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Abstract—Cloud computing has emerged as a dominant 

platform for hosting complex applications, offering scalable and 

flexible resources on demand. However, the dynamic and 

heterogeneous nature of cloud environments poses significant 

challenges for efficient workflow scheduling, particularly when 

aiming to minimize total execution time, energy consumption, and 

operational cost. In this research, we propose a novel hybrid 

approach that integrates the Heterogeneous Earliest Finish Time 

(HEFT) algorithm with an Improved Grey Wolf Optimizer 

(IGWO) enhanced by differential evolution strategies and 

survival-of-the-fittest mechanisms. These enhancements 

strengthen exploration and exploitation by adaptively mutating 

and refining task allocations while eliminating weaker solutions. 

The use of HEFT-based initialization provides a strong starting 

population, and the DE-driven IGWO refinement accelerates 

convergence and avoids premature stagnation. Together, these 

two-level optimization strategy ensures faster convergence and 

higher energy-efficient workflow scheduling compared to earlier 

HEFT metaheuristic approaches. To evaluate the effectiveness of 

the proposed hybrid method, extensive experiments were 

conducted on randomly generated workflows with varying task 

and dependency complexities. The performance analysis 

demonstrates that the hybrid HEFT-IGWO approach consistently 

outperforms standard HEFT, traditional GWO, and standalone 

metaheuristic techniques in terms of minimizing makespan, 

reducing energy consumption, and lowering cloud infrastructure 

costs. This study highlights the potential of combining heuristic 

initialization with evolutionary optimization to achieve energy-

efficient, cost-effective workflow scheduling in cloud computing 

environments. 
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I. INTRODUCTION 

Cloud computing has revolutionized the way computational 
resources are provisioned and consumed, offering scalable, on-
demand access to a vast pool of virtualized hardware and 
software services. It enables organizations to deploy complex 
applications and workflows without investing heavily in 
physical infrastructure [1], [2]. 

A workflow in cloud computing represents a set of 
interdependent tasks organized to achieve a specific 
computational objective, such as scientific workflows, big data 
processing workflows. The workflow scheduling refers to 
organizing workflow tasks on VMs within the cloud platform, 
addressing the challenge of balancing energy efficiency with 
QoS optimization [3]. 

As cloud environments grow larger and more 
heterogeneous, efficient workflow allocation, assigning tasks to 
appropriate virtual machines (VMs), becomes critical. Poor 
task allocation results in high direct and indirect energy 
consumption, leading to high costs, reduced reliability, and 
environmental issues like CO2 emissions [4][5]. If a data center 
hosts 10,000 servers and each consumes an average of 300 
watts, the total energy consumption can reach 3 megawatts per 
hour. At an average electricity cost of $0.12 per kilowatt-hour, 
operating such a centre would cost approximately $360 per 
hour, not including cooling and infrastructure overheads. 

Despite significant progress in workflow scheduling, 
existing algorithms still struggle to maintain a balance between 
performance efficiency and energy optimization. Traditional 
heuristics, such as the HEFT algorithm, offer fast scheduling 
decisions but are limited by their static and local search 
behaviour. Conversely, metaheuristic algorithms like Particle 
Swarm Optimization (PSO), Ant Colony Optimization (ACO), 
and Grey Wolf Optimizer (GWO) improve global search ability 
but may converge prematurely or require many iterations. 

Therefore, there is a critical need for a hybrid scheduling 
framework that can combine heuristic efficiency with adaptive 
global optimization to effectively minimize makespan, energy 
consumption, and operational cost in dynamic, heterogeneous 
cloud environments [6]. 

This study seeks to determine how heuristic and 
metaheuristic methods can be effectively integrated to enhance 
workflow scheduling efficiency in cloud computing. It also 
incorporates differential evolution and survival-of-the-fittest 
mechanisms within an Improved Grey Wolf Optimizer (IGWO) 
can strengthen convergence stability and solution diversity. 
Furthermore, the research investigates the extent to which the 
proposed hybrid HEFT–IGWO model can reduce makespan, 
energy consumption, and operational cost compared to 
traditional scheduling techniques. This research contributes to 
the advancement of green and sustainable cloud computing by 
proposing an intelligent hybrid model that improves both 
computational performance and energy efficiency. The 
proposed method offers a practical solution for multi-objective 
workflow allocation, reducing makespan, energy consumption, 
and cost simultaneously. 

