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Abstract—Recent advances in computer vision have enabled
new approaches for automated quality assessment of tropical
fruits, where accurate classification and segmentation are essential
for postharvest inspection. A major challenge lies in identifying
deep learning architectures that achieve high accuracy while
remaining computationally efficient for potential edge-based
deployment. This study benchmarks three Convolutional Neural
Network (CNN) models for classification (VGG16, ResNet50, and
EfficientNet-B0) and two encoder—decoder models for
segmentation (U-Net and DeepLabV3+) using annotated
pineapple and strawberry image datasets. A 5-fold cross-
validation strategy was applied to ensure statistical robustness,
with evaluation metrics including accuracy, precision, recall, F1-
score, Intersection over Union (IoU), and Dice coefficient.
Statistical significance was verified using the Friedman and
Wilcoxon signed-rank tests (0. = 0.05 and 0.01). EfficientNet-B0
achieved the best classification results with average accuracies of
91.4% (strawberry) and 90.7% (pineapple), significantly
outperforming ResNet50 and VGG16 (p < 0.01). For
segmentation, DeepLabV3+ obtained the highest performance
with mean IoU values of 91.7% and 90.8% and Dice coefficients
above 92%, indicating precise boundary delineation of ripe and
defective regions. Computational efficiency analysis further
showed that EfficientNet-B0 had the lowest inference time (0.026
s) and smallest model size (20.4 MB), making it ideal for real-time
or embedded applications. Visual analysis confirmed that
DeepLabV3+ maintained robustness at fruit boundaries, though
minor misclassifications were observed. This benchmarking
highlights the combination of EfficientNet-B0 and DeepLabV3+ as
a reliable baseline for deep learning-based fruit quality
assessment.
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I.  INTRODUCTION

Advances in computer vision and deep learning have
significantly impacted precision agriculture, particularly in
automated fruit quality assessment and post-harvest monitoring
[1], [2]. One of the most crucial visual tasks in this domain is
image-based classification and segmentation, which enables
sorting, grading, and intelligent decision-making for
horticultural commodities such as strawberries and pineapples.
These visual tasks are particularly challenging due to variations
in lighting, occlusion, background complexity, and the diversity
of shapes and colors within a single fruit class [3].

*Corresponding author.

The application of deep learning in precision agriculture
systems has received significant attention in recent years. In
particular, Convolutional Neural Network (CNN)-based
models such as VGG16, ResNet50, and EfficientNet-B0 have
demonstrated high performance in fruit image classification
tasks, ranging from type determination and ripeness to visual
defect detection [4], [5].

A study by Hasan et al. [6] demonstrated that ResNet50 can
accurately classify fruit in real-world scenarios. Meanwhile,
VGG16 is known to be a stable model and is oftenused as a
baseline in many visual classification experiments [7].
EfficientNet-B0, with its systematic scaling approach, offers a
balance between accuracy and computational efficiency,
making it suitable for edge-based applications such as field
devices [8]. However, most of these models are trained and
tested under relatively controlled conditions or using datasets
with low levels of variation. In real-world horticultural
scenarios, fruit images are typically acquired under non-
uniform lighting, varying backgrounds, and inconsistent fruit
shapes and sizes [8].

U-Net has become a primary choice for fruit image
segmentation tasks due to its symmetric encoder-decoder
design, which effectively preserves spatial information [9]. On
the other hand, DeepLabV3+ uses atrous convolution and
atrous spatial pyramid pooling (ASPP) to capture contextual
information at multiple scales, proving effective in segmenting
objects in complex backgrounds [10], [11]. Mo et al. [12]
successfully implemented MobileNetV2-based DeeplLabV3+
to detect sugar apple ripeness accurately.

However, most of these models were trained and tested
under relatively controlled conditions or using datasets with
low levels of variation. In real-world horticultural scenarios,
fruit images are typically acquired with non-uniform lighting,
varyingbackgrounds, and inconsistent fruit shape and size[13].
These factors reduce the generalization ability of standard CNN
models. Therefore, several approaches such as data
augmentation [14], domain adaptation [15], and synthetic
training[16] havebeendeveloped to improvethe generalization
ability of CNN models to real-world conditions.

