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Abstract—Visual Simultaneous Localization and Mapping
(Visual SLAM) has become a cornerstone of autonomous
navigation and spatial understanding in robotics, augmented
reality, and computer vision. This review presents a
comprehensive examination of algorithmic progress in Visual
SLAM, focusing on the three principal paradigms: monocular,
stereo, and RGB-D SLAM. Monocular SLAM, known for its
minimal hardware requirements, has evolved from feature-based
methods to deep learning-enhanced systems, addressing
challenges like scale ambiguity and drift. Stereo SLAM leverages
depth through triangulation, improving scale accuracy and
robustness, particularly in dynamic and low-texture
environments. RGB-D SLAM, utilizing depth-sensing technology,
has enabled dense and semantically enriched mapping, finding
significant application in indoor and real-time scenarios.
Through a chronological and technical exploration of
representative methods including RatSLAM, ORB-SLAM, DSO,
ProSLAM, ElasticFusion, DynaSLAM, and recent hybrid and
learning-based frameworks. This review identifies major
milestones and architectural innovations across paradigms. A
cross-paradigm analysis highlights the trade-offs in accuracy,
computational efficiency, and adaptability, while also discussing
emerging trends such as semantic integration, multimodal fusion,
and neural implicit representations. Furthermore, the paper
outlines future directions that include lifelong learning, real-time
deployment on edge devices, dynamic environment adaptation,
and the convergence of geometry and learning-based pipelines.
Supported by a detailed taxonomy and historical evolution
illustrated in visual summaries, this review serves as a
foundational reference for researchers and developers aiming to
understand and contribute to the advancement of Visual SLAM
technologies in both academic and real-world contexts.
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I.  INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
fundamental problem in robotics and computer vision, enabling
an agent to build a map of an unknown environment while
estimating its own pose within that space. Among the various
modalities of SLAM, Visual SLAM (V-SLAM) has gained
increasing attention due to its cost-effectiveness, wide
applicability, and ability to capture rich scene semantics using
standard cameras [1]. Unlike traditional SLAM approaches that
rely on expensive range sensors such as LiDAR, visual SLAM
uses images as the primary sensory input, offering a
lightweight and scalable solution for many real-world
applications including autonomous vehicles, augmented reality

(AR), unmanned aerial vehicles (UAVs), and mobile robotics
[2].

Visual SLAM systems are typically classified into three
main categories based on the type of visual input: monocular,
stereo, and RGB-D SLAM. Monocular SLAM uses a single
camera and offers a compact and inexpensive setup but suffers
from scale ambiguity and sensitivity to initialization [3]. Stereo
SLAM employs a pair of cameras to estimate depth via
triangulation, thereby overcoming scale issues and providing
more stable estimates in textured environments [4]. RGB-D
SLAM leverages cameras that deliver both color and depth
information simultaneously, enhancing accuracy in indoor and
structured scenes while introducing hardware constraints and
limitations in outdoor or long-range settings [5].

Over the past two decades, the field has witnessed a
remarkable evolution in algorithmic design, ranging from
sparse, feature-based methods to dense and semi-dense
approaches, and more recently, learning-based frameworks that
integrate deep neural networks with traditional geometric
pipelines [6]. Despite significant progress, many challenges
persist, such as dealing with dynamic environments, achieving
real-time performance on resource-constrained devices, and
ensuring robustness under varying lighting or texture
conditions [7]. Furthermore, achieving generalizable SLAM
that can adapt across domains and scales remains an open
research problem [8].

This review paper provides a structured and comprehensive
overview of Visual SLAM methods across the three primary
categories. By examining algorithmic trajectories, technical
innovations, and representative benchmarks, this survey aims
to map the evolving landscape of SLAM research and identify
promising directions for future exploration.

1. BACKGROUND AND FUNDAMENTALS

Visual SLAM combines techniques from geometry, signal
processing, and optimization to simultaneously estimate a
camera’s pose and reconstruct its environment. The core

objective is to recover the trajectory 1, = SE (3)and a map

M from a sequence of image observations {] ,} over time.

Mathematically, the SLAM problem can be formulated as a
maximum a posteriori (MAP) estimation:

argrg(l’%;(p(X,M|Z) (1)

where, X is the set of poses, M is the map, and Z
denotes the sensor measurements [9]. Factor graph models are
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commonly used to express the probabilistic dependencies
between variables in SLAM, allowing the estimation to be
represented as a graph optimization problem [10].

