
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

491 | P a g e
www.ijacsa.thesai.org

Energy Efficient Workflow Allocation in Cloud

Computing Using Improved Grey Wolf Optimization

Md. Mazhar Nezami, Anoop Kumar

Department of Computer Science-College of Computing and Mathematics, Banasthali Vidyapith, Rajasthan, India

Abstract—Cloud computing has emerged as a dominant

platform for hosting complex applications, offering scalable and

flexible resources on demand. However, the dynamic and

heterogeneous nature of cloud environments poses significant

challenges for efficient workflow scheduling, particularly when

aiming to minimize total execution time, energy consumption, and

operational cost. In this research, we propose a novel hybrid

approach that integrates the Heterogeneous Earliest Finish Time

(HEFT) algorithm with an Improved Grey Wolf Optimizer

(IGWO) enhanced by differential evolution strategies and

survival-of-the-fittest mechanisms. These enhancements

strengthen exploration and exploitation by adaptively mutating

and refining task allocations while eliminating weaker solutions.

The use of HEFT-based initialization provides a strong starting

population, and the DE-driven IGWO refinement accelerates

convergence and avoids premature stagnation. Together, these

two-level optimization strategy ensures faster convergence and

higher energy-efficient workflow scheduling compared to earlier

HEFT metaheuristic approaches. To evaluate the effectiveness of

the proposed hybrid method, extensive experiments were

conducted on randomly generated workflows with varying task

and dependency complexities. The performance analysis

demonstrates that the hybrid HEFT-IGWO approach consistently

outperforms standard HEFT, traditional GWO, and standalone

metaheuristic techniques in terms of minimizing makespan,

reducing energy consumption, and lowering cloud infrastructure

costs. This study highlights the potential of combining heuristic

initialization with evolutionary optimization to achieve energy-

efficient, cost-effective workflow scheduling in cloud computing

environments.

Keywords—Cloud computing; energy efficient; workflow;

Heterogeneous Earliest Finish Time (HEFT); Grey Wolf

Optimization (GWO); makespan; cost

I. INTRODUCTION

Cloud computing has revolutionized the way computational
resources are provisioned and consumed, offering scalable, on-
demand access to a vast pool of virtualized hardware and
software services. It enables organizations to deploy complex
applications and workflows without investing heavily in
physical infrastructure [1], [2].

A workflow in cloud computing represents a set of
interdependent tasks organized to achieve a specific
computational objective, such as scientific workflows, big data
processing workflows. The workflow scheduling refers to
organizing workflow tasks on VMs within the cloud platform,
addressing the challenge of balancing energy efficiency with
QoS optimization [3].

As cloud environments grow larger and more
heterogeneous, efficient workflow allocation, assigning tasks to
appropriate virtual machines (VMs), becomes critical. Poor
task allocation results in high direct and indirect energy
consumption, leading to high costs, reduced reliability, and
environmental issues like CO2 emissions [4][5]. If a data center
hosts 10,000 servers and each consumes an average of 300
watts, the total energy consumption can reach 3 megawatts per
hour. At an average electricity cost of $0.12 per kilowatt-hour,
operating such a centre would cost approximately $360 per
hour, not including cooling and infrastructure overheads.

Despite significant progress in workflow scheduling,
existing algorithms still struggle to maintain a balance between
performance efficiency and energy optimization. Traditional
heuristics, such as the HEFT algorithm, offer fast scheduling
decisions but are limited by their static and local search
behaviour. Conversely, metaheuristic algorithms like Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO),
and Grey Wolf Optimizer (GWO) improve global search ability
but may converge prematurely or require many iterations.

Therefore, there is a critical need for a hybrid scheduling
framework that can combine heuristic efficiency with adaptive
global optimization to effectively minimize makespan, energy
consumption, and operational cost in dynamic, heterogeneous
cloud environments [6].

This study seeks to determine how heuristic and
metaheuristic methods can be effectively integrated to enhance
workflow scheduling efficiency in cloud computing. It also
incorporates differential evolution and survival-of-the-fittest
mechanisms within an Improved Grey Wolf Optimizer (IGWO)
can strengthen convergence stability and solution diversity.
Furthermore, the research investigates the extent to which the
proposed hybrid HEFT–IGWO model can reduce makespan,
energy consumption, and operational cost compared to
traditional scheduling techniques. This research contributes to
the advancement of green and sustainable cloud computing by
proposing an intelligent hybrid model that improves both
computational performance and energy efficiency. The
proposed method offers a practical solution for multi-objective
workflow allocation, reducing makespan, energy consumption,
and cost simultaneously.

The study is designed in the rest of the sections as follows:
Section II presents a literature survey. Section III presents the
problem definition, problem formulation, and suggested HEFT-
IGWO. Section IV describes the detailed algorithmic design,
including initialization, mutation, crossover, and survival
mechanisms of the HEFT–IGWO approach. Section V provides

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

492 | P a g e
www.ijacsa.thesai.org

the experimental setup, simulation results, and performance
analysis, comparing the proposed method with existing
approaches in terms of makespan, energy consumption, and
cost. Finally, Section VI concludes the study, summarizing key
findings and outlining future research directions.

