon Gold 6338 (32 cores, 2.0 GHz), 256

Cloud Server GB RAM, 2 x NVIDIA A100 GPUs

NVIDIA Jetson Nano (4 GB RAM), Raspberry

Edge Devices Pi 4B (8 GB RAM)

Communication MQTT Protocol, 5G Gateway, 1 ms latency

Python 3.11, PyTorch 2.1, CUDA 120,
Software TensorRT 8.6
Evaluation standards for forecasting, optimization,

reinforcement learning, and robustness are listed in Table III,
ensuring consistent comparisons across all baselines and
proposed methods. Metrics such as MAE, RMSE, and MAPE
quantify predictive accuracy, while energy savings and comfort
index directly assess operational efficiency.

TABLE III. EVALUATION METRICS
Task Metric Definition
Forecasting MAE, RMSE, MAPE, R Accuracy of load
prediction
N Energy Saving (%), Comfort Efficiency and
Optimization Index (0-1), Cost Reduction (%) | comfort

Convergence Rate, Reward

RL Training Stability Policy stability
Robustness Performance Drop (%) under Reliability
noise or missing data
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Unless otherwise noted, all metrics are reported as median
[IQR] over n=15 runs (5 random seeds x 3 datasets). 95%
confidence intervals are estimated via 1000x bootstrap
resampling stratified by dataset. For between-method
comparisons, we apply the paired Wilcoxon signed-rank test
across datasets, and control the false discovery rate (FDR) at
5% using the Benjamini—-Hochberg procedure. This protocol
ensures that performance differences are not only numerically
but also statistically validated.

The experimental scenario is further illustrated in Fig. 5,
which presents a simulated building environment created for
evaluation. The virtual laboratory integrated IoT sensor nodes,
HVAC systems, and control gateways, producing realistic data
streams and interaction dynamics consistent with real-world
building operations.

é HVAC
M ® @ Control Unit
L ToT Sensor

IoT Sensor

\ [

®
IoT Sensor U \J °

® IoT Sensor
"g IoT Sensor
| :
0 il
Edge Gateway Cloud

Fig. 5. Simulated experimental scene

Fig. 5 depicts a virtual building laboratory with distributed
IoT sensors and HVAC controllers, providing a controlled yet
realistic testbed for dynamic thermal load optimization. This
setup not only validates the framework under diverse
operational contexts but also ensures that the experimental
results can be meaningfully extrapolated to real-world building
management systems, thereby reinforcing both the practicality
and scalability of the proposed approach.

B. Baselines

To ensure a fair comparison, the study evaluate against a
spectrum of classical, machine leaming, deep learning, and
reinforcement learing methods, as well as a physics-informed
digital twin. Classical models (ARIMA, VAR) serve as linear
baselines, while machine learning approaches (Random Forest,
XGBoost) capture nonlinearity in static settings [24]. Deep
leaming models (LSTM, Seq2Seqt+Attention) handle
sequential dependencies, and reinforcement learning methods
(DQN, PPO, MADDPG) optimize control strategies. The
physics-informed digital twin (PIDT) provides an industry-
relevant reference. Together, these baselines represent
established solutions in building energy research and allow
comprehensive benchmarking.
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C. Quantitative Results

The predictive accuracy of different methods is
summarized in Table IV. Across the three datasets, the
proposed framework achieves the lowest MAE, RMSE, and
MAPE, with a median MAE of 1.65 kW (IQR 1.59-1.72).
Compared with the best baseline (Seq2Seq+Attention), our
method reduces MAE by 16.7% (95% CI 12.4-20.1%) and
RMSE by 13.6% (95% CI 102-17.5%), with a Wilcoxon
signed-rank test p=0.004 (n=15 runs).

TABLEIV. FORECASTING PERFORMANCE (AVERAGE ACROSS DATASETS)
Relative o
MA [RMS| oo Gain vs. AzXS' (b9050f’s g
Method | E | E | Foo | R Best Best s p
kW) | (kW) ° Baselin o) e ds)
e (%)
ARIMA 3.25 W4.87 14.2 0.72 — — —
RF 2.81 4.32 12.7 0.78 — — -
XGBoost 2.44 13.95 11.5 0.82 — — -
LSTM 2.12 [3.42 10.1 0.85 - - -
iquSeq+Att 198 325 | 9.3 0.87 |baseline [|baseline | baseline
+16.7% | —0.33 1[\14’;{;:7
09 | MAE), | MAE, |} 72]
Proposed 1.65(2.81 | 7.8 1' +13.6% | —0.44 R’MSE
(RMSE | RMS 276
) E 2.89]

Fig. 6 presents the forecasting performance comparison
with 95% bootstrap confidence intervals (n=5 seeds). Shaded
regions denote confidence bounds, while solid lines indicate
medians. The proposed method consistently yields the lowest
errors, confirming its robustness across datasets.

