
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

469 | P a g e
www.ijacsa.thesai.org

Transformative Integration of Machine Learning in

Software Applications in Light of Current Software

Engineering Practices

Fawzi Abdulaziz Albalooshi

Department of Computer Science, University of Bahrain, Sakhir Campus, Kingdom of Bahrain

Abstract—This study critically reviews the transformative

integration of machine learning (ML) into software engineering,

detailing its evolution from traditional DevOps to MLOps, which

has significantly enhanced software development by enabling

adaptive and intelligent systems, improving processes, and

boosting software quality. Despite these benefits, the integration

introduces unique challenges across technical (e.g., model

deployment, data quality, scalability), organizational (e.g.,

collaboration, tool management), and cultural (e.g., resistance to

change, skill gaps) domains throughout the software development

lifecycle. The review highlights emerging solutions, including

robust MLOps practices, microservices architecture, and

frameworks like CRISP-DM, DataOps, and Agile ML, which aim

to streamline the ML lifecycle and ensure reliability and

scalability. Furthermore, it emphasizes the crucial role of

security and governance frameworks in protecting against

adversarial attacks, maintaining data privacy, and ensuring

accountability and compliance, which are essential for building

trust and ethical application of ML systems. Ultimately,

successful ML integration requires a holistic approach that

addresses these multifaceted challenges to optimize ML's impact

and drive technological progress and business value.

Keywords—Machine learning (ML); software engineering;

DevOps; MLOps; ML integration challenges; integrated software

development

I. INTRODUCTION

Machine learning has profoundly transformed software
engineering, leading to more adaptive and intelligent systems
and improving development processes and software quality.
The significance of this work lies in providing a
comprehensive review of this transformative integration,
particularly its evolution from traditional DevOps to MLOps,
and addressing the complex challenges that arise. This study is
crucial for optimizing ML's impact, ensuring the scalability,
reliability, and maintainability of ML systems, which is vital
for organizations seeking operational efficiency and
competitive advantage in an increasingly ML-driven world.
While the integration of ML offers substantial benefits, it
introduces unique and multifaceted challenges across
technical, organizational, and cultural domains throughout the
software development lifecycle. The existing literature
acknowledges these challenges, but many issues remain
unresolved or contentious due to the complexity of ML
systems and the evolving nature of software engineering
practices. There is a clear gap in a consolidated, critical review
that systematically analyzes these integration complexities and

explores emerging solutions and best practices to address them
effectively. This study aims to fill that gap by providing a
structured overview of the current landscape, highlighting
where current practices fall short and where further innovation
is needed. Incorporating machine learning into software
engineering enhances development processes, improves
software quality, and allows complex tasks to be framed as
learning problems. This approach excels at detecting patterns
in large datasets and adapting to changing conditions, proving
particularly useful in areas where traditional programming
methods fall short [1][2]. However, this integration poses
several challenges throughout the software development
lifecycle, from requirements engineering to security and
operationalization. The complexity of ML systems, combined
with evolving software engineering practices, creates a
landscape where certain issues remain unresolved or
contentious [3][4][5][6][68]. This review argues that
integrating ML into software engineering offers significant
benefits. However, it also presents unique challenges that
require innovative solutions and interdisciplinary
collaboration. The review examines ML integration in
software applications, emphasizing the transition from
DevOps to MLOps. It critically analyzes the challenges in ML
integration across technical, organizational, and cultural
domains and explores potential solutions. The study aims to
provide insights into optimizing ML's impact, ensuring the
scalability, reliability, and maintainability of ML systems,
ultimately leading to improved operational efficiency and
competitive advantage. This study makes several key
contributions. It provides a critical review of ML's integration
into software engineering, detailing its evolution from DevOps
to MLOps. The study systematically highlights the technical,
organizational, and cultural challenges encountered during
ML integration. It explores emerging solutions, including
robust MLOps practices, microservices architecture, and
frameworks like CRISP-DM, DataOps, and Agile ML, that
aim to streamline the ML lifecycle and ensure reliability and
scalability. The review underscores the crucial role of security
and governance frameworks in protecting against adversarial
attacks, maintaining data privacy, and ensuring accountability
and compliance, which are essential for building trust and
ethical application of ML systems. These contributions are
designed to offer comprehensive insights into optimizing ML's
impact, ensuring the scalability, reliability, and maintainability
of ML systems, and ultimately driving technological progress
and business value.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

470 | P a g e
www.ijacsa.thesai.org

II. RESEARCH METHODOLOGY

This study adopts a critical review methodology to
comprehensively analyze the transformative integration of
machine learning (ML) into software engineering practices.
This research design is chosen to provide a structured and in-
depth examination of the subject, synthesizing existing
knowledge, identifying gaps, and proposing solutions. A
critical review allows for a systematic exploration of the
evolution from traditional DevOps to MLOps, assessing the
benefits and challenges inherent in this transition. The
justification for this approach lies in its ability to offer a
holistic perspective, crucial for understanding a rapidly
evolving and multifaceted domain like ML integration in
software engineering.

The research questions guiding this study are formulated to
address significant gaps and complexities identified in the
current literature regarding ML integration. The primary
objectives include: understanding the evolution of ML
integration, identifying and analyzing challenges, exploring
emerging solutions, and emphasizing security and governance.
The methodology involves a thorough review of academic
literature, including research papers, conference proceedings,
and industry reports related to machine learning, software
engineering, DevOps, and MLOps. The selection criteria for
literature prioritize relevance to the integration of ML in
software development, focusing on studies that discuss
challenges, solutions, best practices, and ethical
considerations. The collected information is then critically
analyzed to synthesize findings, identify recurring themes, and
pinpoint areas of consensus and contention. This analytical
process allows for the construction of a comprehensive
overview that addresses the research questions and contributes
to filling the identified literature gaps. The ultimate goal is to
provide insights into optimizing ML's impact, ensuring the
scalability, reliability, and maintainability of ML systems, and
driving technological progress and business value.

III. SOFTWARE DELIVERY PIPELINES: FROM DEVOPS TO

MLOPS

A. Traditional DevOps Continuous Integration (CI)/

Continuous Deployment (CD) Pipelines

Traditional DevOps CI/CD pipelines are essential to
contemporary software development, allowing teams to
automate and streamline the processes of code integration,
testing, and deployment. These pipelines boost efficiency,
minimize errors, and ensure the swift delivery of software.
The core components of a traditional CI/CD pipeline include
CI, Continuous Testing (CT), and CD, each playing a vital
role in maintaining the quality and reliability of software
releases. The following sections will delve into the key aspects
of traditional DevOps CI/CD pipelines, highlighting their
components, tools, and best practices.

1) Continuous integration: CI involves the regular

integration of code changes into a shared repository, a process

that triggers automated builds and tests. This approach helps

identify integration issues early, thereby reducing the time and

effort needed to resolve them [7][8]. The market offers several

common CI tools and technologies, including Jenkins,

CircleCI, Travis CI, GitLab CI/CD, Bamboo, TeamCity,

Azure DevOps, GitHub Actions, and Bitbucket Pipelines.

Each tool provides unique features and integrations tailored to

different aspects of software development workflows. The

choice of a CI/CD tool often hinges on the specific needs and

existing infrastructure of the development team. For instance,

Jenkins offers unparalleled flexibility and plugin support,

making it ideal for complex projects. CircleCI and Travis CI

are known for their ease of use and quick setup, catering to

cloud-based and GitHub-centric workflows, respectively.

GitLab CI/CD and Azure DevOps provide comprehensive

platforms for teams seeking integrated solutions, while

GitHub Actions and Bitbucket Pipelines offer seamless

experiences for users of their respective version control

systems. These tools enhance the development process by

automating builds, tests, and deployments, thereby improving

collaboration and efficiency among team members. CI helps

maintain a stable codebase, enhances code quality, and

facilitates collaboration among development teams [8][22].

2) Continuous testing: CT is a vital practice in DevOps

environments, ensuring software quality and reliability

throughout the development life cycle. By integrating testing

into the CI/CD pipeline, CT allows for early defect detection

and accelerates feedback loops. Key strategies in continuous

testing include Shift-Left Testing, Test-Driven Development

(TDD), Continuous Test-Driven Development (CTDD), and

Operational-Profile Based Testing. Shift-Left Testing moves

testing activities to earlier stages in the development process,

facilitating earlier defect identification and reducing the cost

and effort required for corrections [9][10]. Test-Driven

Development (TDD) and Continuous Test-Driven

Development (CTDD) involve writing tests before the code

itself, ensuring that development is guided by testing

requirements. CTDD enhances this process by automating test

execution and integrating it into the continuous testing

framework [11]. Operational-Profile Based Testing uses data

from software operations to guide testing, ensuring that tests

reflect real-world usage patterns. This approach is particularly

advantageous for reliability testing, as it helps evaluate

software performance under actual operating conditions [12].

