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Abstract—Physical violence among students remains a
persistent issue that often goes undetected, especially in school
environments without intelligent real-time monitoring systems.
Such incidents pose serious risks to student safety and hinder the
creation of a secure learning atmosphere. This study aims to
develop an adaptive visual-based system for detecting physical
violence in educational settings using a deep learning approach. A
hybrid architecture was designed by integrating VGG19 for
spatial feature extraction and Bidirectional Long Short-Term
Memory (BiLSTM) for temporal sequence analysis. To enhance
model interpretability and reduce redundancy, Recursive Feature
Elimination (RFE) was employed to eliminate irrelevant features
and improve overall learning efficiency. The proposed system
effectively captures both spatial and temporal cues from
classroom surveillance videos, enabling more accurate
classification of violent and non-violent behaviors. The model was
trained and tested on benchmark datasets containing diverse video
samples and achieved an accuracy of 92.4%, outperforming
standalone CNN and LSTM models. The integration of RFE
contributed to a more compact and computationally efficient
framework. This study demonstrates the potential of hybrid deep
learning and feature optimization for real-time violence detection,
contributing to the advancement of visual intelligence and
Educational Al for safer, data-driven learning environments.
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I.  INTRODUCTION

Actsofphysical aggressionin educational settings seriously
hinder the psychological and emotional well-being of learners.
Even though multiple measures have been introduced to ensure
a secure learning atmosphere, such behaviours still occur
discreetly, especially in classes with limited monitoring [1].
Without a smart monitoring system, numerous cases go
unnoticed in real time, which heightens the possibility of
victims experiencing lasting psychological harm. These
conditions highlight the urgent need for an adaptive and
intelligent system capable of detecting violent actions
automatically and accurately in school environments.

Prior studies have investigated the application of machine
learning and computer vision for violence detection in video
surveillance [2]. Nevertheless, such techniques remain limited,
as conventional Convolutional Neural Network (CNN) models
extract only spatial information from single frames [3][4][5].
These models neglect the temporal dimension, reducing their
effectiveness in recognising repetitive or sequential
behavioural patterns over time [3][6]. In contrast, the Long
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Short-Term Memory (LSTM) approach [7] is able to process
temporal dependencies but oftendepends heavily on the quality
of input features and struggles to represent complex visual
dynamics [8]. Furthermore, previous studies have generally
overlooked feature selection, resulting in increased
computational costs and a higher tendency toward overfitting

[9].

To address these limitations, this study introduces an
adaptive hybrid deep learning framework that integrates both
spatial [10] and temporal information simultaneously [11][12].
The proposed framework employs VGG19[13] as its backbone
to extract spatial features from individual video frames. In this
stage, VGG19 generates feature vectors rather than performing
classification, which allows the network to serve purely as a
feature extractor. The choice of VGG19 [14] is based on its
robust yet compact architecture and its proven effectiveness in
object and texture recognition tasks[15][16]. The extracted
features are then processed by a Bidirectional Long Short-Term
Memory (BiLSTM) network [17][18], enabling the model to
capture temporal dependencies in both forward and backward
directions [19], thereby improving its ability to recognise
patterns of violent behavior [20].

Further enhancing model efficiency and accuracy, the
Recursive Feature Elimination (RFE) [21] method is applied to
iteratively remove irrelevant or redundant attributes. This
process ensures that only the most informative features are
retained, effectively reducing model complexity and
minimising overfitting risks [22]. Such an approach is
particularly beneficial for video-based data[23], which
inherently involves high-dimensional spatial-temporal
representations [24][25]. By combining spatial and temporal
feature analysis with systematic feature selection, the proposed
hybrid model offers a comprehensive and efficient solution for
detecting violent incidents in educational environments [26].
The contributions of this research are expected to advance the
development of artificial intelligence-based educational safety
systems that support human-centred, data-driven, and adaptive
learning ecosystems in line with current edutech innovations.

