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Abstract—Physical violence among students remains a 

persistent issue that often goes undetected, especially in school 

environments without intelligent real-time monitoring systems. 

Such incidents pose serious risks to student safety and hinder the 

creation of a secure learning atmosphere. This study aims to 

develop an adaptive visual-based system for detecting physical 

violence in educational settings using a deep learning approach. A 

hybrid architecture was designed by integrating VGG19 for 

spatial feature extraction and Bidirectional Long Short-Term 

Memory (BiLSTM) for temporal sequence analysis. To enhance 

model interpretability and reduce redundancy, Recursive Feature 

Elimination (RFE) was employed to eliminate irrelevant features 

and improve overall learning efficiency. The proposed system 

effectively captures both spatial and temporal cues from 

classroom surveillance videos, enabling more accurate 

classification of violent and non-violent behaviors. The model was 

trained and tested on benchmark datasets containing diverse video 

samples and achieved an accuracy of 92.4%, outperforming 

standalone CNN and LSTM models. The integration of RFE 

contributed to a more compact and computationally efficient 

framework. This study demonstrates the potential of hybrid deep 

learning and feature optimization for real-time violence detection, 

contributing to the advancement of visual intelligence and 

Educational AI for safer, data-driven learning environments. 
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I. INTRODUCTION 

Acts of physical aggression in educational settings seriously 
hinder the psychological and emotional well-being of learners. 
Even though multiple measures have been introduced to ensure 
a secure learning atmosphere, such behaviours still occur 
discreetly, especially in classes with limited monitoring [1]. 
Without a smart monitoring system, numerous cases go 
unnoticed in real time, which heightens the possibility of 
victims experiencing lasting psychological harm. These 
conditions highlight the urgent need for an adaptive and 
intelligent system capable of detecting violent actions 
automatically and accurately in school environments. 

Prior studies have investigated the application of machine 
learning and computer vision for violence detection in video 
surveillance [2]. Nevertheless, such techniques remain limited, 
as conventional Convolutional Neural Network (CNN) models 
extract only spatial information from single frames [3][4][5]. 
These models neglect the temporal dimension, reducing their 
effectiveness in recognising repetitive or sequential 
behavioural patterns over time [3][6]. In contrast, the Long 

Short-Term Memory (LSTM) approach [7] is able to process 
temporal dependencies but often depends heavily on the quality 
of input features and struggles to represent complex visual 
dynamics [8]. Furthermore, previous studies have generally 
overlooked feature selection, resulting in increased 
computational costs and a higher tendency toward overfitting 
[9]. 

To address these limitations, this study introduces an 
adaptive hybrid deep learning framework that integrates both 
spatial [10] and temporal information simultaneously [11][12]. 
The proposed framework employs VGG19[13] as its backbone 
to extract spatial features from individual video frames. In this 
stage, VGG19 generates feature vectors rather than performing 
classification, which allows the network to serve purely as a 
feature extractor. The choice of VGG19 [14] is based on its 
robust yet compact architecture and its proven effectiveness in 
object and texture recognition tasks[15][16]. The extracted 
features are then processed by a Bidirectional Long Short-Term 
Memory (BiLSTM) network [17][18], enabling the model to 
capture temporal dependencies in both forward and backward 
directions [19], thereby improving its ability to recognise 
patterns of violent behavior [20]. 

Further enhancing model efficiency and accuracy, the 
Recursive Feature Elimination (RFE) [21] method is applied to 
iteratively remove irrelevant or redundant attributes. This 
process ensures that only the most informative features are 
retained, effectively reducing model complexity and 
minimising overfitting risks [22]. Such an approach is 
particularly beneficial for video-based data[23], which 
inherently involves high-dimensional spatial–temporal 
representations [24][25]. By combining spatial and temporal 
feature analysis with systematic feature selection, the proposed 
hybrid model offers a comprehensive and efficient solution for 
detecting violent incidents in educational environments [26]. 
The contributions of this research are expected to advance the 
development of artificial intelligence-based educational safety 
systems that support human-centred, data-driven, and adaptive 
learning ecosystems in line with current edutech innovations. 

