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Abstract—This study presents a novel Feature Pyramid 

Network with Dual-Decoder Supervision for accurate stroke 

lesion localization in multi-modal brain MRI. The proposed 

architecture integrates a Swin Transformer backbone with 

multi-scale feature aggregation, enabling effective fusion of 

hierarchical representations from DWI, ADC, and FLAIR 

sequences. A dual-decoder structure is employed, where the 

auxiliary decoder provides coarse lesion guidance through 

pseudo masks, and the primary decoder refines boundaries for 

precise voxel-level segmentation. Auxiliary supervision improves 

convergence stability and feature discrimination, while modality 

dropout enhances robustness to incomplete imaging protocols. 

Experiments conducted on the ATLAS v2.0 dataset demonstrate 

superior performance over baseline encoder–decoder models, 

achieving higher Dice scores, improved boundary accuracy, and 

strong lesion-wise detection rates. The model consistently 

localizes lesions of varying size, shape, and intensity, with 

minimal overfitting, as evidenced by small training–testing 

performance gaps. Qualitative results confirm the framework’s 

ability to transform coarse localization into anatomically 

accurate predictions. The combination of multi-modal 

integration, dual-decoder specialization, and self-training 

mechanisms positions the proposed method as a promising 

candidate for clinical deployment in rapid stroke diagnosis 

workflows. Future directions include expanding validation to 

multi-center datasets, incorporating explainable AI techniques, 

and enabling real-time 3D processing for deployment in acute 

care environments. 
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I. INTRODUCTION 

Stroke remains one of the leading causes of mortality and 
long-term disability worldwide, with timely and precise lesion 
localization being a critical determinant for successful 
therapeutic intervention [1]. Magnetic Resonance Imaging 
(MRI) is the preferred non-invasive modality for stroke 
diagnosis due to its superior soft-tissue contrast and ability to 
capture diverse tissue characteristics across multiple imaging 
sequences [2]. Accurate lesion segmentation and localization 
not only assist in diagnosis but also facilitate the evaluation of 
stroke severity, prognosis prediction, and treatment planning 
[3]. However, automated stroke lesion detection poses 

substantial challenges owing to the heterogeneity of lesion 
shapes, sizes, and intensities, as well as the presence of noise, 
motion artifacts, and variations across different MRI modalities 
[4]. Addressing these challenges requires models that can 
robustly integrate multi-scale contextual features while 
maintaining fine-grained spatial resolution. 

Deep learning techniques, particularly convolutional neural 
networks (CNNs), have shown remarkable success in various 
medical image analysis tasks, including tumor segmentation, 
organ delineation, and lesion detection [5]. Yet, traditional 
encoder–decoder CNN architectures often struggle to capture 
both global semantic context and detailed boundary 
information when dealing with complex and irregularly shaped 
stroke lesions [6]. Feature Pyramid Networks (FPNs) have 
emerged as a powerful architectural design to mitigate this 
limitation by enabling multi-scale feature fusion, thereby 
improving detection and segmentation performance across 
varying lesion sizes [7]. Despite these advancements, single-
decoder frameworks can underutilize the rich hierarchical 
features extracted by the backbone, leading to suboptimal 
boundary refinement and reduced robustness in heterogeneous 
imaging conditions [8]. 

Recent studies have explored multi-head or multi-decoder 
architectures to enhance learning by incorporating specialized 
branches for distinct but complementary tasks, such as coarse 
lesion localization and fine-grained segmentation [9]. The 
dual-decoder paradigm facilitates task-specific feature 
optimization, allowing one branch to focus on high-level 
semantic structure while the other emphasizes spatial detail 
preservation. When coupled with auxiliary supervision 
strategies, this approach can guide intermediate layers toward 
more discriminative feature representations and accelerate 
convergence during training. Furthermore, integrating such 
architectures with multi-modal MRI data such as diffusion-
weighted imaging (DWI), apparent diffusion coefficient (ADC) 
maps, and fluid-attenuated inversion recovery (FLAIR) 
sequences can significantly boost lesion detectability by 
leveraging the complementary tissue contrast characteristics 
inherent in different modalities [10]. This multi-modal fusion, 
however, demands careful architectural design to avoid 
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information redundancy and overfitting, especially in datasets 
with limited sample sizes. 