The study is designed in the rest of the sections as follows: 
Section II presents a literature survey. Section III presents the 
problem definition, problem formulation, and suggested HEFT-
IGWO. Section IV describes the detailed algorithmic design, 
including initialization, mutation, crossover, and survival 
mechanisms of the HEFT–IGWO approach. Section V provides 
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the experimental setup, simulation results, and performance 
analysis, comparing the proposed method with existing 
approaches in terms of makespan, energy consumption, and 
cost. Finally, Section VI concludes the study, summarizing key 
findings and outlining future research directions. 

II. LITERATURE SURVEY 

Many studies have examined methodologies for time and 
cost-efficient workflow allocation in a cloud computing 
environment, with limited focus on energy. The hybrid 
strategies that integrate heuristics like HEFT with 
metaheuristics have shown promising results in minimizing 
makespan, energy consumption, and cost simultaneously, 
forming a strong motivation for the hybrid HEFT-IGWO 
approach proposed in this study. 

Li H et al. [7] proposed the SEPSO (Swarm Entropy-based 
Particle Swarm Optimization) framework. It is designed to 
optimize cloud provider profits by minimizing the monetary 
cost of energy and leased public cloud resources. SEPSO 
monitors swarm diversity during iterations to avoid premature 
convergence and enhance exploration by dynamically adjusting 
search parameters to balance exploration and exploitation 
throughout the optimization process. Although it improves task 
sequencing and allocation across public and private clouds, 
SEPSO mainly targets cost reduction from the provider’s view 
and lacks adaptability to dynamic or large-scale workflows. 

Li H et al. [8] proposed the Chaotic-nondominated-sorting 
Owl Search Algorithm (COSA) to schedule resource-
constrained multiple workflows. It combines an Owl Search 
Algorithm (OSA) with an NSGA-II to optimize makespan, cost, 
and energy under the specified deadline and budget constraints 
in hybrid clouds. For better balancing of exploration and 
exploitation, multiple workflows are scheduled in DVFS-
enabled cloud using a hierarchical evolving mechanism that 
employs COSA for the Worse Half of Population (WHP) and 
NSGA-II for updating the Better Half of Population (BHP). 
However, its reliance on fixed workflow and resource settings 
limits adaptability in dynamic cloud environments, and chaotic 
control increases computational overhead. 

Thekkepuryil et al. [9] proposed a hybrid algorithm 
combining ALO and PSO to enhance workflow scheduling to 
optimize key metrics like execution time, cost, and load 
balancing in cloud environments. The Data Encryption 
Standard (DES) ensures data security during scheduling, 
addressing both performance and confidentiality concerns. The 
hybrid algorithm combines the global search ability of ALO 
with the local search refinement of PSO. However, its reliance 
on static workflows and fixed resources limits adaptability in 
real-world dynamic cloud environments, and the inclusion of 
DES adds computational overhead. 

Saeedi et al. [10] optimizes task-resource mapping in 
workflows through the following steps. Initialize particles 
representing task-resource mappings, along with their positions 
and velocities, evaluate each particle, store non-dominated 
solutions generated during the search process in external 
archive, iteratively updates the archive, ideal point, and 
hyperplane. The crowding distance determines which solutions 
remain in the archive when it is full. The archive of optimized 

solutions is returned. However, I-MaOPSO reliance on roulette 
wheel leader selection can lead to inaccurate results when 
individuals have similar fitness values, reducing diversity and 
convergence stability. 

Alaei et al. [11] proposed an adaptive fault detection method 
in cloud computing based on the Improved Differential 
Evolution (IDE) algorithm combined with an ANFIS prediction 
model. This hybrid model enhances reliability by predicting 
faults before they occur, helping reduce makespan, cost, and 
energy consumption while improving fault tolerance. However, 
the model primarily addresses VM faults and overlooks other 
significant reliability issues, such as network, storage, and I/O 
failures. 

Mohammadzadeh et al. [12] proposed the HGALO-SCA 
algorithm, which addresses the limitations of ALO and SCA 
algorithms by leveraging their strengths. HGALO-SCA 
enhances ALO searchability by incorporating SCA oscillatory 
behaviour, allowing global exploration. The integration of the 
ALO elite strategy accelerates the convergence while 
maintaining global search accuracy. The comparison with 
SPEA2 shows better performance in balancing trade-offs. 
However, random chaos parameters may also increase 
computational complexity and reduce consistency in results. 

