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Abstract—Visual Simultaneous Localization and Mapping 

(Visual SLAM) has become a cornerstone of autonomous 

navigation and spatial understanding in robotics, augmented 

reality, and computer vision. This review presents a 

comprehensive examination of algorithmic progress in Visual 

SLAM, focusing on the three principal paradigms: monocular, 

stereo, and RGB-D SLAM. Monocular SLAM, known for its 

minimal hardware requirements, has evolved from feature-based 

methods to deep learning-enhanced systems, addressing 

challenges like scale ambiguity and drift. Stereo SLAM leverages 

depth through triangulation, improving scale accuracy and 

robustness, particularly in dynamic and low-texture 

environments. RGB-D SLAM, utilizing depth-sensing technology, 

has enabled dense and semantically enriched mapping, finding 

significant application in indoor and real-time scenarios. 

Through a chronological and technical exploration of 

representative methods including RatSLAM, ORB-SLAM, DSO, 

ProSLAM, ElasticFusion, DynaSLAM, and recent hybrid and 

learning-based frameworks. This review identifies major 

milestones and architectural innovations across paradigms. A 

cross-paradigm analysis highlights the trade-offs in accuracy, 

computational efficiency, and adaptability, while also discussing 

emerging trends such as semantic integration, multimodal fusion, 

and neural implicit representations. Furthermore, the paper 

outlines future directions that include lifelong learning, real-time 

deployment on edge devices, dynamic environment adaptation, 

and the convergence of geometry and learning-based pipelines. 

Supported by a detailed taxonomy and historical evolution 

illustrated in visual summaries, this review serves as a 

foundational reference for researchers and developers aiming to 

understand and contribute to the advancement of Visual SLAM 

technologies in both academic and real-world contexts. 
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I. INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) is a 
fundamental problem in robotics and computer vision, enabling 
an agent to build a map of an unknown environment while 
estimating its own pose within that space. Among the various 
modalities of SLAM, Visual SLAM (V-SLAM) has gained 
increasing attention due to its cost-effectiveness, wide 
applicability, and ability to capture rich scene semantics using 
standard cameras [1]. Unlike traditional SLAM approaches that 
rely on expensive range sensors such as LiDAR, visual SLAM 
uses images as the primary sensory input, offering a 
lightweight and scalable solution for many real-world 
applications including autonomous vehicles, augmented reality 

(AR), unmanned aerial vehicles (UAVs), and mobile robotics 
[2]. 

Visual SLAM systems are typically classified into three 
main categories based on the type of visual input: monocular, 
stereo, and RGB-D SLAM. Monocular SLAM uses a single 
camera and offers a compact and inexpensive setup but suffers 
from scale ambiguity and sensitivity to initialization [3]. Stereo 
SLAM employs a pair of cameras to estimate depth via 
triangulation, thereby overcoming scale issues and providing 
more stable estimates in textured environments [4]. RGB-D 
SLAM leverages cameras that deliver both color and depth 
information simultaneously, enhancing accuracy in indoor and 
structured scenes while introducing hardware constraints and 
limitations in outdoor or long-range settings [5]. 

Over the past two decades, the field has witnessed a 
remarkable evolution in algorithmic design, ranging from 
sparse, feature-based methods to dense and semi-dense 
approaches, and more recently, learning-based frameworks that 
integrate deep neural networks with traditional geometric 
pipelines [6]. Despite significant progress, many challenges 
persist, such as dealing with dynamic environments, achieving 
real-time performance on resource-constrained devices, and 
ensuring robustness under varying lighting or texture 
conditions [7]. Furthermore, achieving generalizable SLAM 
that can adapt across domains and scales remains an open 
research problem [8]. 

This review paper provides a structured and comprehensive 
overview of Visual SLAM methods across the three primary 
categories. By examining algorithmic trajectories, technical 
innovations, and representative benchmarks, this survey aims 
to map the evolving landscape of SLAM research and identify 
promising directions for future exploration. 

II. BACKGROUND AND FUNDAMENTALS 

Visual SLAM combines techniques from geometry, signal 
processing, and optimization to simultaneously estimate a 
camera’s pose and reconstruct its environment. The core 

objective is to recover the trajectory ( )3SETt = and a map 

  from a sequence of image observations  tI  over time. 