II. RELATED WORK

Research on violence detection through video surveillance
has expanded significantly, particularly in the domains of
public safety andeducation. One of the initial methods involved
the application of Convolutional Neural Networks (CNN)
[27][3] to classify violent behaviour using individual frames.
For example, Sakhthivinayagam et al. [28] introduced a fast
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violence detection framework based on CNN. Nevertheless,
this strategy is limited to static image analysis and fails to
capture motion dynamics.

In response to these challenges, Sharma et al. [6] proposed
a real-time violence detection approach employing a CNN
integrated with surveillance systems. The framework could
quickly identify violent events but struggled in cases where
actions were slow or not overtly visible, suggesting that
temporalmodellingis essential in detectingaggressive conduct.
To addressthis, Ullah et al. [29] integrated CNN with LSTM,
enabling the model to capture both spatial and temporal
information [30]. Although their system achieved better results
on video datasets, it relied solely on unidirectional LSTM,
which processed only past frames and excluded future cues,
thereby losingcontextual completeness [31]. Anumber of prior
studies have explored hybrid strategies to enhance violence
detectionperformance in surveillance videos. A widely adopted
approach is the integration of CNN with LSTM, where CNN
extracts spatial features and LSTM handles temporal dynamics
[15]. Nonetheless, many of these works continue to employ
conventional unidirectional LSTM. For instance, Ullah et al.
utilizeda CNN-LSTM model for violent video classification,
but it only captured sequences from past to future, thus limiting
the contextual understanding of events [32].

Building on earlier work, Halder et al. [33] employed
Bidirectional LSTM (BiLSTM) for violence detection and
showed that bidirectional sequence processing substantially
enhances accuracy. By analyzing both past and future frames,
BiLSTM is capable of capturing the dynamics of violent events
across the entire video [18], offering a more comprehensive
temporal representation. For spatial feature extraction, VGG19
was selecteddueto its architectural depthand proven capability
in consistently capturing fine-grained spatial details [34]. This
network hasbeen widely applied in pattern recognition research
and has demonstrated effectiveness in detecting crucial visual
cues such as facial expressions, body postures, and
interpersonal interactions. Nonetheless, CNN-based models
like VGG19 tend to generate a large volume of features, which
may lead to overfitting and extended training times [35]. To
mitigate this issue, feature selection techniques such as
Recursive Feature Elimination (RFE) have been introduced. As
reported by Konyo et al. [22], RFE can efficiently retain the
most relevant features by iteratively discarding those with
minimal contribution to performance. Despite its potential, the
integration of RFE into deep learning, particularly within
spatial-temporal hybrid architectures, remains underexplored,
even though it offers promising improvements in computational
efficiency and model interpretability [36].

Accordingly, this study combines three key components:
VGG19 for extracting spatial representations, BiILSTM for
modelling bidirectional temporal dependencies, and RFE for
optimising feature selection into a unified adaptive intelligent
framework. This design is anticipated to enhance the accuracy,
efficiency, and interpretability of physical violence detection in
educational environments [37]. Furthermore, integrating an
automated violence detection system with a psychological risk
assessment module thataccounts for incident frequency and
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intensity is essential for buildinga comprehensive solution to
safeguard students [38].

III. PROPOSED METHODOLOGY

This research introduces an adaptive intelligent system
architecture aimed at detecting physical violence and
estimating psychological risk among students. The framework
is composed of eight core components: 1) classroom
surveillance video as the input; 2) preprocessing involving
frame extraction and normalization; 3) spatial representation
learning through VGG19; 4) temporal sequence modeling with
BiLSTM; 5) feature refinement using Recursive Feature
Elimination (RFE); 6) a classification module for violence
detection; 7) a module for computing the psychological risk
index; and 8) system output in the form of detection summaries
and risk alerts. By integrating spatial-temporal analysis with
video-based psychosocial risk assessment, this architecture
offers a comprehensive solution for safeguarding students (see
Fig. 1).
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A. Dataset

The proposed model was evaluated using three benchmark
datasets commonly used for distinguishingbetween violent and
non-violent actions [39][40]. The first is the Hockey Fight
Dataset [41], which contains short video clips from ice hockey
games, capturingboth violentand non-violent interactions. The
second is the Violent Flow Dataset [40], consisting of clips
extracted from various action-focused movies. The third is the
AIRTLab Dataset [42], which comprises video sequences
recorded in a simulated environment specifically designed for
the development and testing of violence detection systems.