Yao et al. [13] proposed Endocrine-based Coevolutionary 
Multi-Swarm for Multi-Objective Optimization (ECMSMOO) 
addresses the workflow scheduling in cloud computing, which 
is an NP-complete problem by optimizing multiple conflicting 
objectives, including execution time, cost, and energy 
consumption. The manager server collects available cloud 
resources to reduce the impact of elastic resource fluctuations 
during scheduling. The endocrine-based evolutionary strategy 
mimics hormone-regulated particle behaviour to enhance 
search efficiency and avoid local optima. The swarms 
collaborate and compete to ensure a strong search process 
across the multi-objective optimization space. Furthermore, the 
hormonal control mechanism adds algorithmic complexity and 
overhead, which can hinder real-time scheduling. 

Mohammadzadeh et al. [14] introduced an improved 
version of the GWO algorithm, known as HCGWO. This 
improvement achieves better optimization outcomes by 
combining chaos theory and the hill-climbing method. The 
study extends the proposed IGWO algorithm to a binary version 
specifically designed for the workflow allocation problem. This 
involves utilizing various S and V functions to deal with the 
workflow allocation problem with the goal of reducing 
execution costs, makespan, and power consumption. chaotic 
map generation introduces additional computational overhead. 

Hassan et al. [15] proposed Smart Energy and Reliability 
Aware Scheduling (SERAS) algorithm addresses the dual 
challenge of energy efficiency and system reliability in cloud 
computing environments. By integrating the DVFS technique, 
SERAS dynamically adjusts the processor frequencies of VMs 
while ensuring tasks meet their deadlines. The SERAS divides 
the deadline across tasks, enabling more precise scheduling and 
resource allocation. However, algorithm complexity (O(n²)) 
limits scalability for large workflows. 

https://ieeexplore.ieee.org/author/37900526500
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Belgacem A, Beghdad-Bey K [16] suggested HEFT-ACO, 
which effectively reduces costs and makespan by combining 
the ACO algorithm with the HEFT heuristic. The simulation 
results were conducted on the Amazon EC2 cloud platform 
using three real-world scientific workflows, viz. Montage, 
CyberShake, and Ligo show better trade-offs between 
makespan and cost by leveraging the strengths of both 
techniques. The workflow characteristics, viz., balance or 
asymmetry, are not considered. 

Taghinezhad A et al. [17] introduce BDCE and BDD, two 
energy-efficient heuristic algorithms for workflow scheduling 
in cloud environments, aiming to minimize energy 
consumption while meeting budget and deadline constraints, 
target resources with DVFS capabilities, while BDCE works 
with non-DVFS-enabled resources to optimize cost, scheduling 
length, and energy savings while ensuring QoS compliance. 
The result metrics are compared against established methods 
like BDSD, DBCS, BDHEFT, ERES, and the Safari algorithm 
using scientific workflow applications, showing improvements 
in energy savings, cost efficiency, and scheduling performance. 
However, both BDCE and BDD focus primarily on medium-
scale workflows. 

Khaleel M [18] proposed the ELSCiW (Energy-Latency-
aware Scientific Workflow scheduling) framework focuses on 
optimizing cloud workflow scheduling by balancing energy 
consumption and latency while maintaining high QoS. The 
approach involves a two-step optimization process: first, node 
efficiency evaluation, which compares the number of handled 
transactions to power consumption, optimizing processor 
utilization, and then task mapping with mean GWO, which 
applies to map tasks to cloud resources efficiently. However, it 
primarily focuses on the energy–latency trade-off. 

Zeedan et al.[19] proposed Enhanced Binary Artificial Bee 
Colony-based Pareto Front (EBABC-PF) to optimize 
makespan, processing cost, and resource utilization without 
violating SLA. The algorithm uses HEFT to prioritize the work, 
Greedy Randomized Adaptive Search Procedure (GRASP) to 
develop an initial solution, and Enhanced Binary Artificial Bee 
Colony (BABC) to schedule tasks onto VMs. Moreover, it 
emphasizes performance and cost but gives limited attention to 
energy efficiency. 

III. PROBLEM DEFINITION 

When a user submits a workflow application as a Directed 
Acyclic Graph (DAG), as shown in Fig. 1, the workflow 
interface converts the DAG into an admission queue that 
maintains execution order based on dependencies. The 
workflow scheduler allocates tasks to VMs using a scheduling 
algorithm, optimization criteria for energy efficiency, and a 
resource estimator to match tasks with suitable resources. 

