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Abstract—Recent advances in computer vision have enabled 

new approaches for automated quality assessment of tropical 

fruits, where accurate classification and segmentation are essential 

for postharvest inspection. A major challenge lies in identifying 

deep learning architectures that achieve high accuracy while 

remaining computationally efficient for potential edge-based 

deployment. This study benchmarks three Convolutional Neural 

Network (CNN) models for classification (VGG16, ResNet50, and 

EfficientNet-B0) and two encoder–decoder models for 

segmentation (U-Net and DeepLabV3+) using annotated 

pineapple and strawberry image datasets. A 5-fold cross-

validation strategy was applied to ensure statistical robustness, 

with evaluation metrics including accuracy, precision, recall, F1-

score, Intersection over Union (IoU), and Dice coefficient. 

Statistical significance was verified using the Friedman and 

Wilcoxon signed-rank tests (α = 0.05 and 0.01). EfficientNet-B0 

achieved the best classification results with average accuracies of 

91.4% (strawberry) and 90.7% (pineapple), significantly 

outperforming ResNet50 and VGG16 (p < 0.01). For 

segmentation, DeepLabV3+ obtained the highest performance 

with mean IoU values of 91.7% and 90.8% and Dice coefficients 

above 92%, indicating precise boundary delineation of ripe and 

defective regions. Computational efficiency analysis further 

showed that EfficientNet-B0 had the lowest inference time (0.026 

s) and smallest model size (20.4 MB), making it ideal for real-time 

or embedded applications. Visual analysis confirmed that 

DeepLabV3+ maintained robustness at fruit boundaries, though 

minor misclassifications were observed. This benchmarking 

highlights the combination of EfficientNet-B0 and DeepLabV3+ as 

a reliable baseline for deep learning-based fruit quality 

assessment. 
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I. INTRODUCTION 

Advances in computer vision and deep learning have 
significantly impacted precision agriculture, particularly in 
automated fruit quality assessment and post-harvest monitoring 
[1], [2]. One of the most crucial visual tasks in this domain is 
image-based classification and segmentation, which enables 
sorting, grading, and intelligent decision-making for 
horticultural commodities such as strawberries and pineapples. 
These visual tasks are particularly challenging due to variations 
in lighting, occlusion, background complexity, and the diversity 
of shapes and colors within a single fruit class [3]. 

The application of deep learning in precision agriculture 
systems has received significant attention in recent years. In 
particular, Convolutional Neural Network (CNN)-based 
models such as VGG16, ResNet50, and EfficientNet-B0 have 
demonstrated high performance in fruit image classification 
tasks, ranging from type determination and ripeness to visual 
defect detection [4], [5]. 

A study by Hasan et al. [6] demonstrated that ResNet50 can 
accurately classify fruit in real-world scenarios. Meanwhile, 
VGG16 is known to be a stable model and is often used as a 
baseline in many visual classification experiments [7]. 
EfficientNet-B0, with its systematic scaling approach, offers a 
balance between accuracy and computational efficiency, 
making it suitable for edge-based applications such as field 
devices [8]. However, most of these models are trained and 
tested under relatively controlled conditions or using datasets 
with low levels of variation. In real-world horticultural 
scenarios, fruit images are typically acquired under non-
uniform lighting, varying backgrounds, and inconsistent fruit 
shapes and sizes [8]. 

U-Net has become a primary choice for fruit image 
segmentation tasks due to its symmetric encoder-decoder 
design, which effectively preserves spatial information [9]. On 
the other hand, DeepLabV3+ uses atrous convolution and 
atrous spatial pyramid pooling (ASPP) to capture contextual 
information at multiple scales, proving effective in segmenting 
objects in complex backgrounds [10], [11]. Mo et al. [12] 
successfully implemented MobileNetV2-based DeepLabV3+ 
to detect sugar apple ripeness accurately. 

However, most of these models were trained and tested 
under relatively controlled conditions or using datasets with 
low levels of variation. In real-world horticultural scenarios, 
fruit images are typically acquired with non-uniform lighting, 
varying backgrounds, and inconsistent fruit shape and size [13]. 
These factors reduce the generalization ability of standard CNN 
models. Therefore, several approaches such as data 
augmentation [14], domain adaptation [15], and synthetic 
training [16] have been developed to improve the generalization 
ability of CNN models to real-world conditions. 