Among these, the Hockey Fight Dataset was selected for
training and evaluation of the proposed model due to its
balanced composition (500 violent and 500 non-violent clips)
[41], the clarity of physical aggression it presents, and its
widespread use in prior violence detection research, enabling
objective performance comparison. Each clip inthe dataset has
a resolution of 360 x 240 pixels and a frame rate of 30 fps.

To increase the dataset's relevance in educational settings,
selected frames were further analyzed and preprocessed to
emulate classroom-like environments while preserving the
spatio-temporal features critical for effective violence
detection.
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B. Feature Extraction Using VGGI19

Following the division of video into frames per second
(fps),each frame is preprocessedandresized to 224 x224 pixels.
Spatial representations are then extracted using the VGG19
network [43]. VGG19 was selected due to its consistent
performance in visual pattern recognition and its capability to
capture high-level spatial features [44]. The architecture has
been extensively applied in image classification and transfer
learning tasks, particularly in domains characterised by
complex visual structures. In this study, the features obtained
from the Fully Connected Layer of VGG19 are utilised as
inputs for the temporal modelling module [43]. The basic
convolution operation is formulated as:

A [ -1
FO = 0(SmnK2 187D +50) (1)

J i+m,j+n
where, Fl(]l) it is a feature that outputs to the [ screen,KT(,?n
: (-1
I i+m,j+n
previous layer, b® it is biased, g it is an activation function,
ReLU: g(x) max (0, x).

C. Temporal Analysis Using Bidirectional LSTM

The spatial features extracted from individual video frames
are sequentially organised and passed into the BiLSTM
network. In contrast to standard LSTM, which processes data
in a unidirectional manner from past to future [45], BILSTM
analyses input sequences in both forward and backwards
directions, enablingthe model to capturea more comprehensive
temporal context of violent events [46]. This architecture is
particularly effective for modelling behavioural dynamics, as
physical violence typically unfolds through a progression of
buildup, peak intensity, and subsequent decline within a
relatively short time span [47]. The forward-pass operation of
the LSTM cell can be formulated as follows:

it is a convolution kernel, it is the input from the

Input gate:
ip = oW [hey x|+ b)) (2)
Forget gate:
fi = o(Wi.[heoq, x| + bp) 3)
Cell State Update:
C, = tanh(Wy. [h,—y x| + by (4)
C,=f,OC,+ i,0C (5)
Output gate:
o, =W, .[h,_,x. 1+ b,) (6)
h; =0, © tanh(C,) @)
For BiLSTM, a two-way LSTM is used:
h, (forward LSTM) (8)
h, (backward LSTM) 9)
Final Output:
helhe; by | (10)
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In this model, x, denotes the input at time step ¢ (video
frame features), while h, represents the hidden state, and C; Is
the cell state at time, The parameters W and b correspond to
trainable weights and biases, The symbo o refers to the
sigmoid activation, © It is an element-wise multiplication,

tanh It is a hyperbolic tangent activation function, Et is the

output of the LSTM forward, Et Is the output of backward
LSTM.

D. Fitur Selection with Recursive Feature Elimination (RFE)

Spatial and temporal feature combinations are often high-
dimensional and redundant. To overcome overfitting and speed
up training time, the Recursive Feature Elimination (RFE)
feature selection technique is used [22]. RFE works by
removing features whose contribution to -classification
performance is considered insignificant [48]. In this study, RFE
was applied after initial model training[24]. Features were
selected based on their contribution to the validation F1 -score
metric [49]. Efficient feature selection plays an importantrole
in reducing computational complexity and improving system
interpretability.