Mathematically, the SLAM problem can be formulated as a 
maximum a posteriori (MAP) estimation: 

( )ZMXp
MX

|,maxarg
,

                   () 

where, X  is the set of poses, M  is the map, and Z  
denotes the sensor measurements [9]. Factor graph models are 
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commonly used to express the probabilistic dependencies 
between variables in SLAM, allowing the estimation to be 
represented as a graph optimization problem [10]. 

A key task in visual SLAM is camera pose estimation, 
typically achieved by minimizing the reprojection error:  
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where, iu  are image features,   is the projection function, 

and iX  are 3D landmarks [11]. Map representation varies 

from sparse point clouds to dense voxel grids, depending on 
the method [12]. 

Loop closure detection corrects accumulated drift by 
identifying previously visited locations and enforcing pose 
graph consistency [13]. Pose graph optimization is often solved 
using nonlinear least squares: 
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where, ijf  models relative motion and ijz  is the measured 

constraint [14]. Feature extraction, tracking, and data 
association form the visual front-end, while back-end 
optimization refines the trajectory and map [15]. 

Recent works also incorporate deep learning for depth 
estimation and semantic mapping, improving robustness in 
unstructured environments [16]. Benchmarks such as KITTI 
and TUM RGB-D provide standardized datasets for evaluation 
and comparison [17]. 

III. ALGORITHMIC PARADIGMS FOR SLAM 

This section synthesizes the principal algorithmic 
paradigms that have shaped SLAM development for mobile 
robots, providing a structured overview of classical and 
contemporary frameworks. We first examine filter based 
methods such as EKF-SLAM and UKF-SLAM that leverage 
recursive Bayesian estimation to jointly infer robot trajectory 
and map features. Next, particle filter approaches and their 
Rao-Blackwellized variants (FastSLAM) are discussed for 
their ability to represent multimodal posteriors in highly 
nonlinear settings. We then turn to graph based optimization 
techniques, which cast SLAM as a sparse nonlinear least 
squares problem over pose and landmark variables, and explore 
incremental solvers such as iSAM. Finally, hybrid and 
emerging paradigms that integrate multiple estimation 
strategies, learning based components, and submapping 
schemes are reviewed to highlight the evolving landscape of 
SLAM algorithms. 

A. Filter-Based Approaches 

Filter based SLAM methods formulate the simultaneous 
estimation of robot pose and map features as a recursive 
Bayesian filtering problem [16]. At each time step, the joint 
state vector. 
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where, tx  denotes the robot pose and m  concatenates all 

landmark coordinates, is represented by a Gaussian belief 

( )tt PsN ,ˆ . The filter alternates between a prediction step 
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and a correction step upon receiving a measurement tz : 
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Here, f  and h  are the process and measurement models, 

tF  and tH  their Jacobians, and tQ , tR  covariance matrices. 
Within this framework, the Extended Kalman Filter SLAM 

(EKF‐SLAM) linearizes f  and h  about the current estimate, 

resulting in first‐order approximations of non‐linear dynamics 
and sensor models [17]. EKF‐SLAM maintains a full 
covariance matrix across robot and landmark states, ensuring 

consistent uncertainty propagation but incurring ( )2nO  

computational complexity in the number of landmarks n . To 

mitigate linearization errors, the Unscented Kalman Filter 
SLAM (UKF‐SLAM) employs the unscented transform: a set 

of deterministically chosen sigma points  i

t 1−  is propagated 

through the true non‐linear functions, yielding more accurate 
posterior mean and covariance estimates without explicit 
Jacobian computation [18]. UKF‐SLAM typically achieves 
higher accuracy in highly non‐linear regimes at the cost of 
increased per‐step computation proportional to the number of 

sigma points ( 12 +L  for a state of dimension L ) [19]. Both 
EKF‐SLAM and UKF‐SLAM serve as foundational 
benchmarks against which more advanced, optimization‐based, 
and hybrid SLAM paradigms are compared. 

B. Particle Filter SLAM 

Particle‐filter SLAM methods approximate the full SLAM 

posterior ( )ttt uzmxp :1:1:0 ,|,  by a finite set of N  weighted 

particles  N

i
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. At each time step, particles are 

propagated according to the motion model 
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Followed by resampling to focus computational resources 
on high‐likelihood hypotheses. Unlike Gaussian‐based filters, 
particle filters can represent arbitrary, multi‐modal 
distributions, making them well‐suited to highly non‐linear and 
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ambiguous observation models. However, naive particle‐filter 
SLAM suffers from the “curse of dimensionality,” as the joint 
state space grows with the number of landmarks, leading to 
excessive computational demand and rapid sample 

impoverishment when N  is insufficient. 