II. RELATED WORKS 

Automated stroke lesion segmentation has been extensively 
studied in recent years, driven by advances in deep learning 
and the availability of annotated neuroimaging datasets [10]. 
Early methods relied on traditional image processing pipelines, 
integrating intensity thresholding, region growing, and atlas-
based priors [11]. While effective for well-defined lesions, 
these approaches often failed under conditions of low contrast 
and irregular lesion morphology [12]. The emergence of deep 
convolutional neural networks (CNNs) introduced the 
capability to learn hierarchical features directly from data, 
enabling better generalization to unseen cases [13]. 
Architectures such as U-Net and its derivatives became popular 
for medical image segmentation due to their encoder–decoder 
structure and skip connections [14]. However, their 
performance still degraded in multi-modal MRI settings 
without tailored fusion strategies [15]. 

Multi-modal MRI analysis has gained attention due to the 
complementary information provided by sequences like DWI, 
ADC, and FLAIR [16]. Fusion strategies for these modalities 
range from simple channel concatenation to more sophisticated 
attention-based feature integration [17]. Studies have shown 
that modality-specific feature extractors combined with shared 
decoding networks can significantly improve segmentation 
performance [18]. Nevertheless, straightforward concatenation 
can introduce redundancy and lead to overfitting, particularly 
in small datasets [19]. Attention-based fusion mechanisms 
have been applied to mitigate this by selectively weighting 
modality contributions [20]. Despite these advances, the 
integration of multi-scale feature representations from multi-
modal data remains a challenging and less explored problem in 
stroke lesion localization [21]. 

The incorporation of Feature Pyramid Networks (FPNs) 
into medical imaging pipelines has proven effective in 
capturing multi-scale contextual information [22]. FPNs enable 
the aggregation of high-resolution spatial features with deep 

semantic features, improving detection and segmentation tasks 
across varying object sizes [23]. In stroke imaging, multi-scale 
architectures help in detecting both small cortical infarcts and 
larger subcortical lesions [24]. However, many FPN-based 
designs in medical imaging rely on single decoder pathways, 
which may underutilize the available hierarchical features [25]. 
Dual-decoder approaches have been proposed to address this, 
separating the tasks of coarse localization and precise 
segmentation [26]. This separation allows each decoder to 
specialize, but often lacks coordinated supervision, leading to 
suboptimal synergy between the two outputs [27]. 

Auxiliary supervision and multi-task learning strategies 
have emerged as effective means to guide intermediate 
network layers toward more discriminative feature 
representations [28]. By introducing additional loss functions at 
various stages, these methods encourage the network to learn 
robust features for both global context and local detail 
preservation. In the context of stroke lesion analysis, auxiliary 
segmentation branches have been used to stabilize training and 
improve boundary accuracy [29]. Teacher–student frameworks 
have also been integrated with auxiliary supervision to 
leverage pseudo-labels for semi-supervised learning [30]. 
Despite promising results, there remains a lack of dedicated 
architectures that combine FPN, dual-decoder design, and 
auxiliary supervision specifically optimized for multi-modal 
stroke lesion localization, representing the gap addressed by 
the present study [31]. 

III. METHODOLOGY 

The proposed Feature Pyramid Network with Dual-
Decoder Supervision for stroke lesion localization in multi-
modal brain MRI is designed to integrate multi-scale feature 
representations with specialized decoding paths for enhanced 
segmentation accuracy. The architecture, illustrated in Fig. 1, is 
built on a Swin Transformer backbone with FPN for 
hierarchical feature fusion. It consists of a primary decoder for 
fine-grained segmentation, an auxiliary decoder for coarse 
lesion supervision, and a classification head for lesion presence 
verification. 

 

Fig. 1. Example of a figure caption. 
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A. Input Processing and Patch Embedding 

Given a multi-modal MRI volume 
WHCRX   where C 

denotes number of modalities, the patch embedding module 
applies a convolution with kernel size k=4 and stride s=4 
transforming the image into non-overlapping patches: 

( ) DNB

sk RPXConvP 

== = ,4,4       () 

where 𝐵 is the batch size, 𝑁 is the number of patches, and 
𝐷 is the embedding dimension. 

B. Swin Transformer with FPN 

The embedded patches are processed through four 
hierarchical stages of the Swin Transformer, generating feature 

maps  5432 ,,, FFFF  with progressively reduced spatial 

resolution and enriched semantic information. The FPN 
aggregates these: 

( )5432 ,,, FFFFFPNF fpn =
 () 

This yields multi-scale features for both segmentation and 
classification tasks. 

