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Abstract—Haze severely degrades image quality by reducing
contrast, obscuring details, and introducing a blue-shift color
cast caused by atmospheric scattering. Traditional dehazing
methods, including prior-based approaches (e.g., DCP, CAP,
LPMinVP) and preprocessing techniques (e.g., ICAP WB,
Dynamic Gamma), improve visibility but fail to correct haze-
induced color imbalance, resulting in unstable RGB distributions
and unnatural tone reproduction. This study proposes the Haze-
Compensated Color Von Kries (HCCVK) method, a lightweight
and training-free preprocessing strategy that performs color
compensation before transmission estimation in single-image
dehazing. HCCVK integrates a novel red-channel compensation
mechanism with Von Kries chromatic adaptation to mitigate
wavelength-dependent haze suppression and stabilize chromatic
consistency under varying illumination. Unlike learning-based
color correction approaches, HCCVK does not require training
data, is computationally efficient, and maintains algorithmic
interpretability, making it suitable for practical deployment. The
method was evaluated on six benchmark datasets: CHIC, Dense-
Haze, 1-Haze, O-Haze, SOT, and NH-Haze, covering indoor,
outdoor, dense, and non-homogeneous haze scenarios.
Experimental results based on the RGB color balance metric
(6RGB) show that HCCVK reduces color deviation by
approximately 75-92% on CHIC, 80-90% on Dense-Haze, and
82-90% on NH-Haze compared to the widely used DCP, and also
outperforms CAP, ICAP WB, Dynamic Gamma, and LPMinVP
by producing more compact and stable RGB distributions. These
findings demonstrate that HCCVK effectively corrects blue-shift
imbalance, preserves luminance consistency, and enhances the
color stability of dehazing pipelines.

Keywords—Image dehazing; blue-shift correction; color
compensation; Von Kries adaptation; preprocessing

I INTRODUCTION

Haze is an atmospheric phenomenon that degrades image
quality due to the scattering and absorption of light by particles
such as water droplets, dust, and smoke suspended in the air
[1]. This degradation reduces contrast, obscures fine details,

and introduces a characteristic blue-shift color cast caused by
wavelength-dependent scattering, where shorter wavelengths
(blue) are scattered more strongly than longer wavelengths
(red) [2][3]. Such distortions negatively affect human
perception and degrade the performance of computer vision
applications, including autonomous driving, UAV imaging,
security surveillance, and remote sensing [4][5].

Similarly, studies in other computer vision domains have
shown that poor quality input data leads to degraded feature
extraction and reduced system performance. For example,
Waheed et al. [6] demonstrated that melanoma classification
accuracy declines when dermoscopic images are not properly
preprocessed before CNN analysis, while Awan et al. [7]
emphasized that preprocessing significantly reduces execution
time and improves classification stability in MRI-based
diagnosis. Furthermore, Jabal et al. [8] showed that structural
errors in raw CAD drawings lead to error propagation during
feature extraction, reinforcing the importance of early
corrective processing. Therefore, haze removal is essential for
both visual enhancement and robust scene understanding under
real-world outdoor conditions [9-10].

Single-image dehazing techniques are commonly
categorized into prior-based, preprocessing-based, and
learning-based methods. Prior-based methods rely on physical
or statistical assumptions to estimate scene transmission and
atmospheric light. Examples include the Dark Channel Prior
(DCP) [11] and the Color Attenuation Prior (CAP) [12],
including their enhanced variants ICAP [13], Extremum Value
prior-based Local Patch Wise Minimal Values (LPMinVP)
[14] and Dynamic Gamma [15]. These methods can enhance
structural visibility but often introduce color distortions, halo
artifacts, and inconsistent illumination recovery in dense haze
regions due to inaccurate atmospheric light estimation [13].
Preprocessing-based techniques such as white balancing,
histogram equalization, and gamma correction improve global
illumination but do not explicitly correct haze-induced color
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bias, leading to unstable RGB distributions [ 14][16]. Recently,
deep leaming methods such as CCD-Net [17] and attention-
guided restoration models [18] have achieved significant
improvements, yet they depend on large-scale training datasets,
high computational cost, and lack interpretability, limiting their
deployment in resource-constrained or real-time applications.