II. LITERATURE SURVEY

Many studies have examined methodologies for time and
cost-efficient workflow allocation in a cloud computing
environment, with limited focus on energy. The hybrid
strategies that integrate heuristics like HEFT with
metaheuristics have shown promising results in minimizing
makespan, energy consumption, and cost simultaneously,
forming a strong motivation for the hybrid HEFT-IGWO
approach proposed in this study.

Li H et al. [7] proposed the SEPSO (Swarm Entropy-based
Particle Swarm Optimization) framework. It is designed to
optimize cloud provider profits by minimizing the monetary
cost of energy and leased public cloud resources. SEPSO
monitors swarm diversity during iterations to avoid premature
convergence and enhance exploration by dynamically adjusting
search parameters to balance exploration and exploitation
throughout the optimization process. Although it improves task
sequencing and allocation across public and private clouds,
SEPSO mainly targets cost reduction from the provider’s view
and lacks adaptability to dynamic or large-scale workflows.

Li H et al. [8] proposed the Chaotic-nondominated-sorting
Owl Search Algorithm (COSA) to schedule resource-
constrained multiple workflows. It combines an Owl Search
Algorithm (OSA) with an NSGA-II to optimize makespan, cost,
and energy under the specified deadline and budget constraints
in hybrid clouds. For better balancing of exploration and
exploitation, multiple workflows are scheduled in DVFS-
enabled cloud using a hierarchical evolving mechanism that
employs COSA for the Worse Half of Population (WHP) and
NSGA-II for updating the Better Half of Population (BHP).
However, its reliance on fixed workflow and resource settings
limits adaptability in dynamic cloud environments, and chaotic
control increases computational overhead.

Thekkepuryil et al. [9] proposed a hybrid algorithm
combining ALO and PSO to enhance workflow scheduling to
optimize key metrics like execution time, cost, and load
balancing in cloud environments. The Data Encryption
Standard (DES) ensures data security during scheduling,
addressing both performance and confidentiality concerns. The
hybrid algorithm combines the global search ability of ALO
with the local search refinement of PSO. However, its reliance
on static workflows and fixed resources limits adaptability in
real-world dynamic cloud environments, and the inclusion of
DES adds computational overhead.

Saeedi et al. [10] optimizes task-resource mapping in
workflows through the following steps. Initialize particles
representing task-resource mappings, along with their positions
and velocities, evaluate each particle, store non-dominated
solutions generated during the search process in external
archive, iteratively updates the archive, ideal point, and
hyperplane. The crowding distance determines which solutions
remain in the archive when it is full. The archive of optimized

solutions is returned. However, I-MaOPSO reliance on roulette
wheel leader selection can lead to inaccurate results when
individuals have similar fitness values, reducing diversity and
convergence stability.

Alaei et al. [11] proposed an adaptive fault detection method
in cloud computing based on the Improved Differential
Evolution (IDE) algorithm combined with an ANFIS prediction
model. This hybrid model enhances reliability by predicting
faults before they occur, helping reduce makespan, cost, and
energy consumption while improving fault tolerance. However,
the model primarily addresses VM faults and overlooks other
significant reliability issues, such as network, storage, and I/O
failures.

Mohammadzadeh et al. [12] proposed the HGALO-SCA
algorithm, which addresses the limitations of ALO and SCA
algorithms by leveraging their strengths. HGALO-SCA
enhances ALO searchability by incorporating SCA oscillatory
behaviour, allowing global exploration. The integration of the
ALO elite strategy accelerates the convergence while
maintaining global search accuracy. The comparison with
SPEA2 shows better performance in balancing trade-offs.
However, random chaos parameters may also increase
computational complexity and reduce consistency in results.

Yao et al. [13] proposed Endocrine-based Coevolutionary
Multi-Swarm for Multi-Objective Optimization (ECMSMOO)
addresses the workflow scheduling in cloud computing, which
is an NP-complete problem by optimizing multiple conflicting
objectives, including execution time, cost, and energy
consumption. The manager server collects available cloud
resources to reduce the impact of elastic resource fluctuations
during scheduling. The endocrine-based evolutionary strategy
mimics hormone-regulated particle behaviour to enhance
search efficiency and avoid local optima. The swarms
collaborate and compete to ensure a strong search process
across the multi-objective optimization space. Furthermore, the
hormonal control mechanism adds algorithmic complexity and
overhead, which can hinder real-time scheduling.

Mohammadzadeh et al. [14] introduced an improved
version of the GWO algorithm, known as HCGWO. This
improvement achieves better optimization outcomes by
combining chaos theory and the hill-climbing method. The
study extends the proposed IGWO algorithm to a binary version
specifically designed for the workflow allocation problem. This
involves utilizing various S and V functions to deal with the
workflow allocation problem with the goal of reducing
execution costs, makespan, and power consumption. chaotic
map generation introduces additional computational overhead.