A key task in visual SLAM is camera pose estimation,
typically achieved by minimizing the reprojection error:

2

N
min Y |, = 7(T X, ) @)
i=1

where, 1, are image features, 77 is the projection function,

and X, are 3D landmarks [11]. Map representation varies

from sparse point clouds to dense voxel grids, depending on
the method [12].

Loop closure detection corrects accumulated drift by
identifying previously visited locations and enforcing pose
graph consistency [ 13]. Pose graph optimization is often solved
using nonlinear least squares:
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where, fl./. models relative motion and Zy is the measured

constraint [14]. Feature extraction, tracking, and data
association form the visual front-end, while back-end
optimization refines the trajectory and map [15].

Recent works also incorporate deep learning for depth
estimation and semantic mapping, improving robustness in
unstructured environments [16]. Benchmarks such as KITTI
and TUM RGB-D provide standardized datasets for evaluation
and comparison [17].

III.  ALGORITHMIC PARADIGMS FOR SLAM

This section synthesizes the principal algorithmic
paradigms that have shaped SLAM development for mobile
robots, providing a structured overview of classical and
contemporary frameworks. We first examine filter based
methods such as EKF-SLAM and UKF-SLAM that leverage
recursive Bayesian estimation to jointly infer robot trajectory
and map features. Next, particle filter approaches and their
Rao-Blackwellized variants (FastSLAM) are discussed for
their ability to represent multimodal posteriors in highly
nonlinear settings. We then turmn to graph based optimization
techniques, which cast SLAM as a sparse nonlinear least
squares problem over pose and landmark variables, and explore
incremental solvers such as iSAM. Finally, hybrid and
emerging paradigms that integrate multiple estimation
strategies, leaming based components, and submapping
schemes are reviewed to highlight the evolving landscape of
SLAM algorithms.

A. Filter-Based Approaches

Filter based SLAM methods formulate the simultaneous
estimation of robot pose and map features as a recursive
Bayesian filtering problem [16]. At each time step, the joint
state vector.
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m

where, x, denotes the robot pose and 711 concatenates all
landmark coordinates, is represented by a Gaussian belief

N(s

P ) The filter alternates between a prediction step

§t\t—1 = f(§t—l’ut )’
P, =FP,F +0,

fle—1

to

(&)

and a correction step upon receiving a measurement Z, :

K, =F, 1HT(HzB|z 1HT+R)
§ = ‘§t\t T K (Z - h(§t\t—1 )) (6)
P =(I-KH,)P,,

Here, f and /h are the process and measurement models,
and H, theirJacobians,and Q,, R, covariance matrices.
Within this framework, the Extended Kalman Filter SLAM
(EKF-SLAM) linearizes f and & about the current estimate,
resulting in first-order approximations of non-linear dynamics

and sensor models [17]. EKF-SLAM maintains a full
covariance matrix across robot and landmark states, ensurinﬁ

F

t

consistent uncertainty propagation but incurring O n’

computational complexity in the number of landmarks 7 . To
mitigate linearization errors, the Unscented Kalman Filter
SLAM (UKF-SLAM) employs the unscented transform: a set
of deterministically chosen sigma points }(;71} is propagated

through the true non-linear functions, yielding more accurate
posterior mean and covariance estimates without explicit
Jacobian computation [18]. UKF-SLAM typically achieves
higher accuracy in highly non-linear regimes at the cost of
increased per-step computation proportional to the number of

sigma points (2L +1 for a state of dimension L ) [19]. Both
EKF-SLAM and UKF-SLAM serve as foundational
benchmarks against which more advanced, optimization-based,
and hybrid SLAM paradigms are compared.
B. Particle Filter SLAM

Particle-filter SLAM methods approximate the full SLAM
posterior p(xm,m | Zl:t’ul:t) by a finite set of N weighted

. . AN
particles {x(’),,m‘,w,’ }i:l . At each time step, particles are
propagated

x = plx, | x,

according to the motion model

and importance weights are updated via:

w o w,, plz, | x/,m') )

Followed by resampling to focus computational resources
on high-likelihood hypotheses. Unlike Gaussian-based filters,
particle filters can represent arbitrary, multi-modal
distributions, making them well-suited to highly non-linear and
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ambiguous observation models. However, naive particle-filter
SLAM suffers from the “curse of dimensionality,” as the joint
state space grows with the number of landmarks, leading to
excessive computational demand and rapid sample

impoverishment when N is insufficient.