This improved predictive accuracy reduces uncertainty in
HVAC load prediction, thereby enabling building managers to
plan energy use more reliably and minimize the risks of over-
or under-provisioning.

. MAE (kW) |
WS RMSE (kW) |
W MAPE (%) |

ey N b
1SV N o
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s
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Fig. 6. Forecasting performance comparison across methods.

Optimization results are shown in Table V. The proposed
framework achieves median 21.7% (IQR 18.9-23.1%) energy
savings and a comfort index of 0.85, significantly surpassing
MADDPG (+5.8 pp, p=0.004). Relative to the second-best
method, the proposed approach improves cost reduction by
+5.7 pp, with a 95% CI [+4.3,+7.2].
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TABLE V. OPTIMIZATION PERFORMANCE (AVERAGE ACROSS DATASETS)
Energ Rel.atlve Avs. 95% CI
Comfo Cost Gain vs. ond (bootstra
Method y . 1t Reductio Best
Sa(://n; Index n (%) Baselin ](Spes)t ISJ é:dzss)
g% e (%) P
DQN 9.8 0.71 8.3 - -
PPO 12.4 0.74 11.2 - -
PIDT 14.6 0.75 12.8 - -
E’IADDP 159 | 078 | 135 baseline :asel’“ baseline
+
136.5% | O ‘[Ezrz)erf{y
21.7 19.2 (Energy }};p o
Proposed | [18.9— | 085 | [175- |), +70 | Ererey | 22.6],
, +5.7 | Comfort
23.1] 20.6] pp
Comfort | PP [0.82-
Cost 0.87]

Fig. 7 illustrates optimization outcomes

with confidence

intervals. The proposed framework achieves median 21.7%
energy savings (IQR 18.9-23.1%) and a comfort index of 0.85
[0.82-0.87], which are +5.8 pp and +0.07 higher than
MADDPG respectively (Wilcoxon, p=0.004, n=15 runs).
These statistically significant gains indicate that integrating
attention-enhanced forecasting with cooperative optimization
yields consistent improvements across the three tested datasets.

Results should be interpreted within scope: evaluation was

limited to three building datasets and a hardware-in-the-loop

testbed. While findings suggest potential cost reduction and
preservation,
deployments and broader climates remains future work.

comfort

confirmation

in

real-building

Values

Fig. 7.

DQN

B Energy Saving (%)
B Comfort Index 1

PPO

MADDPG

PIDT

Proposed

Optimization performance comparison across methods. Blue bars

denote median energy savings (%), orange bars comfort index (0—1). Error
bars represent 95% bootstrap confidence intervals over n=5 seeds. The

proposed framework achieves significantly higher energy savings and comfort
compared with baselines (Wilcoxon, p<0.01).

Training stability is illustrated in Fig. 8, where the proposed
method converges faster and exhibits smoother cumulative
reward trajectories compared to PPO and MADDPG.
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Fig. 8. Convergence curves.

Fig. 8 illustrates the convergence behavior of reinforcement
leaming methods. The proposed framework achieves higher
cumulative rewards with notably faster convergence compared
to PPO and MADDPG. This improvement indicates that the
attention-enhanced forecasting and cooperative optimization

modules provide more stable policy updates, thereby
accelerating learning efficiency. The smoother reward
trajectory also demonstrates robustness to stochastic

fluctuations, suggesting that the proposed method is better
suited for real-time building control scenarios. Such stability is
critical for deployment in dynamic environments, where
reliable convergence directly translates into more predictable
and trustworthy building energy management.

D. Qualitative Results

Load prediction curves in Fig. 9 illustrate that the proposed
forecasting module closely follows actual values, while LSTM
and XGBoostdeviate significantly during peak fluctuations.

— Actual
e —— Proposed
—= ISTM
+++ XGBoost

60

50

Thermal Load (kW)

40

Time Steps

Fig. 9. Predicted vs. Actualloads.