FastSLAM Variants. FastSLAM addresses these challenges 
by factorizing the posterior into a product of a trajectory 
posterior and independent landmark posteriors: 

Trajectory estimation is performed via a particle filter, 
while each landmark’s position is maintained by a separate, 
low‐dimensional Kalman filter (or alternative Gaussian 
estimator) [20]. FastSLAM 1.0 introduced this Rao‐
Blackwellized approach, reducing computational complexity 

from ( )2NMO  to ( )NMO . FastSLAM 2.0 refined the 

proposal distribution by incorporating the current measurement 
into the sampling step, thereby improving sample efficiency 
and reducing particle deprivation in highly informative 
environments [21]. Subsequent variants have further enhanced 
robustness through adaptive resampling thresholds, 
hierarchical landmark clustering, and incorporation of grid‐
based mapping techniques for environments with dense feature 
distributions [22]. These innovations have established 
FastSLAM as a versatile, real‐time SLAM framework on 
mobile‐robot platforms with moderate computational 
resources. 

C. Graph-Based Optimization 

Graph‐based SLAM reformulates the joint estimation 
problem as a nonlinear least‐squares optimization over a sparse 
graph, in which nodes represent robot poses (and optionally 
landmark states) and edges encode spatial constraints derived 
from odometry and observations. In the pose‐graph 

formulation, only robot poses  ix  are included as variables, 

and measurements between poses (e.g., odometry or loop 
closures) define binary factors. The optimization seeks 
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where, ijz  is the measured relative transform between 

poses i  and j , ij  the information matrix, and ⊕, ⊖ 

manifold‐specific composition and inverse‐composition 
operators [23]. Factor‐graph SLAM extends this concept by 

including landmark nodes  km  and multiary factors, yielding 

a unified representation amenable to general-purpose solvers. 
The factor‐graph cost function becomes. 
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where, each factor f  relates a subset of pose and landmark 

variables through the measurement function f  and 

information matrix f  [24]. Sparsity in the graph structure 

enables efficient exploitation of sparse linear algebra 

techniques, yielding favorable scaling to large‐scale 

environments. 

Incremental smoothing and mapping (iSAM) algorithms 
tackle the computational demands of online graph optimization 
by updating the solution and factorization incrementally as new 
measurements arrive. The original iSAM algorithm 
incrementally constructs and maintains a square‐root 
information matrix via QR or Cholesky factorization, avoiding 
the need to re‐solve the entire system at each step [25]. iSAM2 
further introduces a Bayes tree data structure that encapsulates 
the conditional dependency structure of variables, allowing 
selective relinearization and re‐factorization only in affected 
subtrees when new factors are added or existing factors change 
[26]. This strategy achieves real‐time performance on resource‐
limited platforms while preserving consistency and accuracy, 
making iSAM variants a de facto choice for optimization‐based 
SLAM in mobile‐robot applications. 

IV. VISUAL SLAM 

Visual SLAM (Simultaneous Localization and Mapping) is 
a technique that leverages visual input, typically from one or 
more cameras, to perform real-time mapping and localization 
in unknown environments. As shown in Fig. 1, Visual SLAM 
is broadly categorized into three main types: Monocular 
SLAM, Stereo SLAM, and RGB-D SLAM, each characterized 
by its unique camera configuration and depth perception 
capabilities. This classification allows for flexibility in 
application domains, ranging from lightweight mobile robotics 
to dense indoor reconstruction [18]. 

 
Fig. 1. Taxonomy of Visual SLAM: Classification into Monocular, Stereo, 

and RGB-D SLAM approaches. 

Monocular SLAM employs a single camera and is 
attractive for its simplicity and low hardware cost. However, it 
faces challenges such as scale ambiguity and higher drift in 
long trajectories [19]. Stereo SLAM, by using two 
synchronized cameras, can triangulate depth directly, resulting 
in improved robustness and scale consistency [20]. In contrast, 
RGB-D SLAM integrates color and depth data from structured 
light or time-of-flight sensors, enabling dense and accurate 
reconstructions, particularly in indoor scenes [21]. 