A major limitation across existing dehazing methods is that
color imbalance caused by atmospheric scattering is not
explicitly corrected before transmission estimation. Due to
wavelength-dependent scattering, the red channel experiences
greater attenuation than the blue channel, resulting in a
dominant blue-shift color cast in hazy images [3][19]. When
dehazing is applied directly to such chromatically unbalanced
inputs, error propagation occurs during transmission
estimation, leading to unnatural tone reproduction and unstable
RGB restoration [13][14][17]. This type of error propagation
from unbalanced inputs has also been highlighted in medical
image analysis and CAD extraction research, indicating that
effective preprocessing is necessary before advanced
processing [8].

Therefore, this study addresses the lack of a lightweight,
training-free preprocessing mechanism that compensates red-
channel attenuation and stabilizes RGB color channels before
dehazing. To solve this problem, we propose the Haze-
Compensated Color Von Kries (HCCVK) method, a
preprocessing  strategy  that  integrates  red-channel
compensation with Von Kries chromatic adaptation to correct
haze-induced spectral imbalance. Unlike deep learning—based
enhancement approaches that require GPU training resources,
HCCVK requires no training data [7], offers full
interpretability, and maintains low computational cost, making
it suitable for real-time deployment.

II. RELATED WORKS

Single-image dehazing techniques have been widely
explored in computer vision and can be categorized into three
main groups: prior-based methods, preprocessing-based
methods, and leamning-based methods. Prior-based dehazing
methods estimate scene transmission based on statistical
assumptions about haze-free images. The DCP [11] assumes
that at least one color channel in a local image patch has low
intensity, enabling effective haze removal. However, it
frequently generates halo artifacts and color distortion,
especially in bright regions and sky areas where the prior is
invalid. The CAP [112] utilizes the relationship between depth
and brightness to estimate scene depth but often suffers from
over-saturation and instability under varying illumination.
Improved variants such as ICAP [13] and LPMinVP [14]
enhance transmission estimation using adaptive priors but still
struggle with chromatic inconsistency and residual color bias,
particularly in dense haze conditions. Overall, prior-based
methods enhance visibility but inherently lack a mechanism to
correct haze-induced color imbalance.

Preprocessing-based approaches aim to enhance visibility
before dehazing by normalizing illumination or contrast. White
balance correction is commonly used to suppress color cast but
does not correct wavelength-dependent red-channel
suppression in haze [16]. Similarly, gamma correction and
histogram equalization improve brightness and contrast but
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often amplify noise and cause over-enhancement [14].
Methods such as Dynamic Gamma (DD-Gamma) [15] improve
global tone distribution but still fail to address blue-shift
caused by atmospheric scattering, resulting in unstable RGB
distributions. These approaches improve perceptual quality but
do not provide physically meaningful color correction.

Learning-based dehazing methods have recently gained
popularity by leveraging convolutional neural networks to
learn end-to-end haze removal. Models such as AOD-Net and
DCPDN incorporate physical priors into CNN architectures,
while CCD-Net [17] introduces a dual-branch fusion network
in RGB and Lab color space to reduce perceptual distortions.
Other studies employ transformer-based attention or
adversarial learning to improve scene restoration [18].
However, these methods generally require large training
datasets, lack interpretability, and perform poorly in real-world
atmospheric variations due to training bias and overfitting.
Additionally, most learning-based models do not explicitly
solve the color imbalance problem and often rely on post-
processing color correction.

The importance of early-stage preprocessing to prevent
feature distortion has also been emphasized across other
computer vision fields. For example, Waheed et al.
demonstrated that CNN-based melanoma classification can
only achieve high accuracy when color distortion and
illumination are corrected during preprocessing [6]. Similarly,
Awan et al. showed that preprocessing improves both
diagnostic stability and computational efficiency in MRI image
analysis [7]. Additionally, Jabal et al. reported that failure to
correct noisy or inconsistent CAD input data leads to error
propagation in feature extraction systems [8]. These findings
support the need for preprocessing strategies that stabilize input
data before complex restoration or estimation steps.