Automated testing tools are essential in the DevOps

environment, enabling rapid and reliable software delivery

through continuous integration and deployment processes.

These tools support various testing types, including unit,

integration, performance, and security testing, and are crucial

for maintaining code quality and reliability. The choice of

tools often depends on the project's specific needs, with

factors to consider including platform compatibility, ease of

use, and integration capability.

3) Continuous deployment: Continuous Deployment (CD)

automates the release of validated code changes into

production environments, ensuring the swift and reliable

delivery of new features and fixes to users [8]. As a vital

component of modern software development, CD enhances

efficiency, reliability, and speed by automating application

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

471 | P a g e
www.ijacsa.thesai.org

deployment. A variety of tools and technologies support CD,

each playing a distinct role within the deployment pipeline.

These tools are crucial to the CI/CD process, facilitating

seamless integration, testing, and deployment of software

products. Git, a widely adopted version control system, tracks

changes in source code during software development [13][14].

Jenkins, an open-source automation server, aids in building,

deploying, and automating projects, often working alongside

Git and Docker to streamline the CI/CD pipeline [14][15].

GitLab CI/CD, part of the GitLab platform, provides a robust

CI/CD solution by integrating with Git repositories to enable

automated testing and deployment [14]. Docker allows

developers to package applications into containers, which are

standardized units of software containing all necessary

components to run an application, ensuring consistency across

environments [15][13]. Kubernetes automates the deployment,

scaling, and management of containerized applications, often

collaborating with tools like ArgoCD to manage deployments

within Kubernetes clusters [15][13]. While these tools are

widely used in Continuous Deployment, the choice of tools

may vary based on project requirements, team preferences,

and organizational objectives. Integrating these tools into a

unified CI/CD pipeline requires careful planning and

execution to address potential challenges such as security

vulnerabilities, system misconfigurations, and resource

optimization. As software development evolves, adopting new

tools and practices is essential for maintaining efficient and

secure deployment.

4) Best practices and optimization: Optimizing CI/CD

pipelines is essential for enhancing software development

processes, as it boosts efficiency, reliability, and speed. As

software systems become more complex, the demand for rapid

and dependable deployments grows. Effective optimization of

CI/CD pipelines results in notable improvements, such as

increased deployment frequency, higher build success rates,

and enhanced overall development efficiency. This process

involves tackling several challenges, including inconsistencies

in test environments, resource allocation issues, and build

instabilities. By optimizing CI/CD pipelines, builds are

stabilized, and execution efficiency is improved, which are

critical factors for maintaining a seamless development

workflow. This is achieved by addressing test environment

inconsistencies and managing resources effectively [16].

Automated code integration and delivery minimize the time

and errors associated with manual processes, enabling faster

release cycles and allowing teams to focus more on business

requirements [17]. CI/CD practices cultivate a culture of

shared responsibility for code quality, enhancing collaboration

among team members and boosting productivity [18].

Optimized pipelines ensure efficient scaling of software

systems while maintaining reliability, which is crucial for

handling complex software systems and large-scale projects

[19] [20]. While optimization offers numerous benefits, it also

presents challenges, such as managing the complexity of

automation tools, ensuring toolchain compatibility, and

addressing security concerns. Integrating emerging

technologies like AI/ML into CI/CD processes can further

enhance pipeline efficiency. Organizations must continuously

adapt and refine their CI/CD strategies to remain competitive

[21][20].

5) Summary: Traditional DevOps CI/CD pipelines form

the foundation of modern software development practices,

emphasizing automation, efficiency, and rapid delivery. These

pipelines integrate core components of continuous integration,

testing, and deployment, supported by various tools and

technologies. This approach sets the stage for understanding

how these principles are adapted in the context of machine

learning operations.

B. Key Components of MLOps Pipelines

MLOps pipelines are essential for the effective
deployment and management of machine learning models in
production environments. They integrate various components
to streamline the entire machine learning lifecycle, including
data acquisition, model deployment, and monitoring. The
primary components of MLOps pipelines are: data
engineering, model development, CI, CT, CD, and
governance. These components work in unison to ensure that
machine learning models are scalable, reliable, and
maintainable. While MLOps pipelines offer a structured
approach to managing machine learning models, they
encounter several challenges, such as talent shortages
[25][41], interoperability issues [41], and regulatory
compliance [23]. The success of MLOps hinges on its
integration with business processes and adaptation to evolving
industry standards [34]. Organizations must consider the
interplay between technology, people, and processes to fully
harness the potential of machine learning in driving business
value [4].

1) Data engineering in MLOps: Data engineering is a

vital aspect of MLOps, ensuring the smooth integration and

operationalization of machine learning models. It

systematically prepares and manages data, ensuring it is clean,

consistent, and ready for model training. This includes

automated processes for data cleaning, normalization, and

transformation, which minimize manual intervention and

errors [25]. Tools like Acumos and NiFi automate data

pipelines, efficiently handling large datasets and ensuring

continuous data updates for model training. Data engineering

integrates into the machine learning pipeline, facilitating

seamless data flow from ingestion to model deployment. This

integration ensures the reproducibility and scalability of

machine learning models. Modular pipelines and automated

testing align data engineering processes with the overall

MLOps framework, enabling continuous integration and

delivery. Automation plays a significant role in MLOps data

engineering. Tools like ALaaS implement automated

workflows for data-centric AI tasks, reducing manual

intervention and enhancing processing efficiency. Despite

advancements, challenges persist in MLOps data engineering,

including interoperability issues, regulatory compliance, and

the need for continuous model training. Addressing these

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

472 | P a g e
www.ijacsa.thesai.org

challenges requires technical expertise and strategic planning

[25]. Reusable MLOps frameworks, such as those offered by

Acumos, provide solutions by enabling the reuse of existing

infrastructure and deployment processes, thereby reducing the

complexity and costs associated with data engineering tasks.

Additional challenges include the need for continuous data

updates and the integration of diverse data sources. The rapid

evolution of machine learning technologies necessitates the

ongoing adaptation of data engineering practices. However,

organizations can overcome these challenges by leveraging

automation and collaboration tools, achieving efficient and

reliable data engineering processes.

2) Model development in MLOps: Within the MLOps

framework, model development integrates DevOps principles

to enhance machine learning processes. It promotes

collaboration between data scientists and engineers, automates

workflows, and ensures the continuous delivery of high-

quality models [62][34]. CI/CD pipelines are vital in MLOps,

enabling automated testing, validation, and deployment of

models with minimal manual intervention [29][23].

Automation is a core aspect of MLOps, with tools and

frameworks automating various stages of the model lifecycle,

thereby reducing the time and effort needed to transition

models from development to production [35]. Monitoring

systems are essential for maintaining model performance in

production environments, tracking predefined metrics to

ensure models deliver accurate predictions and adapt to data

changes [36].

3) Continuous integration in MLOps: CI is vital in

MLOps, aiding the seamless integration of machine learning

models into production environments. It automates testing and

validation processes to ensure model quality prior to

deployment. In MLOps, CI employs various tools,

frameworks, and methodologies to optimize the machine

learning lifecycle. Jenkins, an open-source CI tool, automates

MLOps workflows by building pipelines for data analysis,

preparation, training, testing, and deployment, thereby saving

time and reducing manual effort for repetitive tasks [37].

Platforms like Kubeflow and MLflow offer end-to-end

lifecycle management for ML applications, managing

deployment pipelines and ensuring model version

management and reproducibility [26][27]. ModelCI-e, a

lightweight MLOps plugin, supports continuous integration

and evolution by automating model updates and validation

without requiring serving engine customization. It includes a

model factory for prototyping and a backend for efficient

orchestration of model updates [28]. CI pipelines in MLOps

incorporate jobs to automatically train models and validate

their performance, ensuring that only models meeting

predefined quality standards are deployed, thus minimizing

the risk of underperforming models [66]. Maintaining a

centralized model registry and enforcing access controls are

essential for managing model versioning and ensuring

regulatory compliance, which are critical for scalable and

robust MLOps pipelines [29]. Efficient resource management

is imperative for CI in MLOps, as analyzing time and resource

consumption in the ML pipeline helps identify potential

performance bottlenecks, such as GPU (Graphics Processing

Unit) utilization, which can impact CI process efficiency [27].

