(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 10, 2025

Energy Efficient Workflow Allocation in Cloud
Computing Using Improved Grey Wolf Optimization

Md. Mazhar Nezami, Anoop Kumar
Department of Computer Science-College of Computing and Mathematics, Banasthali Vidyapith, Rajasthan, India

Abstract—Cloud computing has emerged as a dominant
platform for hosting complex applications, offering scalable and
flexible resources on demand. However, the dynamic and
heterogeneous nature of cloud environments poses significant
challenges for efficient workflow scheduling, particularly when
aiming to minimize total execution time, energy consumption, and
operational cost. In this research, we propose a novel hybrid
approach that integrates the Heterogeneous Earliest Finish Time
(HEFT) algorithm with an Improved Grey Wolf Optimizer
(IGWO) enhanced by differential evolution strategies and
survival-of-the-fittest ~mechanisms. These enhancements
strengthen exploration and exploitation by adaptively mutating
and refining task allocations while eliminating weaker solutions.
The use of HEFT-based initialization provides a strong starting
population, and the DE-driven IGWO refinement accelerates
convergence and avoids premature stagnation. Together, these
two-level optimization strategy ensures faster convergence and
higher energy-efficient workflow scheduling compared to earlier
HEFT metaheuristic approaches. To evaluate the effectiveness of
the proposed hybrid method, extensive experiments were
conducted on randomly generated workflows with varying task
and dependency complexities. The performance analysis
demonstrates that the hybrid HEFT-IGWO approach consistently
outperforms standard HEFT, traditional GWO, and standalone
metaheuristic techniques in terms of minimizing makespan,
reducing energy consumption, and lowering cloud infrastructure
costs. This study highlights the potential of combining heuristic
initialization with evolutionary optimization to achieve energy-
efficient, cost-effective workflow scheduling in cloud computing
environments.

Keywords—Cloud computing; energy efficient; workflow;
Heterogeneous Earliest Finish Time (HEFT); Grey Wolf
Optimization (GWO); makespan; cost

I. INTRODUCTION

Cloud computinghas revolutionized the way computational
resources are provisioned and consumed, offering scalable, on-
demand access to a vast pool of virtualized hardware and
software services. It enables organizations to deploy complex
applications and workflows without investing heavily in
physical infrastructure [1], [2].

A workflow in cloud computing represents a set of
interdependent tasks organized to achieve a specific
computational objective, such as scientific workflows, big data
processing workflows. The workflow scheduling refers to
organizing workflow tasks on VMs within the cloud platform,
addressing the challenge of balancing energy efficiency with
QoS optimization [3].

As cloud environments grow larger and more
heterogeneous, efficientworkflow allocation, assigningtasksto
appropriate virtual machines (VMs), becomes critical. Poor
task allocation results in high direct and indirect energy
consumption, leading to high costs, reduced reliability, and
environmental issues like CO2 emissions [4][5]. If a data center
hosts 10,000 servers and each consumes an average of 300
watts, the total energy consumption can reach 3 megawatts per
hour. At an average electricity cost of $0.12 perkilowatt-hour,
operating such a centre would cost approximately $360 per
hour, not including cooling and infrastructure overheads.

Despite significant progress in workflow scheduling,
existing algorithms still struggle to maintain a balance between
performance efficiency and energy optimization. Traditional
heuristics, such as the HEFT algorithm, offer fast scheduling
decisions but are limited by their static and local search
behaviour. Conversely, metaheuristic algorithms like Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO),
and Grey WolfOptimizer (GWO) improve global search ability
but may converge prematurely or require many iterations.

Therefore, there is a critical need for a hybrid scheduling
framework that can combine heuristic efficiency with adaptive
global optimization to effectively minimize makespan, energy
consumption, and operational cost in dynamic, heterogeneous
cloud environments [6].

This study seeks to determine how heuristic and
metaheuristic methods can be effectively integrated to enhance
workflow scheduling efficiency in cloud computing. It also
incorporates differential evolution and survival-of-the-fittest
mechanisms withinan Improved Grey Wolf Optimizer (IGWO)
can strengthen convergence stability and solution diversity.
Furthermore, the research investigates the extent to which the
proposed hybrid HEFT-IGWO model can reduce makespan,
energy consumption, and operational cost compared to
traditional scheduling techniques. This research contributes to
the advancement of green and sustainable cloud computing by
proposing an intelligent hybrid model that improves both
computational performance and energy efficiency. The
proposed method offers a practical solution for multi-objective
workflow allocation, reducing makespan, energy consumption,
and cost simultaneously.