Recent advancements in visual SLAM have focused on 
combining geometric methods with learning-based models to 
enhance robustness in dynamic or poorly textured 
environments [22]. Additionally, visual-inertial fusion and 
multi-sensor integration have further extended the capabilities 
of SLAM systems under challenging conditions [23]. These 
developments highlight the rapid evolution of visual SLAM 
technologies across all three categories. 

V. MONOCULAR SLAM: EVOLUTION AND METHODS 

Monocular SLAM has emerged as one of the most 
thoroughly investigated areas in the broader SLAM research 
landscape, primarily due to its minimal hardware requirements 
and its adaptability across diverse platforms and applications. 
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By using a single RGB camera, monocular SLAM systems aim 
to simultaneously estimate camera motion and reconstruct the 
surrounding environment. However, the absence of direct 
depth measurements introduces inherent challenges such as 
scale ambiguity, motion degeneracy in planar scenes, and 
increased sensitivity to lighting and texture variations [24]. As 
depicted in Fig. 2, the evolution of monocular SLAM has 
progressed through a series of methodological innovations in 
both the visual front-end and the back-end optimization 
strategies. 

Initial efforts began with RatSLAM (2004), which was 
biologically inspired and modeled after rodent navigation 
systems. While simplistic, it laid foundational principles in 
appearance-based mapping. This was succeeded by 
MonoSLAM (2007), a pioneering approach that applied an 
Extended Kalman Filter (EKF) to jointly estimate camera pose 
and sparse 3D map points in real time [25]. The advent of 
PTAM in the same year introduced a game-changing 
architectural shift by decoupling tracking and mapping into 
parallel threads, drastically improving the performance of real-
time monocular SLAM systems [26]. 

Subsequent methods diverged into two main categories: 
feature-based and direct methods. Feature-based approaches 
rely on the detection and matching of keypoints, while direct 
methods operate on image intensities without extracting 
features. DTAM and LSD-SLAM demonstrated that it is 
possible to achieve dense and semi-dense reconstructions using 
photometric information alone, resulting in more detailed 
environmental maps [27][28]. These techniques offered higher 
resolution outputs but required careful handling of photometric 
calibration and motion assumptions. 

A major leap occurred with the release of ORB-SLAM in 
2015, which combined ORB keypoint descriptors with a robust 
framework for tracking, mapping, loop closure, and 
relocalization [29]. Its success led to further extensions, 
including ORB-SLAM2 and ORB-SLAM3, which supported 
multiple sensor configurations such as stereo and RGB-D, and 
included inertial fusion for improved robustness in challenging 
motion conditions [30]. These improvements allowed for more 
accurate scale estimation and reduced drift during long-term 
operations [31]. 

Simultaneously, direct methods like DSO (Direct Sparse 
Odometry) and its variants, including Stereo DSO, LDSO, and 
V-LDSO, refined photometric error minimization and 
introduced keyframe-based filtering to enhance both accuracy 
and computational efficiency [32][33]. These methods, while 
sensitive to illumination changes, offered high precision in 
texture-rich environments and demonstrated robustness in 
frame-to-frame tracking without reliance on feature extraction. 

Hybrid approaches have also gained attention, blending the 
strengths of direct and feature-based methods. Algorithms like 
SVO (Semi-Direct Visual Odometry), PL-SVO (Point and Line 
SVO), and CNN-SVO achieved a balance between robustness 
and efficiency by integrating direct photometric tracking with 
geometric landmarks [34][35]. These approaches reduced the 
dependency on handcrafted features and improved 
performance in a wider range of scene geometries. 

 
Fig. 2. Chronological development of monocular SLAM methods from 2004 

to 2025. 

In recent years, the incorporation of deep learning has 
significantly influenced the monocular SLAM domain. 
Frameworks such as DeepVO, edgeSLAM, and CNN-SLAM 
utilized neural networks for depth prediction, feature learning, 
and semantic scene understanding [36][37]. These models not 
only enhanced robustness in low-texture or dynamic 
environments but also enabled the inference of scene geometry 
from a single image. Moreover, methods such as SLAM++, 
SO-SLAM, and Struct-PL-SVO integrated object-level and 
structural cues into the mapping process, moving toward 
semantic and structural awareness in localization [38][39]. 