Addressing dynamic environments where online data diverges

from offline training data presents a challenge, necessitating

continuous learning and model updating techniques to

maintain model relevance and performance [28]. While CI in

MLOps offers benefits like enhanced model quality and

reduced deployment time, it also presents challenges,

including managing resource consumption and adapting to

dynamic data environments. Addressing these challenges

requires robust tools, efficient practices, and strategic planning

for successful CI implementation.

4) Continuous testing in MLOps: CT is a crucial

component of MLOps, ensuring the ongoing effectiveness and

reliability of machine learning models in production. MLOps

utilizes automated processes for retraining, deployment, and

monitoring, enabling rapid iteration and adaptation to

changing data and conditions [39][30][43][33]. MLOps

pipelines, such as Continuous Training and Continuous

Deployment-enabling (CTCD-e), automate model retraining

and redeployment, triggering retraining when performance

declines and conducting A/B testing to ensure optimal model

functionality. CI and CD practices are tailored for ML

workflows to facilitate efficient model updates, automating the

entire lifecycle from data ingestion to deployment [29].

Systems like ModelCI-e support continual learning by

automating model updates and validation [28].

Comprehensive monitoring mechanisms are essential for

tracking model performance and detecting data drift, ensuring

models remain accurate and reliable over time [29]. MLOps

processes must incorporate operational feedback to

continuously innovate and adapt models. While continuous

testing in MLOps offers significant benefits, it also presents

challenges. Automating various stages of the MLOps process

requires robust infrastructure and tools. Ensuring model

reproducibility and traceability is vital for maintaining trust

and accountability [24]. Additionally, integrating MLOps with

existing IT and operational systems can be complex. In

conclusion, continuous testing in MLOps combines automated

pipelines, continual learning, and robust monitoring systems.

These practices ensure machine learning models remain

effective in dynamic production environments. Implementing

continuous testing requires addressing challenges related to

automation, safety assurance, and system integration.

Overcoming these challenges allows organizations to fully

leverage MLOps benefits, enhancing the scalability,

reliability, and productivity of their machine learning systems.

5) Continuous deployment in MLOps: CD within MLOps

is vital for the efficient and reliable deployment of machine

learning models into production environments. It automates

the deployment pipeline, facilitating seamless updates and

model integration, thereby enhancing operational efficiency

and reducing time-to-market. Integrating CI and CD pipelines

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

473 | P a g e
www.ijacsa.thesai.org

is crucial for maintaining model performance in dynamic

environments. Automation is a cornerstone of CD in MLOps,

streamlining the entire lifecycle of ML models, from data

ingestion to monitoring. Tools such as MLflow, Kubeflow,

and Airflow manage deployment pipelines, ensuring

consistent and efficient model deployment. Automated cycles

convert code changes into container images, which are then

deployed to production environments [31]. Comprehensive

monitoring and observability mechanisms track model

performance and detect drift, maintaining the trustworthiness

of ML models in production. Predefined metrics ensure

prediction quality throughout deployment, facilitating

continuous improvement [32]. Continuous deployment in

MLOps offers benefits like increased efficiency and reduced

time-to-market, but it also presents challenges

[41][23][29][26][4]. These challenges include managing

dependency complexity and ensuring model reproducibility

and traceability. Best practices for addressing these challenges

involve maintaining a centralized model registry and

enforcing access controls. Ensuring compliance with

regulatory requirements is also crucial. Collaboration among

data scientists, engineers, and business stakeholders fosters

innovation and agility in model deployment.

6) Governance in MLOps: Governance is a cornerstone of

MLOps, ensuring the responsible, ethical, and compliant

deployment of machine learning models. It involves practices

and policies that manage the lifecycle of ML models in

accordance with organizational standards and regulatory

requirements. Governance in MLOps is vital for maintaining

model integrity, protecting data privacy, and building trust in

AI systems. This section explores the key aspects of

governance in MLOps: compliance, ethical considerations,

and model management. Compliance in MLOps entails

adhering to legal and regulatory frameworks, such as data

protection laws and industry-specific standards. Organizations

must establish access controls and audit trails to monitor

model access and modifications, ensuring accountability and

traceability [29][23]. A centralized model registry is crucial

for tracking model versions and changes, facilitating audits

and regulatory reporting [29]. Ethical considerations are a

vital component of governance, emphasizing fairness,

transparency, and accountability in machine learning models

[25][38]. Governance frameworks should include guidelines

for detecting and mitigating bias to prevent the perpetuation or

exacerbation [38]. Transparency in model decision-making is

essential, and organizations should implement explainable AI

techniques to make model outputs understandable to

stakeholders [38]. Effective governance requires

comprehensive model management practices, including

version control, performance monitoring, and drift detection

[29][39]. Continuous monitoring of model performance is

crucial for identifying issues like data drift or model

degradation, enabling timely interventions [29]. Governance

frameworks should also include policies for model retraining

and updates to maintain relevance and effectiveness over time

[39]. A significant challenge in MLOps governance is

balancing innovation and compliance. Overly stringent

governance can stifle creativity and delay model deployment

[25]. Proposed solutions include implementing flexible

governance frameworks and using automation to streamline

processes [29][4]. Effective collaboration among data

scientists, engineers, and compliance officers is crucial for

developing practical and effective governance policies [23].

While essential, governance in MLOps faces additional

challenges. The dynamic nature of AI technologies and the

evolving regulatory landscape complicate compliance efforts.

There is also a need for more standardized governance

frameworks adaptable across various industries and use cases.

Despite these challenges, effective governance remains

fundamental to successful MLOps practices, enabling

organizations to leverage AI responsibly and ethically.

7) Summary: MLOps CI/CD pipelines build upon

traditional DevOps principles, tailoring them to the unique

requirements of machine learning projects. These pipelines

encompass data engineering, model development, CI/CD, and

governance, addressing specific challenges in ML model

production. The complexities and ethical considerations in

MLOps highlight the need for specialized approaches in

managing ML systems throughout their lifecycle.

IV. CHALLENGES IN IMPLEMENTING MACHINE LEARNING

COMPONENTS WITHIN LARGER APPLICATIONS

The integration of ML components into larger applications
is becoming increasingly common, driven by the potential to
enhance decision-making, automate processes, and deliver
personalized experiences across various fields. However, this
integration is not without its challenges. Technical
complexities present significant hurdles, while organizational
and cultural barriers further impede successful
implementation. Addressing these issues necessitates a holistic
approach to ensure the effective deployment and maintenance
of ML components. This response examines the key
challenges in integrating ML components and offers
actionable strategies to overcome these obstacles. The insights
presented are drawn from relevant literature in the field.

A. Technical Challenges in ML Integration

1) Model deployment and monitoring: The deployment

and monitoring of ML models in production environments

present significant technical challenges. Many organizations

find it difficult to design architectures for production

deployment and to integrate ML models into legacy systems

[40][41]. Inadequate monitoring practices often result in poor

tracking of models in production, leading to performance

degradation over time [40][42]. To address these issues, [43]

and [41] recommend implementing robust MLOps practices,

which include: using version control systems for model

versioning, employing containerization for consistent

environments, and continuously monitoring model

performance. Tools like Kubeflow can automate several

processes, such as hyperparameter tuning, model deployment,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

474 | P a g e
www.ijacsa.thesai.org

and maintenance. These automated processes reduce manual

effort and enhance reliability [44].

2) Cross-Platform integration: The authors in [45]

underscore a major technical hurdle: the integration of ML

models across a range of platforms and technologies. These

models are typically developed within specialized

environments, and deploying them on new platforms such as

Metal, Vulkan, or WebGPU demands considerable effort and

customization. The authors suggest a solution through a top-

down development approach, as demonstrated by TapML.

This method streamlines the deployment of ML models across

various platforms by utilizing automated testing and

progressively transferring computations to the target

platforms. This strategy effectively minimizes the need for

extensive debugging and validation efforts.

3) Data quality and versioning: Ensuring data quality and

versioning is essential for the success of ML models [46][47].

Inadequate data quality can result in models that are biased or

inaccurate. Additionally, concept drift, which refers to

changes in data distributions, can render models ineffective

over time. To tackle these issues, experts advocate for

thorough data preprocessing and versioning [41][47].

Incorporating data version control into the ML lifecycle is

crucial for maintaining model effectiveness. Automated data

validation pipelines are also vital in upholding data quality.

These methods enable teams to monitor changes over time and

ensure high-quality data inputs. By adopting these practices,

organizations can enhance the reliability and longevity of their

ML models.