The study is designed in the rest of the sections as follows:
Section I presents a literature survey. Section III presents the
problemdefinition, problem formulation, and suggested HEFT-
IGWO. Section IV describes the detailed algorithmic design,
including initialization, mutation, crossover, and survival
mechanisms ofthe HEFT-IGWO approach. Section V provides

491 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

the experimental setup, simulation results, and performance
analysis, comparing the proposed method with existing
approaches in terms of makespan, energy consumption, and
cost. Finally, Section VI concludes the study, summarizing key
findings and outlining future research directions.

II. LITERATURE SURVEY

Many studies have examined methodologies for time and
cost-efficient workflow allocation in a cloud computing
environment, with limited focus on energy. The hybrid
strategies that integrate heuristics like HEFT with
metaheuristics have shown promising results in minimizing
makespan, energy consumption, and cost simultaneously,
forming a strong motivation for the hybrid HEFT-IGWO
approach proposed in this study.

Li H etal. [7] proposed the SEPSO (Swarm Entropy-based
Particle Swarm Optimization) framework. It is designed to
optimize cloud provider profits by minimizing the monetary
cost of energy and leased public cloud resources. SEPSO
monitors swarm diversity during iterations to avoid premature
convergence and enhance explorationby dynamically adjusting
search parameters to balance exploration and exploitation
throughout the optimization process. Although it improves task
sequencing and allocation across public and private clouds,
SEPSO mainly targets cost reduction from the provider’s view
and lacks adaptability to dynamic or large-scale workflows.

Li H et al. [8] proposed the Chaotic-nondominated-sorting
Owl Search Algorithm (COSA) to schedule resource-
constrained multiple workflows. It combines an Owl Search
Algorithm (OSA) with an NSGA-II to optimize makespan, cost,
and energy under the specified deadline and budget constraints
in hybrid clouds. For better balancing of exploration and
exploitation, multiple workflows are scheduled in DVFS-
enabled cloud using a hierarchical evolving mechanism that
employs COSA for the Worse Half of Population (WHP) and
NSGA-II for updating the Better Half of Population (BHP).
However, its reliance on fixed workflow and resource settings
limits adaptability in dynamic cloud environments, and chaotic
control increases computational overhead.

Thekkepuryil et al. [9] proposed a hybrid algorithm
combining ALO and PSO to enhance workflow scheduling to
optimize key metrics like execution time, cost, and load
balancing in cloud environments. The Data Encryption
Standard (DES) ensures data security during scheduling,
addressing both performance and confidentiality concerns. The
hybrid algorithm combines the global search ability of ALO
with the local search refinement of PSO. However, its reliance
on static workflows and fixed resources limits adaptability in
real-world dynamic cloud environments, and the inclusion of
DES adds computational overhead.

Saeedi et al. [10] optimizes task-resource mapping in
workflows through the following steps. Initialize particles
representing task-resource mappings, along with their positions
and velocities, evaluate each particle, store non-dominated
solutions generated during the search process in external
archive, iteratively updates the archive, ideal point, and
hyperplane. The crowding distance determines which solutions
remain in the archive whenit is full. The archive of optimized

Vol. 16, No. 10, 2025

solutionsis returned. However, -MaOPSO reliance on roulette
wheel leader selection can lead to inaccurate results when
individuals have similar fitness values, reducing diversity and
convergence stability.

Alacietal.[11] proposed an adaptive fault detection method
in cloud computing based on the Improved Differential
Evolution (IDE) algorithm combined with an ANFIS prediction
model. This hybrid model enhances reliability by predicting
faults before they occur, helping reduce makespan, cost, and
energy consumption while improving fault tolerance. However,
the model primarily addresses VM faults and overlooks other
significantreliability issues, such as network, storage, and I/O
failures.

Mohammadzadeh et al. [12] proposed the HGALO-SCA
algorithm, which addresses the limitations of ALO and SCA
algorithms by leveraging their strengths. HGALO-SCA
enhances ALO searchability by incorporating SCA oscillatory
behaviour, allowing global exploration. The integration of the
ALO elite strategy accelerates the convergence while
maintaining global search accuracy. The comparison with
SPEA2 shows better performance in balancing trade-offs.
However, random chaos parameters may also increase
computational complexity and reduce consistency in results.

Yao et al. [13] proposed Endocrine-based Coevolutionary
Multi-Swarm for Multi-Objective Optimization (ECMSMOO)
addresses the workflow scheduling in cloud computing, which
is an NP-complete problem by optimizing multiple conflicting
objectives, including execution time, cost, and energy
consumption. The manager server collects available cloud
resources to reduce the impact of elastic resource fluctuations
during scheduling. The endocrine-based evolutionary strategy
mimics hormone-regulated particle behaviour to enhance
search efficiency and avoid local optima. The swarms
collaborate and compete to ensure a strong search process
across the multi-objective optimization space. Furthermore, the
hormonal control mechanism adds algorithmic complexity and
overhead, which can hinder real-time scheduling.