A. Resource Model 

In our cloud computing model, the infrastructure comprises 
a collection of cloud servers (CS), each hosting multiple 
computing nodes on which VMs are deployed. A centralized 
global cloud manager oversees the operation, consisting of a 
resource manager and a scheduler. The resource manager 

maintains real-time status and key attributes of all available 
VMs, such as processing speed, energy consumption, and 
reliability. This information is utilized by the scheduler to 
efficiently assign tasks when a workflow application is 
submitted, based on task dependencies and VM availability. 

All VMs are assumed to support Dynamic Voltage Scaling 
(DVS), allowing them to adjust their voltage and frequency 
levels dynamically. This enables energy savings by switching 
to the lowest voltage levels during idle periods. The energy 
consumption model is based on the CMOS power dissipation 
model, where energy usage is influenced by both the 
characteristics of the device and the voltage supply associated 
with each task. 

The energy consumption of tasks on VMs during active 
(busy) execution time and when the VMs are idle can be 
calculated using: 

𝐸𝑏𝑢𝑠𝑦 = ∑ 

𝑀

𝑗=1

 𝛼 ∗ 𝑉𝑗
2 ∗ 𝐸𝑇(𝑇𝑖 , 𝑉𝑀𝑗) 

𝐸𝑖𝑑𝑙𝑒 = ∑ 

𝑀

𝑗=1

 𝛼 ∗ 𝑉𝑗,𝑙𝑜𝑤
2 ∗ 𝛥𝑖𝑑𝑙𝑒𝑗   

where, n is the total number of tasks, 𝑉𝑀𝑗 is the virtual 

machine on which task 𝑇𝑖is executed, 𝑉𝑗 is the supply voltage 

of 𝑉𝑀𝑗, and ET (𝑇𝑖, 𝑉𝑀𝑗) is the execution time of task 𝑇𝑖 on 

𝑉𝑀𝑗.𝑉𝑀𝑗,𝑙𝑜𝑤is the minimum voltage level on 𝑉𝑀𝑗, and 𝛥𝑖𝑑𝑙𝑒𝑗 
is the amount of idling time for 𝑉𝑀𝑗. The total energy 

consumption can be calculated as: 

TEC=𝐸𝑏𝑢𝑠𝑦+ 𝐸𝑖𝑑𝑙𝑒 

B. Application Model 

A DAG represents a workflow application represented by 
Wf = (T, E), where 𝑇 = {𝑇𝑖,1 ≤ 𝑖 ≤ N}, is a set of tasks of the 
workflow, and E is the set of edge characterizes precedence 
constraints between tasks. The edge 𝑇𝑖  → 𝑇𝑗 ,shows the 

precedence relation between 𝑇𝑖  and 𝑇𝑗  in the DAG as shown 
in Fig. 2, which will be processed on virtual machines 𝑉 =
{𝑉𝑀𝑗 |1 ≤ 𝑗 ≤ M} with various computing speed and cost. The 

execution time of task 𝑇𝑖 on 𝑉𝑀𝑗 is denoted by ET (𝑇𝑖, 𝑉𝑀𝑗 and 

CT (𝑇𝑖, 𝑇𝑘) denotes communication. According to the 
dependencies among the tasks, task 𝑇𝑖 (child task) will execute 
after 𝑃𝑟𝑒𝑑(𝑇𝑖), (parent tasks of 𝑇𝑖). The start time ST (𝑇𝑖 , 𝑉𝑀𝑗), 
finish time 𝐹𝑇(𝑇𝑖 , 𝑉𝑀𝑗) of a task 𝑇𝑖 on 𝑉𝑀𝑗, and the 

makespan(MS) are calculated as follows: 

𝑆𝑇(𝑇𝑖, 𝑉𝑀𝑗) = 𝑚𝑎𝑥 {𝐴𝑣𝑙(𝑉𝑀𝑗),   𝑚𝑎𝑥{𝐹𝑇[𝑃𝑟𝑒𝑑(𝑇𝑖)]

+  𝐶𝑇(𝑃𝑟𝑒𝑑(𝑇𝑖), 𝑇𝑘)} 

𝐹𝑇(𝑇𝑖, 𝑉𝑀𝑗) = 𝑆𝑇(𝑇𝑖, 𝑉𝑀𝑗 ) +  𝐸𝑇(𝑃𝑟𝑒𝑑(𝑇𝑖), 𝑉𝑀𝑗) 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝑀𝑆) : = 𝑚𝑎𝑥 ∑𝐹𝑇(𝑇𝑖, 𝑉𝑀𝑗) 

𝑁

𝑖=1
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Fig. 1. Workflow allocation framework. 

 

Fig. 2. Sample workflow. 