4) Maintainability, scalability, and reliability:

Microservices architecture enables the development of ML

components as standalone services, which can be seamlessly

integrated with other system components through well-defined

application programming interfaces (APIs). This modular

approach allows for the smooth incorporation of ML models

into larger systems, facilitating updates or replacements

without affecting other components [48][49]. By employing

common communication protocols like Representational State

Transfer (REST) over Hypertext Transfer Protocol (HTTP),

microservices ensure interoperability among diverse

components, even those developed in different programming

languages or frameworks. This is particularly crucial for

integrating ML models, which may require specific

environments or dependencies [50][51]. Each microservice,

including those for ML, can be developed, tested, and

deployed independently, reducing the complexity of managing

large codebases and allowing for more frequent updates and

bug fixes, thereby enhancing maintainability [52][53].

Encapsulating ML models as microservices promotes code

reusability and simplifies maintenance. Changes to a model or

its underlying algorithms can be made without impacting other

services, streamlining the maintenance process [48].

Microservices architecture supports the independent scaling of

services based on demand. ML services, which often require

significant computational resources, can be scaled

independently of other system components, optimizing

resource utilization and ensuring efficient handling of large

data volumes [52][50]. The cloud-native nature of

microservices allows for automated scaling and elasticity,

essential for managing the variable workloads typical of ML

applications. Moreover, the isolation of services ensures that

failures in one service do not affect others, thereby enhancing

system reliability [50][54].

While microservices architectures offer substantial
advantages, they also present challenges, such as increased
communication overhead and potential network delays due to
the distributed nature of services. Ensuring data consistency
and managing the complexity of service orchestration are
critical considerations. Additionally, integrating ML models
requires careful design to address issues related to model
versioning and deployment pipelines [52][55]. Despite these
challenges, the benefits of microservices in terms of
scalability and maintainability make them a compelling choice
for integrating ML components into complex systems.

B. Organizational Challenges in ML Integration

1) Collaboration between cross-functional teams: The

authors in [56] contend that machine learning-powered

systems require collaboration among data scientists, software

engineers, and domain experts. However, effective teamwork

often encounters challenges, such as disparities in technical

expertise, ambiguous roles, and insufficient communication.

To address these issues, the authors propose several solutions.

First, they recommend establishing clear roles and

responsibilities. Second, they suggest fostering a collaborative

culture. Third, they advise utilizing communication tools to

enhance teamwork. Additionally, the authors in [56] highlight

the importance of concise system documentation, which can

help bridge the gap between data scientists and software

engineers, facilitating better understanding and cooperation.

2) Managing diverse tools and frameworks: The machine

learning ecosystem encompasses a wide array of tools and

frameworks [41][47]. This diversity can pose challenges in

terms of integration and maintenance. Organizations often

encounter significant obstacles in managing these tools while

ensuring consistency across different environments. To tackle

these issues, the authors in [41] and [57] advocate for the

standardization of tools and frameworks whenever feasible.

They also recommend employing platform-independent

execution frameworks to minimize complexity. Furthermore,

the implementation of automated pipelines for model training

and deployment can help streamline workflows.

3) Integrating ML workflows with existing processes:

Integrating ML workflows into existing software development

processes poses considerable challenges, especially for

organizations with legacy systems [43][41]. This integration is

particularly complex when dealing with continuous CI/CD

pipelines. To address these challenges, adopting MLOps

practices can facilitate a more seamless integration. These

practices align with DevOps principles and offer practical

solutions. One key approach is the utilization of versioned

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

475 | P a g e
www.ijacsa.thesai.org

environments. Another effective strategy is the

implementation of containerization. Both methods ensure

consistency and reproducibility in ML workflows.

C. Cultural Challenges in ML Integration

1) Resistance to change: Resistance to adopting ML

technologies is a prevalent cultural challenge. Many

stakeholders remain skeptical about ML's value, while others

hesitate to replace traditional methods with data-driven

approaches [58]. Overcoming this resistance necessitates

targeted educational efforts. Stakeholders must understand

ML's benefits and recognize its practical value. Pilot projects

can effectively demonstrate this, offering tangible evidence of

ML's potential. Additionally, fostering a culture that

encourages continuous learning and experimentation can

support broader acceptance [41][58].

2) Skill gaps: Effectively integrating ML components

often demands specialized expertise. Conventional software

development teams may lack these skills, which can impede

adoption and restrict collaboration between data scientists and

engineers [41][47]. To bridge this gap, organizations should

invest in upskilling initiatives. Promoting collaboration

between data scientists and software engineers can also

enhance integration efforts. Furthermore, cross-functional

training and knowledge-sharing programs contribute to

building more cohesive and capable teams [41][56].

3) Lack of shared understanding: A thorough

understanding of ML concepts and their practical application

is crucial for their successful integration into educational

curricula. However, stakeholders often possess varying levels

of comprehension, which can result in misaligned expectations

[59]. Perspective-based approaches, such as PerSpecML, are

instrumental in aligning these expectations. They ensure that

all stakeholders have a clear understanding of the system’s

goals, user experience, and technical requirements [59].

Integrating ML components into broader applications presents

complex challenges that span technical, organizational, and

cultural domains. Overcoming these challenges requires more

than just technical expertise; it also necessitates effective

organizational strategies and intentional cultural adaptation.

Organizations can tackle these issues by adopting MLOps

frameworks, fostering cross-functional collaboration, and

cultivating a shared understanding of ML principles. These

efforts enable teams to navigate integration challenges and

fully harness the benefits of machine learning. A summary of

the challenges and corresponding solutions is provided in

Table I.

TABLE I. KEY CHALLENGES AND SOLUTIONS IN ML INTEGRATION

Challenge Description Solution

Model

Deployment

Difficulty in

deploying models in

production

environments and

integrating with

legacy systems.

Implement MLOps practices, includ ing

version control, containerization, and

continuous monitoring [43][40][41].

Cross-Platform

Integration

Challenges in

deploying models on

diverse platforms

like Metal, Vulkan,

or WebGPU.

Use top-down development approaches

like TapML for streamlined

deployment [45].

Data Quality

and Versioning

Poor data quality and

concept drift leading

to model

degradation.

Implement data versioning and

automated validation pipelines

[41][47].

Maintainability,

Scalability, and

Reliability

Efficient updates,

handling of

increasing data and

workload demands,

and consistent

delivery of accurate

and dependable

results.

Using a microservices architecture

enables updates or rep lacements to be

made without affecting other

components [48][49].

Collaboration

Differences in

expertise and unclear

roles hindering

teamwork.

Foster collaboration through clear roles,

communication tools, and system

documentation [56].

Tool

Management

Managing d iverse

ML tools and

frameworks.

Standardize tools and adopt automated

pipelines for consistency [41][57].

Cultural

Resistance

Stakeholder

skepticism and

resistance to ML

adoption.

Educate stakeholders and build a

culture of continuous learning [41][58].

Skill Gaps

Lack of specialized

skills for ML

implementation.

Invest in upskilling programs and

cross-functional training [41][56].

V. EMERGING FRAMEWORKS AND METHODOLOGIES

The integration of ML into applications is facilitated by
several emerging frameworks and methodologies, each
offering unique advantages and challenges. These frameworks
and methodologies streamline the ML lifecycle, enhance
collaboration, and ensure the reliability and scalability of ML
models. Table II presents the suitability of various approaches
for ML integration within applications:

TABLE II. ML INTEGRATION FRAMEWORKS

Framework/Methodology Description

CRISP-DM (Cross-Industry

Standard Process for Data

Mining) [24].

- Offers a structured approach to ML projects.

- Focuses on business understanding, data

preparation, modeling, evaluation, and

deployment.

- May lack agility and continuous integration

features for modern ML applications.

- Less su itable for dynamic environments

requiring rapid iterations

DataOps [61]. - An agile methodology aimed at improving

data analytics quality and reducing cycle time.

- Emphasizes collaboration, automation, and

monitoring.

- Crucial for managing data pipelines in ML

applications.

- Can be integrated with MLOps to enhance

data management and operational efficiency.

MLOps Frameworks [60]

[62][63].

- Integrate ML, DevOps, and data engineering

to automate and enhance the ML lifecycle.

- Facilitate continuous integration, delivery,

and monitoring.

- Ensure model reliability and scalability.

- Examples include Kubernetes-based open-

source frameworks and proprietary solutions

like Amazon SageMaker.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

476 | P a g e
www.ijacsa.thesai.org

Framework/Methodology Description

Agile ML [24] - Applies agile principles to ML development.

- Promotes iterative development and

collaboration.

- Advantageous in environments requiring

rapid prototyping and frequent updates.

- Enables teams to swiftly adapt to changes

- May face challenges in maintaining model

stability due to frequent changes.