Mohammadzadeh et al. [14] introduced an improved
version of the GWO algorithm, known as HCGWO. This
improvement achieves better optimization outcomes by
combining chaos theory and the hill-climbing method. The
study extendsthe proposed IGWO algorithmto a binary version
specifically designed for theworkflow allocation problem. This
involves utilizing various S and V functions to deal with the
workflow allocation problem with the goal of reducing
execution costs, makespan, and power consumption. chaotic
map generation introduces additional computational overhead.

Hassan et al. [15] proposed Smart Energy and Reliability
Aware Scheduling (SERAS) algorithm addresses the dual
challenge of energy efficiency and system reliability in cloud
computing environments. By integrating the DVFS technique,
SERAS dynamically adjusts the processor frequencies of VMs
while ensuring tasks meet their deadlines. The SERAS divides
the deadline across tasks, enablingmore precise schedulingand
resource allocation. However, algorithm complexity (O(n?)
limits scalability for large workflows.

492 |Page

www.ijacsa.thesai.org

https://ieeexplore.ieee.org/author/37900526500

(IJACSA) International Journal of Advanced Computer Science and Applications,

Belgacem A, Beghdad-Bey K [16] suggested HEFT-ACO,
which effectively reduces costs and makespan by combining
the ACO algorithm with the HEFT heuristic. The simulation
results were conducted on the Amazon EC2 cloud platform
using three real-world scientific workflows, viz. Montage,
CyberShake, and Ligo show better trade-offs between
makespan and cost by leveraging the strengths of both
techniques. The workflow characteristics, viz., balance or
asymmetry, are not considered.

Taghinezhad A et al. [17] introduce BDCE and BDD, two
energy-efficient heuristic algorithms for workflow scheduling
in cloud environments, aiming to minimize energy
consumption while meeting budget and deadline constraints,
target resources with DVFS capabilities, while BDCE works
withnon-DVFS-enabled resources to optimize cost, scheduling
length, and energy savings while ensuring QoS compliance.
The result metrics are compared against established methods
like BDSD, DBCS, BDHEFT, ERES, and the Safari algorithm
using scientific workflow applications, showing improvements
inenergy savings, costefficiency, and scheduling performance.
However, both BDCE and BDD focus primarily on medium-
scale workflows.

Khaleel M [18] proposed the ELSCiW (Energy-Latency-
aware Scientific Workflow scheduling) framework focuses on
optimizing cloud workflow scheduling by balancing energy
consumption and latency while maintaining high QoS. The
approach involves a two-step optimization process: first, node
efficiency evaluation, which compares the number of handled
transactions to power consumption, optimizing processor
utilization, and then task mapping with mean GWO, which
applies to map tasks to cloud resources efficiently. However, it
primarily focuses on the energy—latency trade-off.

Zeedan et al.[19] proposed Enhanced Binary Artificial Bee
Colony-based Pareto Front (EBABC-PF) to optimize
makespan, processing cost, and resource utilization without
violating SLA. The algorithmuses HEFT to prioritize the work,
Greedy Randomized Adaptive Search Procedure (GRASP) to
develop aninitial solution, and Enhanced Binary Artificial Bee
Colony (BABC) to schedule tasks onto VMs. Moreover, it
emphasizes performance and cost but gives limited attention to
energy efficiency.

III. PROBLEM DEFINITION

When a user submits a workflow application as a Directed
Acyclic Graph (DAG), as shown in Fig. 1, the workflow
interface converts the DAG into an admission queue that
maintains execution order based on dependencies. The
workflow scheduler allocates tasks to VMs using a scheduling
algorithm, optimization criteria for energy efficiency, and a
resource estimator to match tasks with suitable resources.

A. Resource Model

In our cloud computing model, the infrastructure comprises
a collection of cloud servers (CS), each hosting multiple
computing nodes on which VMs are deployed. A centralized
global cloud manager oversees the operation, consisting of a
resource manager and a scheduler. The resource manager

Vol. 16, No. 10, 2025

maintains real-time status and key attributes of all available
VMs, such as processing speed, energy consumption, and
reliability. This information is utilized by the scheduler to
efficiently assign tasks when a workflow application is
submitted, based on task dependencies and VM availability.

All VMs are assumed to support Dynamic Voltage Scaling
(DVS), allowing them to adjust their voltage and frequency
levels dynamically. This enables energy savings by switching
to the lowest voltage levels during idle periods. The energy
consumption model is based on the CMOS power dissipation
model, where energy usage is influenced by both the
characteristics of the device and the voltage supply associated
with each task.