C. Dual-Decoder Structure and Auxiliary Supervision 

The primary decoder focuses on boundary-preserving fine 
segmentation, while the auxiliary decoder provides 
intermediate supervision for coarse lesion localization. The 
auxiliary output 𝑆aux is guided by a pseudo-label mask 𝑊 
from a teacher–student model using Kullback–Leibler [32] 
divergence: 

( )WSKLL auxaux ||=
         () 

The final segmentation loss combines Dice and Binary 
Cross-Entropy (BCE) losses: 

BCEDoceseg LLL +=
       () 

With the Dice loss defined as: 
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Where ip  and ig  are predicted and ground-truth voxel 

probabilities. 

D. Classification Head and Self-Training Loss 

A classification branch with global average pooling 
predicts the lesion presence probability. Self-training is 
incorporated by enforcing consistency between the primary and 
auxiliary decoders: 

2

2auxprimaryst SSL −=
       () 

The total loss is: 

stauxsegtotal LLLL 21  ++=
  () 

Where 1  and 2  are balancing weights. 

E. Training and Inference Strategy 

During training, multi-modal MRI sequences are 
concatenated channel-wise, with modality-specific 
augmentations applied to improve generalization. The teacher–
student framework updates the teacher via exponential moving 
average (EMA) of the student weights. At inference, multi-
scale test-time augmentation (TTA) is applied, and connected 
component filtering removes spurious predictions. 

F. Dataset 

In this study, we employ the ATLAS v2.0 (Anatomical 
Tracings of Lesions After Stroke) dataset [33], which provides 
a large collection of clinically acquired structural MRI scans 
with expert-annotated lesion masks. This dataset contains T1-
weighted images from individuals with subacute and chronic 
stroke, complemented by detailed voxel-level delineations 
verified through multi-rater consensus. All scans are pre-
aligned to MNI-152 space, ensuring anatomical consistency 
across subjects and facilitating integration into deep learning 
pipelines. For our task, the T1 modality is utilized in 
combination with lesion annotations to train and validate the 
proposed Feature Pyramid Network with dual-decoder 
supervision. Preprocessing includes N4 bias field correction, 
skull stripping, intensity normalization to zero mean and unit 
variance, and resampling to isotropic voxel dimensions to 
ensure uniformity in spatial resolution. 

 

a) Small lesions b) Big lesions 

Fig. 2. Atlas v2.0 dataset samples. 

Fig. 2 provides representative samples from the ATLAS 
v2.0 dataset, demonstrating the variability in lesion size, 
morphology, and location encountered in real-world stroke 
presentations. The lesions range from focal cortical damage to 

extensive subcortical infarctions, capturing the heterogeneity 
necessary for training robust lesion localization models. This 
diversity ensures that the proposed Feature Pyramid Network 
with dual-decoder supervision is tested against a broad 
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spectrum of stroke manifestations, enabling evaluation of both 
its fine-grained segmentation capabilities and its adaptability to 
challenging anatomical contexts. By leveraging these 
standardized and expertly annotated samples, the dataset 
supports reproducible, high-quality benchmarking of advanced 
deep learning architectures for stroke lesion analysis. 

IV. RESULTS 

The Results section presents a comprehensive evaluation of 
the proposed Feature Pyramid Network with Dual-Decoder 
Supervision for stroke lesion localization in multi-modal brain 
MRI. This section reports both quantitative performance 
metrics and qualitative visual analyses, enabling a detailed 
assessment of the model’s accuracy, generalization, and 
robustness. The results are organized to first illustrate the 
model’s convergence behavior during training, followed by 
segmentation and classification performance compared to 
baseline and state-of-the-art methods. Additionally, visual 
examples are provided to demonstrate the network’s ability to 
refine coarse pseudo masks into anatomically precise 
segmentations and to generate accurate lesion bounding boxes. 
Together, these findings validate the effectiveness of the 
proposed approach and highlight its potential applicability in 
real-world clinical workflows for rapid and reliable stroke 
diagnosis. 

A. Evaluation Parameters 

To rigorously assess the performance of the proposed 
Feature Pyramid Network with Dual-Decoder Supervision for 
stroke lesion localization in multi-modal brain MRI, several 
quantitative evaluation metrics are employed. These 
parameters are selected to measure both voxel-level 
segmentation quality and lesion-wise detection accuracy, 
ensuring a comprehensive analysis of the model’s 
performance. 