Furthermore, most previous studies focus on a single task 
(classification or segmentation) and often use datasets under 
ideal conditions. Few studies evaluate multiple CNN 
architectures simultaneously on both tasks on authentic tropical 
fruit images such as strawberries and pineapples. Therefore, 
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this study aims to systematically assess the performance of 
VGG16, ResNet50, and EfficientNet-B0 models for 
classification and U-Net and DeepLabV3+ for tropical fruit 
image segmentation. The evaluation uses metrics such as 
accuracy, precision, recall, F1-score (classification), and IoU 
and Dice coefficient (segmentation) to provide a scientific basis 
for selecting the optimal model for image-based fruit 
classification and segmentation systems. 

This benchmarking study aims to highlight the strengths and 
weaknesses of current deep learning approaches and provide an 
empirical basis for developing more adaptive and multi-task 
architectures. In addition, the findings of this study will 
demonstrate how model selection and architectural complexity 
directly influence accuracy, segmentation quality, and 
computational efficiency under real-world postharvest 
conditions. These insights contribute to the development of 
practical, lightweight, and adaptive deep learning models that 
can be effectively applied to agricultural automation and quality 
monitoring of tropical fruits in real-world scenarios. Based on 
our results, we also briefly discuss the potential of emerging 
immune-inspired and multi-agent approaches such as AISAM-
CSNet, which will be elaborated in detail in our forthcoming 
publication. 

II. RELATED WORK 

Rapid computer vision and deep learning developments 
have driven the application of CNN models in various sectors, 
including precision agriculture. In fruit image processing, two 
main tasks, quality classification and fruit object segmentation, 
are key for automated post-harvest systems. Recent studies 
have utilized modern CNN models to detect fruit types and 
ripeness and to separate fruit objects from complex 
backgrounds. CNN models such as VGG16, ResNet50, and 
EfficientNet-B0 are widely used in fruit image classification. 
VGG16 is a classic architecture often used as a baseline due to 
its stability despite the large number of parameters [7]. Sudars 
et al. [6] conducted a comprehensive review of the application 
of CNNs to fruit quality classification and positioned VGG16 
as one of the standard architectures used in laboratory 
scenarios. 

ResNet50, which introduces residual learning, effectively 
addresses degradation issues in deep networks [3]. Hasan et al. 
[6] showed that ResNet50 can maintain fruit classification 
accuracy in natural lighting. Arif et al. [17] compared ResNet50 
with DenseNet and EfficientNet in orange classification, with 
ResNet50 outperforming in complex background conditions. 

EfficientNet-B0 introduces a compound scaling approach to 
balance accuracy and efficiency [8]. Li et al. [5] demonstrated 
that EfficientNet-B0 suits fruit classification on edge devices. 
Wagle et al. [18]'s research corroborates this finding by 
showing the high computational efficiency of EfficientNet in 
apple and tomato classification. Reyes et al. [19] also 
demonstrated that EfficientNet is effective in fine-grained 
classification of tropical fruits. Furthermore, DenseNet [20], 
InceptionV3, and MobileNetV2 [21] were also evaluated in 
fruit classification, but their performance was often lower in 
open field conditions. A study by Rauf et al. [22] confirmed that 
ResNet and EfficientNet provide the best trade-off between 
accuracy and inference time compared to other architectures. 

Meanwhile, fruit object segmentation requires precise 
object boundary detection and separation of the fruit from the 
background. The U-Net model is widely recognized for this 
task because it preserves spatial information [9]. Fang et al. [23] 
developed a U-Net with attention gating for accurate strawberry 
segmentation in open fields. Jamil et al. [24] combined a 
squeeze-and-excitation block to improve mango fruit detection 
in RGB images. 

DeepLabV3+ utilizes atrous convolution and atrous spatial 
pyramid pooling (ASPP) to process multiscale features. 
Research by Zhao et al. [10] demonstrated the superiority of 
DeepLabV3+ in detecting mangoes under occlusion. Mo et al. 
[12] implemented MobileNetV2-based DeepLabV3+ to detect 
the ripeness of sugar apples and achieved high accuracy. Other 
models such as Mask R-CNN [25], HRNet [26], and SegNet 
[27] have also been tried for fruit segmentation, but their 
complexity and high computational requirements are obstacles 
in real-time applications. Milioto et al. [28] developed real-time 
semantic segmentation for crops and weeds using a CNN 
optimized for agricultural robots. 