Hassan et al. [15] proposed Smart Energy and Reliability
Aware Scheduling (SERAS) algorithm addresses the dual
challenge of energy efficiency and system reliability in cloud
computing environments. By integrating the DVFS technique,
SERAS dynamically adjusts the processor frequencies of VMs
while ensuring tasks meet their deadlines. The SERAS divides
the deadline across tasks, enabling more precise scheduling and
resource allocation. However, algorithm complexity (O(n²))
limits scalability for large workflows.

https://ieeexplore.ieee.org/author/37900526500

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

493 | P a g e
www.ijacsa.thesai.org

Belgacem A, Beghdad-Bey K [16] suggested HEFT-ACO,
which effectively reduces costs and makespan by combining
the ACO algorithm with the HEFT heuristic. The simulation
results were conducted on the Amazon EC2 cloud platform
using three real-world scientific workflows, viz. Montage,
CyberShake, and Ligo show better trade-offs between
makespan and cost by leveraging the strengths of both
techniques. The workflow characteristics, viz., balance or
asymmetry, are not considered.

Taghinezhad A et al. [17] introduce BDCE and BDD, two
energy-efficient heuristic algorithms for workflow scheduling
in cloud environments, aiming to minimize energy
consumption while meeting budget and deadline constraints,
target resources with DVFS capabilities, while BDCE works
with non-DVFS-enabled resources to optimize cost, scheduling
length, and energy savings while ensuring QoS compliance.
The result metrics are compared against established methods
like BDSD, DBCS, BDHEFT, ERES, and the Safari algorithm
using scientific workflow applications, showing improvements
in energy savings, cost efficiency, and scheduling performance.
However, both BDCE and BDD focus primarily on medium-
scale workflows.

Khaleel M [18] proposed the ELSCiW (Energy-Latency-
aware Scientific Workflow scheduling) framework focuses on
optimizing cloud workflow scheduling by balancing energy
consumption and latency while maintaining high QoS. The
approach involves a two-step optimization process: first, node
efficiency evaluation, which compares the number of handled
transactions to power consumption, optimizing processor
utilization, and then task mapping with mean GWO, which
applies to map tasks to cloud resources efficiently. However, it
primarily focuses on the energy–latency trade-off.

Zeedan et al.[19] proposed Enhanced Binary Artificial Bee
Colony-based Pareto Front (EBABC-PF) to optimize
makespan, processing cost, and resource utilization without
violating SLA. The algorithm uses HEFT to prioritize the work,
Greedy Randomized Adaptive Search Procedure (GRASP) to
develop an initial solution, and Enhanced Binary Artificial Bee
Colony (BABC) to schedule tasks onto VMs. Moreover, it
emphasizes performance and cost but gives limited attention to
energy efficiency.

III. PROBLEM DEFINITION

When a user submits a workflow application as a Directed
Acyclic Graph (DAG), as shown in Fig. 1, the workflow
interface converts the DAG into an admission queue that
maintains execution order based on dependencies. The
workflow scheduler allocates tasks to VMs using a scheduling
algorithm, optimization criteria for energy efficiency, and a
resource estimator to match tasks with suitable resources.

A. Resource Model

In our cloud computing model, the infrastructure comprises
a collection of cloud servers (CS), each hosting multiple
computing nodes on which VMs are deployed. A centralized
global cloud manager oversees the operation, consisting of a
resource manager and a scheduler. The resource manager

maintains real-time status and key attributes of all available
VMs, such as processing speed, energy consumption, and
reliability. This information is utilized by the scheduler to
efficiently assign tasks when a workflow application is
submitted, based on task dependencies and VM availability.

All VMs are assumed to support Dynamic Voltage Scaling
(DVS), allowing them to adjust their voltage and frequency
levels dynamically. This enables energy savings by switching
to the lowest voltage levels during idle periods. The energy
consumption model is based on the CMOS power dissipation
model, where energy usage is influenced by both the
characteristics of the device and the voltage supply associated
with each task.

The energy consumption of tasks on VMs during active
(busy) execution time and when the VMs are idle can be
calculated using:

𝐸𝑏𝑢𝑠𝑦 = ∑

𝑀

𝑗=1

 𝛼 ∗ 𝑉𝑗
2 ∗ 𝐸𝑇(𝑇𝑖 , 𝑉𝑀𝑗)

𝐸𝑖𝑑𝑙𝑒 = ∑

𝑀

𝑗=1

 𝛼 ∗ 𝑉𝑗,𝑙𝑜𝑤
2 ∗ 𝛥𝑖𝑑𝑙𝑒𝑗

where, n is the total number of tasks, 𝑉𝑀𝑗 is the virtual

machine on which task 𝑇𝑖is executed, 𝑉𝑗 is the supply voltage

of 𝑉𝑀𝑗, and ET (𝑇𝑖, 𝑉𝑀𝑗) is the execution time of task 𝑇𝑖 on

𝑉𝑀𝑗.𝑉𝑀𝑗,𝑙𝑜𝑤is the minimum voltage level on 𝑉𝑀𝑗, and 𝛥𝑖𝑑𝑙𝑒𝑗
is the amount of idling time for 𝑉𝑀𝑗. The total energy

consumption can be calculated as:

TEC=𝐸𝑏𝑢𝑠𝑦+ 𝐸𝑖𝑑𝑙𝑒

B. Application Model

A DAG represents a workflow application represented by
Wf = (T, E), where 𝑇 = {𝑇𝑖,1 ≤ 𝑖 ≤ N}, is a set of tasks of the
workflow, and E is the set of edge characterizes precedence
constraints between tasks. The edge 𝑇𝑖 → 𝑇𝑗 ,shows the

precedence relation between 𝑇𝑖 and 𝑇𝑗 in the DAG as shown
in Fig. 2, which will be processed on virtual machines 𝑉 =
{𝑉𝑀𝑗 |1 ≤ 𝑗 ≤ M} with various computing speed and cost. The

execution time of task 𝑇𝑖 on 𝑉𝑀𝑗 is denoted by ET (𝑇𝑖, 𝑉𝑀𝑗 and

CT (𝑇𝑖, 𝑇𝑘) denotes communication. According to the
dependencies among the tasks, task 𝑇𝑖 (child task) will execute
after 𝑃𝑟𝑒𝑑(𝑇𝑖), (parent tasks of 𝑇𝑖). The start time ST (𝑇𝑖 , 𝑉𝑀𝑗),
finish time 𝐹𝑇(𝑇𝑖 , 𝑉𝑀𝑗) of a task 𝑇𝑖 on 𝑉𝑀𝑗, and the

makespan(MS) are calculated as follows:

𝑆𝑇(𝑇𝑖, 𝑉𝑀𝑗) = 𝑚𝑎𝑥 {𝐴𝑣𝑙(𝑉𝑀𝑗), 𝑚𝑎𝑥{𝐹𝑇[𝑃𝑟𝑒𝑑(𝑇𝑖)]

+ 𝐶𝑇(𝑃𝑟𝑒𝑑(𝑇𝑖), 𝑇𝑘)}

𝐹𝑇(𝑇𝑖, 𝑉𝑀𝑗) = 𝑆𝑇(𝑇𝑖, 𝑉𝑀𝑗) + 𝐸𝑇(𝑃𝑟𝑒𝑑(𝑇𝑖), 𝑉𝑀𝑗)

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝑀𝑆) : = 𝑚𝑎𝑥 ∑𝐹𝑇(𝑇𝑖, 𝑉𝑀𝑗)

𝑁

𝑖=1

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

494 | P a g e
www.ijacsa.thesai.org

Fig. 1. Workflow allocation framework.

Fig. 2. Sample workflow.

C. Cost Model

The pricing in cloud computing is determined by the billing
interval (BI) for resource leasing. As a result, even if only a
portion of the time is used, the client must pay for the full
interval.

𝐶𝑜𝑠𝑡(𝑇𝑖, 𝑉𝑀𝑗) = 𝜎 ∗ ⌈
𝐸𝑇 (𝑇𝑖,𝑉𝑀𝑗)

𝜏
⌉ ∗ 𝑃0 ∗ 𝑒

𝑐𝑝𝑢 𝑐𝑦𝑐𝑙𝑒𝑠 𝑜𝑓 𝑉𝑀𝑗

𝑠𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑝𝑢 𝑐𝑦𝑐𝑙𝑒

where, 𝜎 is a random variable used to generate different
combinations of VM pricing and capacity, τ unit chargeable
time, 𝑃0 is the base price of VM. The total execution cost can
be defined as:

Let Bi, j be a Boolean variable, such that

Bi, j = {
1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛 𝑡𝑜 𝑉𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

TCost = ∑ ∑ Bi, j M
j=1 N

i=1 ∗ 𝐶𝑜𝑠𝑡(𝑇𝑖, 𝑉𝑀𝑗)

D. Problem Definition

A schedule (Sc) is presented as Sc = (SVM, Allocation, 𝑀𝑆,
𝑇𝐶𝑜𝑠𝑡, 𝑇𝐸𝐶), where SVM corresponds to virtual machines,
Allocation represents the task to VM mappings, 𝑇𝐶𝑜𝑠𝑡: Total
execution cost, 𝑀𝑆: Makespan, and 𝑇𝐸𝐶: Energy consumption
of the workflow. The problem can be defined as:

Minimize:

𝐹 = γ x 𝑀𝑆+ 𝜗 x 𝑇𝐶𝑜𝑠𝑡+ (1 − γ − 𝜗) x 𝑇𝐸𝐶

Subject to

 i) ∑ Bi, j M
j=1 = 1, i =1,2,3…...n

ii) 0 < γ, ϑ <1

Constraints: i) indicate that any task can be assigned to only
one VM and the constraint, and ii) limit the range of γ, ϑ that
balances optimization functions.

IV. ALGORITHM

The Grey Wolf Optimization algorithm is a meta-heuristic
optimization technique that was inspired by the social hierarchy
and hunting habits of grey wolves. It was first presented by
Mirjalili et al. in 2014 [20]. We propose an energy-efficient
workflow allocation algorithm based on improving the Grey
Wolf Optimizer is a version of GWO that has been created to
improve its search performance. This algorithm has gained
significant attention due to its simplicity, flexibility, and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

495 | P a g e
www.ijacsa.thesai.org

effectiveness in solving various complex optimization
problems. GWO mimics the leadership structure and
collaborative hunting strategy of grey wolves, which enhances
its ability to explore and exploit the search space efficiently. In
a grey wolf pack, there are four types of wolves, as shown in
Fig. 3, based on their social hierarchy:

Fig. 3. Hierarchy flow up for the GWO algorithm.

Alpha (α): The leader of the pack, responsible for making
decisions and guiding the hunting process.