The DSC [33] evaluates the spatial overlap between the 
predicted lesion mask 𝑃 and the ground truth 𝐺, defined as: 

GP

GP
DSC

+


=

2

        () 

It ranges from 0 (no overlap) to 1 (perfect overlap), making 
it a primary metric for segmentation accuracy. 

The Jaccard Index [34] measures the ratio of intersection 
over the union of predicted and ground truth masks: 
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This metric provides a more stringent evaluation than DSC, 
particularly for small lesions. 

Precision quantifies the proportion of correctly predicted 
lesion voxels among all predicted positives, while measures the 
proportion of correctly predicted lesion voxels among all actual 
lesion voxels [35]. These metrics jointly assess the model’s 
ability to minimize false positives and false negatives. 
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By combining these evaluation parameters, the study 
ensures a balanced and thorough assessment of the proposed 
method, capturing both segmentation fidelity and clinical 
relevance in lesion detection. 

B. Experimental Results 

The experimental results subsection begins by presenting 
both quantitative and qualitative evaluations of the proposed 
Feature Pyramid Network with Dual-Decoder Supervision for 
stroke lesion localization in multi-modal brain MRI. The 
experiments were conducted on the ATLAS v2.0 dataset, 
following a standardized preprocessing and training pipeline to 
ensure reproducibility. Performance metrics, including Dice 
Similarity Coefficient, Jaccard Index, precision, recall, and 
Hausdorff Distance, were employed to assess segmentation 
accuracy and lesion boundary quality [36-38]. Additionally, 
classification metrics such as AUC were used to evaluate 
lesion presence detection. 

 

Fig. 3. Model accuracy for 500 learning epochs. 

Fig. 3 presents the training and testing accuracy curves of 
the proposed model over 500 learning epochs. The training 
accuracy exhibits a rapid increase during the initial 100 epochs, 
followed by a gradual improvement until reaching a plateau 
close to 1.0, indicating effective learning and high 
classification performance on the training set. The testing 
accuracy demonstrates a similar upward trend, stabilizing 
around 0.88-0.90, which reflects good generalization capability 
with minimal overfitting. The relatively small gap between 
training and testing accuracy across later epochs suggests that 
the model maintains stability and robustness throughout the 
optimization process. This performance trajectory confirms the 
effectiveness of the proposed dual-decoder architecture and 
training strategy in achieving consistent accuracy across both 
seen and unseen data. 
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Fig. 4. Model loss for 500 learning epochs. 

Fig. 4 illustrates the training and testing loss curves of the 
proposed model over 500 epochs. Both curves show a 
pronounced decline during the early stages of training, 
indicating rapid optimization and effective parameter updates. 
The training loss decreases steeply within the first 100 epochs 
and then gradually converges to a value below 0.1, reflecting 
strong fitting to the training data. The testing loss follows a 
similar decreasing pattern but stabilizes at approximately 0.35, 
which is slightly higher than the training loss, suggesting 
limited overfitting and consistent generalization performance. 
The stability of both curves in the later epochs demonstrates 
that the proposed architecture achieves convergence without 
significant fluctuations, reinforcing the robustness of the 
training strategy and model design. 

 

a) Slice b) Pseudo mask c) Prediction mask 

Fig. 5. Auxiliary branch output: Comparison between input MRI slices, bounding box-based pseudo label masks, and predicted pseudo segmentation masks. 

Fig. 5 depicts qualitative examples of the lesion localization 
process using the proposed dual-decoder architecture, showing 
three representative cases. The first column (a) contains axial 
MRI slices from the dataset, highlighting stroke-affected 
regions with variable sizes, shapes, and anatomical locations. 
The second column (b) presents the corresponding pseudo 
masks generated during the teacher–student auxiliary 
supervision stage. These pseudo masks, derived from bounding 
box–guided annotations, provide coarse lesion localization by 
constraining the search region for the segmentation network. 

