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Abstract—Haze severely degrades image quality by reducing 

contrast, obscuring details, and introducing a blue-shift color 

cast caused by atmospheric scattering. Traditional dehazing 

methods, including prior-based approaches (e.g., DCP, CAP, 

LPMinVP) and preprocessing techniques (e.g., ICAP WB, 

Dynamic Gamma), improve visibility but fail to correct haze-

induced color imbalance, resulting in unstable RGB distributions 

and unnatural tone reproduction. This study proposes the Haze-

Compensated Color Von Kries (HCCVK) method, a lightweight 

and training-free preprocessing strategy that performs color 

compensation before transmission estimation in single-image 

dehazing. HCCVK integrates a novel red-channel compensation 

mechanism with Von Kries chromatic adaptation to mitigate 

wavelength-dependent haze suppression and stabilize chromatic 

consistency under varying illumination. Unlike learning-based 

color correction approaches, HCCVK does not require training 

data, is computationally efficient, and maintains algorithmic 

interpretability, making it suitable for practical deployment. The 

method was evaluated on six benchmark datasets: CHIC, Dense-

Haze, I-Haze, O-Haze, SOT, and NH-Haze, covering indoor, 

outdoor, dense, and non-homogeneous haze scenarios. 

Experimental results based on the RGB color balance metric 

(σRGB) show that HCCVK reduces color deviation by 

approximately 75–92% on CHIC, 80–90% on Dense-Haze, and 

82–90% on NH-Haze compared to the widely used DCP, and also 

outperforms CAP, ICAP WB, Dynamic Gamma, and LPMinVP 

by producing more compact and stable RGB distributions. These 

findings demonstrate that HCCVK effectively corrects blue-shift 

imbalance, preserves luminance consistency, and enhances the 

color stability of dehazing pipelines. 

Keywords—Image dehazing; blue-shift correction; color 

compensation; Von Kries adaptation; preprocessing 

I. INTRODUCTION 

Haze is an atmospheric phenomenon that degrades image 
quality due to the scattering and absorption of light by particles 
such as water droplets, dust, and smoke suspended in the air 
[1]. This degradation reduces contrast, obscures fine details, 

and introduces a characteristic blue-shift color cast caused by 
wavelength-dependent scattering, where shorter wavelengths 
(blue) are scattered more strongly than longer wavelengths 
(red) [2][3]. Such distortions negatively affect human 
perception and degrade the performance of computer vision 
applications, including autonomous driving, UAV imaging, 
security surveillance, and remote sensing [4][5]. 

Similarly, studies in other computer vision domains have 
shown that poor quality input data leads to degraded feature 
extraction and reduced system performance. For example, 
Waheed et al. [6] demonstrated that melanoma classification 
accuracy declines when dermoscopic images are not properly 
preprocessed before CNN analysis, while Awan et al. [7] 
emphasized that preprocessing significantly reduces execution 
time and improves classification stability in MRI-based 
diagnosis. Furthermore, Jabal et al. [8] showed that structural 
errors in raw CAD drawings lead to error propagation during 
feature extraction, reinforcing the importance of early 
corrective processing. Therefore, haze removal is essential for 
both visual enhancement and robust scene understanding under 
real-world outdoor conditions [9-10]. 

Single-image dehazing techniques are commonly 
categorized into prior-based, preprocessing-based, and 
learning-based methods. Prior-based methods rely on physical 
or statistical assumptions to estimate scene transmission and 
atmospheric light. Examples include the Dark Channel Prior 
(DCP) [11] and the Color Attenuation Prior (CAP) [12], 
including their enhanced variants ICAP [13], Extremum Value 
prior-based Local Patch Wise Minimal Values (LPMinVP) 
[14] and Dynamic Gamma [15]. These methods can enhance 
structural visibility but often introduce color distortions, halo 
artifacts, and inconsistent illumination recovery in dense haze 
regions due to inaccurate atmospheric light estimation [13]. 
Preprocessing-based techniques such as white balancing, 
histogram equalization, and gamma correction improve global 
illumination but do not explicitly correct haze-induced color 
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bias, leading to unstable RGB distributions [14][16]. Recently, 
deep learning methods such as CCD-Net [17] and attention-
guided restoration models [18] have achieved significant 
improvements, yet they depend on large-scale training datasets, 
high computational cost, and lack interpretability, limiting their 
deployment in resource-constrained or real-time applications. 