Recent state-of-the-art systems like DVDS (2025) and 
MAS-DSO demonstrate the growing emphasis on multi-sensor 
integration, semantic enrichment, and real-time adaptability 
[40][41]. These systems incorporate inertial data, semantic 
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segmentation, and learned depth priors to improve resilience in 
diverse and unpredictable environments. 

Despite these advancements, monocular SLAM still faces 
unresolved issues, particularly in handling motion blur, rapid 
camera movements, dynamic object interference, and texture-
poor scenes. The pursuit of robustness, generalization, and 
computational scalability continues to drive innovation in this 
domain, with future directions likely to focus on hybrid 
geometric-learning systems, unsupervised adaptation, and 
cloud-enhanced mapping frameworks. 

VI. STEREO SLAM: ADVANCES AND APPLICATIONS 

Stereo SLAM systems utilize a pair of synchronized 
cameras to estimate depth via triangulation, enabling accurate 
3D reconstruction and metric-scale motion estimation. This 
configuration eliminates the scale ambiguity inherent in 
monocular systems and enhances robustness in texture-poor or 
low-light environments [42]. As illustrated in Fig. 3, the 
development of stereo SLAM has progressed steadily with 
contributions that focus on improving accuracy, structural 
awareness, and adaptability in dynamic scenarios. 

 
Fig. 3. Evolution of stereo SLAM methods and their applications. 

StructSLAM (2015) laid the foundation by integrating 
stereo imagery with structural constraints to achieve 
semantically meaningful mapping [43]. The introduction of 
ProSLAM (2018) provided a lightweight and modular stereo 
SLAM framework capable of real-time performance, 
supporting both mono and stereo inputs for flexibility across 
platforms [44]. More recent methods, such as ESVO (2021) 
and AirDOS (2022), have extended stereo SLAM to address 

aerial applications and dynamic obstacle detection using stereo 
image alignment and depth filtering techniques [45][46]. 

The emergence of TwistSLAM and TwistSLAM++ (2022) 
represents a shift toward incorporating twist-based motion 
models for improved tracking under fast camera movements 
[47]. These systems enhance pose estimation stability while 
reducing drift in challenging trajectories. Building on these 
ideas, BDIS-SLAM and DynPL-SLAM (2024) have pushed 
stereo SLAM into the realm of dynamic environments, where 
the presence of moving objects demands adaptive strategies for 
scene segmentation and motion compensation [48]. 

Finally, DYMRO-SLAM (2025) exemplifies the future 
direction of stereo SLAM by integrating motion robustness, 
real-time segmentation, and adaptive feature association in 
highly dynamic and cluttered settings [49]. In addition to 
robotics, stereo SLAM has found applications in autonomous 
driving, drone navigation, and indoor mapping where depth 
accuracy and consistency are critical [50]. 

Collectively, the advancements in stereo SLAM reflect a 
balance between computational efficiency, structural integrity, 
and semantic awareness, making it a viable solution for diverse 
real-world deployment scenarios. However, the challenges of 
real-time performance in high-speed settings and long-term 
consistency in large-scale environments continue to motivate 
ongoing research. 

VII. RGB-D SLAM: DEPTH-ENHANCED APPROACHES 

RGB-D SLAM systems integrate color (RGB) images with 
depth data, typically captured using structured light or time-of-
flight sensors, to produce accurate and dense 3D maps in real-
time. This additional depth channel enhances scene 
understanding, especially in indoor environments where scale 
accuracy and dense reconstruction are critical. As illustrated in 
Fig. 4, the evolution of RGB-D SLAM has been marked by 
diverse approaches that balance geometric precision, semantic 
richness, and computational efficiency. 

Early RGB-D SLAM efforts began with KinectFusion 
(2011), which demonstrated the potential of consumer-grade 
depth sensors for dense real-time 3D reconstruction [51]. 
Shortly thereafter, Kintinuous (2012) extended KinectFusion 
by enabling continuous tracking and mapping across larger 
spaces [52]. Later methods such as ElasticFusion (2015) 
introduced surfel-based representations to maintain loop-
closure consistency and surface flexibility during global 
optimization [53]. Similarly, BundleFusion (2017) 
incorporated global pose graph optimization with real-time 
feedback loops to minimize drift in long-term operations [54]. 