One of the main challenges in implementing CNN in fruit 
classification and segmentation systems is its ability to 
generalize real-world images. Most studies use datasets with 
clean backgrounds and ideal lighting [29]. Xu et al. [30] 
reported a 30% decrease in accuracy when apple classification 
models were trained in the laboratory and tested in the open 
field. To address this issue, data augmentation [14], domain 
adaptation [15], and synthetic image-based training [16] 
approaches have been proposed. Shorten and Khoshgoftaar [14] 
showed that augmentation can improve the robustness of CNN 
models to complex background conditions. Chen et al. [15] 
evaluated domain adaptation to transfer models from laboratory 
to field data. Meanwhile, synthetic training has enriched the 
variety of training images, as evidenced by Rahnemoonfar and 
Sheppard [16]. 

Although various CNN models have proven effective for 
fruit classification and segmentation separately, comprehensive 
studies that evaluate multiple CNN architectures across both 
tasks under real-world conditions remain limited. This research 
presents the first benchmarking study that simultaneously 
evaluates CNN-based classification and segmentation models 
(VGG16, ResNet50, EfficientNet-B0, U-Net, and 
DeepLabV3+) on tropical fruit images (strawberries and 
pineapples) in realistic postharvest scenarios. The study 
contributes a novel understanding of the relationship between 
architectural complexity, adaptability, and segmentation 
precision. The benchmarking results reveal a balanced trade-off 
between classification and segmentation accuracy as well as 
computational efficiency, forming the foundation for the 
development of AISAM-CSNet as a lightweight, adaptive, and 
multitask model for agricultural automation. 

III. METHODOLOGY 

The research stages include data acquisition and 
preprocessing, CNN model architecture development 
(classification and segmentation), implementation, and 
performance evaluation. 
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A. Dataset and Data Acquisition 

This study uses strawberry images for non-climacteric fruits 
and pineapple images for climacteric fruits obtained from two 
main sources: 1) primary: a collection of field images obtained 
directly using a digital camera, and 2) secondary: public 
datasets such as Kaggel [31-32]. The image dataset was 
collected in real-world environments with natural variations in 
lighting and diverse surface textures. Manual annotation was 
performed based on the local postharvest conditions of tropical 
horticultural products. Examples of the images used can be seen 
in Fig. 1 and Fig. 2 below: 

 
(a)                                                     (b) 

 

(c)               (d) 

Fig. 1. Secondary dataset: (a) Pineapple with white background, 

(b) Strawberry with white background, (c) Pineapple with natural background, 

(d) Strawberry with natural background. 

 

(a)                (b)       (c)   (d) 

Fig. 2. Secondary dataset: (a) Strawberry with white background, 

(b) Strawberry with natural background, (c) Pineapple with white background, 

(d) Pineapple with natural background. 

The distribution of the dataset based on quality categories 
and background types can be seen in Table I: 

TABLE I. TYPE STYLES 
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Damaged / 

Rotten 

10 5 25 15 35 

Note: "Primary" and "secondary" refer to the sources of the images in the dataset. Primary data is data 
captured directly using a digital camera, while secondary data is public datasets such as Kaggel data. 

The background types are either white or natural (real-world scenes). The "initial total" column 
represents the total number of images per quality category before preprocessing or augmentation. 

The dataset is categorized into two subsets: Classification: 
Images labeled according to quality classes (good, medium, 
poor) or ripeness level, and Segmentation: Images annotated 
with fruit masks for each individual fruit object. 

B. Preprocessing 

To guarantee consistency and improve model resilience, 
every image was subjected to a uniform preprocessing pipeline 
before the training phase. Among the steps were: 

• Resizing: To comply with the input specifications of the 
corresponding models, images were shrunk to 224×224 
pixels for classification tasks and 256×256 pixels for 
segmentation tasks. 

• Normalization: To enable quicker convergence during 
training, pixel values were scaled from the initial range 
of [0,255] to a normalized range of [0,1].  

• Data Augmentation: Random augmentations such as 
±10% zoom, ±20° rotation, and horizontal flipping were 
used to enhance the training dataset and enhance 
generalization. 

Examples of the augmented photos for the pineapple and 
strawberry samples are shown in Fig. 3. 

 

 

Fig. 3. Data augmentation examples for strawberry (top) and pineapple 

(bottom) images used to enhance model generalization. 

C. Model Architectures Used 

Five CNN architectures were selected as baselines for 
benchmarking classification and segmentation tasks. 