A major limitation across existing dehazing methods is that 
color imbalance caused by atmospheric scattering is not 
explicitly corrected before transmission estimation. Due to 
wavelength-dependent scattering, the red channel experiences 
greater attenuation than the blue channel, resulting in a 
dominant blue-shift color cast in hazy images [3][19]. When 
dehazing is applied directly to such chromatically unbalanced 
inputs, error propagation occurs during transmission 
estimation, leading to unnatural tone reproduction and unstable 
RGB restoration [13][14][17]. This type of error propagation 
from unbalanced inputs has also been highlighted in medical 
image analysis and CAD extraction research, indicating that 
effective preprocessing is necessary before advanced 
processing [8]. 

Therefore, this study addresses the lack of a lightweight, 
training-free preprocessing mechanism that compensates red-
channel attenuation and stabilizes RGB color channels before 
dehazing. To solve this problem, we propose the Haze-
Compensated Color Von Kries (HCCVK) method, a 
preprocessing strategy that integrates red-channel 
compensation with Von Kries chromatic adaptation to correct 
haze-induced spectral imbalance. Unlike deep learning–based 
enhancement approaches that require GPU training resources, 
HCCVK requires no training data [7], offers full 
interpretability, and maintains low computational cost, making 
it suitable for real-time deployment. 

II. RELATED WORKS 

Single-image dehazing techniques have been widely 
explored in computer vision and can be categorized into three 
main groups: prior-based methods, preprocessing-based 
methods, and learning-based methods. Prior-based dehazing 
methods estimate scene transmission based on statistical 
assumptions about haze-free images. The DCP [11] assumes 
that at least one color channel in a local image patch has low 
intensity, enabling effective haze removal. However, it 
frequently generates halo artifacts and color distortion, 
especially in bright regions and sky areas where the prior is 
invalid. The CAP [112] utilizes the relationship between depth 
and brightness to estimate scene depth but often suffers from 
over-saturation and instability under varying illumination. 
Improved variants such as ICAP [13] and LPMinVP [14] 
enhance transmission estimation using adaptive priors but still 
struggle with chromatic inconsistency and residual color bias, 
particularly in dense haze conditions. Overall, prior-based 
methods enhance visibility but inherently lack a mechanism to 
correct haze-induced color imbalance. 

Preprocessing-based approaches aim to enhance visibility 
before dehazing by normalizing illumination or contrast. White 
balance correction is commonly used to suppress color cast but 
does not correct wavelength-dependent red-channel 
suppression in haze [16]. Similarly, gamma correction and 
histogram equalization improve brightness and contrast but 

often amplify noise and cause over-enhancement [14]. 
Methods such as Dynamic Gamma (DD-Gamma) [15] improve 
global tone distribution but still fail to address blue-shift 
caused by atmospheric scattering, resulting in unstable RGB 
distributions. These approaches improve perceptual quality but 
do not provide physically meaningful color correction. 

Learning-based dehazing methods have recently gained 
popularity by leveraging convolutional neural networks to 
learn end-to-end haze removal. Models such as AOD-Net and 
DCPDN incorporate physical priors into CNN architectures, 
while CCD-Net [17] introduces a dual-branch fusion network 
in RGB and Lab color space to reduce perceptual distortions. 
Other studies employ transformer-based attention or 
adversarial learning to improve scene restoration [18]. 
However, these methods generally require large training 
datasets, lack interpretability, and perform poorly in real-world 
atmospheric variations due to training bias and overfitting. 
Additionally, most learning-based models do not explicitly 
solve the color imbalance problem and often rely on post-
processing color correction. 

The importance of early-stage preprocessing to prevent 
feature distortion has also been emphasized across other 
computer vision fields. For example, Waheed et al. 
demonstrated that CNN-based melanoma classification can 
only achieve high accuracy when color distortion and 
illumination are corrected during preprocessing [6]. Similarly, 
Awan et al. showed that preprocessing improves both 
diagnostic stability and computational efficiency in MRI image 
analysis [7]. Additionally, Jabal et al. reported that failure to 
correct noisy or inconsistent CAD input data leads to error 
propagation in feature extraction systems [8]. These findings 
support the need for preprocessing strategies that stabilize input 
data before complex restoration or estimation steps. 

Based on this review, it is evident that most dehazing 
research prioritizes visibility enhancement but neglects 
chromatic fidelity. Neither prior-based methods nor 
preprocessing and learning strategies provide a reliable 
solution to haze-induced blue-shift and red-channel 
attenuation, which leads to unnatural tone reproduction and 
unstable color restoration. Unlike these methods, the proposed 
HCCVK method focuses specifically on stabilizing RGB 
balance before dehazing, offering a lightweight and 
interpretable solution to mitigate color distortion caused by 
atmospheric scattering. 