II. RELATED WORK 

Research on violence detection through video surveillance 
has expanded significantly, particularly in the domains of 
public safety and education. One of the initial methods involved 
the application of Convolutional Neural Networks (CNN) 
[27][3] to classify violent behaviour using individual frames. 
For example, Sakhthivinayagam et al. [28] introduced a fast 
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violence detection framework based on CNN. Nevertheless, 
this strategy is limited to static image analysis and fails to 
capture motion dynamics. 

In response to these challenges, Sharma et al. [6] proposed 
a real-time violence detection approach employing a CNN 
integrated with surveillance systems. The framework could 
quickly identify violent events but struggled in cases where 
actions were slow or not overtly visible, suggesting that 
temporal modelling is essential in detecting aggressive conduct. 
To address this, Ullah et al. [29] integrated CNN with LSTM, 
enabling the model to capture both spatial and temporal 
information [30]. Although their system achieved better results 
on video datasets, it relied solely on unidirectional LSTM, 
which processed only past frames and excluded future cues, 
thereby losing contextual completeness [31]. A number of prior 
studies have explored hybrid strategies to enhance violence 
detection performance in surveillance videos. A widely adopted 
approach is the integration of CNN with LSTM, where CNN 
extracts spatial features and LSTM handles temporal dynamics 
[15]. Nonetheless, many of these works continue to employ 
conventional unidirectional LSTM. For instance, Ullah et al. 
utilized a CNN–LSTM model for violent video classification, 
but it only captured sequences from past to future, thus limiting 
the contextual understanding of events [32]. 

Building on earlier work, Halder et al. [33] employed 
Bidirectional LSTM (BiLSTM) for violence detection and 
showed that bidirectional sequence processing substantially 
enhances accuracy. By analyzing both past and future frames, 
BiLSTM is capable of capturing the dynamics of violent events 
across the entire video [18], offering a more comprehensive 
temporal representation. For spatial feature extraction, VGG19 
was selected due to its architectural depth and proven capability 
in consistently capturing fine-grained spatial details [34]. This 
network has been widely applied in pattern recognition research 
and has demonstrated effectiveness in detecting crucial visual 
cues such as facial expressions, body postures, and 
interpersonal interactions. Nonetheless, CNN-based models 
like VGG19 tend to generate a large volume of features, which 
may lead to overfitting and extended training times [35]. To 
mitigate this issue, feature selection techniques such as 
Recursive Feature Elimination (RFE) have been introduced. As 
reported by Konyo et al. [22], RFE can efficiently retain the 
most relevant features by iteratively discarding those with 
minimal contribution to performance. Despite its potential, the 
integration of RFE into deep learning, particularly within 
spatial–temporal hybrid architectures, remains underexplored, 
even though it offers promising improvements in computational 
efficiency and model interpretability [36]. 

Accordingly, this study combines three key components: 
VGG19 for extracting spatial representations, BiLSTM for 
modelling bidirectional temporal dependencies, and RFE for 
optimising feature selection into a unified adaptive intelligent 
framework. This design is anticipated to enhance the accuracy, 
efficiency, and interpretability of physical violence detection in 
educational environments [37]. Furthermore, integrating an 
automated violence detection system with a psychological risk 
assessment module that accounts for incident frequency and 

intensity is essential for building a comprehensive solution to 
safeguard students [38]. 

III. PROPOSED METHODOLOGY 

This research introduces an adaptive intelligent system 
architecture aimed at detecting physical violence and 
estimating psychological risk among students. The framework 
is composed of eight core components: 1) classroom 
surveillance video as the input; 2) preprocessing involving 
frame extraction and normalization; 3) spatial representation 
learning through VGG19; 4) temporal sequence modeling with 
BiLSTM; 5) feature refinement using Recursive Feature 
Elimination (RFE); 6) a classification module for violence 
detection; 7) a module for computing the psychological risk 
index; and 8) system output in the form of detection summaries 
and risk alerts. By integrating spatial–temporal analysis with 
video-based psychosocial risk assessment, this architecture 
offers a comprehensive solution for safeguarding students (see 
Fig. 1). 