FastSLLAM Variants. FastSLAM addresses these challenges
by factorizing the posterior into a product of a trajectory
posterior and independent landmark posteriors:

Trajectory estimation is performed via a particle filter,
while each landmark’s position is maintained by a separate,
low-dimensional Kalman filter (or alternative Gaussian
estimator) [20]. FastSLAM 1.0 introduced this Rao-
Blackwellized approach, reducing computational complexity

from O(NM ) to O(NM ) FastSLAM 2.0 refined the

proposal distribution by incorporating the current measurement
into the sampling step, thereby improving sample efficiency
and reducing particle deprivation in highly informative
environments [21]. Subsequent variants have further enhanced
robustness  through  adaptive resampling thresholds,
hierarchical landmark clustering, and incorporation of grid-
based mapping techniques for environments with dense feature
distributions [22]. These innovations have established
FastSLAM as a versatile, real-time SLAM framework on
mobile-robot  platforms with moderate computational
resources.

C. Graph-Based Optimization

Graph-based SLAM reformulates the joint estimation
problem as a nonlinear least-squares optimization over a sparse
graph, in which nodes represent robot poses (and optionally
landmark states) and edges encode spatial constraints derived
from odometry and observations. In the pose-graph

formulation, only robot poses {xl.} are included as variables,

and measurements between poses (e.g., odometry or loop
closures) define binary factors. The optimization seeks

x*=argmin ZH Z@/®(x;1 ® x./')Hé[/' ®)

X (i)
where, z; is the measured relative transform between

poses i and j , Qij the information matrix, and @, ©

manifold-specific  composition and inverse-composition
operators [23]. Factor-graph SLAM extends this concept by
including landmark nodes {mk} and multiary factors, yielding

a unified representation amenable to general-purpose solvers.
The factor-graph cost function becomes.

{X*’m *}: argmin ZH ¢f (xf’m/')_zf ||§2U )

x,m feF

where, each factor f relates a subset of pose and landmark
variables through the measurement function ¢f and
information matrix €, [24]. Sparsity in the graph structure

enables efficient exploitation of sparse linear algebra
techniques, yielding favorable scaling to large-scale
environments.
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Incremental smoothing and mapping (iISAM) algorithms
tackle the computational demands of online graph optimization
by updating the solution and factorization incrementally as new
measurements arrive. The original iSAM algorithm
incrementally constructs and maintains a square-root
information matrix via QR or Cholesky factorization, avoiding
the need to re-solve the entire system at each step [25]. iSAM2
further introduces a Bayes tree data structure that encapsulates
the conditional dependency structure of variables, allowing
selective relinearization and re-factorization only in affected
subtrees when new factors are added or existing factors change
[26]. This strategy achieves real-time performance on resource-
limited platforms while preserving consistency and accuracy,
making iSAM variants a de facto choice for optimization-based
SLAM in mobile-robot applications.

IV. VisuaL SLAM

Visual SLAM (Simultaneous Localization and Mapping) is
a technique that leverages visual input, typically from one or
more cameras, to perform real-time mapping and localization
in unknown environments. As shown in Fig. 1, Visual SLAM
is broadly categorized into three main types: Monocular
SLAM, Stereo SLAM, and RGB-D SLAM, each characterized
by its unique camera configuration and depth perception
capabilities. This classification allows for flexibility in
application domains, ranging from lightweight mobile robotics
to dense indoor reconstruction [18].

\ s R

Monocular Stereo RGB-D
SLAM SLAM SLAM

Fig. 1. Taxonomy of Visual SLAM: Classification into Monocular, Stereo,
and RGB-D SLAM approaches.

Monocular SLAM employs a single camera and is
attractive for its simplicity and low hardware cost. However, it
faces challenges such as scale ambiguity and higher drift in
long trajectories [19]. Stereo SLAM, by using two
synchronized cameras, can triangulate depth directly, resulting
in improved robustness and scale consistency [20]. In contrast,
RGB-D SLAM integrates color and depth data from structured
light or time-of-flight sensors, enabling dense and accurate
reconstructions, particularly in indoor scenes [21].

Recent advancements in visual SLAM have focused on
combining geometric methods with learning-based models to
enhance robustness in dynamic or poorly textured
environments [22]. Additionally, visual-inertial fusion and
multi-sensor integration have further extended the capabilities
of SLAM systems under challenging conditions [23]. These
developments highlight the rapid evolution of visual SLAM
technologies across all three categories.