The energy consumption of tasks on VMs during active
(busy) execution time and when the VMs are idle can be
calculated using:

M
Epusy = Z axVE*ET(T; , VM)
=1
M
Eige = Z a * Vg, * didle;
=1

where, n is the total number of tasks, VM; is the virtual
machine on which task T;is executed, V; is the supply voltage
of VM;, and ET (T}, VM;) is the execution time of task T; on
VM;.VM; ,,is the minimum voltage level on VM, and Aidle;
is the amount of idling time for VM;. The total energy
consumption can be calculated as:

TEC:Ebusy+ Eidle

B. Application Model

A DAG represents a workflow application represented by
Wf=(T, E), where T = {T;,1 < i < N},is asetoftasks of the
workflow, and E is the set of edge characterizes precedence
constraints between tasks. The edge T; > T; ,shows the

precedencerelationbetweenT; and T in the DAG as shown
in Fig. 2, which will be processed on virtual machines V =
{VM; |1 < j < M} with various computing speed and cost. The
execution time of task T; on VM; is denoted by ET (T;, VM; and
CT (T, T,) denotes communication. According to the
dependencies among the tasks, task T; (child task) will execute
after Pred(T;), (parenttasks of T;). The starttime ST (T;, VM;),
finish time FT(T;,VM;) of a task T; on VM;, and the
makespan(MS) are calculated as follows:

ST(T;, VM;) = max {Avi(VM;), max{FT[Pred(T)]
+ CT(Pred(T,),T,)}

FT(T, VM;) = ST(T;,VM;) + ET(Pred(T,),VM;)

N
Makespan (MS): = max Z FT(T;,VM;)

i=1

493 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

User Input

Vol. 16, No. 10, 2025

Energy Efficient Workflow Scheduler

‘ Workflow Management Interface

Optimization Criterion

Resource Estimator

Available resource
Task constraint
Data location required by task

Energy Efficiency .
Workflow Modelling and Makespan .
Definition Tools Cost .
Utilization
Admission

g

Optimum Workflow Schedule

i |
Cloud Service APIs —
Resource Manager

Task Dispatcher

Service Level
Agreement (SLA)

‘ Resource Monitor ‘ /

memory

Hypervisor

communication

disk ‘

VM Controller Virtual

Multi Cloud

Physical |_r\
Machine I_V

Resource Information

.
e Hybrid Cloud
e Within Data Center

System k |

e] SN ST AT r@n}

Data Center Resource Laver ‘

Fig. 1.

[)

Fig.2. Sample workflow.

C. Cost Model

The pricing in cloud computing is determined by the billing
interval (BI) for resource leasing. As a result, even if only a
portion of the time is used, the client must pay for the full
interval.

cpu cycles of VM;
P, * eslowest cpucycle

ET (T,VM;)
COSt(Ti,VMj) =0 * e . K

T

where, o is a random variable used to generate different
combinations of VM pricing and capacity, T unit chargeable
time, P, is the base price of VM. The total execution cost can
be defined as:

Workflow allocation framework.

Let Bi,j be a Boolean variable, such that
_ {1, if task T; is assign to
o, otherwise

* Cost(T;, VM;)

Bi,j
TCost= YR, ¥M, Bi,j

D. Problem Definition

A schedule (Sc) is presented as Sc = (SVM, Allocation, MS,
TCost, TEC), where SVM corresponds to virtual machines,
Allocation represents the task to VM mappings, TCost: Total
execution cost, MS: Makespan, and TEC: Energy consumption
of the workflow. The problem can be defined as:

Minimize:
F=yxMS+ 9xTCost+(1— vy — 9)xTEC
Subject to
) ¥MBi,j =1, i=123....n
ii) 0<vy,9<l1

Constraints: 1) indicate that any task can be assigned to only
one VM and the constraint, and ii) limit the range of y, $ that
balances optimization functions.

IV. ALGORITHM

The Grey Wolf Optimization algorithm is a meta-heuristic
optimization technique that was inspired by the social hierarchy
and hunting habits of grey wolves. It was first presented by
Mirjalili et al. in 2014 [20]. We propose an energy-efficient
workflow allocation algorithm based on improving the Grey
Wolf Optimizer is a versionof GWO that has been created to
improve its search performance. This algorithm has gained
significant attention due to its simplicity, flexibility, and

494 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

effectiveness in solving various complex optimization
problems. GWO mimics the leadership structure and
collaborative hunting strategy of grey wolves, which enhances
its ability to explore and exploit the search space efficiently. In
a grey wolf pack, there are four types of wolves, as shown in
Fig. 3, based on their social hierarchy:

V'S
N
' N

N

Fig.3. Hierarchy flow up for the GWO algorithm.