Furthermore, most previous studies focus on a single task
(classification or segmentation) and often use datasets under
ideal conditions. Few studies evaluate multiple CNN
architectures simultaneously on both tasks on authentic tropical
fruit images such as strawberries and pineapples. Therefore,
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this study aims to systematically assess the performance of
VGG16, ResNet50, and EfficientNet-BO models for
classification and U-Net and DeepLabV3+ for tropical fruit
image segmentation. The evaluation uses metrics such as
accuracy, precision, recall, F1-score (classification), and IoU
and Dice coefficient (segmentation) to provide a scientific basis
for selecting the optimal model for image-based fruit
classification and segmentation systems.

This benchmarking studyaims to highlightthe strengths and
weaknesses of current deep learningapproaches and providean
empirical basis for developing more adaptive and multi-task
architectures. In addition, the findings of this study will
demonstrate how model selection and architectural complexity
directly influence accuracy, segmentation quality, and
computational efficiency under real-world postharvest
conditions. These insights contribute to the development of
practical, lightweight, and adaptive deep learning models that
canbe effectively applied to agricultural automation and quality
monitoring of tropical fruits in real-world scenarios. Based on
our results, we also briefly discuss the potential of emerging
immune-inspired and multi-agent approaches such as AISAM-
CSNet, which will be elaborated in detail in our forthcoming
publication.

II. RELATED WORK

Rapid computer vision and deep learning developments
have driven the application of CNN models in various sectors,
including precision agriculture. In fruit image processing, two
main tasks, quality classification and fruit object segmentation,
are key for automated post-harvest systems. Recent studies
have utilized modern CNN models to detect fruit types and
ripeness and to separate fruit objects from complex
backgrounds. CNN models such as VGG16, ResNet50, and
EfficientNet-B0 are widely used in fruit image classification.
VGG16 is a classic architecture often used as a baseline due to
its stability despite the large number of parameters [7]. Sudars
et al.[6] conducted a comprehensive review of the application
of CNNs to fruit quality classification and positioned VGG16
as one of the standard architectures used in laboratory
scenarios.

ResNet50, which introduces residual learning, effectively
addresses degradation issues in deep networks [3]. Hasan et al.
[6] showed that ResNet50 can maintain fruit classification
accuracyinnatural lighting. Arifetal.[17] compared ResNet50
with DenseNet and EfficientNet in orange classification, with
ResNet50 outperforming in complex background conditions.

EfficientNet-B0 introducesa compound scalingapproachto
balance accuracy and efficiency [8]. Li et al. [5] demonstrated
that EfficientNet-BO0 suits fruit classification on edge devices.
Wagle et al. [18]'s research corroborates this finding by
showing the high computational efficiency of EfficientNet in
apple and tomato classification. Reyes et al. [19] also
demonstrated that EfficientNet is effective in fine-grained
classification of tropical fruits. Furthermore, DenseNet [20],
InceptionV3, and MobileNetV2 [21] were also evaluated in
fruit classification, but their performance was often lower in
open field conditions. A study by Raufetal.[22] confirmed that
ResNet and EfficientNet provide the best trade-off between
accuracy and inference time compared to other architectures.
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Meanwhile, fruit object segmentation requires precise
object boundary detection and separation of the fruit from the
background. The U-Net model is widely recognized for this
task because it preserves spatial information[9]. Fangetal. [23]
developed a U-Net with attention gating for accurate strawberry
segmentation in open fields. Jamil et al. [24] combined a
squeeze-and-excitation block to improve mango fruit detection
in RGB images.

DeepLabV3+ utilizes atrous convolution and atrous spatial
pyramid pooling (ASPP) to process multiscale features.
Research by Zhao et al. [10] demonstrated the superiority of
DeepLabV3+ in detecting mangoes under occlusion. Mo et al.
[12] implemented MobileNetV2-based DeepLabV3+ to detect
the ripeness of sugar apples and achieved high accuracy. Other
models such as Mask R-CNN [25], HRNet [26], and SegNet
[27] have also been tried for fruit segmentation, but their
complexity and high computational requirements are obstacles
inreal-time applications. Miliotoetal.[28] developedreal-time
semantic segmentation for crops and weeds using a CNN
optimized for agricultural robots.