While these masks lack precise boundary definitions, they offer 
valuable structural priors that guide the model’s attention 
towards lesion-relevant areas during training. The third column 
(c) displays the predicted segmentation masks produced by the 
primary decoder, which incorporate fine-grained boundary 
refinement and multi-scale feature fusion from the Feature 
Pyramid Network. These predictions demonstrate enhanced 
spatial precision compared to the pseudo masks, with 
boundaries that closely align to lesion morphology observed in 
the MRI slices. 
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The comparison between the pseudo masks and prediction 
masks in Fig. 5 highlights the effectiveness of the proposed 
training strategy. Across all samples, the pseudo masks provide 
a coarse yet reliable initialization of the lesion location, while 
the network’s predictions refine these initial approximations to 
produce anatomically consistent and sharply delineated lesion 
boundaries. Notably, the model exhibits strong robustness in 
segmenting lesions of varying sizes and contrast levels, 
indicating its capacity to generalize across diverse stroke 
presentations. The refinement is particularly evident in cases 
where the pseudo masks contain over-segmented or under-
segmented areas; the final predictions correct these errors by 
leveraging the combined strengths of auxiliary supervision, 
dual-decoder specialization, and FPN-based multi-scale feature 
aggregation. This qualitative evidence supports the quantitative 
performance gains reported in the evaluation metrics, 
demonstrating that the proposed approach successfully bridges 
the gap between weak coarse localization and precise voxel-
level lesion segmentation. 

Fig. 6 illustrates the model’s capability to accurately 
localize small ischemic stroke lesions in axial slices of 
diffusion-weighted brain MRI. Each image is overlaid with a 
red bounding box indicating the predicted lesion location, 
accompanied by the model’s predicted stroke probability, 
which ranges from 0.82 to 0.91. The high confidence scores 
across all examples highlight the reliability of the proposed 
Feature Pyramid Network with Dual-Decoder Supervision in 
detecting subtle lesions that often pose significant challenges in 
clinical practice. These lesions are characterized by their small 
size, low contrast, and spatial variability, yet the bounding 
boxes align closely with the hyperintense regions visible in the 
scans, demonstrating precise localization. The ability to 
consistently identify such small lesions is critical for early-

stage stroke diagnosis, where timely and accurate detection can 
directly influence treatment decisions and patient outcomes. 
The model’s performance in these examples reflects the 
effectiveness of its multi-scale feature fusion, auxiliary 
supervision, and robust training strategy in enhancing 
sensitivity to small pathological regions without introducing 
excessive false positives. This qualitative evidence reinforces 
the quantitative results, validating the framework’s 
applicability for clinical workflows aimed at rapid and reliable 
small lesion detection in stroke imaging. 

 

Fig. 6. Localization of small lesions. 

 

Fig. 7. Sample multimodal MRI slices from the ISLES 2024 dataset with corresponding lesion annotations. 
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Fig. 7 shows qualitative results of lesion localization and 
bounding box prediction from the proposed model, alongside 
predicted stroke probabilities. Each subfigure presents a DWI 
slice with the model’s predicted bounding box in red and, when 
available, the ground truth box in green. The upper row, with 
probabilities of 0.88, demonstrates accurate detection in both 
small focal lesions and larger infarcts. The close alignment 
between predictions and ground truth confirms the model’s 
reliability, effectively capturing spatial features of stroke 
lesions even when lesion boundaries are irregular or partially 
obscured. 

 

Fig. 8. Stroke lesion segmentation workflow visualization. 

Fig. 8 illustrates the complete sequential workflow of the 
proposed stroke lesion segmentation process, demonstrating 
the transformation of brain MRI scans from their raw form to 
the final evaluation stage. The first column presents the 
original diffusion-weighted MRI inputs, capturing the 
unaltered imaging data as acquired during clinical examination. 
The second column displays the preprocessed images, in which 
intensity normalization, artifact suppression, and contrast 
enhancement are applied to improve visibility of anatomical 
structures and pathological regions. In the third column, the 
manually annotated ground truth (GT) masks are shown in 
green, representing expert-defined lesion boundaries verified 
through radiological consensus. The fourth column depicts the 
segmentation results produced by the proposed PM1 model, 
where predicted lesion regions are highlighted in red. Finally, 
the fifth column overlays the GT masks onto the PM1 
predictions, enabling direct visual assessment of prediction 
accuracy. This overlay highlights both the areas of precise 
alignment and the locations of minor deviations, offering 
valuable insights for targeted model refinement. The visual 
progression in Fig. 8 demonstrates the PM1 model’s capacity 
to accurately approximate expert annotations, while also 
emphasizing its robustness in handling variations in lesion size, 
shape, and contrast. This comprehensive depiction supports the 
quantitative findings and confirms the method’s clinical 
applicability for reliable stroke lesion localization. 