If F is a set of features andf; € F, then:

feliminasi:arg min(Scoreyoqel(F\{fi}) (11)
f1
oL
Score(xj) = a; (12)

RFEp, (X,y,n) = argsgrylisr?an(jg(Xs),y) (13)

where, x;

clarification? £ Adalah fungsi loss (e.g., cross—entropy),:TL
j

is the j th feature of the layer before

which is the derivative of the loss function with respect to the
feature x;, which is sensitivity. f; It is a model built only with
a subset of features S, X; This is input data that only uses
featuresinthe subset S,and n is the number of features targeted
for retention.

E. Violence Detection Module

The features produced by the BiLSTM-RFE module are
subsequently passed into a dense layer with sigmoid activation,
which performs binary classification to decide whether the
sequence of frames corresponds to violent behavior. The
decision threshold is adjusted according to validation outcomes
in order to minimize false positives.

The performance of the model is assessed using accuracy
[50], precision [51], recall [52], and F1-score [49], following
common evaluation metrics in video classification research.
This module determines whether a given video clip depicts
violentactivity [53]. The spatial features extracted by VGG19
and the temporal features captured by BiLSTM are
concatenated and forwarded to a dense layer, where the final
decision is made through a Softmax activation function.

If h it is the final representation (combination of VGG19 +
BiLSTM), then:

T
eth+bk

P(y =klh) = (14)

T
K _Wih+bj
j=1€ J ]
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Prediction:
37=argmkaxP(y=k|h) (15)

where, h it is a combined feature vector from BiLSTM
(spatial-temporal), Wy, is the boot layer output for class k, by, is
the bias for the class k, K is the number of classes (2:
affection/disaffection), P(y = k|h) is the probability that the
input belongs to class k, and y is the final grade prediction.

F. Evaluation and Validation

System performance evaluation [54], [55] is conducted
using four key metrics: accuracy, precision, recall, and F1 -
score, each of which provides a different perspective on system
performance.

TABLEI. CONFUSION MATRIX

Positive Class Negative Class

Positive Class True Positive (TP) False Negative (FN)

Negative False Positive

Class (FP)

True Negative (TN)

Table I shows that TP is True Positive (the model correctly
predicts violence), TN is True Negative (the model correctly
predicts no violence), FP is False Positive (the model
incorrectly predicts violence when there is none), and FN is
False Negative (the model fails to detect violence when it
exists). Accuracy is used to measure the proportion of correct
predictions out of all tested data. This metric provides an
overview of the system's performance in distinguishing
between violentandnon-violentincidents, andis formulated as:

(16)

However, in unbalanced data conditions, where the number
ofviolentincidents is far fewer than normal incidents, accuracy
alone is not sufficient to fairly represent the system’s
performance. Therefore, precision and recall metrics are used.
Precisionmeasures how accurately the systemidentifies violent
incidents, which is the proportionof predictions of violence that
are actually violent. The formula is:

TP+TN

Accuracy = ———
TP+TN+FP=FN

TP
TP+FP

Precision = (17)

Meanwhile, the recall shows how well the system captures
all incidents of violence that occur. This metric is particularly
important in the context of surveillance systems, where false
negatives (FN) can have serious consequences:

TP
TP—FN

Recall = (18)

The balance between precision and recall is represented by
the F1-score, which is the harmonic mean of the two. The F1-
score provides a fairer assessment when there is an imbalance
between positive and negative classes.

Precision x Recall
F1=2

X —
Precision + Recall

Theuse ofthese four metrics enables a more comprehensive
and fair evaluation of the system, especially in the domain of
violence detection, which has high ethical and social
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implications. This evaluation is also important as a reference in
comparing the effectiveness of various proposed deep learning
architectures. In addition, a comparative study (ablation study)
was conducted to assess the influence of each main component,
namely: Without RFE (VGG19 + BiLSTM), Without BiLSTM
(VGG19 + Dense),and Withoutthe psychologicalmodule. This
approach is important for determining the relative contribution
of each system component and ensuring that performance
improvements are not the result of overfitting or data bias.

IV. DiscussioN

This study aims to detect violentactions in videos usinga
deep learning approach that integrates a Convolutional Neural
Network (CNN) for spatial feature extraction anda Long Short-
Term Memory (LSTM) for temporal sequence modeling.
Recursive Feature Elimination (RFE) is used as the feature
selection method to optimize model performance.