Feature Stores [64][65] - Centralized repositories for storing and

managing ML features.

- Facilitate feature reuse, consistency, and

governance.

- Crucial for scalable ML applications.

- Enhance collaboration between data

scientists and engineers.

Site Reliability Engineering

(SRE) for ML Systems [64]

- Adapted to ensure the reliability and

performance of ML systems.

- Emphasizes monitoring, incident response,

and performance optimization.

- Crit ical for production-grade ML

applications.

- Can be integrated with MLOps to enhance

robustness and trustworthiness.

Continuous Training (CT)

([24][66]

- Involves perpetual retraining of ML models

to accommodate new data and evolving

environments.

- Crucial for applications with rapidly

changing data.

- Ensures models maintain accuracy and

relevance.

- Requires robust data pipelines and

monitoring systems to manage model

drift and performance degradation.

These frameworks and methodologies offer significant
benefits for ML integration but also present challenges. For
instance, integrating Agile ML and Continuous Training
requires careful management to prevent model instability. The
choice of framework or methodology should align with the
specific needs and constraints of the application. Factors to
consider include the need for rapid iteration and the
importance of model reliability. Successful integration of ML
into applications depends on selecting the right combination of
frameworks and methodologies that best fit the project's goals
and requirements.

VI. SECURITY AND GOVERNANCE IN ML SYSTEMS

Security and governance are crucial for building trust in
ML systems. Protecting against adversarial attacks and data
breaches is essential for reliability and acceptance, particularly
in sensitive sectors like healthcare and finance [67][68]. ML
systems are susceptible to adversarial attacks, where malicious
inputs can deceive the model, compromising its integrity and
reliability [69]. Safeguarding data privacy is vital, as
unauthorized access and breaches can lead to the misuse of
sensitive information [70]. The ethical use and accountability
of ML systems are significant concerns, with governance
frameworks playing a key role in ensuring ethical application
and establishing accountability. This involves developing
policies and standards for ethical deployment [71][72].
Additional concerns include model theft and intellectual
property protection, as attackers may attempt to extract model
parameters or replicate functionality, threatening intellectual
property [69]. Developing comprehensive governance
frameworks is challenging due to rapid technological

advancements [71]. Integrating security into the ML lifecycle
through Secure Machine Learning Operations (SecMLOps)
can enhance system security and reliability by incorporating
security measures from the design phase throughout the
system's lifecycle [73]. Advanced security techniques, such as
adversarial training, model hardening, and secure computing
environments, can mitigate risks in ML workflows (Chittibala
& Jabbireddy, 2024). Robust governance frameworks should
promote transparency, accountability, and compliance with
legal and ethical standards [71][72]. Effective management of
the ML system lifecycle, including regular updates and
patches, is crucial for maintaining security and functionality
over time [72]. While security and governance are vital,
potential trade-offs and challenges may arise. Stringent
security measures could impact system performance and
usability, and rapid technological advancement may outpace
the development of governance frameworks, leading to
regulatory gaps. Continuous research and adaptation of
security and governance practices are essential to keep pace
with the evolving ML landscape.

VII. LIMITATIONS OF THE STUDY

As a critical review, this study synthesizes existing
literature rather than generating new empirical data. While this
approach is effective for providing a comprehensive overview
and identifying gaps, it relies on the quality and scope of the
published research available at the time of writing. The
findings are thus reflective of the current state of the art as
documented in the literature. The review focuses specifically
on the integration of ML into software engineering practices,
with an emphasis on the evolution from DevOps to MLOps,
challenges, and emerging solutions. While an effort was made
to be comprehensive, the rapid evolution of ML technologies
and software engineering practices means that some emerging
trends or niche applications might not be fully captured. The
generalizability of specific solutions may vary depending on
organizational context, industry, and scale of ML
implementation. Although a systematic approach was
intended, the selection of literature for review might
inherently carry some bias. The emphasis on certain
frameworks, tools, or challenges could be influenced by their
prominence in the academic and industry discourse,
potentially underrepresenting less-documented but equally
valid perspectives or solutions. The field of ML integration in
software engineering is characterized by continuous
innovation and rapid advancements. While the study aims to
provide an up-to-date overview, new tools, practices, or
challenges may emerge quickly, potentially altering the
landscape described. This inherent dynamism means that any
review, by its nature, offers a snapshot of a constantly moving
target.

VIII. CONCLUSION

The integration of ML into software engineering practices
has ushered in a new era of development and operational
processes, fundamentally transforming how organizations
approach their technological strategies. This shift from
traditional DevOps to MLOps frameworks represents a
significant leap forward, addressing the unique challenges
posed by deploying and maintaining ML models in production

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

477 | P a g e
www.ijacsa.thesai.org

environments. As organizations increasingly leverage ML to
gain competitive advantages, the importance of robust MLOps
pipelines cannot be overstated.

The journey towards effective ML integration is marked
by both opportunities and challenges. On one hand, ML offers
unprecedented capabilities for data analysis, prediction, and
automation. On the other hand, it introduces complexities in
data management, model versioning, and continuous
monitoring that demand sophisticated solutions. The
emergence of frameworks like CRISP-DM, DataOps, and
Agile ML provides potential pathways for organizations to
navigate these challenges, offering structured approaches to
streamline the ML lifecycle.

Looking forward, the field of ML integration in software
engineering is poised for rapid evolution. As organizations
grapple with the intricacies of deploying large language
models (LLMs) and other advanced ML systems, new
strategies are emerging to address computational demands,
integration complexities, and ethical concerns. The
development of more sophisticated MLOps frameworks,
coupled with advancements in model interpretability and
security measures, will be crucial in shaping the future
landscape of ML-driven software engineering.

The success of ML integration will ultimately hinge on an
organization's ability to adopt a holistic approach that
encompasses technical, organizational, and cultural
dimensions. This includes fostering cross-team collaboration,
implementing robust governance frameworks, and maintaining
a commitment to ethical AI practices. As the field continues to
advance, organizations must remain adaptable, investing in
continuous learning and skill development to stay ahead of the
curve.

In essence, the integration of ML into software
engineering practices represents both a challenge and an
opportunity for innovation. By embracing flexible, integrated
frameworks and maintaining a focus on security, governance,
and ethical considerations, organizations can harness the full
potential of ML to drive technological progress and business
success in an increasingly data-driven world.

REFERENCES

[1] Rajak, S. K., Kumari, S., Kumar, M., & Siddharth, D., “Application of

machine learning for software engineers,” In A. Sharma, N. Chanderwal,

A. Prajapati, P. Singh, & M. Kansal (Eds.), Advancing Software

Engineering Through AI, Federated Learning, and Large Language

Models. IGI Global Scientific Publish ing. pp. 54-69, 2024,

https://doi.org/10.4018/979-8-3693-3502-4.ch004.

[2] Zhang, D., Tsai, J.J., “Machine learning and software engineering,”

Software Quality Journal, vol. 11, pp. 87–119, June 2003,

https://doi.org/10.1023/A:1023760326768.

[3] Wang, C., Chen, Z., & Zhou, M., “AutoML from software engineering

perspective: landscapes and challenges,” 2023 IEEE/ACM 20th

International Conference on Mining Software Repositories (MSR),

Melbourne, Australia, pp. 39-51, Ju ly 2023,

https://doi.org/10.1109/MSR59073.2023.00019.

[4] Eken, B., Pallewatta, S., Tran, N. K., Tosun, A., & Babar, A., A

“Multivocal review of MLOps practices, challenges, and open issues,”

ACM Computing Surveys, vol 58, iss 2, pp 1-35, September 2025,

https://dl.acm.org/doi/10.1145/3747346.

[5] Wang, S., Huang, L., Gao, A., Ge, J., Zhang, T., Feng, H., Satyarth, I.,

Li, M., Zhang, H., Ng, V., “Machine/deep learning for software

engineering: a systematic literature review.” in IEEE Transactions on

Software Engineering, vol. 49, no. 3, pp. 1188-1231, March 2023,

https://doi.org/10.1109/TSE.2022.3173346.

[6] Kotti, Z., Galanopoulou, R., & Spinellis, D. , “Machine learning for

software engineering: a tertiary study,” ACM Computing Surveys, vol.

55, iss. 12, March 2023, https://doi.org/10.1145/3572905.

[7] Paul, A., Haldar, M., “Continuous integration and continuous

delivery/continuous deployment,” in Serverless Web Applications with

AWS Amplify. Apress, Berkeley, CA. pp. 223-256, August 2023,

https://doi.org/10.1007/978-1-4842-8707-1_8.