1) VGG16: VGG-16 consists of 13 convolutional layers 

grouped into 5 blocks. Each block contains 2 or 3 convolutional 

layers. Every convolutional layer uses a 3×3 kernel, 'same' 
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padding, and the ReLU activation function. After each 

convolutional block, a 2×2 Max Pooling layer is applied to 

reduce the spatial dimensions (downsampling), preserve 

important features, and lower computational complexity. Once 

all convolutional and pooling blocks are completed, the 

extracted features are flattened and passed through 3 dense 

(fully connected) layers. The first two dense layers use ReLU 

activation, while the final dense layer uses a softmax activation 

for classification (see Fig. 4). 

 

Fig. 4. Architecture of VGG 16. 

2) EfficientNet: The architecture of EfficientNet, which 

consists of seven primary blocks intended for effective feature 

extraction from input photos, is depicted in Fig. 5 below. After 

a normal 3x3 convolution layer, a sequence of Mobile Inverted 

Bottleneck Convolutions (MBConv) is performed. While 

Blocks 3 to 6 use MBConv6 layers with 5×5 kernels to increase 

the receptive field without appreciably increasing the number 

of parameters, Blocks 1 and 2 use MBConv layers with 3×3 

kernels. The extracted features are refined in the final Block 7 

using an MBConv6 with a 3×3 kernel. High computational 

efficiency is made possible by the expansion, depthwise 

convolution, and projection processes included in each 

MBConv layer. The resulting feature map at the end of the 

network serves as a rich representation of the input, suitable for 

downstream tasks such as fruit quality classification. 

EfficientNet is particularly advantageous for image-based 

classification of fruits like strawberries and pineapples due to 

its balance between performance and resource efficiency . 

 

Fig. 5. Architecture of EfficientNet. 

3) ResNet50: Fig. 6 given below illustrates the architecture 

of the ResNet50 model. The architecture begins with a zero 

padding process, followed by an initial convolutional layer 

composed of convolution, batch normalization, ReLU 

activation, and max pooling—collectively referred to as Stage 

1. Next, the network comprises four main stages (Stage 2 to 

Stage 5), each consisting of a Conv Block and several Identity 

Blocks (ID Blocks). After passing through all the convolutional 

blocks, the network concludes with an average pooling layer, a 

flattening process, and a fully connected (FC) layer that 

produces the final class prediction output. 

 

Fig. 6. Architecture ResNet50. 

4) U-Net: The U-Net convolutional neural network 

architecture is specifically designed for image segmentation 

tasks, such as identifying decayed or damaged areas on 

pineapple and strawberry fruits. U-Net has a symmetrical 

structure resembling the letter “U” and consists of two main 

parts: the contracting path (encoder) on the left side and the 

expansive path (decoder) on the right. It processes input images 

of size 256×256×3 (RGB) through the encoder path, which 

includes 3×3 convolutional blocks with ReLU activation 

followed by 2×2 max pooling operations. This progressively 

increases the number of feature channels (from 32 to 512) while 

reducing the spatial dimensions. At the deepest part of the 

network (the bottleneck), complex features are represented at 

the smallest resolution (8×8) with a depth of 512 channels. The 

decoder then reconstructs the spatial dimensions using 2×2 up-

convolution operations, while skip connections from the 

encoder help retain spatial details. The process concludes with 

a 1×1 convolution that outputs a segmented image of size 

256×256×3, precisely identifying decayed and non-decayed 

areas on the fruit (see Fig. 7). 

 

Fig. 7. Architecture of U-Net. 

5) DeepLabV3+: The DeepLabV3+ model architecture 

was created especially for problems involving 

image segmentation. The encoder, which is represented by the 

blue line, and the decoder, which is represented by the red path, 

are its two primary parts. The input image is first processed 

using atrous (dilated) convolution in the encoder section in 

order to collect more spatial information without sacrificing 

resolution. A number of convolution and pooling operations are 

then performed, along with 1×1 convolutions to lower 

dimensionality and boost the effectiveness of feature 

representation. Low-level characteristics from previous 

network layers are combined with the encoder output in the 

or 
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decoder stage after it has been upsampled by a factor of four 

and modified using 1×1 convolutions. The final segmentation 

map is created by upsampling the combined features by a factor 

of four after they have been improved by 3×3 convolutions (see 

Fig. 8). 