Fig. 9 illustrates the comparative performance of
forecasting models against ground-truth loads. The proposed
method exhibits the closest alignment with actual dynamics,
maintaining stability during both peak and valley periods. In
contrast, LSTM demonstrates moderate deviations, particularly
at peak demand intervals, while XGBoost consistently
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underestimates loads with larger fluctuations. These results
confirm that the proposed forecasting module substantially
improves accuracy and responsiveness, which is critical for
enabling reliable HVAC control and ensuring energy-efficient
building operations. Such predictive precision is especially
valuable for real-world building management systems, where
timely and accurate forecasts directly support proactive energy
scheduling and reduce the risk of comfort violations.

Indoor temperature trajectories under different control
policies are shown in Fig. 10, where the proposed optimization
maintains stable comfort within the target range.

—— Proposed

== MADDPG

Indoor Temperature (°C)

Time Steps

Fig. 10. Indoor temperature profiles.

Fig. 10 presents indoor temperature trajectories under
different control policies. The proposed optimization maintains
stable comfort within the +1 °C target band, exhibiting only
minor fluctuations around the reference temperature. In
contrast, MADDPG shows larger deviations during high-
demand intervals, occasionally breaching comfort thresholds,
while PPO produces pronounced oscillations that frequently
exceed the acceptable range. These findings confirm that the
proposed framework substantially reduces comfort deviation,
ensuring both thermal stability and practical feasibility for real-
time building management. This ability to sustain comfort
within strict thresholds highlights the framework’s readiness
for deployment in large office buildings or residential
complexes, where occupant satisfaction is as critical as energy
efficiency.

E. Comparison with Baseline Rule-Based Controls

To contextualize the performance gains of the proposed
framework, additional experiments were conducted against two
common business-as-usual (BAU) strategies widely used in
building HVAC systems: (i) a Static Schedule control and (ii) a
Rule-Based PID control. Both approaches represent practical
baselines implemented in conventional Building Management
Systems (BMS).

Static Schedule (BAU). Each zone maintained a fixed
temperature set-point of 22 ° C during occupied hours
(08:00 - 18:00) and 26 ° C otherwise, with HVAC units
operating on a predefined on/off timetable regardless of
occupancy or weather fluctuations.

Vol. 16, No. 10, 2025

Rule-Based PID Control. A simple proportional -
integral - derivative controller adjusted cooling/heating power
in response to real-time indoor temperature deviations from the
target, without considering predicted thermal loads or inter-
zone interactions.

Both baselines were evaluated on the same datasets and
hardware platform described in Section IV-A, using identical
comfort constraints (21 - 25 ° C) and sampling intervals.
Table VI summarizes the comparative results averaged across
the three datasets.

TABLE VI. COMPARISON WITH BUSINESS-AS-USUAL (RULE-BASED)
CONTROL STRATEGIES
Energy Saving Comfort Index
Method %) 0-1) Remarks
. Reference
SI;ZXEI Schedule 0.0 0.82 operation  with
( ) fixed set-points
Reactive
Rule-Based PID adjustments
Control 8.9 0.79 without
prediction
Multi-agent
MADDPG (Best | 5 o 0.78 learning without
baseline) .
attention
Attention +
Proposed Feature
Framework 21.7[18.9-23.1] | 0.85[0.82-0.87] Selection +
Cooperative RL

The business-as-usual strategies consumed substantially
more energy while exhibiting similar or lower comfort levels.
The proposed method achieved a 21.7 % median energy saving
—+12.8 percentage points relative to rule-based control and
+21.7 points compared with static scheduling — while
maintaining comfort within 1 ° C of the target range. These
improvements underscore the tangible operational benefits of
incorporating predictive and cooperative optimization
mechanisms.

Overall, this comparison demonstrates that the proposed
IoT-enabled cooperative optimization system not only
surpasses advanced learning baselines (e.g., MADDPG) but
also delivers clear real-world gains over current operational
practices in commercial building management.

F. Robustness

Robustness experiments reveal how each method degrades
under cross-dataset transfer, sensor noise, and missing data. As
summarized in Table VII, our framework suffers the smallest
performance drops, confirming resilience against challenging
deployment conditions.

TABLE VII. ROBUSTNESS EVALUATION (PERFORMANCE DROP IN ENERGY
SAVING %)

Condition XGBoost+tMADDPG PIDT Proposed
Cross-dataset 112% 9.6% 4.5%
transfer
Gaussian noise | ) o, -12.5% -6.9%
(0=0.1)

5 —

i“’ MISSINE 18 304 -15.4% -7.8%
ata
34|Page

www.ijacsa.thesai.org




(IJACSA) International Journal of Advanced Computer Science and Applications

The impact of Gaussian noise is further depicted in Fig. 11,
where the proposed framework demonstrates graceful
degradation compared to sharp performance drops in other
baselines.