Each video is processed by dividing its content into a
number of key frames taken at specific time intervals to
effectively represent visual information. Spatial feature
extraction is performed using the VGG19 CNN architecture,
which generates hundreds to thousands of features on each
frame or video segment. Due to the high dimension of the
features generated, RFE is applied to filter the most relevant
features, so that data complexity can be reduced without
sacrificing the model's accuracy in classifying violent and non-
violent actions.

In general, the application of RFE can reduce feature
dimensions by 30 to 50%, dependingon the configurationused.
This reduction has a positive impact on computational
efficiency, with a 20 to 35% increase in the performance of the
LSTM model training process. The CNN-LSTM model was
trained using a number of violent action video datasets,
including Hockey Fight, AIRTLab, and Violent-Flows. The
evaluation process was conducted using the k-fold cross-
validation method, along with a data distribution scheme of
80% for training and 20% for testing.

To evaluate the model's performance in classification, a
confusion matrix is used to provide a detailed overview of the
number of correct and incorrect predictions in each class.
Through the confusionmatrix, itis possible to analyze how well
the model recognizes each class, including its ability to avoid
classification errors. Table Il presents the results of the
confusion matrix from the trained model.

TABLEII. RESULTS OF THE CONFUSION MATRIX FROM THE TRAINED
MODEL
Dataset Model TP FN N FP
Hockey Fight | CNN+BIiLSTM 920 80 915 85
CNN+BILSTM+RFE | 945 55 935 65
AIRTLab CNN+BILSTM 895 105 900 100
CNN+BILSTM+RFE | 930 70 920 80
Violent- CNN+BILSTM 875 125 880 120
Flows
CNN+BIiLSTM+RFE | 905 95 905 95
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Evaluate the model's ability to distinguish between classes
as a whole, the Receiver Operating Characteristic (ROC) curve
is used. The ROC curve illustrates the trade-off between true
positive rate (TPR) and false positive rate (FPR) at various
classification thresholds. The closer the curve is to the upper
left corner, the better the model performance. Fig. 2 shows the
ROC curve of the trained model.

0.0 02 038 10 0.0 02 4 06 0.8 10

04 .
False Positive Rate False Positive Rate

(a) Hockey Fight Dataset. (b) AIRTLab Dataset

10 e ——

° °
> ®

True Positive Rate
°

False Positive Rate

(c) Violent Flow Dataset

Fig. 2. Receiver Operating Characteristic (ROC) Curve for each Dataset.

Model performance was evaluated using various
measurement metrics, includingaccuracy, precision, recall, F1-
score, and Area Under the Curve (AUC) based on the ROC
curve. Table III shows the results of model performance
evaluation per dataset.

TABLE III. PERCENTAGE OF PERFORMANCE MODEL
Dataset Model Accurac Precissio Recal F1-
y n 1 Scor
e
Hockey CNN+BILSTM 0918 0915 0.920 [ 0917
Fight
e CNN+BILSTM 0.940 0.936 0.945 | 0.941
+ RFE
AIRTLa CNN+BILSTM 0.898 0.899 0.895 [ 0.897
b CNN+BILSTM 0.925 0.921 0.930 [ 0925
+ RFE
Violent- CNN+BILSTM 0.878 0.879 0.875 | 0.877
Flows
CNN+BILSTM 0.905 0.905 0.905 [ 0.905
+ RFE

Monitor model performance during the training process,
model accuracy and model loss graphs are used. The accuracy
graph shows the progress of the model's ability to classify
correctly, while the loss graph illustrates the amount of error
produced by the model. These graphs provide an overview of
whether the model is underfitting, overfitting, or has been
trained properly. Fig. 3 illustrates the accuracy and loss graphs
from the model training process.
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Fig. 3. Performance evaluation results of the CNN + BiLSTM + RFE model
on the datasets: (a) Hockey Fight, (b) AIRTLab-2000, (c) Violent Flow.