Alpha (a): The leader of the pack, responsible for making
decisions and guiding the hunting process.

Beta (B): The second-in-command, assisting the alpha in
decision-making and maintaining discipline in the pack.

Delta (3): The third level in the hierarchy, responsible for
reporting to the alpha and beta and assisting them in their tasks.

Omega (): The lowest-ranking wolves, following the
orders of the higher-ranking wolves and playing a crucial role
in the pack’s social structure.

The following mathematical models of GWO are useful in
different scenarios of any real-world application.

1) Encircling prey: Grey wolves encircle their prey during
the hunt. This encircling behaviour is mathematically modelled
as follows:

D=I|C*X,t)— X (t1)]
Xt+1)=X,)—A*D
Here, t represents the current iteration, XT, is the position

vector of the prey, X is the position vector of a grey wolf, and
A and C are coefficient vectors calculated as:

A=2d*r—ad

In these equations, d linearly decreases from 2 to 0 over the
course of iterations, while 7; and 7, are random vectors within
the range [0, 1].

2) Hunting: The hunting phase involves following the best
individuals in the pack, specifically the a, B, and & wolves. The
positions are updated according to these leaders as:

Vol. 16, No. 10, 2025

Dy = |Gy + X, = X|
Dy =1[Cy X5 — X|
Ds =|C5+ X5 — X|
Xy = X, —A;*D,
Xy = X5 —A5*Ds
The position of a grey wolf is then updated as follows:
q X, +X, +X;
X(t+1)="2L -2 °3
3
3) Attacking prey: The attacking phase is indicatgd by
reducing the value of d as iterations progress. When A falls

within the range [-1, 1], wolves are encouraged to attack the
prey by shrinking their encircling behaviour.

Search for Prey: When |A”|>1], wolves diverge to explore
new areas.

The improved GWO using differential evolution for
stronger exploration and diversification through mutation,
crossover, and survival of the fittest for maintaining the best-
performing solutions and eliminating poor-quality candidates.
Additionally, we introduce a hybrid initialization technique by
incorporatinga solution generated using the HEFT algorithm,
ensuring that the search starts from at least one good-quality
position. The population of N wolves (solutions)is initialized
randomly. Each wolfrepresents a mapping of tasks to VMs. To
enhance quality and convergence, one individual is replaced by
a HEFT-based solution, leveraging domain knowledge to start
the search from a near-optimal region. Each solution is
evaluated usinga fitness function based on makespan, cost,and
energy. Then sort the wolves based on their fitness values and
choose the best X, secondbest Xg, and third best Xs. During
each iteration, the positions of the wolves are updated using the
DE strategy. This involves mutating the positions to create new
candidates, crossing over elements between pairs of candidates
to combine their features, and selecting the best candidates to
form the next generation.

4) Mutation operation: The mutation operation of
differential evolution is its most significant feature. To generate
variance in this process, two weighted difference vectors are
appended to the selected individual. The difference vector from
the parents, which consists of two different individuals
(Xrtl, Xﬁz) fromthe parent generation (the t-th generation), is the
basic component of the DE variation mechanism. The
definition of the difference vector is as follows:

Dd, = X{ — Xt

T12

where, r;, 7, are index numbers of distinct population
members, and as a result, the mutation operation can be written
as follows:

V= XEE T (X - XE)

495|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

where, F is the scaling factor, and 7;, 7, and r3are different
integers in the scope (1,2, ... n) from the current target vector
index(i).

5) Crossover operation: A crossover operation is carried
outusingthe mutation vector Xf*1 for the individual X! wolves,
producinga trial individual Uf*1. A random selection technique
is used to make sure thatatleastone bitof Uf *1 is derived from
V*1 to ensure that X evolves. The crossover probability factor
(CR) for the remainingbits of Uf*! determines whether each
bitoriginates from X} or V;f*1. The expression for the crossover
operation as follows:

VY, rand(j) < CR OR | = randn(i)
Uji* =1x;; ,rand(j) > CR AND] # randn(i)

J=12..D

where, rand(j) € [0, 1] obeys the random-uniform
distribution, j is the j-th variable (gene), CR is the crossover
probability, and rand(i) € [1, 2, ... D].

6) Selection operation: The greedy choice used in the
selection process. Following the mutation and crossover
operations, the trial individual Uf*? is created and then
compared with the target individual X} . The comparison can be
expressed numerically as:

fUHY < f(xH
FURY > fxp i=12,.n

U't+1
i]
t+1 —
X7 = Xt

In summary, the proposed enhances the original GWO by
incorporating evolutionary principles and the DE strategy,
significantly improving its search performance. This improved
algorithm effectively balances exploration and exploitation,
making it a powerful tool for solving complex optimization
problems.