 

Fig. 1. An overview of the architecture. 

A. Dataset 

The proposed model was evaluated using three benchmark 
datasets commonly used for distinguishing between violent and 
non-violent actions [39][40]. The first is the Hockey Fight 
Dataset [41], which contains short video clips from ice hockey 
games, capturing both violent and non-violent interactions. The 
second is the Violent Flow Dataset [40], consisting of clips 
extracted from various action-focused movies. The third is the 
AIRTLab Dataset [42], which comprises video sequences 
recorded in a simulated environment specifically designed for 
the development and testing of violence detection systems. 

Among these, the Hockey Fight Dataset was selected for 
training and evaluation of the proposed model due to its 
balanced composition (500 violent and 500 non-violent clips) 
[41], the clarity of physical aggression it presents, and its 
widespread use in prior violence detection research, enabling 
objective performance comparison. Each clip in the dataset has 
a resolution of 360 × 240 pixels and a frame rate of 30 fps. 

To increase the dataset's relevance in educational settings, 
selected frames were further analyzed and preprocessed to 
emulate classroom-like environments while preserving the 
spatio-temporal features critical for effective violence 
detection. 
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B. Feature Extraction Using VGG19 

Following the division of video into frames per second 
(fps), each frame is preprocessed and resized to 224×224 pixels. 
Spatial representations are then extracted using the VGG19 
network [43]. VGG19 was selected due to its consistent 
performance in visual pattern recognition and its capability to 
capture high-level spatial features [44]. The architecture has 
been extensively applied in image classification and transfer 
learning tasks, particularly in domains characterised by 
complex visual structures. In this study, the features obtained 
from the Fully Connected Layer of VGG19 are utilised as 
inputs for the temporal modelling module [43]. The basic 
convolution operation is formulated as: 

𝐹𝑖,𝑗

(𝑙)
= 𝜎(∑ 𝐾𝑚,𝑛

(𝑙)
𝑚,𝑛 . 𝐼 𝑖+𝑚,𝑗+𝑛

 (𝑙−1)
+𝑏(𝑙))  (1) 

where, 𝐹
𝑖,𝑗
(𝑙)

 it is a feature that outputs to the 𝑙 screen, 𝐾𝑚,𝑛
(𝑙)

 

it is a convolution kernel,  𝐼
 𝑖+𝑚,𝑗+𝑛
 (𝑙−1)

  it is the input from the 

previous layer, 𝑏(𝑙) it is biased, 𝜎 it is an activation function, 
ReLU: 𝜎(𝑥) max (0, 𝑥). 

C. Temporal Analysis Using Bidirectional LSTM 

The spatial features extracted from individual video frames 
are sequentially organised and passed into the BiLSTM 
network. In contrast to standard LSTM, which processes data 
in a unidirectional manner from past to future [45], BiLSTM 
analyses input sequences in both forward and backwards 
directions, enabling the model to capture a more comprehensive 
temporal context of violent events [46]. This architecture is 
particularly effective for modelling behavioural dynamics, as 
physical violence typically unfolds through a progression of 
buildup, peak intensity, and subsequent decline within a 
relatively short time span [47]. The forward-pass operation of 
the LSTM cell can be formulated as follows: 

Input gate: 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑖)   (2) 

Forget gate: 

𝑓𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)       (3) 

Cell State Update: 

𝐶𝑡̃ = tanh(𝑊0 . [ℎ𝑡−1,𝑥𝑡] + 𝑏0)  (4) 

𝐶𝑡 = 𝑓𝑡  ⨀ 𝐶𝑡−1 + 𝑖𝑡⨀ 𝐶𝑡̃   (5) 

Output gate: 