Based on this review, it is evident that most dehazing
research prioritizes visibility enhancement but neglects
chromatic fidelity. Neither prior-based methods nor
preprocessing and leaming strategies provide a reliable
solution to haze-induced blue-shiff and red-channel
attenuation, which leads to unnatural tone reproduction and
unstable color restoration. Unlike these methods, the proposed
HCCVK method focuses specifically on stabilizing RGB
balance before dehazing, offering a lightweight and
interpretable solution to mitigate color distortion caused by
atmospheric scattering.

III. METHODOLOGY

This section outlines the experimental design, including the
proposed HCCVK method, benchmark datasets, and evaluation
metrics. The methodology is structured to ensure
reproducibility and clarity for future implementations. It also
demonstrates the effectiveness of the proposed approach under
a variety of indoor and outdoor hazy conditions. Color balance
is applied as a preprocessing step to mitigate blue-channel bias
and preserve luminance consistency under hazy conditions.

Preprocessing plays a crucial role in preventing feature
degradation during downstream processing, especially when
the input data suffers from structural or spectral distortion.
Similar to dehazing challenges, Waheed et al. reported that
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classification accuracy in melanoma skin cancer detection
drops significantly if illumination bias and color distortion are
not corrected prior to CNN classification [6]. Likewise, Awan
et al. demonstrated that MRI-based diagnostic performance
improves when input instability is reduced through intensity
normalization and contrast enhancement, especially in
resource-constrained environments [7]. In another domain,
Jabal et al. emphasized that uncorrected noise in CAD
drawings propagates errors in feature extraction and
interpretation, highlighting the importance of robust
preprocessing before complex analysis [8]. Motivated by these
findings, the HCCVK method introduces a lightweight
preprocessing strategy to stabilize color distribution before
dehazing, preventing chromatic error propagation during
transmission estimation.
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Fig. 1. Flowchart of the proposed Haze-Compensated Color Von Kries
method for haze-compensated color balance.
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A. Proposed Haze-Compensate Color Von Kries Method
Acronyms

The HCCVK method is designed as a preprocessing stage
prior to dehazing. It balances the RGB distribution by
compensating the red channel and cormrecting the global
illuminant through the Von Kries chromatic adaptation
transformation. Unlike deep learning—based preprocessing
techniques, which often require dedicated training resources
and GPU acceleration [7], HCCVK is computationally efficient
and entirely training-free. The overall workflow of the method
is illustrated in Fig. 1.

As shown in the flowchart, the method proceeds through a
sequence of operations from channel separation to illuminant
correction. For clarity and reproducibility, the detailed steps are
presented in Algorithm 1.

Algorithm 1 Haze-Compensated Color Von Kries (HCCVK)
Method

Input: Hazy Image, /

Output: Haze-compensated balanced image, Ipq1ance

Step:
1) Preprocessing:
a)  Split the input image into RGB channels: R, G,B.
b) Compute mean intensities: Red eqn, GT€Nmean
¢) Apply
redCompensate = R + 0.1 (Green peqn — Red mean)

red-channel compensation:

2) Reconstruction

a) Merge redCompensate , G , and B to obtain
RGBmerge

b) Convert RGBperge into
RGBlinear

linear color space:

3) [lluminant Estimation:

a) Define a 5% percentile threshold for robust
estimation

b) Estimate global illuminant using the gray-world
assumption at the 5t percentile

4) Chromatic Adaptation:

a) Apply the Von Kries transform using the estimated
illuminant

b) Generate corrected image Ipqiance

5) Finalization:
a) Convert Iqiance back to RGB color space

b) Output the haze-compensated balanced image

As shown in Table I, the weight of 0.1 achieved the highest
average compensation and the lowest standard deviation
among all tested parameters. This finding was further validated
through entropy analysis, where entropy is defined as:

e = — 325 }22%) %islpi,j,k'logz(pijk) (D

Here, i,j,k denote the three dimensions of the probability
distribution. The analysis was conducted over 390 images
selected from the total dataset of 1,239, covering both
controlled (indoor) and non-controlled (outdoor) illumination
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conditions. Therefore, a fixed weighting factor of 0.1 was
adopted in the proposed method to ensure stability and
robustness across different haze conditions.