One of the main challenges in implementing CNN in fruit
classification and segmentation systems is its ability to
generalize real-world images. Most studies use datasets with
clean backgrounds and ideal lighting [29]. Xu et al. [30]
reported a 30% decrease in accuracy when apple classification
models were trained in the laboratory and tested in the open
field. To address this issue, data augmentation [14], domain
adaptation [15], and synthetic image-based training [16]
approaches have beenproposed. Shorten and Khoshgoftaar[14]
showed thataugmentation can improve the robustness of CNN
models to complex background conditions. Chen et al. [15]
evaluated domainadaptationto transfer models from laboratory
to field data. Meanwhile, synthetic training has enriched the
variety of training images, as evidenced by Rahnemoonfar and
Sheppard [16].

Although various CNN models have proven effective for
fruit classification and segmentation separately, comprehensive
studies that evaluate multiple CNN architectures across both
tasks under real-world conditions remain limited. This research
presents the first benchmarking study that simultaneously
evaluates CNN-based classification and segmentation models
(VGG16, ResNet50, EfficientNet-BO, U-Net, and
DeepLabV3+) on tropical fruit images (strawberries and
pineapples) in realistic postharvest scenarios. The study
contributes a novel understanding of the relationship between
architectural complexity, adaptability, and segmentation
precision. The benchmarkingresults reveal a balanced trade-off
between classification and segmentation accuracy as well as
computational efficiency, forming the foundation for the
development of AISAM-CSNet as a lightweight, adaptive, and
multitask model for agricultural automation.

III. METHODOLOGY

The research stages include data acquisition and
preprocessing, CNN model architecture development
(classification and segmentation), implementation, and
performance evaluation.
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A. Dataset and Data Acquisition

This study uses strawberry images for non-climacteric fruits
and pineapple images for climacteric fruits obtained from two
main sources: 1) primary: a collection of field images obtained
directly using a digital camera, and 2) secondary: public
datasets such as Kaggel [31-32]. The image dataset was
collected in real-world environments with natural variations in
lighting and diverse surface textures. Manual annotation was
performed based on the local postharvest conditions of tropical
horticultural products. Examplesofthe images used can beseen
in Fig. 1 and Fig. 2 below:
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Fig. 1. Secondary dataset: (a) Pineapple with white background,
(b) Strawberry with white background, (c) Pineapple with naturalbackground,
(d) Strawberry with natural background.

(@) () © @

Fig.2. Secondary dataset: (a) Strawberry with white background,
(b) Strawberry with naturalbackground, (c) Pineapple with white background,
(d) Pineapple with natural background.

The distribution of the dataset based on quality categories
and background types can be seen in Table I:
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Note: "Primary" and "secondary" refer to the sources of the images in the dataset. Primary data is data
captured directly using a digital camera, while secondary data is public datasets such as Kaggel data.
The background types are either white or natural (real-world scenes). The "initial total" column
represents the total number of images per quality category before preprocessing or augmentation.

The datasetis categorized into two subsets: Classification:
Images labeled according to quality classes (good, medium,
poor) or ripeness level, and Segmentation: Images annotated
with fruit masks for each individual fruit object.

B. Preprocessing

To guarantee consistency and improve model resilience,
every image was subjected to a uniform preprocessing pipeline
before the training phase. Among the steps were:

e Resizing: To comply with the input specifications of the
corresponding models, images were shrunk to 224x224
pixels for classification tasks and 256x256 pixels for
segmentation tasks.

e Normalization: To enable quicker convergence during
training, pixel values were scaled from the initial range
0f[0,255] to a normalized range of [0,1].

e Data Augmentation: Random augmentations such as
+10% zoom,+20° rotation,and horizontal flipping were
used to enhance the training dataset and enhance
generalization.

Examples of the augmented photos for the pineapple and
strawberry samples are shown in Fig. 3.

A X)
ek

Fig. 3. Data augmentation examples for strawberry (top) and pineapple
(bottom) images used to enhance model generalization.

C. Model Architectures Used
Five CNN architectures were selected as baselines for
benchmarking classification and segmentation tasks.

1) VGGI16: VGG-16 consists of 13 convolutional layers
grouped into 5 blocks. Each block contains 2 or 3 convolutional
layers. Every convolutional layer uses a 3x3 kernel, 'same’
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padding, and the ReLU activation function. After each
convolutional block, a 2x2 Max Pooling layer is applied to
reduce the spatial dimensions (downsampling), preserve
important features, and lower computational complexity. Once
all convolutional and pooling blocks are completed, the
extracted features are flattened and passed through 3 dense
(fully connected) layers. The first two dense layers use ReLU
activation, while the final dense layeruses a softmax activation
for classification (see Fig. 4).
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Fig. 4. Architecture of VGG 16.