Beta (β): The second-in-command, assisting the alpha in
decision-making and maintaining discipline in the pack.

Delta (δ): The third level in the hierarchy, responsible for
reporting to the alpha and beta and assisting them in their tasks.

Omega (ω): The lowest-ranking wolves, following the
orders of the higher-ranking wolves and playing a crucial role
in the pack’s social structure.

The following mathematical models of GWO are useful in
different scenarios of any real-world application.

1) Encircling prey: Grey wolves encircle their prey during

the hunt. This encircling behaviour is mathematically modelled

as follows:

𝐷⃗⃗ = |𝐶 ∗ 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡1)|

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝐴 * 𝐷⃗⃗

Here, t represents the current iteration, 𝑋𝑝
⃗⃗ ⃗⃗ is the position

vector of the prey, 𝑋 is the position vector of a grey wolf, and

𝐴 and 𝐶 are coefficient vectors calculated as:

𝐴 = 2 𝑎 ∗ 𝑟1⃗⃗⃗ − 𝑎

𝐶 = 2 𝑟2⃗⃗⃗

a = 2 (1 −
𝑡

𝑇
)

In these equations, 𝑎 linearly decreases from 2 to 0 over the
course of iterations, while 𝑟1⃗⃗⃗ and 𝑟2⃗⃗⃗ are random vectors within
the range [0, 1].

2) Hunting: The hunting phase involves following the best

individuals in the pack, specifically the α, β, and δ wolves. The

positions are updated according to these leaders as:

𝐷𝛼
⃗⃗⃗⃗ ⃗ = |𝐶1

⃗⃗⃗ ⃗ ∗ 𝑋𝛼
⃗⃗ ⃗⃗ − 𝑋 |

𝐷𝛽
⃗⃗ ⃗⃗ ⃗ = |𝐶2

⃗⃗⃗⃗ ∗ 𝑋𝛽
⃗⃗ ⃗⃗ − 𝑋 |

𝐷𝛿
⃗⃗ ⃗⃗ = |𝐶3

⃗⃗⃗⃗ ∗ 𝑋𝛿
⃗⃗ ⃗⃗ − 𝑋 |

𝑋1 ⃗⃗ ⃗⃗ ⃗ = 𝑋𝛼
⃗⃗ ⃗⃗ − 𝐴1

⃗⃗⃗⃗ *𝐷𝛼
⃗⃗⃗⃗ ⃗

𝑋2 ⃗⃗ ⃗⃗ ⃗ = 𝑋𝛽
⃗⃗ ⃗⃗ − 𝐴2

⃗⃗ ⃗⃗ *𝐷𝛽
⃗⃗ ⃗⃗

𝑋3 ⃗⃗ ⃗⃗ ⃗ = 𝑋𝛿
⃗⃗ ⃗⃗ − 𝐴3

⃗⃗ ⃗⃗ *𝐷𝛿
⃗⃗ ⃗⃗

The position of a grey wolf is then updated as follows:

𝑋 (𝑡 + 1) =
𝑋1 ⃗⃗ ⃗⃗ ⃗ + 𝑋2 ⃗⃗ ⃗⃗ ⃗ + 𝑋3 ⃗⃗ ⃗⃗ ⃗

3

3) Attacking prey: The attacking phase is indicated by

reducing the value of 𝑎 as iterations progress. When 𝐴 falls

within the range [-1, 1], wolves are encouraged to attack the

prey by shrinking their encircling behaviour.

Search for Prey: When ∣A ∣>1|, wolves diverge to explore
new areas.

The improved GWO using differential evolution for
stronger exploration and diversification through mutation,
crossover, and survival of the fittest for maintaining the best-
performing solutions and eliminating poor-quality candidates.
Additionally, we introduce a hybrid initialization technique by
incorporating a solution generated using the HEFT algorithm,
ensuring that the search starts from at least one good-quality
position. The population of N wolves (solutions) is initialized
randomly. Each wolf represents a mapping of tasks to VMs. To
enhance quality and convergence, one individual is replaced by
a HEFT-based solution, leveraging domain knowledge to start
the search from a near-optimal region. Each solution is
evaluated using a fitness function based on makespan, cost, and
energy. Then sort the wolves based on their fitness values and

choose the best 𝑋α
⃗⃗ ⃗⃗ ⃗, second best 𝑋β

⃗⃗ ⃗⃗ ⃗, and third best 𝑋δ
⃗⃗ ⃗⃗ ⃗. During

each iteration, the positions of the wolves are updated using the
DE strategy. This involves mutating the positions to create new
candidates, crossing over elements between pairs of candidates
to combine their features, and selecting the best candidates to
form the next generation.

4) Mutation operation: The mutation operation of

differential evolution is its most significant feature. To generate

variance in this process, two weighted difference vectors are

appended to the selected individual. The difference vector from

the parents, which consists of two different individuals

(𝑋𝑟1
𝑡 , 𝑋𝑟2

𝑡) from the parent generation (the t-th generation), is the

basic component of the DE variation mechanism. The

definition of the difference vector is as follows:

𝐷𝑑𝑟12
= 𝑋𝑟1

𝑡 − 𝑋𝑟2
𝑡

where, 𝑟1, 𝑟2 are index numbers of distinct population
members, and as a result, the mutation operation can be written
as follows:

𝑉𝑖
𝑡+1 = 𝑋𝑟3

𝑡 + F * (𝑋𝑟1
𝑡 − 𝑋𝑟2

𝑡)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

496 | P a g e
www.ijacsa.thesai.org

where, F is the scaling factor, and 𝑟1, 𝑟2 and 𝑟3are different
integers in the scope (1, 2, … n) from the current target vector
index(i).