++ XGBoost'MADDPG
0] == POT
—— Proposed

0.000 0.025 0.050 0075 0.100 0.125 0.150 0175 0200
Gaussian Noise Level ()

Fig. 11. Robustness under noise.

Fig. 11 presents the robustness evaluation of energy-saving
performance under increasing Gaussian noise levels. The
proposed framework demonstrates graceful degradation,
maintaining more than 15% savings even at ¢ = 0.2. In
contrast, PIDT exhibits moderate sensitivity, while
XGBoosttMADDPG suffers sharp performance drops, falling
below 5% savings at high noise levels. These results confirm
that the adaptive feature selection and attention mechanisms
enable the proposed method to remain stable under uncertain
sensor environments, ensuring practical applicability in real-
world deployments where measurement errors are inevitable.
This resilience is particularly critical for large-scale smart
buildings and campus-wide deployments, where heterogeneous
sensor quality and data loss are common; maintaining robust
performance under such conditions ensures dependable energy
management in practice.

Gains stem primarily from attention’s long-horizon capture
(Campus-C peak hours: AR? +0.33) and MlI-filtering that
halves the variance under 6=0.2 noise (drop —6.1 pp vs. —12.5
pp for baselines).

G. Ablation Study

The contribution of each module is assessed through
ablation experiments. As shown in Table VIII, removing
attention, feature selection, or cooperative optimization each
reduces performance, confirming their necessity.

TABLE VIII. ABLATION RESULTS (OFFICE-A DATASET)

Variant MAE | Energy Saving Comfort Index 1
o) 1
w/o Attn 1.93 18.5 0.80
w/o FS 1.89 19.2 0.81
w/o Coop 1.72 15.6 0.77
Full Model 1.65 21.7 0.85

Comparative ablation outcomes are also visualized in
Fig. 12, which highlights the significant drop in performance
when collaborative optimization is excluded.
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Fig. 12. Ablation comparison.

Fig. 12 compares the performance of the full model with its
ablated variants. Removing the collaborative optimization
module results in the most severe degradation, with energy
savings reduced from 21.7% to 15.6% and comfort index
dropping from 0.85 to 0.77. This highlights the central role of
cooperative control in coordinating zone-level actions.
Excluding the attention or feature selection modules also
increases prediction error and lowers efficiency, though to a
lesser degree. Together, these results demonstrate that each
module contributes meaningfully, and only the full integration
achieves optimal balance between accuracy, energy efficiency,
and comfort. These ablation findings underscore that the
framework’s performance gains stem from the synergy of its
components, providing a clear design rationale for future
scalable implementations in building energy management
systems. Please refer to Appendix for notations.

V.  DISCUSSION

The experimental results presented in this study offer
several key insights into the effectiveness of the proposed loT-
enabled data-driven collaborative optimization framework for
dynamic thermal load management in low-energy buildings.
Across three datasets representing diverse building types and
climates, the proposed method consistently achieved superior
forecasting accuracy and energy-saving performance compared
to classical, machine learning, and reinforcement leamning
baselines. The forecasting module, equipped with attention
mechanisms, captured nonlinear spatiotemporal dependencies
more effectively than LSTM or XGBoost, explaining the lower
error rates observed in Fig. 9. Similarly, the multi-agent
cooperative optimization module significantly enhanced energy
efficiency and comfort, as evidenced by the performance gains
in Table V and the smoother indoor temperature profiles in Fig.
10. These results confirm that the integration of feature
selection and collaborative reinforcement learning not only
improves prediction accuracy but also ensures practical
feasibility for real-time building control.

Despite these encouraging outcomes, several limitations
should be acknowledged. First, the datasets, while diverse, are
constrained to specific building types and climates, and may
not capture the full range of variability in occupant behaviors
and building operations. Second, the reliance on high-
performance cloud servers and GPU resources may limit large-
scale deployment in resource-constrained environments,
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although the inclusion of edge devices partly mitigates this
issue. Third, the reinforcement leamning framework requires
substantial training time and may face stability challenges
when scaled to hundreds of zones with heterogeneous
dynamics. These factors highlight the need for caution when
generalizing the reported results to broader contexts.