2) EfficientNet: The architecture of EfficientNet, which
consists of seven primary blocks intended for effective feature
extraction from input photos, is depicted in Fig. 5 below. After
anormal 3x3 convolution layer, a sequence of Mobile Inverted
Bottleneck Convolutions (MBConv) is performed. While
Blocks 3 to 6 use MBConv6 layers with 5x5 kernels to increase
the receptive field without appreciably increasing the number
of parameters, Blocks 1 and 2 use MBConv layers with 3x3
kernels. The extracted features are refined in the final Block 7
using an MBConv6 with a 3x3 kernel. High computational
efficiency is made possible by the expansion, depthwise
convolution, and projection processes included in each
MBConv layer. The resulting feature map at the end of the
network serves as a rich representation ofthe input, suitable for
downstream tasks such as fruit quality classification.
EfficientNet is particularly advantageous for image-based
classification of fruits like strawberries and pineapples due to
its balance between performance and resource efficiency.

or

o
Block 2
Block 3
Block 5
Block 7

.

————

}
}
!
)

Input Image
v
MBCom1,3 X3
MBConvé, 3 X3
MBConvé, 3X 3
MBConvé, 5 X 5
MBConvé, 5X 5
MBConv, 3 X3
MBConv6, 3 X3
MBConvé, 3X 3
MBConvé, 5 X5
MBConvg, 5 X5
MBConv6, 5 X 5
MBCong, 5X5
MBConve, 5 X5
MBConv6, 5 X5
MBConvE, 5X 5
MBConvé, 3X 3
v
Feature Map

Conv3X3

Fig. 5. Architecture of EfficientNet.

3) ResNet50: Fig. 6 given below illustrates the architecture
of the ResNet50 model. The architecture begins with a zero
padding process, followed by an initial convolutional layer
composed of convolution, batch normalization, ReLU
activation, and max pooling—collectively referred to as Stage
1. Next, the network comprises four main stages (Stage 2 to
Stage 5), each consisting of a Conv Block and several Identity
Blocks (ID Blocks). After passingthrough all the convolutional
blocks, the network concludes with an average pooling layer, a
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flattening process, and a fully connected (FC) layer that
produces the final class prediction output.
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Fig. 6. Architecture ResNet50.

4) U-Net: The U-Net convolutional neural network
architecture is specifically designed for image segmentation
tasks, such as identifying decayed or damaged arecas on
pineapple and strawberry fruits. U-Net has a symmetrical
structure resembling the letter “U” and consists of two main
parts: the contracting path (encoder) on the left side and the
expansive path(decoder) on theright. It processes input images
of size 256x256x3 (RGB) through the encoder path, which
includes 3x%3 convolutional blocks with ReLU activation
followed by 2x2 max pooling operations. This progressively
increasesthe number of feature channels (from 32 to 512) while
reducing the spatial dimensions. At the deepest part of the
network (the bottleneck), complex features are represented at
the smallest resolution (8 x8) with a depth of 512 channels. The
decoder then reconstructs the spatial dimensions using 2X2 up-
convolution operations, while skip connections from the
encoder help retain spatial details. The process concludes with
a 1x1 convolution that outputs a segmented image of size
256x256x3, precisely identifying decayed and non-decayed
areas on the fruit (see Fig. 7).

Output

Up-Conv 2x2 ‘g, Max Pool 2x2 Copy and Crop |

[ ) ConvIGRelu 4

Fig. 7. Architecture of U-Net.

5) DeepLabV3+: The DeepLabV3+ model architecture
was  created especially for problems involving
image segmentation. The encoder, which is represented by the
blue line, and the decoder, which is represented by the red path,
are its two primary parts. The input image is first processed
using atrous (dilated) convolution in the encoder section in
order to collect more spatial information without sacrificing
resolution. Anumber of convolutionand pooling operations are
then performed, along with 1x1 convolutions to lower
dimensionality and boost the effectiveness of feature
representation. Low-level characteristics from previous
network layers are combined with the encoder output in the
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decoder stage after it has been upsampled by a factor of four
and modified using 1x1 convolutions. The final segmentation
map is created by upsamplingthe combined features by a factor
offourafterthey have been improved by 3x3 convolutions (see
Fig. 8).