5) Crossover operation: A crossover operation is carried

out using the mutation vector 𝑋𝑖
𝑡+1 for the individual 𝑋𝑖

𝑡 wolves,

producing a trial individual 𝑈𝑖
𝑡+1. A random selection technique

is used to make sure that at least one bit of 𝑈𝑖
𝑡+1 is derived from

𝑉𝑖
𝑡+1 to ensure that 𝑋𝑖

𝑡 evolves. The crossover probability factor

(CR) for the remaining bits of 𝑈𝑖
𝑡+1 determines whether each

bit originates from 𝑋𝑖
𝑡 or 𝑉𝑖

𝑡+1. The expression for the crossover

operation as follows:

𝑈𝑖𝑗
𝑡+1 = {

𝑉𝑖𝑗
𝑡+1 , 𝑟𝑎𝑛𝑑(j) ≤ 𝐶𝑅 𝑂𝑅 𝐽 = 𝑟𝑎𝑛𝑑𝑛(𝑖)

𝑋𝑖𝑗 ,𝑟𝑎𝑛𝑑(j) > 𝐶𝑅 𝐴𝑁𝐷 𝐽 ≠ 𝑟𝑎𝑛𝑑𝑛(𝑖)

𝐽 = 1, 2, . . , D

where, rand(j) ∈ [0, 1] obeys the random-uniform
distribution, j is the j-th variable (gene), CR is the crossover
probability, and rand(i) ∈ [1, 2, … D].

6) Selection operation: The greedy choice used in the

selection process. Following the mutation and crossover

operations, the trial individual 𝑈𝑖
𝑡+1 is created and then

compared with the target individual 𝑋𝑖
𝑡. The comparison can be

expressed numerically as:

𝑋𝑖
𝑡+1 = {

𝑈𝑖
𝑡+1 , 𝑓(𝑈𝑖

𝑡+1) < 𝑓(𝑋𝑖
𝑡)

𝑋𝑖
𝑡 𝑓(𝑈𝑖

𝑡+1) ≥ 𝑓(𝑋𝑖
𝑡)

 𝑖 = 1,2,…𝑛

In summary, the proposed enhances the original GWO by
incorporating evolutionary principles and the DE strategy,
significantly improving its search performance. This improved
algorithm effectively balances exploration and exploitation,
making it a powerful tool for solving complex optimization
problems.

An illustration to explain HEFT-IGWO, traditional GWO,
and HEFT has been presented in this section with a random
workflow consisting of nine tasks with precedence among
themselves, as shown in Fig. 2. We have taken only three VMs,
each with different computing capacities, energy consumption,
and cost, but there may be more in real scenarios. Each wolf in
the GWO represents a possible allocation of tasks to VMs.

V. RESULTS AND DISCUSSION

We use simulation for the performance study of proposed
algorithms with the traditional GWO algorithm and HEFT
algorithms. The simulation was performed using Python on a
system with an i5 processor having a frequency of 2.1 GHz and
16 GB RAM running Windows 11. A random workflow
application used to assess the HEFT-IGWO algorithm. Table I
shows the simulation parameters and their corresponding
values.

TABLE I SIMULATION PARAMETERS

Parameter Values

Tasks (N) number 5-100

VMs (M) number 3

Processing Speed 1000-5000 MIPS

VM distances 1-100

Computing Capacity of VM 30-1000

Inter task communication 1-1000

This section provides an overview of the performance
findings in terms of makespan, energy, and cost, corresponding
to three virtual machines. The performance of the three
algorithms was evaluated in terms of makespan for different
numbers of tasks ranging from 5 to 100 is shown in Fig. 4. The
HEFT algorithm serves as the baseline for comparison.

Fig. 4. Makespan vs. Number of workflow tasks.

Its makespan values increase almost linearly with the
number of tasks. For small workflows (5 to 25 tasks), HEFT
performs reasonably well because the search space is limited,
and its ranking and earliest finish time heuristic is efficient.
However, as the number of workflow tasks increases (50 to
100), HEFT performance degrades significantly, producing the
highest makespan values among the three methods. For small
to medium workflows (5 to 45 tasks), GWO provides an
average improvement of around 8–12% in makespan. As the
number of workflow tasks increases, GWO advantage becomes
more significant due to its iterative exploration and leader based
hunting mechanism, which helps find more balanced task–VM
mappings. For larger workloads (50 to 100 tasks), the
improvement rises to 15–18%. The Hybrid HEFT–IGWO
approach achieves the best performance across all workflows,
demonstrating the benefit of combining HEFT based
initialization with improved GWO exploration through
differential evolution operators and survival of the fittest. For
small and medium workflows (5 to 45 tasks), HEFT–IGWO
improves makespan by 15–20% compared to HEFT. For large
workflows (50 to 100 tasks), the improvements become more
substantial, ranging from 28–32%. These significant gains are
due to the ability to start with a near optimal HEFT solution and
then further refine allocations using DE mutation, crossover,
and iterative leader updates.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

497 | P a g e
www.ijacsa.thesai.org

ALGORITHM 1: HEFT-IGWO

Input: Workflow W (T, E), VM set V, population size N, generations G

Output: Best schedule with minimized makespan, cost, and energy

Phase 1: Initialization

Compute upward ranks of tasks using HEFT ordering.