V. MONOCULAR SLAM: EVOLUTION AND METHODS

Monocular SLAM has emerged as one of the most
thoroughly investigated areas in the broader SLAM research
landscape, primarily due to its minimal hardware requirements
and its adaptability across diverse platforms and applications.
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By using a single RGB camera, monocular SLAM systems aim
to simultaneously estimate camera motion and reconstruct the
surrounding environment. However, the absence of direct
depth measurements introduces inherent challenges such as
scale ambiguity, motion degeneracy in planar scenes, and
increased sensitivity to lighting and texture variations [24]. As
depicted in Fig. 2, the evolution of monocular SLAM has
progressed through a series of methodological innovations in
both the visual front-end and the back-end optimization
strategies.

Initial efforts began with RatSLAM (2004), which was
biologically inspired and modeled after rodent navigation
systems. While simplistic, it laid foundational principles in
appearance-based mapping. This was succeeded by
MonoSLAM (2007), a pioneering approach that applied an
Extended Kalman Filter (EKF) to jointly estimate camera pose
and sparse 3D map points in real time [25]. The advent of
PTAM in the same year introduced a game-changing
architectural shift by decoupling tracking and mapping into
parallel threads, drastically improving the performance of real-
time monocular SLAM systems [26].

Subsequent methods diverged into two main categories:
feature-based and direct methods. Feature-based approaches
rely on the detection and matching of keypoints, while direct
methods operate on image intensities without extracting
features. DTAM and LSD-SLAM demonstrated that it is
possible to achieve dense and semi-dense reconstructions using
photometric information alone, resulting in more detailed
environmental maps [27][28]. These techniques offered higher
resolution outputs but required careful handling of photometric
calibration and motion assumptions.

A major leap occurred with the release of ORB-SLAM in
2015, which combined ORB keypoint descriptors with a robust
framework for tracking, mapping, loop closure, and
relocalization [29]. Its success led to further extensions,
including ORB-SLAM2 and ORB-SLAM3, which supported
multiple sensor configurations such as stereo and RGB-D, and
included inertial fusion for improved robustness in challenging
motion conditions [30]. These improvements allowed for more
accurate scale estimation and reduced drift during long-term
operations [31].

Simultaneously, direct methods like DSO (Direct Sparse
Odometry) and its variants, including Stereo DSO, LDSO, and
V-LDSO, refined photometric error minimization and
introduced keyframe-based filtering to enhance both accuracy
and computational efficiency [32][33]. These methods, while
sensitive to illumination changes, offered high precision in
texture-rich environments and demonstrated robustness in
frame-to-frame tracking without reliance on feature extraction.

Hybrid approaches have also gained attention, blending the
strengths of direct and feature-based methods. Algorithms like
SVO (Semi-Direct Visual Odometry), PL-SVO (Point and Line
SVO), and CNN-SVO achieved a balance between robustness
and efficiency by integrating direct photometric tracking with
geometric landmarks [34][35]. These approaches reduced the
dependency on handcrafted features and improved
performance in a wider range of scene geometries.

Vol. 16, No. 10, 2025

Mconocular
LAM RatSLAM
2004
CV-SLAM
— 2005
WIS AN
onoSL Al 2019
W07 iSANMD 2012 _{
AN 2007 | MEEAME
(Visuzl (Miono. NFISAM
—] Stereo, 021
RGBD), Lider DFPTAM 2015
(2D, 300)
S PTAMI017
PTAM2007 (Stezeo)
FGEDTAM
2017 Stereo LSD-
DTAM2011
| SLAM2015
ISDSLAM RLISD SLAM
2014 - - 2022
; ) PL-5VO 2016 EM-LED
5VO0 2014 ST ANI2023
CRNSVO
2019 Struct-PL-SVO 2022
ORES[CAM | [ORBSLAKD
2015 |[7{ 2017 (Mone, ‘ EDE-SLAM 220 |
Stereo, RGB-
Tronal Toartl ORB-SLAMNS 2021
ORB.SLAM | | (0Mano, Stereo, RGB-D)
2017 \
DeepVO 2017 "_.z S ‘ RSO-SLAM 2024 |
SLAM+2017 E
2024
PLSLAM -
2017 L W25
LCSD-SLAM Sterec DSO VI-Steree-DS0O 2022
2018 M 2017 (Multi sensor)
EGE-D D0
| Dso2018 | || ROE
EACSLAM
— 2020 || LDSD2018
|| ﬂdg;%im VIDSO0 2018
|| (Multizensor)
SO-SLAM
L MAS-DS0
2022 H 204
DVDS 2025

Fig. 2. Chronological development of monocular SLAM methods from 2004
to 2025.