Encoder
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'
: Atrous Convolution
'
1
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]_

Fig. 8. Architecture of DeepLabV3+.

D. Lightweight Fusion Design for Segmentation

Additionally, a lightweight fusion approach was applied by
combining the output probability maps of the two baseline
models (U-Net and DeepLabV3+) using a simple adaptive
weighting scheme. This approach aims to enhance
segmentation consistency without significantly increasing
architectural complexity or the number of parameters. The
fusion was performed at the output probability level (mask
probability map) by combining the probability maps from both
models using a simple linear weighting scheme:

Pfusion = aPy_per + (1 — O‘)PDeepLabV3+

where, a=0.5 serves as a balance weight between the two
models. The fused result was then converted into the final
binary mask using a threshold value of 0.5.

E. Training and Testing Scheme

The models were trained using 80% of the dataset for
training and 20% for testing. The Adam optimizer [1] was
employed with a learning rate of 0.001 and a batch size of 32
over 50 epochs. For classification, the categorical cross-entropy
loss was utilized due to its effectiveness in multi-class settings
[2]. For segmentation tasks, a composite loss combining Dice
Loss and Binary Cross-Entropy (BCE) was applied to balance
region overlap and pixel-wise prediction accuracy [3-4].

F. Performance Evaluation

The classification and segmentation of images of tropical
fruits were the two main tasks for which performance
evaluation was carried out. We used the confusion matrix, F1-
score, recall, accuracy, and precision as evaluation metrics for
the classification job. While precision and recall indicate the
model's capacity to accurately identify positive occurrences and
discover all pertinent instances, respectively, accuracy gauges
the overall correctness of predictions. Particularly helpful when
there is a class imbalance, the F1-score offers a harmonious
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compromise between recall and precision [33-34]. The
performance of VGG16, ResNet50, and EfficientNet-B0 in
classifying images of strawberries and pineapples was
evaluated and compared using these criteria.

The evaluation used pixel accuracy, Dice Similarity
Coefficient (DSC), and Intersection over Union (IoU) for the
segmentation job. Because IoU and DSC can measure the
spatial overlap between predicted regions and ground truth,
they are frequently utilized in semantic segmentation tasks[35].
The percentage of correctly categorized pixels throughout the
entire image is known as pixel accuracy. The segmentation
performance of U-Net and DeepLabV3+ in recognizing fruit
regions and detecting areas of visual deterioration or damage
was assessed using these criteria [36].

Besides classification accuracy, computational efficiency
and statistical reliability are also crucial factors to ensure the
feasibility of deploying the model in real-time or edge-based
applications. The evaluation considers several complementary
approaches, including inference time (runtime), number of
parameters, and model size, to assess both predictive
performance and computational efficiency of each architecture.
Furthermore, a statistical significance test was conducted to
verify that the performance differences among models are
statistically meaningful.

To ensure model stability and reliability, a 5-fold cross-
validation strategy was applied to both the pineapple and
strawberry datasets. This approach allows for evaluating the
model’s generalization capability across different data
variations while minimizing bias caused by uneven data
partitioning.

IV. RESULTS AND DISCUSSION

A. Fruit Image Classification Results

In this horticultural fruit classification experiment
(pineapples and strawberries), three CNN architectures were
used: VGG16,ResNet50, and EfficientNet-B0. The dataset was
divided into training, validation, and test data with a 70:15:15
ratio. To ensure model stability, 5-fold cross-validation was
performed on both datasets. The experimental results, which
illustrate the classification distribution and prediction error
patterns, are shown in the Fig. 9 and Fig. 10 below. The
confusion matrix was generated from the fold with the highest
accuracy during the 5-fold cross-validation process.
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Fig.9. Confusion matrix: (a) VGG 16, (b) Resnet 50, (c) EfficientNet on
pineapple dataset.
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Fig. 10. Confusion matrix: (a) VGG 16, (b) Resnet 50, (c) EfficientNet on
strawberry dataset.

Each model was thoroughly evaluated on five different
combinations of training and testing data, so that the results
obtained were independent of a single data split. This
evaluation included four main metrics: accuracy, precision,
recall, and F1-score. The results of the average classification
performance comparison of each architecture on the pineapple
and strawberry datasets are shown in Table II and Table IIL
Furthermore, to illustrate the stability of inter-fold
performance, the average value and standard deviation (mean +
SD) of each metric are also shown.