Seed HEFT-based elite solution as one candidate wolf.

Generate N-1 random task-to-VM mappings as additional wolves.

Evaluate fitness of all wolves (makespan, energy, cost).

Identify alpha, beta, delta leaders (best three wolves).

Phase 2: Iterative Hybrid Evolution

For gen = 1 To G do

 Update wolves positions using GWO encircling and hunting rules.

 Apply higher probability mutation (random task VM flips).

 Perform DE style discrete crossover between wolves and mutants.

 Evaluate fitness of offspring (makespan, cost, energy).

 Apply survival-of-the-fittest: keep best between parent and offspring.

 Update leaders alpha, beta, delta based on new population.

 Log convergence metrics (fitness, makespan, energy, cost).

Phase 3: Termination

Return alpha wolf (best schedule) with final metrics.

end

Fig. 5. Energy consumption vs. Number of workflow tasks.

All algorithms show increasing energy consumption as
tasks increase, but the growth rate is significantly slower for
GWO and HEFT–IGWO than HEFT as shown in Fig. 5. The
HEFT algorithm consistently consumes the highest amount of
energy. The GWO achieves clear energy reductions across all
task sizes, averaging around 10–15% for smaller tasks (5–30)
and 18–22% for larger workloads (50–100). The hybrid HEFT–
IGWO algorithm (see Algorithm 1) consistently outperforms
both HEFT and GWO, demonstrating the largest energy
savings across all workflow sizes. For small and medium
workflow (5–40 tasks), energy savings are around 20–27%,
while for large workloads (50–100 tasks), savings increase to
30–34%. HEFT–IGWO achieves the largest and most
consistent energy reductions, particularly for large scale
workflows, making it ideal for energy-aware workflow
allocation in cloud environments.

Fig. 6. Cost vs. Number of workflow tasks.

Since HEFT focuses on earliest finish time without
explicitly optimizing cost, it often results in inefficient VM
usage leading to higher costs as workflows scale as shown in
Fig. 6. The GWO consistently reduces operating cost compared
to HEFT. For the small workflows (5–25 tasks), the cost
improvements are in the range of 10–14%. For medium
workloads (30–60 tasks), cost improvements increase to around
17–22%, and for larger workloads (65–100 tasks), savings
stabilize between 22–24%. The hybrid HEFT–IGWO algorithm
provides the largest cost reductions across all task sizes. For
small tasks, improvements are already noticeable at ~20–22%,
increasing to 26–30% for medium workflows, and reaching
~35% for larger workloads.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

498 | P a g e
www.ijacsa.thesai.org

VI. CONCLUSION

This study presented a comparative evaluation of three
workflow scheduling techniques HEFT, GWO, and the
proposed Hybrid HEFT–IGWO to enhance performance and
energy efficiency in cloud computing environments. The
proposed HEFT–IGWO hybrid delivers the most notable
results. By initializing the search with a HEFT based schedule
and refining it through differential evolution and survival-of-
the-fittest operations, it effectively balances exploration and
exploitation. The hybrid model achieves up to 32% reduction
in makespan, 34% lower energy consumption, and 35% cost
savings, outperforming both baseline methods across all task
scales. Overall, combining heuristic and evolutionary
intelligence significantly enhances workflow allocation
efficiency. HEFT–IGWO inherits the computational speed of
HEFT while leveraging IGWO adaptive global search to
achieve optimized, energy aware scheduling. Future work will
focus on extending this approach to dynamic, heterogeneous,
and QoS driven cloud environments for real time workflow.

REFERENCES

[1] B. Furht and A. Escalante, Eds., Handbook of Cloud Computing. Boston,

MA: Springer US, 2010. doi: 10.1007/978-1-4419-6524-0.

[2] M. Alam, S. Mustajab, M. Shahid, and F. Ahmad, “Cloud Computing:

Architecture, Vision, Challenges, Opportunities, and Emerging Trends,”

in 2023 International Conference on Computing, Communication, and

Intelligent Systems (ICCCIS), IEEE, Nov. 2023, pp. 829–834. doi:

10.1109/ICCCIS60361.2023.10425507.

[3] M. M. Nezami, A. Kumar, M. Shahid, and M. M. Nezami, “Analysis of

Energy Efficient Workflow Allocation in Cloud Computing,” in 2023

IEEE 12th International Conference on Communication Systems and

Network Technologies (CSNT), IEEE, Apr. 2023, pp. 803–809. doi:

10.1109/CSNT57126.2023.10134644.