[8] Istifarulah, M. H. R., & Tiaharyadini, R., “DevOps, continuous

integration, and continuous deployment methods for software

deployment automation,” JISA (Jurnal Informatika Dan Sains), vol. 6,

iss. 2, December 2023, https://doi.org/10.31326/jisa.v6i2.1751.

[9] Shinde, B. B., “Automated testing in DevOps: st rategies and tools,”

International Journal of Advanced Research in Science, Communication

and Technology, vol. 4, iss. 4, June 2024,

https://doi.org/10.48175/ijarsct-19074.

[10] Angara, J., Gutta, S., & Prasad, S. , “DevOps with continuous testing

architecture and its metrics model,” in Sa, P., Bakshi, S.,

Hatzilygeroudis, I., Sahoo, M. (eds). Recent Findings in Intelligent

Computing Techniques. Advances in Intelligent Systems and Computing

Springer, Singapore, vol 709, pp. 271-281, November 2018,

https://doi.org/10.1007/978-981-10-8633-5_28.

[11] Madeyski, L. and Kawalerowicz, M., “Continuous Test-Driven

Development - A Novel Agile Software Development Practice and

Supporting Tool,” in Proceedings of the 8th International Conference on

Evaluation of Novel Approaches to Software Engineering - ENASE;

ISBN 978-989-8565-62-4; ISSN 2184-4895, SciTePress, pp. 260-267,

July 2013, https://doi.org/10.5220/0004587202600267.

[12] Pietrantuono, R., Bertolino, A., Angelis, G. D., Miranda, B., & Russo,

S., “Towards continuous software reliability testing in DevOps,” 2019

IEEE/ACM 14th International Workshop on Automation of Software

Test (AST), Montreal, QC, Canada, pp. 21-27, September 2019,

https://doi.org/10.1109/AST.2019.00009.

[13] Singh Nikh il, Patel Durgesh, Raj Ankit, Shubham, Kour Sukhmeet ,

“CI/CD pipeline for web applications,” International Journal For

Research in Applied Science and Engineering Technology, vol. 11, iss.

V, May 2023 https://doi.org/10.22214/ijraset.2023.52867.

[14] Babenko, V., Taraniuk, V., Tkachenko, V., & Klymenkо, I., “CI/CD

integration tools for automated code deployment and verification for

training purposes,” Information, Computing and Intelligent Systems, iss.

5, December 2024. https://doi.org/10.20535/2786-8729.5.2024.318795.

[15] Shrestha, R., & Ray, A. K., “Streamlining application deployment: a

CI/CD pipeline for Kubernetes,” 2024 IEEE International Conference on

Cloud Engineering (IC2E), Paphos, Cyprus, pp. 253-255, September

2024, https://doi.org/10.1109/ic2e61754.2024.00038.

[16] Shriram, K. M. P., “Engineering efficiency through CI/CD pipeline

optimization,” International Journal of Science and Research Archive,

vol. 14, iss. 1, pp. 908-916, January 2025,

https://doi.org/10.30574/ijsra.2025.14.1.0107.

[17] Namsraidorj, M., Lkhaasuren, S., Gendensuren, B., Radnaa, K.,

Rentsendorj, J., & Enkhtur, A., “Continuous integration and delivery of

software products: pipeline implementation,” International Journal of

Engineering and Computer Science, vol. 13, no. 5. 2024,

https://doi.org/10.18535/ijecs/v13i05.4821.

[18] Gujar, S., & Patil, S., “Continuous integration and continuous

deployment (CI/CD) optimization,” International Journal of Innovative

Science and Research Technology, vol. 9, iss. 10, October 2024,

https://doi.org/10.38124/ijisrt/ijisrt24oct014.

[19] Emmanni, P.S., “Implementing CI / CD pipelines for enhanced

efficiency in IT projects,” International Journal of Science and Research,

vol. 9, iss. 9, September 2020, https://doi.org/10.21275/sr24402001528.

[20] Soma, V., “Enhancing CI/CD pipelines with Azure p ipelines,” Journal

of Engineering and Applied Sciences Technology, vol. 6, iss. 8, August

2024, https://doi.org/10.47363/jeast/2024(6)e108.

[21] Thatikonda, V. K., “Beyond the buzz: a journey through CI/CD

principles and best practices,” European Journal of Theoretical and

https://doi.org/10.4018/979-8-3693-3502-4.ch004
https://doi.org/10.1023/A:1023760326768
https://doi.org/10.1109/MSR59073.2023.00019
https://dl.acm.org/doi/10.1145/3747346
https://doi.org/10.1145/3572905
https://doi.org/10.1007/978-1-4842-8707-1_8
https://doi.org/10.31326/jisa.v6i2.1751
https://doi.org/10.48175/ijarsct-19074
https://doi.org/10.1007/978-981-10-8633-5_28
https://doi.org/10.5220/0004587202600267
https://doi.org/10.1109/AST.2019.00009
https://doi.org/10.22214/ijraset.2023.52867
https://doi.org/10.20535/2786-8729.5.2024.318795
https://doi.org/10.1109/ic2e61754.2024.00038
https://doi.org/10.30574/ijsra.2025.14.1.0107
https://doi.org/10.18535/ijecs/v13i05.4821
https://doi.org/10.38124/ijisrt/ijisrt24oct014
https://doi.org/10.21275/sr24402001528
https://doi.org/10.47363/jeast/2024(6)e108

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

478 | P a g e
www.ijacsa.thesai.org

Applied Sciences, vol. 1, no. 5, 2023.

https://doi.org/10.59324/ejtas.2023.1(5).24.

[22] Dileepkumar, S. R., & Mathew, J. “Enhancing DevOps and continuous

integration in software engineering: a comprehensive approach,” the

2023 Second International Conference on Electrical, Electronics,

Information and Communication Technologies (ICEEICT),

Trich irappalli, India, pp. 01-05, June 2023,

https://doi.org/10.1109/ICEEICT56924.2023.10157286 .

[23] Immaneni, J., “Building MLOps pipelines in fintech: keeping up with

continuous machine learning,” International Journal of Science and

Research (IJSR), vol 9, iss. 3, pp. 1726-1734, March 2020,

https://www.doi.org/10.21275/sr20034093248.

[24] Testi, M., Ballabio, M., Frontoni, E., Iannello, G., Moccia, S., Soda, P.,

and Vessio, G., “MLOps: a taxonomy and a methodology,” in IEEE

Access, vol. 10, pp. 63606-63618, June 2022,

https://doi.org/10.1109/ACCESS.2022.3181730.

[25] Sachdeva, M. S., “MLOps: Revolutionizing AI Development and

Deployment,” International Journal For Multidisciplinary Research, vol.

6, iss. 5. September 2024,

https://doi.org/10.36948/ijfmr.2024.v06i05.28794.

[26] Jana, A. K., Saha, S., “The MLOps approach to model deployment: a

road map to seamless scalability,” Journal of Artif icial Intelligence &

Cloud Computing, vol. 1, iss. 1, pp. 1-4, February 2022,

https://doi.org/10.47363/jaicc/2022(1)267.

[27] Zhou, Y., Yu, Y., & Ding, B., “Towards MLOps: a case study of ML

pipeline p latform,” 2020 International Conference on Artificial

Intelligence and Computer Engineering (ICAICE), Beij ing, China, pp.

494-500, March 2021,

https://doi.org/10.1109/ICAICE51518.2020.00102.

[28] Huang, Y., Zhang, H., Wen, Y., Sun, P., & Ta, N. B. D., “ModelCI-e:

enabling continual learning in deep learning serving systems,” Cornell

University, Distributed, Parallel, and Cluster Computing, June 2021,

https://arxiv.org/abs/2106.03122.

[29] Vijayan, N. E., “Build ing scalable MLOps: optimizing machine learning

deployment and operations,” International Journal of Scientific Research

In Engineering and Management (IJSREM), vol. 8, iss. 10, October

2024, https://doi.org/10.55041/ijsrem37784.

[30] Luo, Y., Raatikainen, M., and Nurminen, J. K. , “Autonomously adaptive

machine learning systems: experimentation-driven open-source

pipeline,” 2023 49th Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), Durres, Albania, pp. 44-52,

January 2024, https://doi.org/10.1109/SEAA60479.2023.00016.

[31] Chowdary, M. N., Sankeerth, B., Chowdary, C. K., & Gupta, M.,

“Accelerating the machine learning model deployment using MLOps’.

4th International Conference on Intelligent Circuits and Systems. Journal

of Physics: Conference Series, vol. 2327, April 2022

https://doi.org/10.1088/1742-6596/2327/1/012027.