TABLE II. AVERAGE 5-FOLD CROSS-VALIDATION RESULTS ON
PINEAPPLE DATASET
Model Accuracy Precision Recall F1-Score
(%) (%) (%) (%)

VGG16 8230 + [ 80.40+1.3 89.10 =+ | 80.50+1.4
1.1 1.5

ResNet50 8420 + [ 85.00+1.1 8320 <+ | 84.10+1.1
0.9 1.0

EfficientNet- 90.70 + | 91.10+0.8 90.60 £ [ 91.20+0.7
B0 0.7 0.6
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TABLE III. AVERAGE 5-FOLD CROSS-VALIDATION RESULTS ON
STRAWBERRY DATASET
Model Accuracy Precision Recall (%) | F1-Score (%)
(%) ()

VGGl16 83.10 £ | 8250 + | 80.90+1.1 | 82.00+1.2
1.0 1.2

ResNet50 8580 + | 8590 =+ | 8540+09 | 85.70+1.0
0.8 1.0

EfficientNet-BO | 91.40 + | 91.80 + [ 90.20+0.6 | 90.60+1.6
0.6 0.7

Table II and Table Il summarize the model performance
results by averaging across 5k folds. Based on these tables, it
can be observed that EfficientNet-B0 consistently achieves the
best performance in terms of accuracy, precision, recall, and F1
score on both datasets, followed by ResNet50 and VGG16.
VGG16 has the lowest accuracy with a slightly higher standard
deviation, indicating the model's sensitivity to variations in
lighting and color on the fruit surface. Overall, the results on
both datasets confirm that a more modern and lightweight
architecture, such as EfficientNet-BO0, is able to provide the best
combination of high accuracy and inter-fold performance
stability. The low standard deviation value of this model also
indicates high reliability and good potential for application in
fruit image classification systems in real environments.

Strawberry - Validation Accuracy Strawberry - Validation Loss

— VGG16 1.0 — VGG16
ResNet50 ResNet50
0.8 — EfficientNet-BO —— EfficientNet-B0

o
o

=)
IS

Accuracy

0.2

0.0

0 10 20 30 40 50 0 10 20 30 20 50
Epochs Epochs

Pineapple - Validation Accuracy
— VGG16 -\/V\/\ 1.0 — VGG16

ResNet50 ResNet50
0.8F — EfficientNet-80 — EfficientNet-80

Pineapple - Validation Loss

0.0

o 10 20 30 40 50 0 10 20 30 40 50
Epochs Epachs

Fig. 11. Validation accuracy and validation loss: strawberry and pineapple.

To illustrate the performance of the models during the
training process, the validation accuracy and loss curves on the
strawberry and pineapple datasets are visualized. Fig. 11
presents the learning trends of each model (VGG16, ResNet50,
and EfficientNet-B0) across 50 epochs.

The experimental results on the strawberry datasetshow a
stable trend of increasing validation accuracy as the number of
epochsincreases, reaching convergence around epoch 40. The
EfficientNet-BO model consistently achieved the highest
accuracy, followed by ResNet50 and VGGI16. This
performance demonstrates that modern architectures such as
EfficientNetare able to extract strawberry visual features more

445|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

effectively, particularly in distinguishing variations in color and
texture that are crucial indicators for determining the condition
of fresh and spoiled fruit. Meanwhile, on the pineapple dataset,
all three models also exhibited consistent patterns of increasing
validation accuracy and decreasing loss throughout the training
process. EfficientNet-BO once again achieved the best
performance. These findings indicate that the more complex
visual characteristics of pineapples, such as scaly skin patterns
and lighting variations, are more effectively handled by the
EfficientNet architecture. This is attributed to the optimization
strategy employed by EfficientNet, which balances network
depth, width, and resolution, thereby enabling richer and more
accurate feature representations compared to ResNet50 and
VGGL16.