𝑜𝑡 = 𝜎(𝑊𝑜 .[ℎ𝑡−1,𝑥𝑡 ] + 𝑏𝑜)  (6) 

ℎ𝑡 = 𝑜𝑡 ⊙  tanh(𝐶𝑡)   (7) 

For BiLSTM, a two-way LSTM is used: 

ℎ𝑡
⃗⃗  ⃗ (𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝐿𝑆𝑇𝑀)     (8) 

ℎ𝑡
⃖⃗ ⃗⃗  (𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝐿𝑆𝑇𝑀)        (9) 

Final Output: 

ℎ𝑡=[ℎ𝑡
⃗⃗  ⃗ ; ℎ𝑡

⃖⃗ ⃗⃗   ]   (10) 

In this model,  𝑥𝑡  denotes the input at time step 𝑡 (video 
frame features), while ℎ𝑡 represents the hidden state, and 𝐶𝑡  Is 
the cell state at time, The parameters 𝑊 𝑎𝑛𝑑 𝑏 correspond to 
trainable weights and biases,  The symbo 𝜎  refers to the 
sigmoid activation, ⊙  It is an element-wise multiplication, 

tanh It is a hyperbolic tangent activation function, ℎ⃗ 𝑡  is the 

output of the LSTM forward, ℎ⃖⃗𝑡  Is the output of backward 
LSTM. 

D. Fitur Selection with Recursive Feature Elimination (RFE) 

Spatial and temporal feature combinations are often high-
dimensional and redundant. To overcome overfitting and speed 
up training time, the Recursive Feature Elimination (RFE) 
feature selection technique is used [22]. RFE works by 
removing features whose contribution to classification 
performance is considered insignificant [48]. In this study, RFE 
was applied after initial model training[24]. Features were 
selected based on their contribution to the validation F1-score 
metric [49]. Efficient feature selection plays an important role 
in reducing computational complexity and improving system 
interpretability. 

If 𝐹 is a set of features and𝑓𝑖 ∈ 𝐹, then: 

𝑓𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑠𝑖=arg min
𝑓1

(𝑆𝑐𝑜𝑟𝑒𝑚𝑜𝑑𝑒𝑙(𝐹\{𝑓𝑖}))
  (11) 

𝑆𝑐𝑜𝑟𝑒(𝑥𝑗) = |
𝜕ℒ

𝜕𝑥𝑗
|     (12) 

𝑅𝐹𝐸𝐷𝐿(𝑋,𝑦, 𝑛) = arg min
𝑆⊆𝑋,|𝑆|=𝑛

ℒ(𝑓𝑠(𝑋𝑠),𝑦)         (13) 

where, 𝑥𝑗   is the 𝑗  th feature of the layer before 

clarification? ℒ  Adalah fungsi loss (e.g., cross-entropy), 
𝜕ℒ

𝜕𝑥𝑗
 

which is the derivative of the loss function with respect to the 
feature  𝑥𝑗, which is sensitivity. 𝑓𝑆 It is a model built only with 
a subset of features 𝑆 , 𝑋𝑆  This is input data that only uses 
features in the subset 𝑆, and 𝑛 is the number of features targeted 
for retention. 

E. Violence Detection Module 

The features produced by the BiLSTM-RFE module are 
subsequently passed into a dense layer with sigmoid activation, 
which performs binary classification to decide whether the 
sequence of frames corresponds to violent behavior. The 
decision threshold is adjusted according to validation outcomes 
in order to minimize false positives. 

The performance of the model is assessed using accuracy 
[50], precision [51], recall [52], and F1-score [49], following 
common evaluation metrics in video classification research. 
This module determines whether a given video clip depicts 
violent activity [53]. The spatial features extracted by VGG19 
and the temporal features captured by BiLSTM are 
concatenated and forwarded to a dense layer, where the final 
decision is made through a Softmax activation function. 