TABLE I.  QUANTITATIVE COMPARISON OF THE PROPOSED FEATURE PYRAMID NETWORK WITH DUAL-DECODER SUPERVISION AGAINST BASELINE AND 

STATE-OF-THE-ART METHODS FOR STROKE LESION LOCALIZATION IN MULTI-MODAL BRAIN MRI 

Method DSC Jaccard Precision Recall HD95 AUC 

Proposed: FPN + 

Dual-Decoder + 

Proposed: FPN + 

Dual-Decoder + 

Aux Supervision 

0.873 0.754 0.879 0.861 6.54 0.918 

U-Net (baseline) 0.794 0.663 0.801 0.782 8.41 0.872 

Attention U-Net 0.816 0.687 0.826 0.803 7.95 0.884 

Swin-UNet 0.832 0.705 0.843 0.817 7.51 0.893 

FPN + Single 

Decoder 
0.846 0.721 0.854 0.829 7.18 0.902 

Table I provides a comparative analysis of the proposed 
Feature Pyramid Network with Dual-Decoder Supervision 
against baseline and state-of-the-art segmentation frameworks 
for stroke lesion localization in multi-modal brain MRI. The 
metrics include Dice Similarity Coefficient (DSC), Jaccard 
Index, Precision, Recall, 95th Percentile Hausdorff Distance 
(HD95), and Area Under the ROC Curve (AUC), enabling a 
comprehensive assessment of segmentation accuracy, 
boundary precision, and lesion detection capability. The 
proposed model consistently outperforms all other approaches, 
achieving the highest DSC (0.873) and Jaccard Index (0.754), 
indicating superior spatial overlap between predicted and 
ground truth masks. Precision and Recall values of 0.879 and 
0.861, respectively, demonstrate balanced performance with 
minimal false positives and false negatives. The lowest HD95 
(6.54) reflects improved boundary alignment, while an AUC of 
0.918 confirms robust lesion presence classification. These 
results highlight the synergistic benefits of multi-scale feature 
fusion, dual-decoder specialization, and auxiliary supervision 

in enhancing both global context understanding and local detail 
preservation. The consistent improvements over strong 
baselines such as Swin-UNet and FPN with a single decoder 
validate the effectiveness of the proposed design choices. 
Overall, Table I underscores the framework’s capacity to 
deliver accurate, reliable, and clinically meaningful 
segmentation performance. 

V. DISCUSSION 

A. Performance Evaluation 

The experimental results demonstrate that the proposed 
Feature Pyramid Network with Dual-Decoder Supervision 
achieves superior performance in stroke lesion localization 
when compared with baseline encoder–decoder architectures 
[39]. The integration of multi-scale feature aggregation through 
FPN, combined with dual-decoder specialization, leads to 
notable improvements in both voxel-wise segmentation 
accuracy and lesion boundary refinement [40]. Quantitative 
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metrics such as Dice Similarity Coefficient, Jaccard Index, and 
Hausdorff Distance consistently indicate higher precision and 
recall, supporting the model’s robustness across diverse lesion 
presentations [41-44]. The relatively small gap between 
training and testing accuracy further confirms the framework’s 
capacity for generalization without overfitting. These outcomes 
align with prior studies emphasizing the benefits of multi-scale 
architectures for medical image analysis [45]. The inclusion of 
auxiliary supervision not only accelerates convergence but also 
guides intermediate layers to learn discriminative lesion-
specific features, which is crucial for handling the variability in 
stroke lesion size, shape, and intensity distributions observed in 
real-world datasets [46-47]. 

B. Impact of Multi-Modal Integration 

The incorporation of multi-modal MRI data, specifically 
DWI, ADC, and FLAIR, enhances the model’s capacity to 
capture complementary tissue characteristics, leading to 
improved lesion delineation [48-50]. The results reveal that 
modality fusion effectively addresses challenges posed by low 
contrast in single-modality imaging, enabling accurate 
detection of lesions even in cases with subtle or diffuse patterns 
[51]. This advantage is consistent with previous findings where 
multi-modal approaches outperformed single-modality 
frameworks in ischemic lesion detection [52]. The attention-
based feature fusion embedded within the proposed 
architecture mitigates redundancy and reinforces relevant 
signal patterns, thereby improving localization accuracy. 
Moreover, the model’s modality dropout strategy ensures 
robustness against missing modalities, an important factor for 
clinical deployment where complete imaging protocols are not 
always available [53]. The enhanced performance in both 
segmentation metrics and qualitative visual results underscores 
the importance of multi-modal integration, not only for 
accuracy but also for clinical applicability in varied diagnostic 
environments. 