B. Segmentation Results

Segmentation experiments were conducted using U-Net and
DeepLabV3+ on strawberry and pineapple images. The
evaluation was carried out using three main metrics:
Intersection over Union (IoU), Dice Coefficient, and mean
Intersection over Union (mloU). Table IV summarizes the
performance of both models:

TABLEIV. EVALUATION METRICS AND AVERAGE SEGMENTATION
PERFORMANCE (MEAN + SD) ON STRAWBERRY AND PINEAPPLE DATASETS
Fruit Model IoU (%) Dice (%) mloU (%)
Strawberry | U-Net 88.5+0.9 89.5+0.8 87.6£1.0
Strawberry | DeepLabV3+ | 91.8+0.7 91.5+0.6 90.7+0.8
Pineapple U-Net 87.8+1.0 88.7+0.9 869+ 1.1
Pineapple DeepLabV3+ | 90.6+0.8 91.7+0.7 89.5+0.9

The average segmentation performance results in Table IV
showthatthe DeepLabV3+model consistently produces higher
IoU, Dice, and mloU values than the U-Net for both datasets:
strawberry and pineapple. The performance difference between
the two models appears stable, as evidenced by the relatively
small standard deviation values (ranging from+ 0.6 to + 1.1),
indicating good interfold consistency of the segmentation
results in the 5-fold cross-validation scheme. DeepLabV3+'s
superiority lies primarily in its use of Atrous Convolution and
Atrous Spatial Pyramid Pooling (ASPP), which are highly
effective in capturing variations in texture and object size on
the fruit surface.

C. Computational Efficiency Aspect

In addition to accuracy and segmentation performance,
computational efficiency is also an important consideration to
ensure the feasibility of model deployment on systems with
limited hardware resources. The efficiency evaluation is
conducted by examining several key metrics, namely inference
time (runtime), number of parameters, and model size. The
results of the computational efficiency evaluation for all
classification and segmentation models are presented in
Table V.

TABLE V. COMPUTATIONAL EFFICIENCY EVALUATION OF
CLASSIFICATION AND SEGMENTATION MODELS
Model Task Inference Number of Model
Time (s) Parameters Size
(W) (MB)
VGG16 Classification 0.042 138.3 528.0
ResNet50 Classification 0.038 25.6 98.0
EfficientNet- Classification 0.026 53 20.4
B0
U-Net Segmentation 0.087 31.0 122.0
DeepLabV3+ Segmentation 0.093 435 175.0

D. Segmentation Results with Lightweight Fusion

This study applied a lightweight fusion approachto enhance
segmentation consistency without increasing architectural
complexity. The approach combines the output probability
maps (mask probability maps) of two baseline models—U-Net
and DeepLabV3+—through a simple linear weighting scheme.
Table VI presents the segmentation performance after applying
lightweight fusion between U-Net and DeepLabV3+:

TABLE VI. COMPARATIVE SEGMENTATION PERFORMANCE OF U-NET,
DEEPLABV3+, AND FUSION MODEL ON STRAWBERRY AND PINEAPPLE
IMAGES

Fruit Model ToU (%) Dice (%) mloU (%)
Strawberry U-Net 89.3 90.8 88.6
Strawberry DeepLabV3+ 92.1 93.5 91.7
Strawberry Fusion (U+D) 92.6 93.9 92.2
Pineapple U-Net 88.7 90.1 87.9
Pineapple DeepLabV3+ 91.4 92.7 90.8
Pineapple Fusion (U+D) 91.9 93.1 91.3

The results demonstrate a consistentimprovement acrossall
key metrics after fusion. The average IoU increased by
approximately 0.5-0.7%, while the Dice coefficientimproved
by about 0.4%. This enhancement is attributed to the
complementary strengths of the two models: DeepLabV3+
excels in handling complex regions, whereas U-Net provides
smoother boundary delineation. The combination produces
more stable and accurate segmentation outcomes. This
approach aligns with recent research trends emphasizing the
effectiveness of lightweight hybrid models in improving
segmentation robustness for agricultural imagery under natural
illumination conditions [37].

E. Comparative Analysis

To ensurethat the performance differences among models
were not merely due to random variations in the data, a
statistical significance analysis was conducted based on the 5-
fold cross-validation results for both classification and
segmentation tasks. This test aimed to verify the statistical
validity of each model’s performance, ensuring that higher-
performing architectures exhibit improvements that are
mathematically significant rather than coincidental.

The analysis was applied to both classification models
(VGG16, ResNet50, and EfficientNet-B0) and segmentation
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models (U-Net and DeepLabV3+)using significance levels of
0.=0.05and 0.01. The completeresults ofthe significance tests
for both datasets are presented in Table VII and Table VIII
below.