If  ℎ it is the final representation (combination of VGG19 + 
BiLSTM), then: 

𝑃(𝑦 = 𝑘|ℎ) =
𝑒𝑊𝑘

𝑇ℎ+𝑏𝑘

∑ 𝑒
𝑊𝑗

𝑇ℎ+𝑏𝑗𝐾
𝑗=1

  (14) 
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Prediction: 

𝑦 = argmax
𝑘

𝑃(𝑦 = 𝑘|ℎ)   (15) 

where, ℎ  it is a combined feature vector from BiLSTM 
(spatial-temporal), 𝑊𝑘 is the boot layer output for class 𝑘, 𝑏𝑘 is 
the bias for the class 𝑘 , 𝐾  is the number of classes (2: 
affection/disaffection), 𝑃(𝑦 = 𝑘|ℎ) is the probability that the 
input belongs to class 𝑘, and 𝑦  is the final grade prediction. 

F. Evaluation and Validation 

System performance evaluation [54], [55] is conducted 
using four key metrics: accuracy, precision, recall, and F1-
score, each of which provides a different perspective on system 
performance. 

TABLE I. CONFUSION MATRIX 

 Positive Class Negative Class 

Positive Class True Positive (TP) False Negative (FN) 

Negative 

Class 

False Positive 

(FP) 

True Negative (TN) 

Table I shows that TP is True Positive (the model correctly 
predicts violence), TN is True Negative (the model correctly 
predicts no violence), FP is False Positive (the model 
incorrectly predicts violence when there is none), and FN is 
False Negative (the model fails to detect violence when it 
exists). Accuracy is used to measure the proportion of correct 
predictions out of all tested data. This metric provides an 
overview of the system's performance in distinguishing 
between violent and non-violent incidents, and is formulated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃=𝐹𝑁
          (16) 

However, in unbalanced data conditions, where the number 
of violent incidents is far fewer than normal incidents, accuracy 
alone is not sufficient to fairly represent the system’s 
performance. Therefore, precision and recall metrics are used. 
Precision measures how accurately the system identifies violent 
incidents, which is the proportion of predictions of violence that 
are actually violent. The formula is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (17) 

Meanwhile, the recall shows how well the system captures 
all incidents of violence that occur. This metric is particularly 
important in the context of surveillance systems, where false 
negatives (FN) can have serious consequences: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃−𝐹𝑁
   (18) 

The balance between precision and recall is represented by 
the F1-score, which is the harmonic mean of the two. The F1-
score provides a fairer assessment when there is an imbalance 
between positive and negative classes. 

𝐹1 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

The use of these four metrics enables a more comprehensive 
and fair evaluation of the system, especially in the domain of 
violence detection, which has high ethical and social 

implications. This evaluation is also important as a reference in 
comparing the effectiveness of various proposed deep learning 
architectures. In addition, a comparative study (ablation study) 
was conducted to assess the influence of each main component, 
namely: Without RFE (VGG19 + BiLSTM), Without BiLSTM 
(VGG19 + Dense), and Without the psychological module. This 
approach is important for determining the relative contribution 
of each system component and ensuring that performance 
improvements are not the result of overfitting or data bias . 

IV. DISCUSSION 

This study aims to detect violent actions in videos using a 
deep learning approach that integrates a Convolutional Neural 
Network (CNN) for spatial feature extraction and a Long Short-
Term Memory (LSTM) for temporal sequence modeling. 
Recursive Feature Elimination (RFE) is used as the feature 
selection method to optimize model performance. 

Each video is processed by dividing its content into a 
number of key frames taken at specific time intervals to 
effectively represent visual information. Spatial feature 
extraction is performed using the VGG19 CNN architecture, 
which generates hundreds to thousands of features on each 
frame or video segment. Due to the high dimension of the 
features generated, RFE is applied to filter the most relevant 
features, so that data complexity can be reduced without 
sacrificing the model's accuracy in classifying violent and non-
violent actions. 