The year 2017 marked a proliferation of RGB-D SLAM 
algorithms. Systems such as VO-SF, Co-Fusion, and 
StaticFusion focused on improving tracking robustness and 
map representation in the presence of dynamic objects 
[55][56][57]. Others like MR-RGBD-SLAM and SWAIACP-
SLAM added semantic cues and adaptive filtering mechanisms 
to improve depth consistency [58][59]. Simultaneously, 
methods like Detect-SLAM and CodeSLAM explored object-
level SLAM and compact depth representations, respectively 
[60][61]. 
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Fig. 4. Overview of RGB-D SLAM methods and their evolution. 

In 2018, efforts like DS-SLAM, PoseFusion, and 
DynaSLAM focused on dynamic scene handling by 
introducing segmentation pipelines and learning-based object 
recognition to remove moving elements from mapping 
[62][63][64]. The inclusion of neural networks for motion 
segmentation and visual odometry marked a turning point, 
bridging traditional geometry-based techniques with deep 
learning paradigms [65]. Additionally, MaskFusion combined 
semantic instance segmentation with dense mapping, enabling 
object-level awareness in SLAM systems [66]. 

The year 2019 introduced generalized SLAM systems like 
UcoSLAM, OpenVSLAM, and SLAMANTIC, which 
supported multiple input modalities including mono, stereo, 
and RGB-D [67][68][69]. These frameworks emphasized 
modularity, scalability, and reusability, paving the way for 
flexible deployments in multi-sensor configurations. 
Simultaneously, RE-SLAM, SPM-SLAM, and BAD SLAM 

explored better loop closure techniques, keyframe 
management, and robustness under challenging illumination 
and texture conditions [70][71][72]. 

A wave of fusion-based systems emerged in 2019 and 
2020, including EM-Fusion, DMS-SLAM, and DDL-SLAM, 
which aimed to fuse depth and color cues through probabilistic 
and optimization-driven pipelines [74][75]. FlowFusion, 
PSPNet-SLAM, and SaD-SLAM utilized optical flow and deep 
learning-based segmentation to enhance temporal consistency 
in fast-moving scenes [76][77][78]. Moreover, IV-SLAM and 
DM-SLAM extended these capabilities with multi-view 
consistency and dense depth propagation [79][80]. 

In 2021 and 2022, the emphasis shifted toward dynamic 
SLAM environments, as demonstrated by systems like OFM-
SLAM, GSOM-BSLAM, and Structure PLP-SLAM, which 
integrated real-time semantic mapping and predictive modeling 
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of dynamic elements [81][82][83]. VOLDOR-SLAM and 
DynNetSLAM incorporated multi-branch neural networks for 
end-to-end depth estimation and pose prediction, effectively 
reducing dependency on handcrafted pipelines [84][85]. 
Additionally, Edge-SLAM brought attention to computational 
constraints, adapting RGB-D SLAM pipelines for edge devices 
by leveraging lightweight networks and compressed 
representations [86]. 

Recent approaches such as DeepLabv3+SLAM and SP-
SLAM integrated semantic segmentation directly into the 
mapping process, enabling category-level understanding of 
environments [87][88]. This trend is furthered by hybrid 
methods like CG-SLAM and RGBDS-SLAM (2024–2025), 
which fuse cognitive perception models with conventional 
SLAM to support task-specific intelligence, such as scene 
classification and goal-directed navigation [89][90]. 

Notably, these RGB-D SLAM systems rely on benchmark 
datasets and real-time performance evaluation. Datasets like 
TUM RGB-D, ICL-NUIM, and ScanNet have been 
instrumental in validating performance across different 
benchmarks, offering standardized trajectories, dynamic 
scenes, and semantic annotations [91]. While these 
advancements have brought SLAM closer to robust 
deployment, issues related to sensor noise, occlusion, 
generalization in unseen environments, and energy efficiency 
still remain open challenges [92-94]. 

Overall, RGB-D SLAM has grown from simple depth-
assisted mapping to rich, semantically-aware systems that 
integrate deep learning, object recognition, and multimodal 
fusion. This trajectory underscores the increasing convergence 
of geometric modeling and machine learning in the pursuit of 
highly adaptable and context-aware visual SLAM solutions. 