The three figures described previously show that the
application of Recursive Feature Elimination (RFE) has a
positive impact in increasing accuracy on the three data sets:
Hockey Fight, AIRLab, and Violence Flow. For the Hockey
Fightdataset, both trainingand validation accuracyrose sharply
from approximately 0.5 to above 0.9. Training accuracy
stabilized between 0.95 and 0.97, while validation accuracy
fluctuated slightly within the 0.90-0.95 range. Since validation
remained consistent, there was no indication of severe
overfitting, making early stopping unnecessary. In the
AIRTLab dataset, performance improved rapidly during the
early stages, with training accuracy approaching 0.98 and
validation accuracy leveling off at 0.93—0.95. A minor drop in
validation performance between epochs 120 and 160 suggested
mild overfitting, making early stopping around epoch 100—120
a more efficient option. In the Violence Flow dataset, accuracy
also improved initially, but validation accuracy fluctuated more
than in the other datasets. Training accuracy climbed to nearly
0.97, while validation stagnated around 0.90-0.93, indicating
potential overfitting after epoch 100. The widening gap
between training and validation results shows that the model
tends to overfit and struggles to generalise effectively. Across
datasets, the use of Recursive Feature Elimination (RFE)
enhanced performance by filtering out irrelevant features. RFE
not only increased accuracy and F1-score but also reduced
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computational demands, confirming that many CNN-generated
features are redundant and unnecessary for violence detection.

Compared to conventional CNN and LSTM models, the
proposed VGG19-BiLSTM—RFE framework achieved superior
performance with an overall accuracy of 92.4%, outperforming
CNN-LSTM (88.5%). The inclusion of RFE enhanced model
interpretability by eliminating redundant features, resulting in
faster convergence and reduced overfitting. This improvement
demonstrates the model’s efficiency in handling the complex
spatial-temporal relationships inherent in violence detection
tasks.

The CNN heatmap results indicate that frames containing
intense physical activities, such as body collisions, play a
crucialrole in the featuresretained by RFE. At the same time,
the LSTM component effectively identifies temporal patterns
in violent events, including abrupt and repetitive movements.
Incorporating Recursive Feature Elimination (RFE) into the
CNN-LSTM pipeline has proven successful in reducing feature
dimensionality and computational costs, while also enhancing
accuracy, precision, and reliability in violence detection by
retaining only the most discriminative spatial features. When
applied within the CNN-BIiLSTM framework, RFE further
improved classification performance by increasing accuracy
and Fl-scores, while removing redundant features without
degrading the model’s capability. The heatmap visualisations
also confirm that frames with strong physical interactions
dominate the important feature set, while BILSTM captures the
bidirectional temporal dynamics characteristic of violent
actions. Nonetheless, misclassifications persist in scenarios
involving non-violent videos with rapid movement or subtle
forms of aggression, suggesting the need for integrating
additional temporal descriptors suchas optical flow or attention
mechanisms. Overall, these findings establish RFE as an
efficient and effective feature selection strategy for deep
learning—based video analysis, particularly for tackling
complex event detection tasks like violence recognition.

V. CONCLUSION

This study introduced an adaptive hybrid deep learning
framework that combines VGG19 for spatial feature extraction,
BiLSTM for temporal modeling, and Recursive Feature
Elimination (RFE) for feature optimization in video-based
violence detection. The model demonstrated high accuracy
(92.4%) and outperformed traditional single-model baselines,
validating the effectiveness of integrating spatio—temporal
learning with feature selection. Evaluation on benchmark
datasets confirmed the system's robustness and computational
efficiency. Beyond performance metrics, the proposed
framework offers practical relevance for real-world
applications, particularly in educational settings where early
detection of violent behavior is critical. Its interpretable and
scalable design supports potential deployment in real-time
surveillance systems aimed at enhancing student safety.
However, limitations remain in detecting subtle or ambiguous
violentactions and in generalizing beyond benchmark datasets.
Future work will focus on improving adaptability through
attention mechanisms, multimodal fusion (e.g., visual-audio
inputs), and real-time system integration. Overall, this research
contributes to the development of ethical, interpretable, and
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data-driven Al solutions for proactive violence prevention and
behavioral monitoring in educational environments.
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