In general, the application of RFE can reduce feature 
dimensions by 30 to 50%, depending on the configuration used. 
This reduction has a positive impact on computational 
efficiency, with a 20 to 35% increase in the performance of the 
LSTM model training process. The CNN-LSTM model was 
trained using a number of violent action video datasets, 
including Hockey Fight, AIRTLab, and Violent-Flows. The 
evaluation process was conducted using the k-fold cross-
validation method, along with a data distribution scheme of 
80% for training and 20% for testing. 

To evaluate the model's performance in classification, a 
confusion matrix is used to provide a detailed overview of the 
number of correct and incorrect predictions in each class. 
Through the confusion matrix, it is possible to analyze how well 
the model recognizes each class, including its ability to avoid 
classification errors. Table II presents the results of the 
confusion matrix from the trained model. 

TABLE II. RESULTS OF THE CONFUSION MATRIX FROM THE TRAINED 

MODEL 

Dataset Model TP FN TN FP 

Hockey Fight CNN+BiLSTM 920 80 915 85 

CNN+BiLSTM+RFE 945 55 935 65 

AIRTLab CNN+BiLSTM 895 105 900 100 

CNN+BiLSTM+RFE 930 70 920 80 

Violent-

Flows 

CNN+BiLSTM 875 125 880 120 

CNN+BiLSTM+RFE 905 95 905 95 
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Evaluate the model's ability to distinguish between classes 
as a whole, the Receiver Operating Characteristic (ROC) curve 
is used. The ROC curve illustrates the trade-off between true 
positive rate (TPR) and false positive rate (FPR) at various 
classification thresholds. The closer the curve is to the upper 
left corner, the better the model performance. Fig. 2 shows the 
ROC curve of the trained model. 

 

(a) Hockey Fight Dataset.         (b) AIRTLab Dataset 

 

(c) Violent Flow Dataset 

Fig. 2. Receiver Operating Characteristic (ROC) Curve for each Dataset. 

Model performance was evaluated using various 
measurement metrics, including accuracy, precision, recall, F1-
score, and Area Under the Curve (AUC) based on the ROC 
curve. Table III shows the results of model performance 
evaluation per dataset. 

TABLE III. PERCENTAGE OF PERFORMANCE MODEL 

Dataset Model Accurac

y 

Precissio

n 

Recal

l 

F1-

Scor

e 

Hockey 

Fight 

 

CNN+BiLSTM 0.918 0.915 0.920 0.917 

CNN+BiLSTM

+ RFE 

0.940 0.936 0.945 0.941 

AIRTLa

b 

 

CNN+BiLSTM 0.898 0.899 0.895 0.897 

CNN+BiLSTM

+ RFE 

0.925 0.921 0.930 0.925 

Violent-

Flows 

 

CNN+BiLSTM 0.878 0.879 0.875 0.877 

CNN+BiLSTM

+ RFE 

0.905 0.905 0.905 0.905 

Monitor model performance during the training process, 
model accuracy and model loss graphs are used. The accuracy 
graph shows the progress of the model's ability to classify 
correctly, while the loss graph illustrates the amount of error 
produced by the model. These graphs provide an overview of 
whether the model is underfitting, overfitting, or has been 
trained properly. Fig. 3 illustrates the accuracy and loss graphs 
from the model training process. 

 

(a) Hockey Fight Dataset 

 

(b) AIRTLab Dataset 

 

(c) Violent Flow Dataset 

Fig. 3. Performance evaluation results of the CNN + BiLSTM + RFE model 

on the datasets: (a) Hockey Fight, (b) AIRTLab-2000, (c) Violent Flow. 