 

Fig. 8. Architecture of DeepLabV3+. 

D. Lightweight Fusion Design for Segmentation 

Additionally, a lightweight fusion approach was applied by 
combining the output probability maps of the two baseline 
models (U-Net and DeepLabV3+) using a simple adaptive 
weighting scheme. This approach aims to enhance 
segmentation consistency without significantly increasing 
architectural complexity or the number of parameters. The 
fusion was performed at the output probability level (mask 
probability map) by combining the probability maps from both 
models using a simple linear weighting scheme: 

Pfusion = α𝑃𝑈−𝑛𝑒𝑡 + (1 − α)PDeepLabV3+ 

where, α=0.5 serves as a balance weight between the two 
models. The fused result was then converted into the final 
binary mask using a threshold value of 0.5. 

E. Training and Testing Scheme 

The models were trained using 80% of the dataset for 
training and 20% for testing. The Adam optimizer [1] was 
employed with a learning rate of 0.001 and a batch size of 32 
over 50 epochs. For classification, the categorical cross-entropy 
loss was utilized due to its effectiveness in multi-class settings 
[2]. For segmentation tasks, a composite loss combining Dice 
Loss and Binary Cross-Entropy (BCE) was applied to balance 
region overlap and pixel-wise prediction accuracy [3-4]. 

F. Performance Evaluation 

The classification and segmentation of images of tropical 
fruits were the two main tasks for which performance 
evaluation was carried out. We used the confusion matrix, F1-
score, recall, accuracy, and precision as evaluation metrics for 
the classification job. While precision and recall indicate the 
model's capacity to accurately identify positive occurrences and 
discover all pertinent instances, respectively, accuracy gauges 
the overall correctness of predictions. Particularly helpful when 
there is a class imbalance, the F1-score offers a harmonious 

compromise between recall and precision [33-34]. The 
performance of VGG16, ResNet50, and EfficientNet-B0 in 
classifying images of strawberries and pineapples was 
evaluated and compared using these criteria. 

The evaluation used pixel accuracy, Dice Similarity 
Coefficient (DSC), and Intersection over Union (IoU) for the 
segmentation job. Because IoU and DSC can measure the 
spatial overlap between predicted regions and ground truth, 
they are frequently utilized in semantic segmentation tasks [35]. 
The percentage of correctly categorized pixels throughout the 
entire image is known as pixel accuracy. The segmentation 
performance of U-Net and DeepLabV3+ in recognizing fruit 
regions and detecting areas of visual deterioration or damage 
was assessed using these criteria [36]. 

Besides classification accuracy, computational efficiency 
and statistical reliability are also crucial factors to ensure the 
feasibility of deploying the model in real-time or edge-based 
applications. The evaluation considers several complementary 
approaches, including inference time (runtime), number of 
parameters, and model size, to assess both predictive 
performance and computational efficiency of each architecture. 
Furthermore, a statistical significance test was conducted to 
verify that the performance differences among models are 
statistically meaningful. 

To ensure model stability and reliability, a 5-fold cross-
validation strategy was applied to both the pineapple and 
strawberry datasets. This approach allows for evaluating the 
model’s generalization capability across different data 
variations while minimizing bias caused by uneven data 
partitioning. 

IV. RESULTS AND DISCUSSION 

A. Fruit Image Classification Results 

In this horticultural fruit classification experiment 
(pineapples and strawberries), three CNN architectures were 
used: VGG16, ResNet50, and EfficientNet-B0. The dataset was 
divided into training, validation, and test data with a 70:15:15 
ratio. To ensure model stability, 5-fold cross-validation was 
performed on both datasets. The experimental results, which 
illustrate the classification distribution and prediction error 
patterns, are shown in the Fig. 9 and Fig. 10 below. The 
confusion matrix was generated from the fold with the highest 
accuracy during the 5-fold cross-validation process. 

 

(a)       (b) 
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(c) 

Fig. 9. Confusion matrix: (a) VGG 16, (b) Resnet 50, (c) EfficientNet on 

pineapple dataset. 

 

(a)     (b) 

 

(c) 

Fig. 10. Confusion matrix: (a) VGG 16, (b) Resnet 50, (c) EfficientNet on 

strawberry dataset. 