An illustration to explain HEFT-IGWO, traditional GWO,
and HEFT has been presented in this section with a random
workflow consisting of nine tasks with precedence among
themselves, as shown in Fig. 2. We have taken only three VMs,
each with different computing capacities, energy consumption,
and cost, but there may be more in real scenarios. Each wolfin
the GWO represents a possible allocation of tasks to VMs.

V. RESULTS AND DISCUSSION

We use simulation for the performance study of proposed
algorithms with the traditional GWO algorithm and HEFT
algorithms. The simulation was performed using Python on a
system with ani5 processor having a frequency of 2.1 GHz and
16 GB RAM running Windows 11. A random workflow
applicationused to assess the HEFT-IGWO algorithm. Table I
shows the simulation parameters and their corresponding
values.

Vol. 16, No. 10, 2025

TABLE I SIMULATION PARAMETERS
Parameter Values
Tasks (N) number 5-100
VMs (M) number 3
Processing Speed 1000-5000 MIPS
VM distances 1-100
Computing Capacity of VM 30-1000

Inter task communication 1-1000

This section provides an overview of the performance
findings in terms of makespan, energy, and cost, corresponding
to three virtual machines. The performance of the three
algorithms was evaluated in terms of makespan for different
numbers of tasks ranging from 5 to 100 is shown in Fig. 4. The
HEFT algorithm serves as the baseline for comparison.

1300

1200 WHEFT ®WGWO WHEFT-IGWO
1100
1000

’...u.mwllvlvlﬂﬁlwmu WM MN

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Tasks

8

8
7
6
5
4
3

Makespan
8 8 8 8 8

8

2

g 8

Fig.4. Makespan vs. Number of workflow tasks.

Its makespan values increase almost linearly with the
number of tasks. For small workflows (5 to 25 tasks), HEFT
performs reasonably well because the search space is limited,
and its ranking and earliest finish time heuristic is efficient.
However, as the number of workflow tasks increases (50 to
100), HEFT performance degrades significantly, producing the
highest makespan values among the three methods. For small
to medium workflows (5 to 45 tasks), GWO provides an
average improvement of around 8—12% in makespan. As the
number of workflow tasks increases, GWO advantage becomes
more significant dueto its iterativeexplorationand leader based
hunting mechanism, which helps find more balanced task—VM
mappings. For larger workloads (50 to 100 tasks), the
improvement rises to 15-18%. The Hybrid HEFT-IGWO
approach achieves the best performance across all workflows,
demonstrating the benefit of combining HEFT based
initialization with improved GWO exploration through
differential evolution operators and survival of the fittest. For
small and medium workflows (5 to 45 tasks), HEFT-IGWO
improves makespanby 15-20% compared to HEFT. For large
workflows (50to 100 tasks), the improvements become more
substantial, ranging from 28—32%. These significant gains are
due to the ability to start with anear optimal HEFT solution and
then further refine allocations using DE mutation, crossover,
and iterative leader updates.

496 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

ALGORITHM 1: HEFT-IGWO

Input: Workflow W (T, E), VM set V, population size N, generations G
Output: Best schedule with minimized makespan, cost, and energy
Phase 1: Initialization

Compute upward ranks of tasks using HEFT ordering.

Seed HEFT-based elite solution as one candidate wolf.

Generate N-1 random task-to-VM mappings as additional wolves.
Evaluate fitness of all wolves (makespan, energy, cost).

Identify alpha, beta, delta leaders (best three wolves).

Phase 2: Iterative Hybrid Evolution

Forgen=1 To G do
Update wolves positions using GWO encircling and hunting rules.
Apply higher probability mutation (random task VM flips).
Perform DE style discrete crossover between wolves and mutants.
Evaluate fitness of offspring (makespan, cost, energy).
Apply survival-of-the-fittest: keep best between parent and offspring.
Update leaders alpha, beta, delta based on new population.
Log convergence metrics (fitness, makespan, energy, cost).

Phase 3: Termination
Return alpha wolf (best schedule) with final metrics.
end

8000
& HEFT 8GWO W HEFT-IGWO
7000

omlmwwm|wmhmw N N‘iw

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Energy Consumption
w & w @
g 8 8 8

g

§

Number of Tasks

Fig.5. Energy consumption vs. Number of workflow tasks.