III. METHODOLOGY 

This section outlines the experimental design, including the 
proposed HCCVK method, benchmark datasets, and evaluation 
metrics. The methodology is structured to ensure 
reproducibility and clarity for future implementations. It also 
demonstrates the effectiveness of the proposed approach under 
a variety of indoor and outdoor hazy conditions. Color balance 
is applied as a preprocessing step to mitigate blue-channel bias 
and preserve luminance consistency under hazy conditions. 

Preprocessing plays a crucial role in preventing feature 
degradation during downstream processing, especially when 
the input data suffers from structural or spectral distortion. 
Similar to dehazing challenges, Waheed et al. reported that 
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classification accuracy in melanoma skin cancer detection 
drops significantly if illumination bias and color distortion are 
not corrected prior to CNN classification [6]. Likewise, Awan 
et al. demonstrated that MRI-based diagnostic performance 
improves when input instability is reduced through intensity 
normalization and contrast enhancement, especially in 
resource-constrained environments [7]. In another domain, 
Jabal et al. emphasized that uncorrected noise in CAD 
drawings propagates errors in feature extraction and 
interpretation, highlighting the importance of robust 
preprocessing before complex analysis [8]. Motivated by these 
findings, the HCCVK method introduces a lightweight 
preprocessing strategy to stabilize color distribution before 
dehazing, preventing chromatic error propagation during 
transmission estimation. 

 
Fig. 1. Flowchart of the proposed Haze-Compensated Color Von Kries 

method for haze-compensated color balance. 

A. Proposed Haze-Compensate Color Von Kries Method 

Acronyms 

The HCCVK method is designed as a preprocessing stage 
prior to dehazing. It balances the RGB distribution by 
compensating the red channel and correcting the global 
illuminant through the Von Kries chromatic adaptation 
transformation. Unlike deep learning–based preprocessing 
techniques, which often require dedicated training resources 
and GPU acceleration [7], HCCVK is computationally efficient 
and entirely training-free. The overall workflow of the method 
is illustrated in Fig. 1. 

As shown in the flowchart, the method proceeds through a 
sequence of operations from channel separation to illuminant 
correction. For clarity and reproducibility, the detailed steps are 
presented in Algorithm 1. 

Algorithm 1 Haze-Compensated Color Von Kries (HCCVK) 
Method 

Input: Hazy Image, 𝐼 

Output: Haze-compensated balanced image, 𝐼𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

Step:  

1) Preprocessing: 

a) Split the input image into RGB channels: 𝑅, 𝐺, 𝐵 . 

b) Compute mean intensities: 𝑅𝑒𝑑𝑚𝑒𝑎𝑛, 𝐺𝑟𝑒𝑒𝑛𝑚𝑒𝑎𝑛  

c) Apply red-channel compensation:  
 

𝑟𝑒𝑑𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒 =  𝑅 + 0.1 (𝐺𝑟𝑒𝑒𝑛 𝑚𝑒𝑎𝑛 − 𝑅𝑒𝑑 𝑚𝑒𝑎𝑛) 

2) Reconstruction 

a) Merge 𝑟𝑒𝑑𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒 , 𝐺 , and 𝐵  to obtain 
𝑅𝐺𝐵𝑚𝑒𝑟𝑔𝑒 

b) Convert 𝑅𝐺𝐵𝑚𝑒𝑟𝑔𝑒  into linear color space: 

𝑅𝐺𝐵𝑙𝑖𝑛𝑒𝑎𝑟 

3) Illuminant Estimation: 

a) Define a 5% percentile threshold for robust 
estimation 

b) Estimate global illuminant using the gray-world 
assumption at the 5th percentile 

4) Chromatic Adaptation: 

a) Apply the Von Kries transform using the estimated 
illuminant 

b) Generate corrected image 𝐼𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

5) Finalization: 

a) Convert 𝐼𝑏𝑎𝑙𝑎𝑛𝑐𝑒 back to RGB color space 

b) Output the haze-compensated balanced image 

As shown in Table I, the weight of 0.1 achieved the highest 
average compensation and the lowest standard deviation 
among all tested parameters. This finding was further validated 
through entropy analysis, where entropy is defined as:  

𝑒 =  − ∑ ∑ ∑ 𝑝𝑖,𝑗,𝑘
255
𝑘=1

255
𝑗=0

255
𝑖=0 .𝑙𝑜𝑔2(𝑝𝑖𝑗𝑘)      (1) 

Here, 𝑖,𝑗,𝑘  denote the three dimensions of the probability 
distribution. The analysis was conducted over 390 images 
selected from the total dataset of 1,239, covering both 
controlled (indoor) and non-controlled (outdoor) illumination 
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conditions. Therefore, a fixed weighting factor of 0.1 was 
adopted in the proposed method to ensure stability and 
robustness across different haze conditions. 