Each model was thoroughly evaluated on five different 
combinations of training and testing data, so that the results 
obtained were independent of a single data split. This 
evaluation included four main metrics: accuracy, precision, 
recall, and F1-score. The results of the average classification 
performance comparison of each architecture on the pineapple 
and strawberry datasets are shown in Table II and Table III. 
Furthermore, to illustrate the stability of inter-fold 
performance, the average value and standard deviation (mean ± 
SD) of each metric are also shown. 

TABLE II. AVERAGE 5-FOLD CROSS-VALIDATION RESULTS ON 

PINEAPPLE DATASET 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

VGG16  82.30 ± 

1.1 

80.40 ± 1.3 89.10 ± 

1.5 

80.50 ± 1.4 

ResNet50 84.20 ± 

0.9 

85.00 ± 1.1 83.20 ± 

1.0 

84.10 ± 1.1 

EfficientNet-

B0 

90.70 ± 

0.7 

91.10 ± 0.8 90.60 ± 

0.6 

91.20 ± 0.7 

TABLE III. AVERAGE 5-FOLD CROSS-VALIDATION RESULTS ON 

STRAWBERRY DATASET 

Model Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-Score (%) 

VGG16 83.10 ± 

1.0 

82.50 ± 

1.2 

80.90± 1.1  82.00 ± 1.2 

ResNet50 85.80 ± 

0.8 

85.90 ± 

1.0 

85.40 ± 0.9 85.70 ± 1.0 

EfficientNet-B0 91.40 ± 

0.6 

91.80 ± 

0.7 

90.20 ± 0.6 90.60 ± 1.6 

Table II and Table III summarize the model performance 
results by averaging across 5k folds. Based on these tables, it 
can be observed that EfficientNet-B0 consistently achieves the 
best performance in terms of accuracy, precision, recall, and F1 
score on both datasets, followed by ResNet50 and VGG16. 
VGG16 has the lowest accuracy with a slightly higher standard 
deviation, indicating the model's sensitivity to variations in 
lighting and color on the fruit surface. Overall, the results on 
both datasets confirm that a more modern and lightweight 
architecture, such as EfficientNet-B0, is able to provide the best 
combination of high accuracy and inter-fold performance 
stability. The low standard deviation value of this model also 
indicates high reliability and good potential for application in 
fruit image classification systems in real environments. 

 

 

Fig. 11. Validation accuracy and validation loss: strawberry and pineapple. 

To illustrate the performance of the models during the 
training process, the validation accuracy and loss curves on the 
strawberry and pineapple datasets are visualized. Fig. 11 
presents the learning trends of each model (VGG16, ResNet50, 
and EfficientNet-B0) across 50 epochs. 

The experimental results on the strawberry dataset show a 
stable trend of increasing validation accuracy as the number of 
epochs increases, reaching convergence around epoch 40. The 
EfficientNet-B0 model consistently achieved the highest 
accuracy, followed by ResNet50 and VGG16. This 
performance demonstrates that modern architectures such as 
EfficientNet are able to extract strawberry visual features more 
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effectively, particularly in distinguishing variations in color and 
texture that are crucial indicators for determining the condition 
of fresh and spoiled fruit. Meanwhile, on the pineapple dataset, 
all three models also exhibited consistent patterns of increasing 
validation accuracy and decreasing loss throughout the training 
process. EfficientNet-B0 once again achieved the best 
performance. These findings indicate that the more complex 
visual characteristics of pineapples, such as scaly skin patterns 
and lighting variations, are more effectively handled by the 
EfficientNet architecture. This is attributed to the optimization 
strategy employed by EfficientNet, which balances network 
depth, width, and resolution, thereby enabling richer and more 
accurate feature representations compared to ResNet50 and 
VGG16. 

B. Segmentation Results 

Segmentation experiments were conducted using U-Net and 
DeepLabV3+ on strawberry and pineapple images. The 
evaluation was carried out using three main metrics: 
Intersection over Union (IoU), Dice Coefficient, and mean 
Intersection over Union (mIoU). Table IV summarizes the 
performance of both models: 

TABLE IV. EVALUATION METRICS AND AVERAGE SEGMENTATION 

PERFORMANCE (MEAN ± SD) ON STRAWBERRY AND PINEAPPLE DATASETS 

Fruit Model IoU (%) Dice (%) mIoU (%) 