VIII. CROSS-PARADIGM ANALYSIS AND DISCUSSION 

The evolution of Visual SLAM has produced a diverse 
array of systems across monocular, stereo, and RGB-D 
paradigms, each with specific strengths and limitations. A 
comparative analysis of these approaches reveals fundamental 
trade-offs in scalability, accuracy, computational complexity, 
and adaptability to dynamic environments. 

Monocular SLAM remains the most lightweight and cost-
effective option, requiring only a single camera for localization 
and mapping. However, it suffers from inherent scale 
ambiguity and limited depth perception, which restricts its 
application in scenarios demanding metric-scale accuracy [24]. 
Despite advancements like ORB-SLAM and DSO, monocular 
methods still rely heavily on loop closure and motion modeling 
to mitigate accumulated drift [29][32]. 

In contrast, Stereo SLAM inherently resolves the scale 
issue by estimating depth via triangulation. It provides a 
reliable middle ground between simplicity and depth accuracy, 
making it suitable for mobile robotics and drone navigation 
[42]. Systems such as ProSLAM and TwistSLAM++ 
demonstrate improved performance in fast-motion and low-
texture environments [44][47]. Nevertheless, stereo systems 
require careful camera calibration and synchronization, which 
can introduce additional hardware constraints. 

RGB-D SLAM, leveraging dense depth data from sensors 
like structured-light or time-of-flight cameras, excels in indoor 
mapping and 3D reconstruction [51][54]. These systems are 
particularly effective in dynamic and low-texture scenes due to 
the richness of depth information. However, they are limited by 
the operating range and sensitivity to lighting conditions, 
especially in outdoor settings [62]. Moreover, the high data 
throughput from RGB-D sensors increases computational 
demands, necessitating efficient data fusion and real-time 
optimization strategies [73][78]. 

Hybrid approaches integrating visual-inertial odometry, 
semantic segmentation, and learning-based modules are 
emerging across all three paradigms. For instance, visual-
inertial extensions to ORB-SLAM and deep semantic mapping 
in RGB-D systems such as DynNetSLAM demonstrate that 
cross-domain fusion enhances robustness and scene 
understanding [30][85]. These trends reflect a shift toward 
generalizable SLAM systems capable of adapting to diverse 
environmental conditions and sensory inputs. 

Despite these advances, unresolved challenges persist. 
Dynamic object handling, long-term consistency, real-time 
performance on edge devices, and scene generalization remain 
key bottlenecks. The convergence of geometry-based and data-
driven methods is likely to play a pivotal role in addressing 
these issues and shaping the next generation of visual SLAM 
technologies. 

IX. FUTURE DIRECTIONS 

The field of Visual SLAM continues to experience rapid 
progress, yet numerous challenges remain unsolved, paving the 
way for future innovations. As the demand for intelligent 
autonomous systems rises, SLAM must evolve beyond static, 
structured environments to handle complex, unstructured, and 
dynamic real-world conditions. Several key directions are 
anticipated to define the next generation of SLAM systems. 

One of the most pressing challenges is the robust handling 
of dynamic environments, where moving objects introduce 
inconsistencies in localization and mapping. While state-of-
the-art methods such as DynaSLAM and DynNetSLAM have 
introduced dynamic object filtering using motion segmentation 
and learning-based modules, real-time robustness in highly 
dynamic scenarios remains limited [64][85]. Future systems 
must incorporate adaptive scene understanding and prediction 
mechanisms to account for object trajectories, occlusions, and 
interactions, thereby enhancing robustness under motion and 
clutter. 

Another critical direction involves lifelong and continual 
SLAM, which allows systems to incrementally learn from their 
environments over extended periods. Current methods tend to 
operate in episodic modes, with limited memory and 
generalization across time or domains. Incorporating memory-
augmented learning, self-supervision, and lifelong adaptation 
strategies would enable SLAM systems to refine their internal 
models continually and recover from localization failures or 
environmental changes. Techniques applied in DeepVO and 
other learning-based systems offer a foundation for such 
progress [36]. 
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Semantic SLAM is also emerging as a transformative 
direction, where the integration of object-level understanding 
and scene semantics augments traditional geometric mapping. 
Systems such as MaskFusion, DeepLabv3+SLAM, and CG-
SLAM demonstrate that embedding semantics enables higher-
level reasoning, object manipulation, and contextual awareness 
[66][87][90]. Future research is expected to integrate multi-task 
learning pipelines that jointly optimize for pose estimation, 
semantic segmentation, and instance recognition. Such 
integration would be vital in service robotics, AR/VR, and 
autonomous navigation tasks where understanding scene 
content is as critical as knowing spatial geometry. 