TABLE I.  WEIGHTED RED AND BLUE CHANNEL COMPENSATION 

COMPARISON WITH ENTROPY INFORMATION 

Weight 

Entropy Information, 𝒆 

Average 
Standard 

Deviation 

 Channel 

 Red Blue Red Blue 

0.1 6.8503 6.8452 0.4738 0.4762 

0.3 6.7879 6.7847 0.5229 0.5263 

0.5 6.7873 6.7690 0.5248 0.5384 

0.7 6.8288 6.7976 0.4852 0.5071 

0.9 6.7739 6.7456 0.5355 0.5644 

B. Dataset 

To ensure a comprehensive evaluation and demonstrate the 
robustness of the proposed method, a total of 1,239 hazy 
images with corresponding ground-truth (GT) images were 
utilized. The dataset comprises 588 indoor images and 651 
outdoor images, enabling performance assessment under 
different environmental conditions. These variations ensure 
that the evaluation covers both controlled scenarios and more 
challenging natural conditions. 

Indoor datasets were captured under controlled 
illumination, which guarantees stable lighting and minimizes 
external variability. These include I-Haze with 30 images [20], 
SOT from the RESIDE dataset with 500 images [21], CHIC 
with 36 images [22], and Dense-Haze with 22 images [23]. 
Such conditions make them suitable for analyzing the 
performance of the method in consistent environments. 

The outdoor datasets were collected under natural 
illumination, where changes in weather, solar position, and 
atmospheric scattering introduce greater complexity for 
dehazing. These include O-Haze with 45 images [20], SOT 
with 500 images [21], CHIC with 18 images [22], Dense-Haze 
with 33 images [23], and NH-Haze with 55 images [19]. The 
inclusion of these datasets ensures that the method is evaluated 
across both controlled and highly variable conditions. 

C. Evaluation Matrix 

The effectiveness of the proposed HCCVK method was 
evaluated using the RGB Color Balance metric (𝜎𝑅𝐺𝐵), which 
quantifies the degree of consistency among the three color 
channels. This metric is particularly suitable for haze removal 
tasks, as hazy conditions often suppress the red channel, 
leading to visible color imbalance. A lower 𝜎𝑅𝐺𝐵  value 
indicates better channel consistency and improved color 
fidelity, while higher values reflect imbalance and potential 
color casts. The metric is defined as: 

𝜎𝑅𝐺𝐵 =  √
(𝑅−𝜇)2+(𝐺−𝜇)2+(𝐵−𝜇)2

3
, 𝜇 =

𝑅+𝐺+𝐵

3
          () 

where 𝑅, 𝐺, and 𝐵 denote the average intensities of the red, 
green, and blue channels, and 𝜇 represents their mean intensity. 

Unlike structural indices such as PSNR and SSIM, which 
emphasize pixel-level or textural similarity, 𝜎𝑅𝐺𝐵  directly 
measures the preservation of color balance, aligning more 
closely with the objectives of the proposed method. 

D. Comparative Analysis 

For benchmarking, the proposed method (PM OUT) was 
compared against several well-established dehazing 
algorithms, including DCP, CAP, ICAP WB, LPMinVP, DD 
GAMMA, PM CC and PM CM. These methods were chosen 
because they represent both prior-based and preprocessing-
driven strategies, ensuring a fair and comprehensive 
evaluation. Since each approach directly affects brightness 
preservation and color balance, their inclusion enables a 
systematic comparison, highlighting not only overall dehazing 
performance but also the influence of distinct preprocessing 
modules on final image quality. 

IV. RESULTS 

This section evaluates the performance of the proposed 
HCCVK method using the 𝜎𝑅𝐺𝐵, where lower values indicate 
better chromatic stability and reduced blue-shift distortion. 
HCCVK is compared against five baseline methods: DCP, 
CAP, ICAP WB, LPMinVP, and Dynamic Gamma. Results are 
reported across six benchmark datasets covering indoor, 
outdoor, dense, and non-homogeneous haze conditions. 