TABLEI. WEIGHTED RED AND BLUE CHANNEL COMPENSATION
COMPARISON WITH ENTROPY INFORMATION
Entropy Information, e
Weight Average Standard
Deviation
Channel
Red Blue Red Blue
0.1 6.8503 6.8452 0.4738 0.4762
0.3 6.7879 6.7847 0.5229 0.5263
0.5 6.7873 6.7690 0.5248 0.5384
0.7 6.8288 6.7976 0.4852 0.5071
0.9 6.7739 6.7456 0.5355 0.5644
B. Dataset

To ensure a comprehensive evaluation and demonstrate the
robustness of the proposed method, a total of 1,239 hazy
images with corresponding ground-truth (GT) images were
utilized. The dataset comprises 588 indoor images and 651
outdoor images, enabling performance assessment under
different environmental conditions. These variations ensure
that the evaluation covers both controlled scenarios and more
challenging natural conditions.

Indoor datasets were captured under controlled
illumination, which guarantees stable lighting and minimizes
external variability. These include I-Haze with 30 images [20],
SOT from the RESIDE dataset with 500 images [21], CHIC
with 36 images [22], and Dense-Haze with 22 images [23].
Such conditions make them suitable for analyzing the
performance of the method in consistent environments.

The outdoor datasets were collected under natural
illumination, where changes in weather, solar position, and
atmospheric scattering introduce greater complexity for
dehazing. These include O-Haze with 45 images [20], SOT
with 500 images [21], CHIC with 18 images [22], Dense-Haze
with 33 images [23], and NH-Haze with 55 images [19]. The
inclusion of these datasets ensures that the method is evaluated
across both controlled and highly variable conditions.

C. Evaluation Matrix

The effectiveness of the proposed HCCVK method was
evaluated using the RGB Color Balance metric (6RGB), which
quantifies the degree of consistency among the three color
channels. This metric is particularly suitable for haze removal
tasks, as hazy conditions often suppress the red channel,
leading to visible color imbalance. A lower oRGB value
indicates better channel consistency and improved color
fidelity, while higher values reflect imbalance and potential
color casts. The metric is defined as:

(R-p)?+(G-wW2+(B-w? _ R+G+B

oRGB = J U ()

3 3

where R, G, and B denote the average intensities of the red,
green, and blue channels, and p represents their mean intensity.
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Unlike structural indices such as PSNR and SSIM, which
emphasize pixel-level or textural similarity, cRGB directly
measures the preservation of color balance, aligning more
closely with the objectives of the proposed method.

D. Comparative Analysis

For benchmarking, the proposed method (PM OUT) was
compared against several well-established dehazing
algorithms, including DCP, CAP, ICAP WB, LPMinVP, DD
GAMMA, PM CC and PM CM. These methods were chosen
because they represent both prior-based and preprocessing-
driven strategies, ensuring a fair and comprehensive
evaluation. Since each approach directly affects brightness
preservation and color balance, their inclusion enables a
systematic comparison, highlighting not only overall dehazing
performance but also the influence of distinct preprocessing
modules on final image quality.

IV. RESULTS

This section evaluates the performance of the proposed
HCCVK method using the cRGB, where lower values indicate
better chromatic stability and reduced blue-shift distortion.
HCCVK is compared against five baseline methods: DCP,
CAP, ICAP WB, LPMinVP, and Dynamic Gamma. Results are
reported across six benchmark datasets covering indoor,
outdoor, dense, and non-homogeneous haze conditions.

A. CHIC Dataset (Indoor and Outdoor)

The results in Fig. 2 show that on the CHIC Indoor dataset,
HCCVK consistently achieves the lowest dRGB values among
all methods, demonstrating stable color restoration across
varying illumination. While LPMinVP and ICAP WB partially
improve color consistency, their 0RGB ranges remain
significantly wider than HCCVK, indicating lingering blue-
shift imbalance. DCP exhibits the highest GRGB deviation due
to its inaccurate atmospheric light estimation in bright regions.