The development of resource-aware and edge-compatible 
SLAM algorithms is gaining significance as SLAM expands 
into mobile platforms, drones, and embedded robotics. High-
performance SLAM often requires intensive computation and 
memory, making deployment on constrained devices difficult. 
Solutions like Edge-SLAM and optimized variants of 
SLAMANTIC and ORB-SLAM address these issues by 
incorporating lightweight architectures, neural compression, 
and on-device learning [86][69][30]. Future directions may 
involve further advances in model pruning, quantization, and 
hardware-aware design for real-time, low-power SLAM 
inference. 

Multimodal SLAM represents another growing frontier. 
The fusion of multiple sensor inputs—including visual, inertial, 
depth, thermal, and even auditory data—enables robust 
mapping under diverse environmental conditions. Systems like 
ORB-SLAM3 and VOLDOR-SLAM illustrate how integrating 
inertial measurements and depth cues improves accuracy and 
consistency, especially in low-texture or fast-motion scenarios 
[30][84]. Expanding such systems to include semantic and 
audio signals could further enhance context-awareness, 
particularly in human-robot interaction and search-and-rescue 
missions. 

In addition, learning-based SLAM continues to evolve. 
While geometry-based methods have dominated due to their 
interpretability and reliability, deep learning models are 
increasingly demonstrating their potential in monocular depth 
prediction, motion estimation, and loop closure detection. 
Hybrid pipelines that combine data-driven features with 
geometric consistency are likely to define future SLAM 
architectures. DMS-SLAM, CodeSLAM, and PSPNet-SLAM 
exemplify this convergence [74][61][77]. 

Finally, neural implicit representations, such as neural 
radiance fields (NeRF), are expected to redefine how SLAM 
systems model and store environments. These methods replace 
discrete maps with continuous, differentiable scene 
representations that offer high-fidelity reconstructions and 
efficient storage. Their integration with SLAM could lead to 
novel systems that unify localization, mapping, and scene 
rendering into a single framework, unlocking new possibilities 
in mixed reality and digital twin technologies. 

In summary, the future of Visual SLAM lies in its ability to 
become more adaptive, intelligent, semantic, and efficient, 
leveraging cross-disciplinary advances in machine learning, 
sensor fusion, and cognitive modeling. These advancements 
will shape the next generation of autonomous systems capable 

of understanding, interacting with, and navigating the real 
world in an increasingly human-like manner. 

X. CONCLUSION 

This review has presented a structured and comprehensive 
analysis of the evolution, methodologies, and challenges in 
Visual SLAM across three primary paradigms: monocular, 
stereo, and RGB-D systems. Monocular SLAM remains 
valuable for its simplicity and affordability, yet it continues to 
face challenges related to scale ambiguity and robustness under 
complex motion. Stereo SLAM offers a balance between 
hardware complexity and depth accuracy, making it suitable 
for a wide range of robotic and autonomous applications. 
RGB-D SLAM systems have significantly advanced scene 
understanding and dense mapping capabilities, particularly in 
indoor and structured environments, though they remain 
constrained by sensor limitations and computational demands. 
Across all paradigms, recent trends reveal a growing 
convergence of traditional geometric methods with learning-
based models, enabling SLAM systems to operate more 
robustly in dynamic and perceptually challenging scenarios. 
The incorporation of semantic information, multi-modal sensor 
fusion, and real-time optimization strategies has further 
extended the operational scope of SLAM technologies. Despite 
these advances, persistent issues such as adaptability in 
dynamic environments, efficient computation on edge devices, 
and generalization across unseen domains continue to hinder 
full autonomy. The future of Visual SLAM lies in the 
development of lifelong, context-aware systems capable of 
learning from experience, reasoning semantically, and 
operating reliably under uncertainty. By integrating insights 
from computer vision, robotics, and machine learning, the next 
generation of SLAM algorithms will move beyond spatial 
localization to support intelligent interaction and decision-
making in real-world environments. This review serves as a 
foundation for understanding current capabilities and 
identifying key research directions in the evolving landscape of 
Visual SLAM. 
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