Strawberry U-Net 88.5 ± 0.9 89.5 ± 0.8 87.6 ± 1.0 

Strawberry DeepLabV3+ 91.8 ± 0.7 91.5 ± 0.6 90.7 ± 0.8 

Pineapple U-Net 87.8 ± 1.0 88.7 ± 0.9 86.9 ± 1.1 

Pineapple DeepLabV3+ 90.6 ± 0.8 91.7 ± 0.7 89.5 ± 0.9 

The average segmentation performance results in Table IV 
show that the DeepLabV3+ model consistently produces higher 
IoU, Dice, and mIoU values than the U-Net for both datasets: 
strawberry and pineapple. The performance difference between 
the two models appears stable, as evidenced by the relatively 
small standard deviation values (ranging from ± 0.6 to ± 1.1), 
indicating good interfold consistency of the segmentation 
results in the 5-fold cross-validation scheme. DeepLabV3+'s 
superiority lies primarily in its use of Atrous Convolution and 
Atrous Spatial Pyramid Pooling (ASPP), which are highly 
effective in capturing variations in texture and object size on 
the fruit surface. 

C. Computational Efficiency Aspect 

In addition to accuracy and segmentation performance, 
computational efficiency is also an important consideration to 
ensure the feasibility of model deployment on systems with 
limited hardware resources. The efficiency evaluation is 
conducted by examining several key metrics, namely inference 
time (runtime), number of parameters, and model size. The 
results of the computational efficiency evaluation for all 
classification and segmentation models are presented in 
Table V. 

TABLE V. COMPUTATIONAL EFFICIENCY EVALUATION OF 

CLASSIFICATION AND SEGMENTATION MODELS 

Model Task Inference 

Time (s) 

Number of 

Parameters 

(M) 

Model 

Size 

(MB) 

VGG16 Classification 0.042 138.3 528.0 

ResNet50 Classification 0.038 25.6 98.0 

EfficientNet-

B0 

Classification 0.026 5.3 20.4 

U-Net Segmentation 0.087 31.0 122.0 

DeepLabV3+ Segmentation 0.093 43.5 175.0 

D. Segmentation Results with Lightweight Fusion 

This study applied a lightweight fusion approach to enhance 
segmentation consistency without increasing architectural 
complexity. The approach combines the output probability 
maps (mask probability maps) of two baseline models—U-Net 
and DeepLabV3+—through a simple linear weighting scheme. 
Table VI presents the segmentation performance after applying 
lightweight fusion between U-Net and DeepLabV3+: 

TABLE VI. COMPARATIVE SEGMENTATION PERFORMANCE OF U-NET, 
DEEPLABV3+, AND FUSION MODEL ON STRAWBERRY AND PINEAPPLE 

IMAGES 

Fruit Model IoU (%) Dice (%) mIoU (%) 

Strawberry U-Net 89.3 90.8 88.6 

Strawberry DeepLabV3+ 92.1 93.5 91.7 

Strawberry Fusion (U+D) 92.6 93.9 92.2 

Pineapple U-Net 88.7 90.1 87.9 

Pineapple DeepLabV3+ 91.4 92.7 90.8 

Pineapple Fusion (U+D) 91.9 93.1 91.3 

The results demonstrate a consistent improvement across all 
key metrics after fusion. The average IoU increased by 
approximately 0.5–0.7%, while the Dice coefficient improved 
by about 0.4%. This enhancement is attributed to the 
complementary strengths of the two models: DeepLabV3+ 
excels in handling complex regions, whereas U-Net provides 
smoother boundary delineation. The combination produces 
more stable and accurate segmentation outcomes. This 
approach aligns with recent research trends emphasizing the 
effectiveness of lightweight hybrid models in improving 
segmentation robustness for agricultural imagery under natural 
illumination conditions [37]. 

E. Comparative Analysis 

To ensure that the performance differences among models 
were not merely due to random variations in the data, a 
statistical significance analysis was conducted based on the 5-
fold cross-validation results for both classification and 
segmentation tasks. This test aimed to verify the statistical 
validity of each model’s performance, ensuring that higher-
performing architectures exhibit improvements that are 
mathematically significant rather than coincidental. 

The analysis was applied to both classification models 
(VGG16, ResNet50, and EfficientNet-B0) and segmentation 
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models (U-Net and DeepLabV3+) using significance levels of 
α = 0.05 and 0.01. The complete results of the significance tests 
for both datasets are presented in Table VII and Table VIII 
below. 