In recent years, the incorporation of deep learning has
significantly influenced the monocular SLAM domain.
Frameworks such as DeepVO, edgeSLAM, and CNN-SLAM
utilized neural networks for depth prediction, feature learning,
and semantic scene understanding [36][37]. These models not
only enhanced robustness in low-texture or dynamic
environments but also enabled the inference of scene geometry
from a single image. Moreover, methods such as SLAM++,
SO-SLAM, and Struct-PL-SVO integrated object-level and
structural cues into the mapping process, moving toward
semantic and structural awareness in localization [38][39].

Recent state-of-the-art systems like DVDS (2025) and
MAS-DSO demonstrate the growing emphasis on multi-sensor
integration, semantic enrichment, and real-time adaptability
[40][41]. These systems incorporate inertial data, semantic
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segmentation, and learned depth priors to improve resilience in
diverse and unpredictable environments.

Despite these advancements, monocular SLAM still faces
unresolved issues, particularly in handling motion blur, rapid
camera movements, dynamic object interference, and texture-
poor scenes. The pursuit of robustness, generalization, and
computational scalability continues to drive innovation in this
domain, with future directions likely to focus on hybrid
geometric-learning systems, unsupervised adaptation, and
cloud-enhanced mapping frameworks.

VI. STEREO SLAM: ADVANCES AND APPLICATIONS

Stereo SLAM systems utilize a pair of synchronized
cameras to estimate depth via triangulation, enabling accurate
3D reconstruction and metric-scale motion estimation. This
configuration eliminates the scale ambiguity inherent in
monocular systems and enhances robustness in texture-poor or
low-light environments [42]. As illustrated in Fig. 3, the
development of stereo SLAM has progressed steadily with
contributions that focus on improving accuracy, structural
awareness, and adaptability in dynamic scenarios.

StructSLAM 2015

ProSLAM 2018
(Mono, Stereo)

ESVO 2021

Stereo AirDOS 2022

SLAM
TwistSLAM 2022

TwistSLAM-++
2022

BDIS-SLAM
2024

DynPL-SLAM
2024

DYMRO-SLAM
2025

Fig. 3. Evolution of stereo SLAM methods and their applications.

StructSLAM (2015) laid the foundation by integrating
stereo imagery with structural constraints to achieve
semantically meaningful mapping [43]. The introduction of
ProSLAM (2018) provided a lightweight and modular stereo
SLAM framework capable of real-time performance,
supporting both mono and stereo inputs for flexibility across
platforms [44]. More recent methods, such as ESVO (2021)
and AirDOS (2022), have extended stereo SLAM to address
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aerial applications and dynamic obstacle detection using stereo
image alignment and depth filtering techniques [45][46].

The emergence of TwistSLAM and TwistSLAM++ (2022)
represents a shift toward incorporating twist-based motion
models for improved tracking under fast camera movements
[47]. These systems enhance pose estimation stability while
reducing drift in challenging trajectories. Building on these
ideas, BDIS-SLAM and DynPL-SLAM (2024) have pushed
stereo SLAM into the realm of dynamic environments, where
the presence of moving objects demands adaptive strategies for
scene segmentation and motion compensation [48].

Finally, DYMRO-SLAM (2025) exemplifies the future
direction of stereco SLAM by integrating motion robustness,
real-time segmentation, and adaptive feature association in
highly dynamic and cluttered settings [49]. In addition to
robotics, stereo SLAM has found applications in autonomous
driving, drone navigation, and indoor mapping where depth
accuracy and consistency are critical [50].

Collectively, the advancements in stereo SLAM reflect a
balance between computational efficiency, structural integrity,
and semantic awareness, making it a viable solution for diverse
real-world deployment scenarios. However, the challenges of
real-time performance in high-speed settings and long-term
consistency in large-scale environments continue to motivate
ongoing research.

