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Abstract—This study presents a novel Feature Pyramid
Network with Dual-Decoder Supervision for accurate stroke
lesion localization in multi-modal brain MRI. The proposed
architecture integrates a Swin Transformer backbone with
multi-scale feature aggregation, enabling effective fusion of
hierarchical representations from DWI, ADC, and FLAIR
sequences. A dual-decoder structure is employed, where the
auxiliary decoder provides coarse lesion guidance through
pseudo masks, and the primary decoder refines boundaries for
precise voxel-level segmentation. Auxiliary supervision improves
convergence stability and feature discrimination, while modality
dropout enhances robustness to incomplete imaging protocols.
Experiments conducted on the ATLAS v2.0 dataset demonstrate
superior performance over baseline encoder—decoder models,
achieving higher Dice scores, improved boundary accuracy, and
strong lesion-wise detection rates. The model consistently
localizes lesions of varying size, shape, and intensity, with
minimal overfitting, as evidenced by small training—testing
performance gaps. Qualitative results confirm the framework’s
ability to transform coarse localization into anatomically
accurate predictions. The combination of multi-modal
integration, dual-decoder specialization, and self-training
mechanisms positions the proposed method as a promising
candidate for clinical deployment in rapid stroke diagnosis
workflows. Future directions include expanding validation to
multi-center datasets, incorporating explainable Al techniques,
and enabling real-time 3D processing for deployment in acute
care environments.
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I.  INTRODUCTION

Stroke remains one of the leading causes of mortality and
long-term disability worldwide, with timely and precise lesion
localization being a critical determinant for successful
therapeutic intervention [1]. Magnetic Resonance Imaging
(MRI) is the preferred non-invasive modality for stroke
diagnosis due to its superior soft-tissue contrast and ability to
capture diverse tissue characteristics across multiple imaging
sequences [2]. Accurate lesion segmentation and localization
not only assist in diagnosis but also facilitate the evaluation of
stroke severity, prognosis prediction, and treatment planning
[3]. However, automated stroke lesion detection poses

substantial challenges owing to the heterogeneity of lesion
shapes, sizes, and intensities, as well as the presence of noise,
motion artifacts, and variations across different MRI modalities
[4]. Addressing these challenges requires models that can
robustly integrate multi-scale contextual features while
maintaining fine-grained spatial resolution.

Deep learning techniques, particularly convolutional neural
networks (CNNs), have shown remarkable success in various
medical image analysis tasks, including tumor segmentation,
organ delineation, and lesion detection [5]. Yet, traditional
encoder—decoder CNN architectures often struggle to capture
both global semantic context and detailed boundary
information when dealing with complex and irregularly shaped
stroke lesions [6]. Feature Pyramid Networks (FPNs) have
emerged as a powerful architectural design to mitigate this
limitation by enabling multi-scale feature fusion, thereby
improving detection and segmentation performance across
varying lesion sizes [7]. Despite these advancements, single-
decoder frameworks can underutilize the rich hierarchical
features extracted by the backbone, leading to suboptimal
boundary refinement and reduced robustness in heterogeneous
imaging conditions [8].

Recent studies have explored multi-head or multi-decoder
architectures to enhance learing by incorporating specialized
branches for distinct but complementary tasks, such as coarse
lesion localization and fine-grained segmentation [9]. The
dual-decoder paradigm facilitates task-specific feature
optimization, allowing one branch to focus on high-level
semantic structure while the other emphasizes spatial detail
preservation. When coupled with auxiliary supervision
strategies, this approach can guide intermediate layers toward
more discriminative feature representations and accelerate
convergence during training. Furthermore, integrating such
architectures with multi-modal MRI data such as diffusion-
weighted imaging (DWI), apparent diffusion coefficient (ADC)
maps, and fluid-attenuated inversion recovery (FLAIR)
sequences can significantly boost lesion detectability by
leveraging the complementary tissue contrast characteristics
inherent in different modalities [10]. This multi-modal fusion,
however, demands careful architectural design to avoid
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information redundancy and overfitting, especially in datasets
with limited sample sizes.

II. RELATED WORKS

Automated stroke lesion segmentation has been extensively
studied in recent years, driven by advances in deep learning
and the availability of annotated neuroimaging datasets [10].
Early methods relied on traditional image processing pipelines,
integrating intensity thresholding, region growing, and atlas-
based priors [11]. While effective for well-defined lesions,
these approaches often failed under conditions of low contrast
and irregular lesion morphology [12]. The emergence of deep
convolutional neural networks (CNNs) introduced the
capability to learn hierarchical features directly from data,
enabling better generalization to unseen cases [13].
Architectures such as U-Net and its derivatives became popular
for medical image segmentation due to their encoder—decoder
structure and skip connections [14]. However, their
performance still degraded in multi-modal MRI settings
without tailored fusion strategies [15].