RGB Color Balance Across Methods (CHIC Dataset)

= & S >

RGB Balance (Std Dev across R, G, B}

o

of
Methods

Fig.2. RGB color balance comparison across dehazing methods on the
CHIC indoor dataset.

For the CHIC Outdoor dataset (Fig. 3), similar behavior is
observed. HCCVK maintains a compact oRGB distribution,
confirming its effectiveness in both indoor and outdoor haze
environments. Competing methods such as CAP and Dynamic
Gamma struggle to stabilize the red and green channels,
resulting in color shifts in scenes with strong sky illumination.
In comparison, HCCVK corrects red-channel suppression,
producing visually natural color tone balance.
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RGB Color Balance Across Methods (CHIC Dataset)
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Fig.3. RGB color balance comparison across dehazing methods on the
CHIC outdoor dataset.

B. Dense Dataset (Indoor and Outdoor)

On the Dense-Haze dataset (Fig. 4, 5), haze density
increases image color distortion. Despite this challenge,
HCCVK maintains the most stable RGB balance with minimal
variance. Competing methods such as LPMinVP outperform
DCP and CAP in high-density haze but still suffer chromatic
instability, shown by higher RGB interquartile ranges. This
indicates that intensity equalization alone is insufficient
without spectral compensation.

RGB Color Bal Across Methods (Dense D: )

RGE Balance (Std Dev acrass R, G, B)

Methods

Fig. 4. RGB color balance comparison across dehazingmethods on the dense
indoor dataset.

RGB Color Balance Across Methods (Dense Dataset)
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Fig. 5. RGB color balance comparison across dehazing methods on the
dense outdoor dataset.
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C. I-Haze and O-Haze Dataset

The I-Haze and O-Haze datasets (Fig. 6-7) evaluate haze
removal in real historical scenes. HCCVK consistently
produces lower dRGB compared to learning-free baselines,
proving strong generalization to real-world atmospheric haze.
ICAP WB improves luminance consistency but fails to correct
haze-induced red-channel attenuation, leading to residual blue
tint in several scenes. HCCVK effectively addresses this
limitation.

RGB Color Balance Across Methods (I-Haze Dataset)
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Fig. 6. RGB color balance comparison across dehazing methods on the I-
Haze dataset.
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Fig. 7. RGB color balance comparison across dehazing methods on the O-
Haze dataset.

D. SOT Dataset (Indoor and Outdoor)

On the SOT dataset (Fig. 8-9), which contains challenging
texture transitions and depth variations, HCCVK provides the
tightest cRGB dispersion, reflecting robust channel stability.
CAP and Dynamic Gamma show inconsistent behavior,
performing well in some scenes but failing in low-light regions
due to over-enhancement artifacts.

E. NH Dataset

Finally, the NH-Haze dataset (Fig. 10), representing non-
homogeneous haze, poses the greatest difficulty. HCCVK
again achieves the lowest color imbalance and strongest
robustness against haze variation. Prior-based methods degrade
sharply in this dataset, demonstrating their limited adaptability
to haze thickness variation. In contrast, HCCVK maintains
consistent cRGB even under severe haze scattering.
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RGB Color Balance Across Methods (SOT Dataset)
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. RGB color balance comparison across dehazing methods on the SOT
indoor dataset.
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Fig.9. RGB color balance comparison across dehazing methods on the SOT
outdoor dataset.
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Fig. 10. RGB color balance comparison across dehazing methods on the NH
dataset.