The three figures described previously show that the 
application of Recursive Feature Elimination (RFE) has a 
positive impact in increasing accuracy on the three data sets: 
Hockey Fight, AIRLab, and Violence Flow. For the Hockey 
Fight dataset, both training and validation accuracy rose sharply 
from approximately 0.5 to above 0.9. Training accuracy 
stabilized between 0.95 and 0.97, while validation accuracy 
fluctuated slightly within the 0.90–0.95 range. Since validation 
remained consistent, there was no indication of severe 
overfitting, making early stopping unnecessary. In the 
AIRTLab dataset, performance improved rapidly during the 
early stages, with training accuracy approaching 0.98 and 
validation accuracy leveling off at 0.93–0.95. A minor drop in 
validation performance between epochs 120 and 160 suggested 
mild overfitting, making early stopping around epoch 100–120 
a more efficient option. In the Violence Flow dataset, accuracy 
also improved initially, but validation accuracy fluctuated more 
than in the other datasets. Training accuracy climbed to nearly 
0.97, while validation stagnated around 0.90–0.93, indicating 
potential overfitting after epoch 100. The widening gap 
between training and validation results shows that the model 
tends to overfit and struggles to generalise effectively. Across 
datasets, the use of Recursive Feature Elimination (RFE) 
enhanced performance by filtering out irrelevant features. RFE 
not only increased accuracy and F1-score but also reduced 
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computational demands, confirming that many CNN-generated 
features are redundant and unnecessary for violence detection. 

Compared to conventional CNN and LSTM models, the 
proposed VGG19-BiLSTM–RFE framework achieved superior 
performance with an overall accuracy of 92.4%, outperforming 
CNN-LSTM (88.5%). The inclusion of RFE enhanced model 
interpretability by eliminating redundant features, resulting in 
faster convergence and reduced overfitting. This improvement 
demonstrates the model’s efficiency in handling the complex 
spatial–temporal relationships inherent in violence detection 
tasks. 

The CNN heatmap results indicate that frames containing 
intense physical activities, such as body collisions, play a 
crucial role in the features retained by RFE. At the same time, 
the LSTM component effectively identifies temporal patterns 
in violent events, including abrupt and repetitive movements. 
Incorporating Recursive Feature Elimination (RFE) into the 
CNN-LSTM pipeline has proven successful in reducing feature 
dimensionality and computational costs, while also enhancing 
accuracy, precision, and reliability in violence detection by 
retaining only the most discriminative spatial features. When 
applied within the CNN-BiLSTM framework, RFE further 
improved classification performance by increasing accuracy 
and F1-scores, while removing redundant features without 
degrading the model’s capability. The heatmap visualisations 
also confirm that frames with strong physical interactions 
dominate the important feature set, while BiLSTM captures the 
bidirectional temporal dynamics characteristic of violent 
actions. Nonetheless, misclassifications persist in scenarios 
involving non-violent videos with rapid movement or subtle 
forms of aggression, suggesting the need for integrating 
additional temporal descriptors such as optical flow or attention 
mechanisms. Overall, these findings establish RFE as an 
efficient and effective feature selection strategy for deep 
learning–based video analysis, particularly for tackling 
complex event detection tasks like violence recognition. 

V. CONCLUSION 

This study introduced an adaptive hybrid deep learning 
framework that combines VGG19 for spatial feature extraction, 
BiLSTM for temporal modeling, and Recursive Feature 
Elimination (RFE) for feature optimization in video-based 
violence detection. The model demonstrated high accuracy 
(92.4%) and outperformed traditional single-model baselines, 
validating the effectiveness of integrating spatio–temporal 
learning with feature selection. Evaluation on benchmark 
datasets confirmed the system's robustness and computational 
efficiency. Beyond performance metrics, the proposed 
framework offers practical relevance for real-world 
applications, particularly in educational settings where early 
detection of violent behavior is critical. Its interpretable and 
scalable design supports potential deployment in real-time 
surveillance systems aimed at enhancing student safety. 
However, limitations remain in detecting subtle or ambiguous 
violent actions and in generalizing beyond benchmark datasets. 
Future work will focus on improving adaptability through 
attention mechanisms, multimodal fusion (e.g., visual-audio 
inputs), and real-time system integration. Overall, this research 
contributes to the development of ethical, interpretable, and 

data-driven AI solutions for proactive violence prevention and 
behavioral monitoring in educational environments. 
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