TABLE VII. STATISTICAL SIGNIFICANCE TEST RESULTS (5-FOLD CROSS-
VALIDATION): CLASSIFICATION ON PINEAPPLE AND STRAWBERRY DATASETS
Model Pineapple Strawberry Remark
Comparison Dataset (p- Dataset (p-
value) value)
VGG16 vs | 0.041 * 0.038 * Significant
ResNet50
VGG16 vs | 0.007 ** 0.005 ** Highly
EfficientNet-B0O significant
ResNet50 vs | 0.018 * 0.015 * Significant
EfficientNet-B0

TABLE VIII. STATISTICAL SIGNIFICANCE TEST RESULTS (5-FOLD CROSS-
VALIDATION): SEGMENTATION ON PINEAPPLE AND STRAWBERRY DATASETS

Model Pineapple Strawberry Remark
Comparison Dataset (p- Dataset (p-value)
value)
U-Net vs | 0.009 ** 0.006 ** Highly
DeepLabV3+ significant

The results of the statistical significance test confirm that
the observed differences in performance between models are
not due to random variations in the data, but rather have real
statistical significance. The overall experimental results
confirm that EfficientNet-BO consistently outperformed
ResNet50 and VGG16 in classification tasks, demonstrating an
excellent balance between parameter efficiency and
generalization capability. This finding aligns with the report,
where EfficientNet achieved up to 97% accuracy in grape and
potato leaf disease classification [38]. A follow-up study also
emphasized the superior efficiency of EfficientNet compared to
other architectures [39].

For segmentation tasks, DeepLabV3+ proved more precise
than U-Net, particularly in handling the complex textures of
strawberries and pineapples—the multiscale effect of atrous
convolution and the ASPP module played a pivotal role.
Evidence from the SugarBeets study also showed that
DeepLabV3+achieved ahigher mloU compared to U-Net [40].

Nevertheless, some error patterns persisted. False positives
frequently occurred in decayed regions obscured by shadows,
while false negatives often appeared when small decayed spots
were hidden, similar to the findings on apples [41].
Segmentation also exhibited mask leakage along object
boundaries, as reported in tomato images [42].

As a direction for further development, integrating adaptive
multitask architectures such as AISAM-CSNet (Artificial
Immune System-controlled Adaptive Multi-agent
Classification and Segmentation Network) appears promising
for improving robustness. AISAM-CSNet combines multi-
agent CNNs, reinforcement learning, and optimization inspired
by the Artificial Inmune System, consistent with current trends
in multitask learning and biologically inspired optimization
within agricultural computer vision [43].
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V. CONCLUSION

The experimental results demonstrated that deep learning
methods are highly effective for assessing the visual quality of
tropical fruits. Among the evaluated models, EfficientNet-BO
consistently achieved superior performance in the classification
tasks, with an average accuracy of 90.7% for pineapples and
91.4% for strawberries, outperforming both ResNet50 and
VGG16. This result confirms that lightweight and modem
architectures are more capable of capturing discriminative
visual patterns related to fruit ripeness and surface damage
compared to conventional CNNs. Meanwhile, for the
segmentation task, DeepLabV3+ outperformed U-Net, with an
IoU 0f90.6% for pineapple and 91.8% for strawberry, while the
Dice coefficient was 91.5% for strawberry and 91.7% for
pineapple. These results confirm that both architectures can
serve as areliable basis for automatically detecting ripeness and
damaged areas in fruit.

Beyond numerical achievements, the findings highlight the
practical contribution of deep learning in accelerating
postharvest quality inspection while providing an empirical
foundation for developing more adaptive multitask
architectures. This has significant implications for the
horticulture industry by reducing reliance on labor-intensive
manual inspection.

For future research, the integration of classification and
segmentation into a single multitask framework, such as
AISAM-CSNet  (Artificial Immune System-Controlled
Adaptive Multi-agent Classification and Segmentation
Network), holds strong potential to further enhance accuracy
and adaptability under diverse real-world conditions. AISAM-
CSNet combines classification and segmentation in a multi-
agent reinforcement learning framework, with hyperparameter
optimization inspired by the Artificial Inmune System. Such
an approachis expected to improve adaptability and accuracy
in tropical fruit quality assessment systems, thereby supporting
supply chain efficiency and ensuring consistent fruit quality.
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