A. CHIC Dataset (Indoor and Outdoor) 

The results in Fig. 2 show that on the CHIC Indoor dataset, 
HCCVK consistently achieves the lowest 𝜎𝑅𝐺𝐵 values among 
all methods, demonstrating stable color restoration across 
varying illumination. While LPMinVP and ICAP WB partially 
improve color consistency, their 𝜎𝑅𝐺𝐵  ranges remain 
significantly wider than HCCVK, indicating lingering blue-
shift imbalance. DCP exhibits the highest σRGB deviation due 
to its inaccurate atmospheric light estimation in bright regions. 

 
Fig. 2. RGB color balance comparison across dehazing methods on the 

CHIC indoor dataset. 

For the CHIC Outdoor dataset (Fig. 3), similar behavior is 
observed. HCCVK maintains a compact 𝜎𝑅𝐺𝐵 distribution, 
confirming its effectiveness in both indoor and outdoor haze 
environments. Competing methods such as CAP and Dynamic 
Gamma struggle to stabilize the red and green channels, 
resulting in color shifts in scenes with strong sky illumination. 
In comparison, HCCVK corrects red-channel suppression, 
producing visually natural color tone balance. 
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Fig. 3. RGB color balance comparison across dehazing methods on the 

CHIC outdoor dataset. 

B. Dense Dataset (Indoor and Outdoor) 

On the Dense-Haze dataset (Fig. 4, 5), haze density 
increases image color distortion. Despite this challenge, 
HCCVK maintains the most stable RGB balance with minimal 
variance. Competing methods such as LPMinVP outperform 
DCP and CAP in high-density haze but still suffer chromatic 
instability, shown by higher 𝜎𝑅𝐺𝐵 interquartile ranges. This 
indicates that intensity equalization alone is insufficient 
without spectral compensation. 

 
Fig. 4. RGB color balance comparison across dehazing methods on the dense 

indoor dataset. 

 
Fig. 5.  RGB color balance comparison across dehazing methods on the 

dense outdoor dataset. 

C. I-Haze and O-Haze Dataset 

The I-Haze and O-Haze datasets (Fig. 6–7) evaluate haze 
removal in real historical scenes. HCCVK consistently 
produces lower 𝜎𝑅𝐺𝐵  compared to learning-free baselines, 
proving strong generalization to real-world atmospheric haze. 
ICAP WB improves luminance consistency but fails to correct 
haze-induced red-channel attenuation, leading to residual blue 
tint in several scenes. HCCVK effectively addresses this 
limitation. 

 
Fig. 6. RGB color balance comparison across dehazing methods on the I-

Haze dataset. 

 
Fig. 7. RGB color balance comparison across dehazing methods on the O-

Haze dataset. 

D. SOT Dataset (Indoor and Outdoor) 

On the SOT dataset (Fig. 8–9), which contains challenging 
texture transitions and depth variations, HCCVK provides the 
tightest 𝜎𝑅𝐺𝐵 dispersion, reflecting robust channel stability. 
CAP and Dynamic Gamma show inconsistent behavior, 
performing well in some scenes but failing in low-light regions 
due to over-enhancement artifacts. 

E. NH Dataset 

Finally, the NH-Haze dataset (Fig. 10), representing non-
homogeneous haze, poses the greatest difficulty. HCCVK 
again achieves the lowest color imbalance and strongest 
robustness against haze variation. Prior-based methods degrade 
sharply in this dataset, demonstrating their limited adaptability 
to haze thickness variation. In contrast, HCCVK maintains 
consistent 𝜎𝑅𝐺𝐵 even under severe haze scattering. 
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Fig. 8. RGB color balance comparison across dehazing methods on the SOT 

indoor dataset. 

 
Fig. 9. RGB color balance comparison across dehazing methods on the SOT 

outdoor dataset. 

 
Fig. 10. RGB color balance comparison across dehazing methods on the NH 

dataset. 

V. DISCUSSION 

The experimental results across six benchmark datasets 
consistently demonstrate that the proposed HCCVK method 
outperforms both prior-based and preprocessing-driven 
dehazing techniques. The superiority of HCCVK can be 
attributed to two core design principles: 1) explicit 
compensation of the red channel to counteract haze-induced 
blue-shift imbalance, and 2) global illuminant correction 
through Von Kries chromatic adaptation. These steps stabilize 
RGB distributions before dehazing, yielding more compact box 
plots and lower 𝜎𝑅𝐺𝐵 values compared to competing methods. 