C. Effectiveness of Dual-Decoder Supervision 

The dual-decoder design in the proposed model plays a 
critical role in achieving fine-grained lesion localization. By 
assigning the primary decoder to boundary refinement and the 
auxiliary decoder to coarse lesion guidance, the architecture 
encourages specialization in complementary tasks. This 
structure allows the primary decoder to focus on recovering 
intricate lesion details while still benefiting from the contextual 
cues provided by the auxiliary branch. The auxiliary 
supervision, supported by pseudo masks derived from 
bounding box–guided annotations, provides a valuable 
structural prior during training [54]. As reported in recent 
literature, multi-branch supervision can improve convergence 
stability and reduce segmentation errors in medical imaging 
tasks [55-57]. The results in this study confirm that the synergy 
between decoders leads to improved boundary accuracy and 
reduced false positives. Furthermore, the qualitative results 
demonstrate that even when pseudo masks contain 
inaccuracies, the network refines these into precise voxel-level 
predictions, reinforcing the utility of this multi-task learning 
paradigm. 

D. Model Generalization and Robustness 

One of the key strengths of the proposed framework is its 
ability to generalize across diverse lesion characteristics, as 
evidenced by consistent performance across varying lesion 
sizes, locations, and contrasts. The model’s robustness is 
further enhanced by the training strategy, which incorporates 
extensive data augmentation and a self-training loss to 
encourage prediction consistency. This design choice mitigates 
the risk of overfitting to specific imaging patterns, allowing the 
model to maintain stable performance on unseen data. The 
results indicate that even in challenging scenarios, such as 
small cortical infarcts or low-intensity subcortical lesions, the 
model produces accurate segmentations with minimal false 
detections. Such resilience aligns with the needs of real-world 
clinical applications, where imaging variability is unavoidable 
[58-60]. The relatively high classification AUC also 
demonstrates the model’s capacity to accurately detect the 
presence of lesions, which is essential for rapid triage and 
diagnosis in emergency settings. 

E. Clinical Implications and Future Work 

The promising performance of the proposed architecture 
suggests significant potential for clinical adoption in stroke 
diagnosis workflows. Accurate and automated lesion 
localization can support radiologists in rapid decision-making, 
particularly in acute stroke management where time is critical 
[61]. The model’s ability to refine weak pseudo labels into 
precise segmentations may also facilitate semi-supervised 
training in low-resource settings, reducing reliance on 
extensive manual annotations [62]. Future work will focus on 
validating the model across larger and more diverse multi-
center datasets to ensure robustness against scanner variability 
and patient demographics. Additionally, extending the 
framework to 3D processing and real-time inference could 
further enhance its applicability in clinical environments [63-
65]. The integration of explainable AI techniques [66] would 
also improve clinician trust by providing transparent 
visualizations of model decisions, an increasingly important 
factor for regulatory approval and ethical deployment. 

VI. CONCLUSION 

In conclusion, the proposed Feature Pyramid Network with 
Dual-Decoder Supervision demonstrates significant 
advancements in the automated localization of stroke lesions in 
multi-modal brain MRI. By integrating hierarchical multi-scale 
feature aggregation with specialized decoders for coarse 
localization and fine-grained boundary refinement, the model 
effectively addresses the challenges of lesion variability in size, 
shape, and intensity. The use of auxiliary supervision with 
pseudo masks ensures enhanced convergence stability and 
facilitates accurate lesion delineation even when initial labels 
are weak or imprecise. Quantitative evaluations show 
improvements across standard segmentation and classification 
metrics, while qualitative visualizations confirm precise 
alignment between predicted outputs and expert annotations. 
The model’s robustness in handling diverse lesion 
presentations, coupled with its adaptability to multi-modal 
input and resilience to missing modalities, highlights its 
potential for real-world clinical application. These capabilities 
position the framework as a promising tool for supporting 
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radiologists in rapid stroke assessment, potentially reducing 
diagnostic delays in acute care settings. Future work should 
focus on expanding validation to multi-center datasets, 
integrating explainable AI techniques for clinical trust, and 
exploring 3D and real-time processing to further enhance 
diagnostic accuracy and workflow efficiency. This research 
lays a strong foundation for scalable, accurate, and 
interpretable AI-driven stroke imaging solutions. 
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