All algorithms show increasing energy consumption as
tasks increase, but the growth rate is significantly slower for
GWO and HEFT-IGWO than HEFT as shown in Fig. 5. The
HEFT algorithm consistently consumes the highestamount of
energy. The GWO achieves clear energy reductions across all
task sizes, averaging around 10—15% for smaller tasks (5-30)
and 18-22% for larger workloads (50-100). The hybrid HEFT—
IGWO algorithm (see Algorithm 1) consistently outperforms
both HEFT and GWO, demonstrating the largest energy
savings across all workflow sizes. For small and medium
workflow (5—40 tasks), energy savings are around 20-27%,
while for large workloads (50—100 tasks), savings increase to
30-34%. HEFT-IGWO achieves the largest and most
consistent energy reductions, particularly for large scale
workflows, making it ideal for energy-aware workflow
allocation in cloud environments.

800
MHEFT HWGWO WHEFTHGWO

600

.NNNINIIII|||||WN|||N

5 10 15 20 25 30 35 40 45 S0 55 60 65 70 75 80 85 90 95 100
Number of Tasks

Cost
~ w » v
S S S S
3 3 3 8

]
-]

Fig. 6. Cost vs. Number of workflow tasks.

Since HEFT focuses on earliest finish time without
explicitly optimizing cost, it often results in inefficient VM
usage leadingto higher costs as workflows scale as shown in
Fig. 6. The GWO consistently reduces operating cost compared
to HEFT. For the small workflows (5-25 tasks), the cost
improvements are in the range of 10-14%. For medium
workloads (30-60tasks), costimprovements increase to around
17-22%, and for larger workloads (65-100 tasks), savings
stabilize between 22-24%. The hybrid HEFT-IGWO algorithm
provides the largest cost reductions across all task sizes. For
small tasks, improvements are already noticeable at ~20-22%,
increasing to 26—30% for medium workflows, and reaching
~35% for larger workloads.

497 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

VI. CONCLUSION

This study presented a comparative evaluation of three
workflow scheduling techniques HEFT, GWO, and the
proposed Hybrid HEFT-IGWO to enhance performance and
energy efficiency in cloud computing environments. The
proposed HEFT-IGWO hybrid delivers the most notable
results. By initializing the search with a HEFT based schedule
and refining it through differential evolution and survival-of-
the-fittest operations, it effectively balances exploration and
exploitation. The hybrid model achieves up to 32% reduction
in makespan, 34% lower energy consumption, and 35% cost
savings, outperforming both baseline methods across all task
scales. Overall, combining heuristic and evolutionary
intelligence significantly enhances workflow allocation
efficiency. HEFT-IGWO inherits the computational speed of
HEFT while leveraging IGWO adaptive global search to
achieve optimized, energy aware scheduling. Future work will
focus on extending this approach to dynamic, heterogeneous,
and QoS driven cloud environments for real time workflow.

REFERENCES

[11 B.Furht and A. Escalante, Eds., Handbook of Cloud Computing. Boston,
MA: Springer US, 2010. doi: 10.1007/978-1-4419-6524-0.

[2] M. Alam, S. Mustajab, M. Shahid, and F. Ahmad, “Cloud Computing
Architecture, Vision, Challenges, Opportunities, and Emerging Trends,”
in 2023 International Conference on Computing, Communication, and
Intelligent Systems (ICCCIS), IEEE, Nov. 2023, pp. 829-834. doi:
10.1109/1CCCIS60361.2023.10425507.

[3] M. M. Nezami, A. Kumar, M. Shahid, and M. M. Nezami, “Analysis of
Energy Efficient Workflow Allocation in Cloud Computing,” in 2023
IEEE 12th International Conference on Communication Systems and
Network Technologies (CSNT), IEEE, Apr. 2023, pp. 803—-809. doi:
10.1109/CSNT57126.2023.10134644.

[4] P. A. Malla, S. Sheikh, M. Shahid, and S. U. Mushtaq, “Energy-efficient
sender-initiated threshold-based load balancing e-STLB in cloud
computingenvironment,” Concurr Comput, vol. 36, no. 5, Feb. 2024, doi:
10.1002/cpe.7943.

[5] M. Sajid and Z. Raza, “Energy-aware stochastic scheduling model with
precedence constraints on DVFS-enabled processors,” Turkish Journalof
Electrical Engineering and Computer Sciences, vol. 24, no. 5, pp. 4117—
4128,2016, doi: 10.3906/elk-1505-112.

[6] K. K. Chakravarthi, P. Neelakantan, L. Shyamala, and V. Vaidehi,
“Reliable budget aware workflow scheduling strategy on multi-cloud
environment,” Cluster Comput, vol. 25, no. 2, pp. 1189-1205, Apr. 2022,
doi: 10.1007/S10586-021-03464-4.