VII. RGB-D SLAM: DEPTH-ENHANCED APPROACHES

RGB-D SLAM systems integrate color (RGB) images with
depth data, typically captured using structured light or time-of-
flight sensors, to produce accurate and dense 3D maps in real-
time. This additional depth channel enhances scene
understanding, especially in indoor environments where scale
accuracy and dense reconstruction are critical. As illustrated in
Fig. 4, the evolution of RGB-D SLAM has been marked by
diverse approaches that balance geometric precision, semantic
richness, and computational efficiency.

Early RGB-D SLAM efforts began with KinectFusion
(2011), which demonstrated the potential of consumer-grade
depth sensors for dense real-time 3D reconstruction [51].
Shortly thereafter, Kintinuous (2012) extended KinectFusion
by enabling continuous tracking and mapping across larger
spaces [52]. Later methods such as ElasticFusion (2015)
introduced surfel-based representations to maintain loop-
closure consistency and surface flexibility during global
optimization  [53].  Similarly, BundleFusion (2017)
incorporated global pose graph optimization with real-time
feedback loops to minimize drift in long-term operations [54].

The year 2017 marked a proliferation of RGB-D SLAM
algorithms. Systems such as VO-SF, Co-Fusion, and
StaticFusion focused on improving tracking robustness and
map representation in the presence of dynamic objects
[55][56][57]. Others like MR-RGBD-SLAM and SWAIACP-
SLAM added semantic cues and adaptive filtering mechanisms
to improve depth consistency [58][59]. Simultaneously,
methods like Detect-SLAM and CodeSLAM explored object-
level SLAM and compact depth representations, respectively
[60][61].
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Fig. 4. Overview of RGB-D SLAM methods and their evolution.

In 2018, efforts like DS-SLAM, PoseFusion, and
DynaSLAM focused on dynamic scene handling by
introducing segmentation pipelines and learning-based object
recognition to remove moving elements from mapping
[62][63][64]. The inclusion of neural networks for motion
segmentation and visual odometry marked a turning point,
bridging traditional geometry-based techniques with deep
learning paradigms [65]. Additionally, MaskFusion combined
semantic instance segmentation with dense mapping, enabling
object-level awareness in SLAM systems [66].

The year 2019 introduced generalized SLAM systems like
UcoSLAM, OpenVSLAM, and SLAMANTIC, which
supported multiple input modalities including mono, stereo,
and RGB-D [67][68][69]. These frameworks emphasized
modularity, scalability, and reusability, paving the way for
flexible deployments in multi-sensor configurations.
Simultaneously, RE-SLAM, SPM-SLAM, and BAD SLAM

explored better loop closure techniques, keyframe
management, and robustness under challenging illumination
and texture conditions [70][71][72].

A wave of fusion-based systems emerged in 2019 and
2020, including EM-Fusion, DMS-SLAM, and DDL-SLAM,
which aimed to fuse depth and color cues through probabilistic
and optimization-driven pipelines [74][75]. FlowFusion,
PSPNet-SLAM, and SaD-SLAM utilized optical flow and deep
learning-based segmentation to enhance temporal consistency
in fast-moving scenes [76][77][78]. Moreover, [V-SLAM and
DM-SLAM extended these capabilities with multi-view
consistency and dense depth propagation [79][80].

In 2021 and 2022, the emphasis shifted toward dynamic
SLAM environments, as demonstrated by systems like OFM-
SLAM, GSOM-BSLAM, and Structure PLP-SLAM, which
integrated real-time semantic mapping and predictive modeling
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of dynamic elements [81][82][83]. VOLDOR-SLAM and
DynNetSLAM incorporated multi-branch neural networks for
end-to-end depth estimation and pose prediction, effectively
reducing dependency on handcrafted pipelines [84][85].
Additionally, Edge-SLAM brought attention to computational
constraints, adapting RGB-D SLAM pipelines for edge devices
by leveraging lightweight networks and compressed
representations [86].

Recent approaches such as DeepLabv3+SLAM and SP-
SLAM integrated semantic segmentation directly into the
mapping process, enabling category-level understanding of
environments [87][88]. This trend is furthered by hybrid
methods like CG-SLAM and RGBDS-SLAM (2024-2025),
which fuse cognitive perception models with conventional
SLAM to support task-specific intelligence, such as scene
classification and goal-directed navigation [8§9][90].

Notably, these RGB-D SLAM systems rely on benchmark
datasets and real-time performance evaluation. Datasets like
TUM RGB-D, ICL-NUIM, and ScanNet have been
instrumental in validating performance across different
benchmarks, offering standardized trajectories, dynamic
scenes, and semantic annotations [91]. While these
advancements have brought SLAM closer to robust
deployment, issues related to sensor noise, occlusion,
generalization in unseen environments, and energy efficiency
still remain open challenges [92-94].