Prior-based methods such as DCP and CAP exhibit high 
variability and frequent outliers n 𝜎𝑅𝐺𝐵, indicating unstable 
color restoration, especially under severe haze. These 
observations are consistent with findings reported in previous 
studies. Guo et al. [24] showed that classical scattering-based 
priors are sensitive to atmospheric light estimation errors, often 
causing excessive color deviation and halo artifacts. Similarly, 
Ancuti et al. [19] emphasized in the NTIRE dehazing challenge 
that handcrafted priors struggle to preserve color fidelity, 
especially in outdoor haze scenarios. Our results reinforce 
these limitations, as DCP and CAP show wide 𝜎𝑅𝐺𝐵 
dispersion across most datasets, demonstrating their inability to 
correct haze-induced color imbalance. 

Preprocessing-driven methods such as ICAP WB, 
LPMinVP, and Dynamic Gamma show moderate improvement 
in color consistency but remain inadequate for haze 
compensation. These methods apply intensity or gamma 
corrections without addressing wavelength-dependent 
scattering, resulting in incomplete chromatic recovery. Husain 
and Rahim [15] observed that gamma-based adjustments 
improve brightness but fail to eliminate residual blue-shift, 
while Huang et al. [25] found that simple color balancing lacks 
robustness in non-uniform haze conditions. This limitation is 
evident in our results, where ICAP WB and LPMinVP produce 
higher median 𝜎𝑅𝐺𝐵 and broader channel variations compared 
to HCCVK. 

Compared to recent learning-based approaches, HCCVK 
maintains strong generalization without requiring model 
training. Chen et al. [17] introduced CCD-Net to address color 
distortion in deep networks, while Jing et al. [18] implemented 
color correction modules to improve stability under changing 
illumination. Although effective, these methods rely on large 
annotated datasets and intensive computation, limiting real-
time applicability. In contrast, HCCVK delivers competitive 
color correction without training, offering interpretability and 
low computational cost. 

Overall, the consistently narrow 𝜎𝑅𝐺𝐵 range obtained by 
HCCVK across CHIC, Dense-Haze, I-Haze, O-Haze, SOT, and 
NH-Haze confirms its robust chromatic recovery and blue-shift 
mitigation capability. Unlike existing methods that treat color 
correction as a post-processing step, HCCVK stabilizes 
chromatic information before dehazing, preventing color error 
propagation. This makes HCCVK a generalizable and 
deployment-ready preprocessing module for haze removal, 
especially in real-world applications such as intelligent 
transportation, visual navigation, and UAV imaging. 

VI. CONCLUSION AND FUTURE WORK 

This study presented the HCCVK method, a lightweight 
preprocessing solution designed to correct haze-induced 
chromatic imbalance before dehazing. By integrating a red-
channel compensation mechanism with Von Kries chromatic 
adaptation in linear RGB space, the method directly addresses 
the spectral attenuation that leads to blue-shift dominance in 
hazy images. Experimental validation on six heterogeneous 
benchmark datasets (CHIC, Dense-Haze, I-Haze, O-Haze, 
SOT, and NH-Haze) demonstrated that HCCVK consistently 
achieved the lowest 𝜎𝑅𝐺𝐵  values and the most compact 
channel distributions, indicating superior chromatic stability 
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compared to prior-based and preprocessing-driven baselines. 
These results confirm that addressing color imbalance at the 
preprocessing stage prevents chromatic error propagation 
during dehazing and provides a more reliable foundation for 
subsequent visibility restoration. 

Beyond performance, the significance of HCCVK lies in its 
interpretability, generalizability, and low computational cost, 
making it suitable for deployment in real-time and resource-
constrained computer vision systems. Unlike learning-based 
approaches, it does not require training or dataset-dependent 
tuning, yet maintains consistent robustness across varying haze 
densities and illumination conditions. 

Future work will extend this research in three directions. 
First, HCCVK will be integrated with existing deep learning 
dehazing networks to explore hybrid learning-enhancement 
architectures. Second, additional evaluation metrics such as 
CIEDE2000, SSIM, and perceptual metrics like LPIPS will be 
incorporated to further quantify visual quality improvements. 
Finally, the method will be expanded to video dehazing and 
multimodal fusion scenarios to support safety-critical 
applications such as autonomous driving, UAV navigation, 
maritime vision, and intelligent surveillance. 
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