[71 H. Li, X. Li, J. Xu, and L. Chen, “Entropy based swarm intelligent
searching for scheduling deadline constrained workflows in hybrid

cloud,” International Journal of Machine Leaming and Cybemetics, vol.
15,n0.4,pp. 1183-1199, Apr. 2024, doi: 10.1007/s13042-023-01962-y.

(8]

(]

[10

=

(1]

[12]

[13]

[15]

[16]

[17]

(18]

[19]

[20]

Vol. 16, No. 10, 2025

H. Li, G. Xu, D. Wang, M. Zhou, Y. Yuan, and A. Alabdulwahab,
“Chaotic-Nondominated-Sorting Owl Search Algorithm for Energy-
Aware Multi-Workflow Scheduling in Hybrid Clouds,” IEEE
Transactions on Sustainable Computing, vol. 7, no. 3, pp. 595-608, Jul.
2022, doi: 10.1109/TSUSC.2022.3144357.

J. Kakkottakath Valappil Thekkepuryil, D. P. Suseelan, and P. M.
Keerikkattil, “An effective meta-heuristic based multi-objective hybrid
optimization method for workflow scheduling in cloud computing
environment,” Cluster Comput, vol. 24, no. 3, pp. 2367-2384,2021,doi
10.1007/s10586-021-03269-5.

S. Saeedi, R. Khorsand, S. Ghandi Bidgoli and M. Ramezanpour,
“Improved many-objective particle swarm optimization algorithm for
scientific workflow scheduling in cloud computing,” Comput Ind Eng,
vol. 147, p. 106649, Sep. 2020, doi: 10.1016/j.¢ie.2020.106649.

M. Alaei, R. Khorsand,and M. Ramezanpour, “An adaptive fault detector
strategy for scientific workflow scheduling based on improved
differential evolution algorithm in cloud,” Appl Soft Comput,vol. 99, p.
106895, Feb. 2021, doi: 10.1016/J.ASOC.2020.106895.

A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh,and A. Jafarian,
“A hybrid multi-objective metaheuristic optimization algorithm for
scientific workflow scheduling,” Cluster Comput, vol. 24, no. 2, pp.
1479-1503, Jun. 2021, doi: 10.1007/S10586-020-03205-Z.

G. Yao, Y. Ding, Y. Jin, and K. Hao, “Endocrine-based coevolutionary
multi-swarm formulti-objective workflow scheduling in a cloud system,”
Soft Computing - A Fusion of Foundations, Methodologies and
Applications, vol. 21, no. 15, pp. 4309-4322, Aug. 2017, doi:
10.1007/S00500-016-2063-8.

A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh,and A. Jafarian,
“Improved chaotic binary grey wolf optimization algorithm for workflow
scheduling in green cloud computing,” Evol Intell, vol. 14, no. 4, pp.
1997-2025, Dec. 2021, doi: 10.1007/512065-020-00479-5.

H. A. Hassan, S. A. Salem, and E. M. Saad, “A smart energy and
reliability aware scheduling algorithm for workflow execution in DVFS -
enabled cloud environment,” Future Generation Computer Systems, vol.
112, pp. 431-448, Nov. 2020, doi: 10.1016/j.future.2020.05.040.

A. Belgacem and K. Beghdad-Bey, “Multi-objective workflow
scheduling in cloud computing: trade-off between makespan and cost,”
Cluster Comput, vol. 25, no. 1, pp. 579-595, Feb. 2022, doi:
10.1007/s10586-021-03432-y.

A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri, “Energy-efficient
workflow scheduling with budget-deadline constraints for cloud,”
Computing, vol. 104, no. 3, pp. 601-625, Mar. 2022, doi:
10.1007/s00607-021-01030-9.

M. I. Khaleel, M. Safran, S. Alfarhood, and M. Zhu, “Energy-latency
trade-off analysis forscientific workflow in cloud environments: The role
of processor utilization ratio and mean grey wolf optimizer,” Engineering
Science and Technology, an InternationalJournal,vol. 50,p. 101611, Feb.
2024, doi: 10.1016/j.jestch.2023.101611.

M. Zeedan, G. Attiya, and N. El-Fishawy, “Enhanced hybrid multi-
objective workflow scheduling approach based artificial bee colony in
cloud computing,” Computing, 2022, doi: 10.1007/S00607-022-01116-
Y/FULLTEXT.HTML.

S. Migalili, S. M. Migjalili, and A. Lewis, “Grey Wolf Optimizer,”
Advances in Engineering Software, vol. 69, pp. 46-61, 2014, doi:
10.1016/j.advengsoft.2013.12.007.

Q

498 |Page

o)

www.ijacsa.thesai.org