[32] Bodor, A., Hnida, M., & Daoudi, N., “From development to

deployment: an approach to MLOps monitoring for machine learning

model operationalization,” 2023 14th International Conference on

Intelligent Systems: Theories and Applications (SITA), Casablanca,

Morocco, pp. 1-7, January 2024,

https://doi.org/10.1109/SITA60746.2023.10373733.

[33] Bodor, A., Hnida, M., & Daoudi, N., “Machine learning models

monitoring in MLOps context: metrics and tools,” International Journal

of Interactive Mobile Technologies (iJIM), vol.17, iss. 23, pp. 125–139,

December 2023, https://doi.org/10.3991/ijim.v17i23.43479.

[34] Haertel, C., Staegemann, D., Daase, C., Pohl, M., Nahhas, A., &

Turowski, K., “MLOps in data science projects: a review,” 2023 IEEE

International Conference on Big Data (BigData), Sorrento, Italy, pp.

2396-2404, January 2024,

https://doi.org/10.1109/BigData59044.2023.10386139.

[35] Mahida, A., “A review on continuous integration and continuous

deployment (CI/CD) for machine learning,” International Journal of

Science and Research (IJSR), vol. 10, no. 3, pp. 1967-1970, 2021,

https://doi.org/10.21275/sr24314131827.

[36] Elgamal, Z. S., Elfangary, L., & Fahmy, H. (2024), “A machine learning

operations (MLOps) monitoring model using BI-LSTM and SARSA

algorithms, “ International Journal of Advanced Computer Science and

Applications, vol. 15, iss. 10, 2024,

https://doi.org/10.14569/ijacsa.2024.0151060.

[37] R, N., & Mohana, M., “Jenkins pipelines: a novel approach to machine

learning operations (MLOps),” 2022 International Conference on Edge

Computing and Applications (ICECAA), Tamilnadu, India, pp. 1292-

1297. November 2022,

https://doi.org/10.1109/ICECAA55415.2022.9936252.

[38] Kodakandla, N., “Scaling AI responsibly: leveraging MLOps for

sustainable machine learning deployments,” International Journal of

Science and Research Archive, vol. 13, iss. 1, pp. 3447-3455, October

2024, https://doi.org/10.30574/ijsra.2024.13.1.1798.

[39] Yemane, M., “MLOps for PHM systems,” Proceedings of the Asia

Pacific Conference of the PHM Society 2023, vol. 4 no. 1, September

2023, https://doi.org/10.36001/phmap.2023.v4i1.3703.

[40] Zimelewicz, E., Kalinowski, M., Méndez, D., Giray, G., Alves, A. P. S.,

Lavesson, N., Azevedo, K., Villamizar, H., Escovedo, T., Lopes, H.,

Biffl, S., Musil, J., Felderer, M., Wagner, S., Baldassarre, M. T., &

Gorschek, T., “ML-Enabled systems model deployment and monitoring:

status quo and problems,” in: Bludau, P., Ramler, R., Winkler, D.,

Bergsmann, J. (eds) Software Quality as a Foundation for Security.

SWQD 2024. Lecture Notes in Business Information Processing,

Springer, Cham., vol 505, pp. 112-131, Apil 2024,

https://doi.org/10.1007/978-3-031-56281-5_7.

[41] Singla, A., “Machine learning operations (MLOps): challenges and

strategies,” Journal of Knowledge Learning and Science Technology,

vol 2, iss 3, 2023, Online. https://doi.org/10.60087/jklst.vol2.n3.p340.

[42] Shankar, S., Garcia, R., Hellerstein, J. M., & Parameswaran, A. G.,

“”We have no idea how models will behave in production until

production”: how engineers operationalize machine learning,”

Proceedings of the ACM on Human-Computer Interaction, vol 8, iss

CSCW1, article 206, pp. 1-34, April 2024,

https://doi.org/10.1145/3653697.

[43] Liang, P., Song, B., Zhan, X., Zhou, C., & Yuan, J., “Automating the

training and deployment of models in MLOps by integrating systems

with machine learning,” Proceedings of the 2nd International

Conference on Software Engineering and Machine Learning, 2024,

https://doi.org/10.54254/2755-2721/76/20240690.

[44] Hsu, C.-C., Chen, P., & Wu, I.-Z, “End-to-End automation of ML model

lifecycle management using machine learning operations platforms,”

2024 International Conference on Consumer Electronics - Taiwan

(ICCE-Taiwan), Taichung, Taiwan, 2024 pp. 209-210, September 2024,

doi: https://doi.org/10.1109/ICCE-Taiwan62264.2024.10674445.

[45] Feng, S., Liu, J., Lai, R., Ruan, C. F., Yu, Y., Zhang, L., & Chen, T.,

“Emerging Platforms Meet Emerging LLMs: A Year-Long Journey of

Top-Down Development,” April 2024,

https://arxiv.org/pdf/2404.09151v2 or

https://arxiv.org/html/2404.09151v2.

[46] Nahar N., Zhang H., Lewis G., Zhou S. and Kästner C, “A Meta-

Summary of Challenges in Building Products with ML Components –

Collecting Experiences from 4758+ Practitioners,” 2023 IEEE/ACM

2nd International Conference on AI Engineering – Software Engineering

for AI (CAIN), Melbourne, Australia, pp. 171-183, July 2023,

https://doi.org/10.1109/cain58948.2023.00034.

[47] Rahman, M.S., Khomh, F., Hamidi, A., Cheng, J., Antoniol, G.,

Washizaki, H., “Machine learning application development:

practitioners’ insights,” Software Quality Journal, vol. 31, 1065–1119,

March 2023, https://doi.org/10.1007/s11219-023-09621-9.

[48] Ribeiro, J. L., Figueredo, M., Araujo, A. de, Cacho, N., & Lopes, F. , “A

Microservice based architecture topology for machine learning

deployment,” 2019 IEEE International Smart Cities Conference (ISC2),

Casablanca, Morocco, pp. 426-431, April 2020,

https://doi.org/10.1109/ISC246665.2019.9071708.

[49] He, Y., Zhang, Y., Wu, C., Yang, M., Xu, W., Wan Haiyang,

“Architecture design and application of IIoT platform in automobile

manufacturing based on microserv ices and deep learning techniques,” in

IEEE Access, vol. 12, pp. 166834-166842, October 2024,

https://doi.org/10.1109/ACCESS.2024.3487832.

[50] Hasselbring, W., “Microserv ices for scalability: keynote talk abstract,”

ICPE '16: Proceedings of the 7th ACM/SPEC on International

https://doi.org/10.59324/ejtas.2023.1(5).24
https://doi.org/10.1109/ICEEICT56924.2023.10157286
https://www.doi.org/10.21275/sr20034093248
https://doi.org/10.1109/ACCESS.2022.3181730
https://doi.org/10.36948/ijfmr.2024.v06i05.28794
https://doi.org/10.47363/jaicc/2022(1)267
https://doi.org/10.1109/ICAICE51518.2020.00102
https://arxiv.org/abs/2106.03122
https://doi.org/10.55041/ijsrem37784
https://doi.org/10.1109/SEAA60479.2023.00016
https://doi.org/10.1088/1742-6596/2327/1/012027
https://doi.org/10.1109/SITA60746.2023.10373733
https://doi.org/10.3991/ijim.v17i23.43479
https://doi.org/10.1109/BigData59044.2023.10386139
https://doi.org/10.21275/sr24314131827
https://doi.org/10.14569/ijacsa.2024.0151060
https://doi.org/10.1109/ICECAA55415.2022.9936252
https://doi.org/10.30574/ijsra.2024.13.1.1798
https://doi.org/10.36001/phmap.2023.v4i1.3703
https://doi.org/10.1007/978-3-031-56281-5_7
https://doi.org/10.60087/jklst.vol2.n3.p340
https://doi.org/10.1145/3653697
https://doi.org/10.54254/2755-2721/76/20240690
https://doi.org/10.1109/ICCE-Taiwan62264.2024.10674445
https://arxiv.org/html/2404.09151v2
https://doi.org/10.1109/cain58948.2023.00034
https://doi.org/10.1007/s11219-023-09621-9
https://doi.org/10.1109/ISC246665.2019.9071708
https://doi.org/10.1109/ACCESS.2024.3487832

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

479 | P a g e
www.ijacsa.thesai.org

Conference on Performance Engineering, pp. 133–134, March 2016,

https://doi.org/10.1145/2851553.2858659.