C. Cost Model 

The pricing in cloud computing is determined by the billing 
interval (BI) for resource leasing. As a result, even if only a 
portion of the time is used, the client must pay for the full 
interval. 

𝐶𝑜𝑠𝑡(𝑇𝑖, 𝑉𝑀𝑗) = 𝜎 ∗ ⌈ 
𝐸𝑇 (𝑇𝑖,𝑉𝑀𝑗)

𝜏
⌉ ∗ 𝑃0 ∗ 𝑒

𝑐𝑝𝑢 𝑐𝑦𝑐𝑙𝑒𝑠 𝑜𝑓 𝑉𝑀𝑗  

𝑠𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑝𝑢 𝑐𝑦𝑐𝑙𝑒  

where, 𝜎 is a random variable used to generate different 
combinations of VM pricing and capacity, τ unit chargeable 
time, 𝑃0 is the base price of VM. The total execution cost can 
be defined as: 

Let Bi, j   be a Boolean variable, such that 

Bi, j   = {
1, 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑇𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛 𝑡𝑜 𝑉𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

TCost =  ∑ ∑ Bi, j   M
j=1  N

i=1 ∗  𝐶𝑜𝑠𝑡(𝑇𝑖, 𝑉𝑀𝑗) 

D. Problem Definition 

A schedule (Sc) is presented as Sc = (SVM, Allocation, 𝑀𝑆, 
𝑇𝐶𝑜𝑠𝑡, 𝑇𝐸𝐶), where SVM corresponds to virtual machines, 
Allocation represents the task to VM mappings, 𝑇𝐶𝑜𝑠𝑡: Total 
execution cost, 𝑀𝑆: Makespan, and 𝑇𝐸𝐶: Energy consumption 
of the workflow. The problem can be defined as: 

Minimize: 

𝐹 = γ x 𝑀𝑆+  𝜗 x 𝑇𝐶𝑜𝑠𝑡+ (1 −  γ −  𝜗) x 𝑇𝐸𝐶 

Subject to      

  i)   ∑ Bi, j  M
j=1 = 1,   i =1,2,3…...n 

ii)   0 < γ, ϑ <1 

Constraints: i) indicate that any task can be assigned to only 
one VM and the constraint, and ii) limit the range of γ, ϑ that 
balances optimization functions. 

IV. ALGORITHM 

The Grey Wolf Optimization algorithm is a meta-heuristic 
optimization technique that was inspired by the social hierarchy 
and hunting habits of grey wolves. It was first presented by 
Mirjalili et al. in 2014 [20]. We propose an energy-efficient 
workflow allocation algorithm based on improving the Grey 
Wolf Optimizer is a version of GWO that has been created to 
improve its search performance. This algorithm has gained 
significant attention due to its simplicity, flexibility, and 
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effectiveness in solving various complex optimization 
problems. GWO mimics the leadership structure and 
collaborative hunting strategy of grey wolves, which enhances 
its ability to explore and exploit the search space efficiently. In 
a grey wolf pack, there are four types of wolves, as shown in 
Fig. 3, based on their social hierarchy: 

 

Fig. 3. Hierarchy flow up for the GWO algorithm. 

Alpha (α): The leader of the pack, responsible for making 
decisions and guiding the hunting process. 

Beta (β): The second-in-command, assisting the alpha in 
decision-making and maintaining discipline in the pack. 

Delta (δ): The third level in the hierarchy, responsible for 
reporting to the alpha and beta and assisting them in their tasks. 

Omega (ω): The lowest-ranking wolves, following the 
orders of the higher-ranking wolves and playing a crucial role 
in the pack’s social structure. 

The following mathematical models of GWO are useful in 
different scenarios of any real-world application. 

1) Encircling prey: Grey wolves encircle their prey during 

the hunt. This encircling behaviour is mathematically modelled 

as follows: 

𝐷⃗⃗ = |𝐶 ∗ 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝑋  (𝑡1)| 

𝑋  (𝑡 + 1) =  𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝐴  *  𝐷⃗⃗  

Here, t represents the current iteration, 𝑋𝑝
⃗⃗ ⃗⃗    is the position 

vector of the prey, 𝑋   is the position vector of a grey wolf, and 

𝐴  and 𝐶   are coefficient vectors calculated as: 

𝐴 = 2 𝑎 ∗  𝑟1⃗⃗⃗  −  𝑎  

𝐶 = 2 𝑟2⃗⃗⃗   

a = 2 (1 −
𝑡

𝑇
) 

In these equations, 𝑎  linearly decreases from 2 to 0 over the 
course of iterations, while 𝑟1⃗⃗⃗   and 𝑟2⃗⃗⃗   are random vectors within 
the range [0, 1]. 