Overall, RGB-D SLAM has grown from simple depth-
assisted mapping to rich, semantically-aware systems that
integrate deep learning, object recognition, and multimodal
fusion. This trajectory underscores the increasing convergence
of geometric modeling and machine learning in the pursuit of
highly adaptable and context-aware visual SLAM solutions.

VIIL

The evolution of Visual SLAM has produced a diverse
array of systems across monocular, stereo, and RGB-D
paradigms, each with specific strengths and limitations. A
comparative analysis of these approaches reveals fundamental
trade-offs in scalability, accuracy, computational complexity,
and adaptability to dynamic environments.

CROSS-PARADIGM ANALYSIS AND DISCUSSION

Monocular SLAM remains the most lightweight and cost-
effective option, requiring only a single camera for localization
and mapping. However, it suffers from inherent scale
ambiguity and limited depth perception, which restricts its
application in scenarios demanding metric-scale accuracy [24].
Despite advancements like ORB-SLAM and DSO, monocular
methods still rely heavily on loop closure and motion modeling
to mitigate accumulated drift [29][32].

In contrast, Stereo SLAM inherently resolves the scale
issue by estimating depth via triangulation. It provides a
reliable middle ground between simplicity and depth accuracy,
making it suitable for mobile robotics and drone navigation
[42]. Systems such as ProSLAM and TwistSLAM++
demonstrate improved performance in fast-motion and low-
texture environments [44][47]. Nevertheless, stereo systems
require careful camera calibration and synchronization, which
can introduce additional hardware constraints.
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RGB-D SLAM, leveraging dense depth data from sensors
like structured-light or time-of-flight cameras, excels in indoor
mapping and 3D reconstruction [51][54]. These systems are
particularly effective in dynamic and low-texture scenes due to
the richness of depth information. However, they are limited by
the operating range and sensitivity to lighting conditions,
especially in outdoor settings [62]. Moreover, the high data
throughput from RGB-D sensors increases computational
demands, necessitating efficient data fusion and real-time
optimization strategies [73][78].

Hybrid approaches integrating visual-inertial odometry,
semantic segmentation, and learning-based modules are
emerging across all three paradigms. For instance, visual-
inertial extensions to ORB-SLAM and deep semantic mapping
in RGB-D systems such as DynNetSLAM demonstrate that
cross-domain  fusion enhances robustness and scene
understanding [30][85]. These trends reflect a shift toward
generalizable SLAM systems capable of adapting to diverse
environmental conditions and sensory inputs.

Despite these advances, unresolved challenges persist.
Dynamic object handling, long-term consistency, real-time
performance on edge devices, and scene generalization remain
key bottlenecks. The convergence of geometry-based and data-
driven methods is likely to play a pivotal role in addressing
these issues and shaping the next generation of visual SLAM
technologies.

IX. FUTURE DIRECTIONS

The field of Visual SLAM continues to experience rapid
progress, yet numerous challenges remain unsolved, paving the
way for future innovations. As the demand for intelligent
autonomous systems rises, SLAM must evolve beyond static,
structured environments to handle complex, unstructured, and
dynamic real-world conditions. Several key directions are
anticipated to define the next generation of SLAM systems.

One of the most pressing challenges is the robust handling
of dynamic environments, where moving objects introduce
inconsistencies in localization and mapping. While state-of-
the-art methods such as DynaSLAM and DynNetSLAM have
introduced dynamic object filtering using motion segmentation
and leaming-based modules, real-time robustness in highly
dynamic scenarios remains limited [64][85]. Future systems
must incorporate adaptive scene understanding and prediction
mechanisms to account for object trajectories, occlusions, and
interactions, thereby enhancing robustness under motion and
clutter.