[51] Valdivia, J. A., Lora -González, A., Limón, X., Cortes-Verdin, K., &

Ocharán-Hernández, J. O., “Patterns related to microservice

architecture: a multivocal literature review,” Programming and

Computer Software, vol. 46, pp. 594-608, December 2020,

https://doi.org/10.1134/S0361768820080253.

[52] Thatikonda, V., “Assessing the impact of microservices architecture on

software maintainability and scalability,” European Journal of

Theoretical and Applied Sciences, vol. 1, no. 4, 2023,

https://doi.org/10.59324/ejtas.2023.1(4).71.

[53] Hasselbring, W., & Steinacker, G., “Microservice architectures for

scalability, agility, and reliability in e-commerce,” 2017 IEEE

International Conference on Software Architecture Workshops

(ICSAW), Gothenburg, Sweden, pp. 243-246, June 2017,

https://doi.org/10.1109/ICSAW.2017.11.

[54] Vaidhyanathan, K., Caporuscio, M., Florio, S., & Muccini, H., “ML-

enabled service discovery for microservice architecture: a QoS

approach,” SAC'24: Proceedings of the 39th ACM/SIGAPP Symposium

on Applied Computing, pp. 1193 – 1200, May 2024,

https://doi.org/10.1145/3605098.3635942.

[55] Weerasinghe, L., & Perera, I. (2024).Reference Architecture for

Microservices with an Optimized Inter-Service Communication

Strategy. 2024 International Research Conference on Smart Computing

and Systems Engineering (SCSE), Colombo, Sri Lanka, 2024, pp. 1-6,

https://doi.org/10.1109/scse61872.2024.10550466.

[56] Busquim, G., Villamizar, H., Lima, M. J., & Kalinowski, M. , “On the

interaction between software engineers and data scientists when build ing

machine learning-enabled systems,” in Bludau, P., Ramler, R., Winkler,

D., Bergsmann, J. (eds) Software Quality as a Foundation for Security.

SWQD 2024. Lecture Notes in Business Information Processing,

Springer, Cham., vol 505, 2024, https://doi.org/10.1007/978-3-031-

56281-5_4.

[57] Ananthi, S., B L., M S. C., and S S., “Framework for platform

independent machine learning (ML) model execution,” 2024 2nd

International Conference on Intelligent Data Communication

Technologies and Internet of Things (IDCIoT), Bengaluru, India, 2024,

pp. 728-732, January 2024, doi:

https://doi.org/10.1109/IDCIoT59759.2024.10467931.

[58] Mailach, A., and Siegmund, N., “Socio-Technical anti-patterns in

building ML-enabled software: insights from leaders on the forefront,”

2023 IEEE/ACM 45th International Conference on Software

Engineering (ICSE), Melbourne, Australia, 2023, pp. 690-702, July

2023, https://doi.org/10.1109/ICSE48619.2023.00067.

[59] Villamizar, H. Kalinowski, M., “Identifying concerns when specifying

machine learning-enabled systems: a perspective-based approach,”

SBQS '24: Proceedings of the XXIII Brazilian Symposium on Software

Quality, Salvador Bahia Brazil, pp. 673 – 675, December 2024,

https://dl.acm.org/doi/full/10.1145/3701625.3701696.

[60] Joshi, A., “MLOps mastery: streamlining machine learning lifecycle

management,” International Journal of Science and Research, vol. 13,

iss. 1, pp. 1807-1815, January 2024,

https://doi.org/10.21275/sr24628132316.

[61] Rella, B. P. R., “MLOPs and DataOps integration for scalable machine

learning deployment,” International Journal for Multidiscip linary

Research, Vol. 4, Iss. 1, pp. 1-20, February 2022,

https://www.ijfmr.com/papers/2022/1/39278.pdf .

[62] Soh, J., Singh, P. , “Machine learning operations,” In: Data Science

Solutions on Azure. Apress, Berkeley, CA., pp. 259-279, December

2020, https://doi.org/10.1007/978-1-4842-6405-8_8.

[63] Burgueño-Romero A. M., Benítez-Hidalgo A., Barba-González C. and

Aldana-Montes J. F., "Toward an open source MLOps architecture," in

IEEE Software, vol. 42, no. 1, pp. 59-64, Jan.-Feb. 2025,

https://ieeexplore.ieee.org/document/10588954.

[64] Bayram, F., & Ahmed, B. S., “Towards trustworthy machine learning in

production: an overview of the robustness in MLOps Approach,” ACM

Computing Surveys, vol. 57, iss. 5, article 121, pp. 1-35, January 2024

https://doi.org/10.1145/3708497.

[65] Symeonidis G., Nerantzis E., Kazakis A., and Papakostas G. A.,

“MLOps - definitions, tools and challenges,” 2022 IEEE 12th Annual

Computing and Communication Workshop and Conference (CCWC),

Las Vegas, NV, USA, 2022, pp. 0453-0460, March 2022, doi:

https://doi.org/10.1109/CCWC54503.2022.9720902.

[66] Yashwanth Sai Krishna, M., & Gawre, S. K., “MLOps for enhancing the

accuracy of machine learning models using DevOps, continuous

integration, and continuous deployment,” Research Reports on

Computer Science, Special Issue, pp. 97–103, June 2023,

https://doi.org/10.37256/rrcs.2320232644.

[67] Booth, J., Metz, D.W., Tarkhanyan, D.A., Cheruvu, S., “Machine

learning security and trustworthiness,” In: Demystifying Intelligent

Multimode Security Systems. Apress, Berkeley, CA., pp. 137-222, July

2023, https://doi.org/10.1007/978-1-4842-8297-7_5.

[68] Chen, H., and Babar, M. A., “Security for machine learning-based

software systems: a survey of threats, practices, and challenges,” ACM

Computing Surveys, vol. 56, iss. 6, Article 151, pp. 1 -38, February

2024, https://doi.org/10.1145/3638531.

[69] Shirazi, S. H. A., Naghibijouybari, H., and Abu-Ghazaleh, N., “Securing

machine learning architectures and systems,” GLSVLSI '20:

Proceedings of the 2020 Great Lakes Symposium on VLSI , pp. 499–

506, September 2020, https://doi.org/10.1145/3386263.3409104.

[70] Chittibala, D. R., and Jabbireddy, S. R., “Security in machine learning

(ML) workflows,” International Journal of Computing and Engineering,

vol. 5, no. 1, 2024, https://doi.org/10.47941/ijce.1714.

[71] Bhuvan, S., “A study on governance framework for AI and ML

systems,” ShodhKosh: Journal of Visual and Performing Arts, vol. 4, no.

2., December 2023,

https://doi.org/10.29121/shodhkosh.v4.i2.2023.1923.

[72] Alsagheer D., Xu L., Sh i W., “Decentralized machine learning

governance: overview, opportunities, and challenges ,” in IEEE Access,

vol. 11, pp. 96718-96732, September

2023,https://doi.org/10.1109/ACCESS.2023.3311713.

[73] Zhang, X., and Jaskolka, J., “Conceptualizing the secure machine

learning operations (SecMLOps) paradigm ,” 2022 IEEE 22nd

International Conference on Software Quality, Reliability and Security

(QRS), Guangzhou, China, 2022, pp. 127-138, March 2023,

https://doi.org/10.1109/QRS57517.2022.00023.

https://doi.org/10.1145/2851553.2858659
https://doi.org/10.1134/S0361768820080253
https://doi.org/10.59324/ejtas.2023.1(4).71
https://doi.org/10.1109/ICSAW.2017.11
https://doi.org/10.1145/3605098.3635942
https://doi.org/10.1109/scse61872.2024.10550466
https://doi.org/10.1007/978-3-031-56281-5_4
https://doi.org/10.1007/978-3-031-56281-5_4
https://doi.org/10.1109/IDCIoT59759.2024.10467931
https://doi.org/10.1109/ICSE48619.2023.00067
https://dl.acm.org/doi/full/10.1145/3701625.3701696
https://doi.org/10.21275/sr24628132316
https://www.ijfmr.com/papers/2022/1/39278.pdf
https://doi.org/10.1007/978-1-4842-6405-8_8
https://ieeexplore.ieee.org/document/10588954
https://doi.org/10.1145/3708497
https://doi.org/10.1109/CCWC54503.2022.9720902
https://doi.org/10.37256/rrcs.2320232644
https://doi.org/10.1007/978-1-4842-8297-7_5
https://doi.org/10.1145/3638531
https://doi.org/10.1145/3386263.3409104
https://doi.org/10.47941/ijce.1714
https://doi.org/10.29121/shodhkosh.v4.i2.2023.1923
https://doi.org/10.1109/ACCESS.2023.3311713
https://doi.org/10.1109/QRS57517.2022.00023