2) Hunting: The hunting phase involves following the best 

individuals in the pack, specifically the α, β, and δ wolves. The 

positions are updated according to these leaders as: 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗  ⃗ ∗ 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 | 

𝐷𝛽 
⃗⃗ ⃗⃗  ⃗ = |𝐶2

⃗⃗⃗⃗ ∗ 𝑋𝛽
⃗⃗ ⃗⃗ − 𝑋 | 

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ ∗ 𝑋𝛿
⃗⃗ ⃗⃗ −  𝑋 | 

𝑋1 ⃗⃗ ⃗⃗  ⃗ =  𝑋𝛼
⃗⃗ ⃗⃗  − 𝐴1

⃗⃗⃗⃗  *𝐷𝛼
⃗⃗⃗⃗  ⃗ 

𝑋2 ⃗⃗ ⃗⃗  ⃗ =  𝑋𝛽
⃗⃗ ⃗⃗ − 𝐴2

⃗⃗ ⃗⃗  *𝐷𝛽
⃗⃗ ⃗⃗   

𝑋3 ⃗⃗ ⃗⃗  ⃗ =  𝑋𝛿
⃗⃗ ⃗⃗ − 𝐴3

⃗⃗ ⃗⃗  *𝐷𝛿
⃗⃗ ⃗⃗   

The position of a grey wolf is then updated as follows: 

𝑋  (𝑡 + 1) =
𝑋1 ⃗⃗ ⃗⃗  ⃗  + 𝑋2 ⃗⃗ ⃗⃗  ⃗ + 𝑋3 ⃗⃗ ⃗⃗  ⃗

3
 

3) Attacking prey: The attacking phase is indicated by 

reducing the value of 𝑎  as iterations progress. When 𝐴  falls 

within the range [-1, 1], wolves are encouraged to attack the 

prey by shrinking their encircling behaviour. 

Search for Prey: When ∣A ∣>1|, wolves diverge to explore 
new areas. 

The improved GWO using differential evolution for 
stronger exploration and diversification through mutation, 
crossover, and survival of the fittest for maintaining the best-
performing solutions and eliminating poor-quality candidates. 
Additionally, we introduce a hybrid initialization technique by 
incorporating a solution generated using the HEFT algorithm, 
ensuring that the search starts from at least one good-quality 
position. The population of N wolves (solutions) is initialized 
randomly. Each wolf represents a mapping of tasks to VMs. To 
enhance quality and convergence, one individual is replaced by 
a HEFT-based solution, leveraging domain knowledge to start 
the search from a near-optimal region. Each solution is 
evaluated using a fitness function based on makespan, cost, and 
energy. Then sort the wolves based on their fitness values and 

choose the best 𝑋α
⃗⃗ ⃗⃗  ⃗, second best 𝑋β

⃗⃗ ⃗⃗  ⃗, and third best  𝑋δ
⃗⃗ ⃗⃗  ⃗. During 

each iteration, the positions of the wolves are updated using the 
DE strategy. This involves mutating the positions to create new 
candidates, crossing over elements between pairs of candidates 
to combine their features, and selecting the best candidates to 
form the next generation. 

4) Mutation operation: The mutation operation of 

differential evolution is its most significant feature. To generate 

variance in this process, two weighted difference vectors are 

appended to the selected individual. The difference vector from 

the parents, which consists of two different individuals 

(𝑋𝑟1
𝑡 , 𝑋𝑟2

𝑡 ) from the parent generation (the t-th generation), is the 

basic component of the DE variation mechanism. The 

definition of the difference vector is as follows: 

𝐷𝑑𝑟12
=  𝑋𝑟1

𝑡 − 𝑋𝑟2
𝑡  

where, 𝑟1,  𝑟2  are index numbers of distinct population 
members, and as a result, the mutation operation can be written 
as follows: 

𝑉𝑖
𝑡+1 = 𝑋𝑟3

𝑡 + F * (𝑋𝑟1
𝑡 − 𝑋𝑟2

𝑡 ) 
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where, F is the scaling factor, and  𝑟1, 𝑟2  and 𝑟3are different 
integers in the scope (1, 2, … n) from the current target vector 
index(i). 