Another critical direction involves lifelong and continual
SLAM, which allows systems to incrementally learn from their
environments over extended periods. Current methods tend to
operate in episodic modes, with limited memory and
generalization across time or domains. Incorporating memory-
augmented leaming, self-supervision, and lifelong adaptation
strategies would enable SLAM systems to refine their internal
models continually and recover from localization failures or
environmental changes. Techniques applied in DeepVO and
other learning-based systems offer a foundation for such
progress [36].
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Semantic SLAM is also emerging as a transformative
direction, where the integration of object-level understanding
and scene semantics augments traditional geometric mapping.
Systems such as MaskFusion, DeepLabv3+SLAM, and CG-
SLAM demonstrate that embedding semantics enables higher-
level reasoning, object manipulation, and contextual awareness
[66][87][90]. Future research is expected to integrate multi-task
leaming pipelines that jointly optimize for pose estimation,
semantic segmentation, and instance recognition. Such
integration would be vital in service robotics, AR/VR, and
autonomous navigation tasks where understanding scene
content is as critical as knowing spatial geometry.

The development of resource-aware and edge-compatible
SLAM algorithms is gaining significance as SLAM expands
into mobile platforms, drones, and embedded robotics. High-
performance SLAM often requires intensive computation and
memory, making deployment on constrained devices difficult.
Solutions like Edge-SLAM and optimized variants of
SLAMANTIC and ORB-SLAM address these issues by
incorporating lightweight architectures, neural compression,
and on-device learning [86][69][30]. Future directions may
involve further advances in model pruning, quantization, and
hardware-aware design for real-time, low-power SLAM
inference.

Multimodal SLAM represents another growing frontier.
The fusion of multiple sensor inputs—including visual, inertial,
depth, thermal, and even auditory data—enables robust
mapping under diverse environmental conditions. Systems like
ORB-SLAM3 and VOLDOR-SLAM illustrate how integrating
inertial measurements and depth cues improves accuracy and
consistency, especially in low-texture or fast-motion scenarios
[30][84]. Expanding such systems to include semantic and
audio signals could further enhance context-awareness,
particularly in human-robot interaction and search-and-rescue
missions.

In addition, learning-based SLAM continues to evolve.
While geometry-based methods have dominated due to their
interpretability and reliability, deep learning models are
increasingly demonstrating their potential in monocular depth
prediction, motion estimation, and loop closure detection.
Hybrid pipelines that combine data-driven features with
geometric consistency are likely to define future SLAM
architectures. DMS-SLAM, CodeSLAM, and PSPNet-SLAM
exemplify this convergence [74][61][77].

Finally, neural implicit representations, such as neural
radiance fields (NeRF), are expected to redefine how SLAM
systems model and store environments. These methods replace
discrete maps with continuous, differentiable scene
representations that offer high-fidelity reconstructions and
efficient storage. Their integration with SLAM could lead to
novel systems that unify localization, mapping, and scene
rendering into a single framework, unlocking new possibilities
in mixed reality and digital twin technologies.

In summary, the future of Visual SLAM lies in its ability to
become more adaptive, intelligent, semantic, and efficient,
leveraging cross-disciplinary advances in machine learning,
sensor fusion, and cognitive modeling. These advancements
will shape the next generation of autonomous systems capable
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of understanding, interacting with, and navigating the real
world in an increasingly human-like manner.

X. CONCLUSION

This review has presented a structured and comprehensive
analysis of the evolution, methodologies, and challenges in
Visual SLAM across three primary paradigms: monocular,
stereo, and RGB-D systems. Monocular SLAM remains
valuable for its simplicity and affordability, yet it continues to
face challenges related to scale ambiguity and robustness under
complex motion. Stereo SLAM offers a balance between
hardware complexity and depth accuracy, making it suitable
for a wide range of robotic and autonomous applications.
RGB-D SLAM systems have significantly advanced scene
understanding and dense mapping capabilities, particularly in
indoor and structured environments, though they remain
constrained by sensor limitations and computational demands.
Across all paradigms, recent trends reveal a growing
convergence of traditional geometric methods with learning-
based models, enabling SLAM systems to operate more
robustly in dynamic and perceptually challenging scenarios.
The incorporation of semantic information, multi-modal sensor
fusion, and real-time optimization strategies has further
extended the operational scope of SLAM technologies. Despite
these advances, persistent issues such as adaptability in
dynamic environments, efficient computation on edge devices,
and generalization across unseen domains continue to hinder
full autonomy. The future of Visual SLAM lies in the
development of lifelong, context-aware systems capable of
learmning from experience, reasoning semantically, and
operating reliably under uncertainty. By integrating insights
from computer vision, robotics, and machine learning, the next
generation of SLAM algorithms will move beyond spatial
localization to support intelligent interaction and decision-
making in real-world environments. This review serves as a
foundation for understanding current capabilities and
identifying key research directions in the evolving landscape of
Visual SLAM.
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