V. DISCUSSION

The experimental results across six benchmark datasets
consistently demonstrate that the proposed HCCVK method
outperforms both prior-based and preprocessing-driven
dehazing techniques. The superiority of HCCVK can be
attributed to two core design principles: 1) explicit
compensation of the red channel to counteract haze-induced
blue-shift imbalance, and 2) global illuminant correction
through Von Kries chromatic adaptation. These steps stabilize
RGB distributions before dehazing, yielding more compact box
plots and lower dRGB values compared to competing methods.
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Prior-based methods such as DCP and CAP exhibit high
variability and frequent outliers n RGB, indicating unstable
color restoration, especially under severe haze. These
observations are consistent with findings reported in previous
studies. Guo et al. [24] showed that classical scattering-based
priors are sensitive to atmospheric light estimation errors, often
causing excessive color deviation and halo artifacts. Similarly,
Ancuti et al. [19] emphasized in the NTIRE dehazing challenge
that handcrafted priors struggle to preserve color fidelity,
especially in outdoor haze scenarios. Our results reinforce
these limitations, as DCP and CAP show wide oRGB
dispersion across most datasets, demonstrating their inability to
correct haze-induced color imbalance.

Preprocessing-driven methods such as ICAP WB,
LPMinVP, and Dynamic Gamma show moderate improvement
in color consistency but remain inadequate for haze
compensation. These methods apply intensity or gamma
corrections  without  addressing  wavelength-dependent
scattering, resulting in incomplete chromatic recovery. Husain
and Rahim [15] observed that gamma-based adjustments
improve brightness but fail to eliminate residual blue-shift,
while Huang et al. [25] found that simple color balancing lacks
robustness in non-uniform haze conditions. This limitation is
evident in our results, where ICAP WB and LPMinVP produce
higher median 0RG B and broader channel variations compared
to HCCVK.

Compared to recent learning-based approaches, HCCVK
maintains strong generalization without requiring model
training. Chen et al. [17] introduced CCD-Net to address color
distortion in deep networks, while Jing et al. [18] implemented
color correction modules to improve stability under changing
illumination. Although effective, these methods rely on large
annotated datasets and intensive computation, limiting real-
time applicability. In contrast, HCCVK delivers competitive
color correction without training, offering interpretability and
low computational cost.

Overall, the consistently narrow cRGB range obtained by
HCCVK across CHIC, Dense-Haze, I-Haze, O-Haze, SOT, and
NH-Haze confirms its robust chromatic recovery and blue-shift
mitigation capability. Unlike existing methods that treat color
correction as a post-processing step, HCCVK stabilizes
chromatic information before dehazing, preventing color error
propagation. This makes HCCVK a generalizable and
deployment-ready preprocessing module for haze removal,
especially in real-world applications such as intelligent
transportation, visual navigation, and UAV imaging.

VI. CONCLUSION AND FUTURE WORK

This study presented the HCCVK method, a lightweight
preprocessing solution designed to correct haze-induced
chromatic imbalance before dehazing. By integrating a red-
channel compensation mechanism with Von Kries chromatic
adaptation in linear RGB space, the method directly addresses
the spectral attenuation that leads to blue-shift dominance in
hazy images. Experimental validation on six heterogeneous
benchmark datasets (CHIC, Dense-Haze, I-Haze, O-Haze,
SOT, and NH-Haze) demonstrated that HCCVK consistently
achieved the lowest dRGB values and the most compact
channel distributions, indicating superior chromatic stability
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compared to prior-based and preprocessing-driven baselines.
These results confirm that addressing color imbalance at the
preprocessing stage prevents chromatic error propagation
during dehazing and provides a more reliable foundation for
subsequent visibility restoration.

Beyond performance, the significance of HCCVK lies in its
interpretability, generalizability, and low computational cost,
making it suitable for deployment in real-time and resource-
constrained computer vision systems. Unlike learning-based
approaches, it does not require training or dataset-dependent
tuning, yet maintains consistent robustness across varying haze
densities and illumination conditions.

Future work will extend this research in three directions.
First, HCCVK will be integrated with existing deep learning
dehazing networks to explore hybrid learmning-enhancement
architectures. Second, additional evaluation metrics such as
CIEDE2000, SSIM, and perceptual metrics like LPIPS will be
incorporated to further quantify visual quality improvements.
Finally, the method will be expanded to video dehazing and
multimodal fusion scenarios to support safety-critical
applications such as autonomous driving, UAV navigation,
maritime vision, and intelligent surveillance.
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