5) Crossover operation: A crossover operation is carried 

out using the mutation vector 𝑋𝑖
𝑡+1 for the individual 𝑋𝑖

𝑡 wolves, 

producing a trial individual 𝑈𝑖
𝑡+1. A random selection technique 

is used to make sure that at least one bit of 𝑈𝑖
𝑡+1 is derived from 

𝑉𝑖
𝑡+1 to ensure that 𝑋𝑖

𝑡 evolves. The crossover probability factor 

(CR) for the remaining bits of 𝑈𝑖
𝑡+1 determines whether each 

bit originates from 𝑋𝑖
𝑡 or 𝑉𝑖

𝑡+1. The expression for the crossover 

operation as follows: 

𝑈𝑖𝑗
𝑡+1 = {

𝑉𝑖𝑗
𝑡+1 , 𝑟𝑎𝑛𝑑(j) ≤ 𝐶𝑅 𝑂𝑅 𝐽 = 𝑟𝑎𝑛𝑑𝑛(𝑖)

𝑋𝑖𝑗    ,𝑟𝑎𝑛𝑑(j) > 𝐶𝑅 𝐴𝑁𝐷 𝐽 ≠ 𝑟𝑎𝑛𝑑𝑛(𝑖)
         

 

𝐽 =  1, 2, . . , D 

where, rand(j) ∈ [0, 1] obeys the random-uniform 
distribution, j is the j-th variable (gene), CR is the crossover 
probability, and rand(i) ∈ [1, 2, … D]. 

6) Selection operation: The greedy choice used in the 

selection process. Following the mutation and crossover 

operations, the trial individual 𝑈𝑖
𝑡+1 is created and then 

compared with the target individual 𝑋𝑖
𝑡. The comparison can be 

expressed numerically as: 

𝑋𝑖
𝑡+1 = {

𝑈𝑖
𝑡+1 ,       𝑓(𝑈𝑖

𝑡+1)  <    𝑓(𝑋𝑖
𝑡)

𝑋𝑖
𝑡               𝑓(𝑈𝑖

𝑡+1) ≥    𝑓(𝑋𝑖
𝑡)

         

  𝑖 = 1,2,…𝑛 

In summary, the proposed enhances the original GWO by 
incorporating evolutionary principles and the DE strategy, 
significantly improving its search performance. This improved 
algorithm effectively balances exploration and exploitation, 
making it a powerful tool for solving complex optimization 
problems. 

An illustration to explain HEFT-IGWO, traditional GWO, 
and HEFT has been presented in this section with a random 
workflow consisting of nine tasks with precedence among 
themselves, as shown in Fig. 2. We have taken only three VMs, 
each with different computing capacities, energy consumption, 
and cost, but there may be more in real scenarios. Each wolf in 
the GWO represents a possible allocation of tasks to VMs. 

V. RESULTS AND DISCUSSION 

We use simulation for the performance study of proposed 
algorithms with the traditional GWO algorithm and HEFT 
algorithms. The simulation was performed using Python on a 
system with an i5 processor having a frequency of 2.1 GHz and 
16 GB RAM running Windows 11. A random workflow 
application used to assess the HEFT-IGWO algorithm. Table I 
shows the simulation parameters and their corresponding 
values. 

TABLE I  SIMULATION PARAMETERS 

Parameter Values 

Tasks (N) number 5-100 

VMs (M) number 3 

Processing Speed 1000-5000 MIPS 

VM distances 1-100 

Computing Capacity of VM 30-1000 

Inter task communication 1-1000 

This section provides an overview of the performance 
findings in terms of makespan, energy, and cost, corresponding 
to three virtual machines. The performance of the three 
algorithms was evaluated in terms of makespan for different 
numbers of tasks ranging from 5 to 100 is shown in Fig. 4. The 
HEFT algorithm serves as the baseline for comparison. 

 

Fig. 4. Makespan vs. Number of workflow tasks. 

Its makespan values increase almost linearly with the 
number of tasks. For small workflows (5 to 25 tasks), HEFT 
performs reasonably well because the search space is limited, 
and its ranking and earliest finish time heuristic is efficient. 
However, as the number of workflow tasks increases (50 to 
100), HEFT performance degrades significantly, producing the 
highest makespan values among the three methods. For small 
to medium workflows (5 to 45 tasks), GWO provides an 
average improvement of around 8–12% in makespan. As the 
number of workflow tasks increases, GWO advantage becomes 
more significant due to its iterative exploration and leader based 
hunting mechanism, which helps find more balanced task–VM 
mappings. For larger workloads (50 to 100 tasks), the 
improvement rises to 15–18%. The Hybrid HEFT–IGWO 
approach achieves the best performance across all workflows, 
demonstrating the benefit of combining HEFT based 
initialization with improved GWO exploration through 
differential evolution operators and survival of the fittest. For 
small and medium workflows (5 to 45 tasks), HEFT–IGWO 
improves makespan by 15–20% compared to HEFT. For large 
workflows (50 to 100 tasks), the improvements become more 
substantial, ranging from 28–32%. These significant gains are 
due to the ability to start with a near optimal HEFT solution and 
then further refine allocations using DE mutation, crossover, 
and iterative leader updates. 
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ALGORITHM 1: HEFT-IGWO 