[4] P. A. Malla, S. Sheikh, M. Shahid, and S. U. Mushtaq, “Energy‐efficient

sender‐initiated threshold‐based load balancing e‐STLB in cloud

computing environment,” Concurr Comput, vol. 36, no. 5, Feb. 2024, doi:

10.1002/cpe.7943.

[5] M. Sajid and Z. Raza, “Energy-aware stochastic scheduling model with

precedence constraints on DVFS-enabled processors,” Turkish Journal of

Electrical Engineering and Computer Sciences, vol. 24, no. 5, pp. 4117–

4128, 2016, doi: 10.3906/elk-1505-112.

[6] K. K. Chakravarthi, P. Neelakantan, L. Shyamala, and V. Vaidehi,

“Reliable budget aware workflow scheduling strategy on multi-cloud

environment,” Cluster Comput, vol. 25, no. 2, pp. 1189–1205, Apr. 2022,

doi: 10.1007/S10586-021-03464-4.

[7] H. Li, X. Li, J. Xu, and L. Chen, “Entropy based swarm intelligen t

searching for scheduling deadline constrained workflows in hybrid

cloud,” International Journal of Machine Learning and Cybernetics, vol.

15, no. 4, pp. 1183–1199, Apr. 2024, doi: 10.1007/s13042-023-01962-y.

[8] H. Li, G. Xu, D. Wang, M. Zhou, Y. Yuan, and A. Alabdulwahab,

“Chaotic-Nondominated-Sorting Owl Search Algorithm for Energy-

Aware Multi-Workflow Scheduling in Hybrid Clouds,” IEEE

Transactions on Sustainable Computing, vol. 7, no. 3, pp. 595–608, Jul.

2022, doi: 10.1109/TSUSC.2022.3144357.

[9] J. Kakkottakath Valappil Thekkepuryil, D. P. Suseelan, and P. M.

Keerikkattil, “An effective meta -heuristic based multi-objective hybrid

optimization method for workflow scheduling in cloud computing

environment,” Cluster Comput, vol. 24, no. 3, pp. 2367–2384, 2021, doi:

10.1007/s10586-021-03269-5.

[10] S. Saeedi, R. Khorsand, S. Ghandi Bidgoli, and M. Ramezanpour,

“Improved many-objective particle swarm optimization algorithm for

scientific workflow scheduling in cloud computing,” Comput Ind Eng,

vol. 147, p. 106649, Sep. 2020, doi: 10.1016/j.cie.2020.106649.

[11] M. Alaei, R. Khorsand, and M. Ramezanpour, “An adaptive fault detector

strategy for scientific workflow scheduling based on improved

differential evolution algorithm in cloud,” Appl Soft Comput, vol. 99, p.

106895, Feb. 2021, doi: 10.1016/J.ASOC.2020.106895.

[12] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafarian,

“A hybrid multi-objective metaheuristic optimization algorithm for

scientific workflow scheduling,” Cluster Comput, vol. 24, no. 2, pp.

1479–1503, Jun. 2021, doi: 10.1007/S10586-020-03205-Z.

[13] G. Yao, Y. Ding, Y. Jin, and K. Hao, “Endocrine-based coevolutionary

multi-swarm for multi-objective workflow scheduling in a cloud system,”

Soft Computing - A Fusion of Foundations, Methodologies and

Applications, vol. 21, no. 15, pp. 4309–4322, Aug. 2017, doi:

10.1007/S00500-016-2063-8.

[14] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafarian,

“Improved chaotic binary grey wolf optimization algorithm for workflow

scheduling in green cloud computing,” Evol Intell, vol. 14, no. 4, pp.

1997–2025, Dec. 2021, doi: 10.1007/s12065-020-00479-5.

[15] H. A. Hassan, S. A. Salem, and E. M. Saad, “A smart energy and

reliability aware scheduling algorithm for workflow execution in DVFS -

enabled cloud environment,” Future Generation Computer Systems, vol.

112, pp. 431–448, Nov. 2020, doi: 10.1016/j.future.2020.05.040.

[16] A. Belgacem and K. Beghdad-Bey, “Multi-objective workflow

scheduling in cloud computing: trade-off between makespan and cost,”

Cluster Comput, vol. 25, no. 1, pp. 579–595, Feb. 2022, doi:

10.1007/s10586-021-03432-y.

[17] A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri, “Energy-efficient

workflow scheduling with budget-deadline constraints for cloud,”

Computing, vol. 104, no. 3, pp. 601–625, Mar. 2022, doi:

10.1007/s00607-021-01030-9.

[18] M. I. Khaleel, M. Safran, S. Alfarhood, and M. Zhu, “Energy -latency

trade-off analysis for scientific workflow in cloud environments: The role

of processor utilization ratio and mean grey wolf optimizer,” Engineering

Science and Technology, an International Journal, vol. 50, p. 101611, Feb.

2024, doi: 10.1016/j.jestch.2023.101611.

[19] M. Zeedan, G. Attiya, and N. El-Fishawy, “Enhanced hybrid multi-

objective workflow scheduling approach based artificial bee colony in

cloud computing,” Computing, 2022, doi: 10.1007/S00607-022-01116-

Y/FULLTEXT.HTML.

[20] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,”

Advances in Engineering Software, vol. 69, pp. 46–61, 2014, doi:

10.1016/j.advengsoft.2013.12.007.