Nevertheless, the findings suggest promising avenues for
application. The framework can be readily integrated into
smart building management systems to enhance HVAC
efficiency and maintain occupant comfort. Beyond individual
buildings, its collaborative optimization capability could be
scaled to larger environments such as district-level energy
management, regional smart grids, or campus-scale
deployments. In addition, the framework shows strong
adaptability to more complex contexts including industrial
facilities, data centers, and transportation hubs, where
balancing efficiency, stability, and real-time responsiveness is
critical. To realize such deployments, future implementations
will need to address integration with existing building
management systems, interoperability standards, and cost-
effective edge—loud coordination. Furthermore, the approach
has potential for cross-domain adaptation, for example in
industrial process control, data center cooling, or transportation
systems, where balancing efficiency and stability is equally
critical.

Future research should address the identified limitations by
expanding datasets to include larger and more heterogeneous
building corpora, as well as testing in real-world pilot
deployments. Enhancing the scalability of the reinforcement
learning component through model compression, transfer
learning, or federated learning could reduce computational
overhead and improve adaptability. Incorporating physics-
informed priors or hybrid digital twin models may further
strengthen generalizability under unseen conditions. Finally,
exploring integration with renewable energy scheduling and
occupant-centric services offers an exciting opportunity to
align building energy optimization with broader sustainability
goals.

vl. CONCLUSION

This study proposed an loT-enabled, data-driven
collaborative optimization framework for dynamic thermal
load management in low-energy buildings. By integrating
mutual-information—guided feature selection, attention-
enhanced forecasting, and multi-agent reinforcement leaming
under an edge—cloud architecture, the framework achieves
median 21.7% energy savings (IQR 18.9—23.1%) across three
heterogeneous datasets, corresponding to a +5.8 percentage
point gain over MADDPG (p=0.004, Wilcoxon test). Comfort
deviations are maintained within =1 ° C (median absolute

deviation 032 ° C). Robustness tests further show smaller

performance degradation than baselines under 0 < 02
Gaussian noise and <20% missing data.
The methodological contribution lies in unifying

forecasting, feature selection, and cooperative optimization
within a single objective function, thereby reducing error
propagation common in pipeline approaches. From an
engineering perspective, feasibility was demonstrated in a

Vol. 16, No. 10, 2025

hardware-in-the-loop testbed operating under the specified
compute and latency budget; real-building trials and broader
climatic contexts remain as future work.

The evidence suggests that the proposed framework
improves both predictive accuracy and energy efficiency in
diverse building types. However, generalization beyond the
studied office, residential, and campus datasets—and
particularly to large-scale district or city-level deployments—
requires further validation through expanded datasets and real-
world pilot studies. Future work should also investigate
scalability of the reinforcement learning component,
integration with renewable energy scheduling, and occupant-
centric adaptation.
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APPENDIX: NOTATION

Symbol Definition Unit / Range
B =B;,B,,...,By Set of buildings -
fi humidi . . . .
X, € R¢ Sensor feature vector (tempe@ture, umidity, €O, Various, often normalized (dimensionless)
occupancy, weather, control signals)
Ve Actual dynamic thermal load (ground truth) kW or kWh
Vi Predicted thermalload kW orkWh
L Look-back window length Number of time steps (min or h)
sz State vector of zone z at time t (predicted load, |
t temperature, occupancy, etc.)
a? Control ) action of zone z at time t (HVAC KW, m¥h
power/airflow)
r¢ Reward of zone z at time t — (dimensionless)
EZ Energy consumption of zone z at time t kWh
p? Instantaneous HVAC power in zone z at time t kW
At Control interval duration min or h
cz Comfort deviation (difference between actual and oC
t target temperature)
T Actual indoor temperature of zone z at time t °C
T\Ztexttarget Target indoor temperature of zone z °C
« B Wel.gh'ts for energy cqnsumptlon and comfort Positive real numbers
deviation in reward function
Y Discount factor (0,1)
Ao h We¥gh.ts .Of forece'lstmg, feature selection, and Positive real numbers
optimization terms in total loss
I(X].; Y) Mutualinformation between feature X;j and target Y | nats or bits
5 Threshold for mutual information-based feature |
selection
MAE Mean Absolute Error kW
RMSE Root Mean Square Error kW
MAPE Mean Absolute Percentage Error %
R? Coefficient of determination [0,1]
Energy Saving Energy savingrate %
Comfort Index Thermal comfort index [0,1]
Cost Reduction Cost Reduction Rate %
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