Input:    Workflow W (T, E), VM set V, population size N, generations G  

Output: Best schedule with minimized makespan, cost, and energy 

Phase 1: Initialization 

Compute upward ranks of tasks using HEFT ordering. 

Seed HEFT-based elite solution as one candidate wolf. 

Generate N-1 random task-to-VM mappings as additional wolves. 

Evaluate fitness of all wolves (makespan, energy, cost). 

Identify alpha, beta, delta leaders (best three wolves). 

 

Phase 2: Iterative Hybrid Evolution 

For gen = 1 To G do 

    Update wolves positions using GWO encircling and hunting rules. 

    Apply higher probability mutation (random task VM flips). 

    Perform DE style discrete crossover between wolves and mutants.  

    Evaluate fitness of offspring (makespan, cost, energy). 

    Apply survival-of-the-fittest: keep best between parent and offspring. 

    Update leaders alpha, beta, delta based on new population. 

    Log convergence metrics (fitness, makespan, energy, cost). 

 

Phase 3: Termination 

Return alpha wolf (best schedule) with final metrics. 

end 

 

Fig. 5. Energy consumption vs. Number of workflow tasks. 

All algorithms show increasing energy consumption as 
tasks increase, but the growth rate is significantly slower for 
GWO and HEFT–IGWO than HEFT as shown in Fig. 5. The 
HEFT algorithm consistently consumes the highest amount of 
energy. The GWO achieves clear energy reductions across all 
task sizes, averaging around 10–15% for smaller tasks (5–30) 
and 18–22% for larger workloads (50–100). The hybrid HEFT–
IGWO algorithm (see Algorithm 1) consistently outperforms 
both HEFT and GWO, demonstrating the largest energy 
savings across all workflow sizes. For small and medium 
workflow (5–40 tasks), energy savings are around 20–27%, 
while for large workloads (50–100 tasks), savings increase to 
30–34%. HEFT–IGWO achieves the largest and most 
consistent energy reductions, particularly for large scale 
workflows, making it ideal for energy-aware workflow 
allocation in cloud environments. 

 

Fig. 6. Cost vs. Number of workflow tasks. 

Since HEFT focuses on earliest finish time without 
explicitly optimizing cost, it often results in inefficient VM 
usage leading to higher costs as workflows scale as shown in 
Fig. 6. The GWO consistently reduces operating cost compared 
to HEFT. For the small workflows (5–25 tasks), the cost 
improvements are in the range of 10–14%. For medium 
workloads (30–60 tasks), cost improvements increase to around 
17–22%, and for larger workloads (65–100 tasks), savings 
stabilize between 22–24%. The hybrid HEFT–IGWO algorithm 
provides the largest cost reductions across all task sizes. For 
small tasks, improvements are already noticeable at ~20–22%, 
increasing to 26–30% for medium workflows, and reaching 
~35% for larger workloads. 
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VI. CONCLUSION 

This study presented a comparative evaluation of three 
workflow scheduling techniques HEFT, GWO, and the 
proposed Hybrid HEFT–IGWO to enhance performance and 
energy efficiency in cloud computing environments. The 
proposed HEFT–IGWO hybrid delivers the most notable 
results. By initializing the search with a HEFT based schedule 
and refining it through differential evolution and survival-of-
the-fittest operations, it effectively balances exploration and 
exploitation. The hybrid model achieves up to 32% reduction 
in makespan, 34% lower energy consumption, and 35% cost 
savings, outperforming both baseline methods across all task 
scales. Overall, combining heuristic and evolutionary 
intelligence significantly enhances workflow allocation 
efficiency. HEFT–IGWO inherits the computational speed of 
HEFT while leveraging IGWO adaptive global search to 
achieve optimized, energy aware scheduling. Future work will 
focus on extending this approach to dynamic, heterogeneous, 
and QoS driven cloud environments for real time workflow. 
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