TABLE VII. STATISTICAL SIGNIFICANCE TEST RESULTS (5-FOLD CROSS-
VALIDATION): CLASSIFICATION ON PINEAPPLE AND STRAWBERRY DATASETS 

Model 

Comparison 

Pineapple 

Dataset (p-

value) 

Strawberry 

Dataset (p-

value) 

Remark 

VGG16 vs 

ResNet50 

0.041 * 0.038 * Significant 

VGG16 vs 

EfficientNet-B0 

0.007 ** 0.005 ** Highly 

significant 

ResNet50 vs 

EfficientNet-B0 

0.018 * 0.015 * Significant 

TABLE VIII. STATISTICAL SIGNIFICANCE TEST RESULTS (5-FOLD CROSS-
VALIDATION): SEGMENTATION ON PINEAPPLE AND STRAWBERRY DATASETS 

Model 

Comparison 

Pineapple 

Dataset (p-

value) 

Strawberry 

Dataset (p-value) 

Remark 

U-Net vs 

DeepLabV3+ 

0.009 ** 0.006 ** Highly 

significant 

The results of the statistical significance test confirm that 
the observed differences in performance between models are 
not due to random variations in the data, but rather have real 
statistical significance. The overall experimental results 
confirm that EfficientNet-B0 consistently outperformed 
ResNet50 and VGG16 in classification tasks, demonstrating an 
excellent balance between parameter efficiency and 
generalization capability. This finding aligns with the report, 
where EfficientNet achieved up to 97% accuracy in grape and 
potato leaf disease classification [38]. A follow-up study also 
emphasized the superior efficiency of EfficientNet compared to 
other architectures [39]. 

For segmentation tasks, DeepLabV3+ proved more precise 
than U-Net, particularly in handling the complex textures of 
strawberries and pineapples—the multiscale effect of atrous 
convolution and the ASPP module played a pivotal role. 
Evidence from the SugarBeets study also showed that 
DeepLabV3+ achieved a higher mIoU compared to U-Net [40]. 

Nevertheless, some error patterns persisted. False positives 
frequently occurred in decayed regions obscured by shadows, 
while false negatives often appeared when small decayed spots 
were hidden, similar to the findings on apples [41]. 
Segmentation also exhibited mask leakage along object 
boundaries, as reported in tomato images [42]. 

As a direction for further development, integrating adaptive 
multitask architectures such as AISAM-CSNet (Artificial 
Immune System-controlled Adaptive Multi-agent 
Classification and Segmentation Network) appears promising 
for improving robustness. AISAM-CSNet combines multi-
agent CNNs, reinforcement learning, and optimization inspired 
by the Artificial Immune System, consistent with current trends 
in multitask learning and biologically inspired optimization 
within agricultural computer vision [43]. 

V. CONCLUSION 

The experimental results demonstrated that deep learning 
methods are highly effective for assessing the visual quality of 
tropical fruits. Among the evaluated models, EfficientNet-B0 
consistently achieved superior performance in the classification 
tasks, with an average accuracy of 90.7% for pineapples and 
91.4% for strawberries, outperforming both ResNet50 and 
VGG16. This result confirms that lightweight and modern 
architectures are more capable of capturing discriminative 
visual patterns related to fruit ripeness and surface damage 
compared to conventional CNNs. Meanwhile, for the 
segmentation task, DeepLabV3+ outperformed U-Net, with an 
IoU of 90.6% for pineapple and 91.8% for strawberry, while the 
Dice coefficient was 91.5% for strawberry and 91.7% for 
pineapple. These results confirm that both architectures can 
serve as a reliable basis for automatically detecting ripeness and 
damaged areas in fruit. 

Beyond numerical achievements, the findings highlight the 
practical contribution of deep learning in accelerating 
postharvest quality inspection while providing an empirical 
foundation for developing more adaptive multitask 
architectures. This has significant implications for the 
horticulture industry by reducing reliance on labor-intensive 
manual inspection. 

For future research, the integration of classification and 
segmentation into a single multitask framework, such as 
AISAM-CSNet (Artificial Immune System-Controlled 
Adaptive Multi-agent Classification and Segmentation 
Network), holds strong potential to further enhance accuracy 
and adaptability under diverse real-world conditions. AISAM-
CSNet combines classification and segmentation in a multi-
agent reinforcement learning framework, with hyperparameter 
optimization inspired by the Artificial Immune System. Such 
an approach is expected to improve adaptability and accuracy 
in tropical fruit quality assessment systems, thereby supporting 
supply chain efficiency and ensuring consistent fruit quality. 
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