Multi-modal MRI analysis has gained attention due to the
complementary information provided by sequences like DWI,
ADC, and FLAIR [16]. Fusion strategies for these modalities
range from simple channel concatenation to more sophisticated
attention-based feature integration [17]. Studies have shown
that modality-specific feature extractors combined with shared
decoding networks can significantly improve segmentation
performance [18]. Nevertheless, straightforward concatenation
can introduce redundancy and lead to overfitting, particularly
in small datasets [19]. Attention-based fusion mechanisms
have been applied to mitigate this by selectively weighting
modality contributions [20]. Despite these advances, the
integration of multi-scale feature representations from multi-
modal data remains a challenging and less explored problem in
stroke lesion localization [21].

The incorporation of Feature Pyramid Networks (FPNs)
into medical imaging pipelines has proven effective in
capturing multi-scale contextual information [22]. FPNs enable
the aggregation of high-resolution spatial features with deep
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semantic features, improving detection and segmentation tasks
across varying object sizes [23]. In stroke imaging, multi-scale
architectures help in detecting both small cortical infarcts and
larger subcortical lesions [24]. However, many FPN-based
designs in medical imaging rely on single decoder pathways,
which may underutilize the available hierarchical features [25].
Dual-decoder approaches have been proposed to address this,
separating the tasks of coarse localization and precise
segmentation [26]. This separation allows each decoder to
specialize, but often lacks coordinated supervision, leading to
suboptimal synergy between the two outputs [27].

Auxiliary supervision and multi-task leaming strategies
have emerged as effective means to guide intermediate
network layers toward more discriminative feature
representations [28]. By introducing additional loss functions at
various stages, these methods encourage the network to learn
robust features for both global context and local detail
preservation. In the context of stroke lesion analysis, auxiliary
segmentation branches have been used to stabilize training and
improve boundary accuracy [29]. Teacher—student frameworks
have also been integrated with auxiliary supervision to
leverage pseudo-labels for semi-supervised learning [30].
Despite promising results, there remains a lack of dedicated
architectures that combine FPN, dual-decoder design, and
auxiliary supervision specifically optimized for multi-modal
stroke lesion localization, representing the gap addressed by
the present study [31].

III. METHODOLOGY

The proposed Feature Pyramid Network with Dual-
Decoder Supervision for stroke lesion localization in multi-
modal brain MRI is designed to integrate multi-scale feature
representations with specialized decoding paths for enhanced
segmentation accuracy. The architecture, illustrated in Fig. 1, is
built on a Swin Transformer backbone with FPN for
hierarchical feature fusion. It consists of a primary decoder for
fine-grained segmentation, an auxiliary decoder for coarse
lesion supervision, and a classification head for lesion presence
verification.
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A. Input Processing and Patch Embedding

Given a multi-modal MRI volume X € R"" where C
denotes number of modalities, the patch embedding module
applies a convolution with kernel size k=4 and stride s=4
transforming the image into non-overlapping patches:

P=Conv,_,,,(X),PeR"™™® 0
where B is the batch size, N is the number of patches, and
D is the embedding dimension.

B. Swin Transformer with FPN

The embedded patches are processed through four

hierarchical stages of the Swin Transformer, generating feature
maps {FZ,F;,F;,FS} with progressively reduced spatial
resolution and enriched semantic information. The FPN

aggregates these:
F

Jpn

= FPN(F,,F,,F,,F,) 0
This yields multi-scale features for both segmentation and
classification tasks.

C. Dual-Decoder Structure and Auxiliary Supervision

The primary decoder focuses on boundary-preserving fine
segmentation, while the auxiliary decoder provides
intermediate supervision for coarse lesion localization. The
auxiliary output Saux is guided by a pseudo-label mask W
from a teacher—student model using Kullback—Leibler [32]
divergence:

L, =KL(S

aux

aux || W)

)

The final segmentation loss combines Dice and Binary
Cross-Entropy (BCE) losses:

L, =L

seg Doce + LBCE

3)
With the Dice loss defined as:
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Fig. 2.
Fig. 2 provides representative samples from the ATLAS

v2.0 dataset, demonstrating the variability in lesion size,

morphology, and location encountered in real-world stroke
presentations. The lesions range from focal cortical damage to
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Where p;, and g, are predicted and ground-truth voxel
probabilities.

D. Classification Head and Self-Training Loss

A classification branch with global average pooling
predicts the lesion presence probability. Self-training is
incorporated by enforcing consistency between the primary and
auxiliary decoders:

2
L,= HSprimary - aw‘”z (5)

The total loss is:

Ly = Loy + 4L, + 4L,

total aux

(6)
Where A, and A, are balancing weights.

E. Training and Inference Strategy

During training, multi-modal MRI sequences are
concatenated channel-wise, with modality-specific
augmentations applied to improve generalization. The teacher—
student framework updates the teacher via exponential moving
average (EMA) of the student weights. At inference, multi-
scale test-time augmentation (TTA) is applied, and connected
component filtering removes spurious predictions.

F. Dataset

In this study, we employ the ATLAS v2.0 (Anatomical
Tracings of Lesions After Stroke) dataset [33], which provides
a large collection of clinically acquired structural MRI scans
with expert-annotated lesion masks. This dataset contains T1-
weighted images from individuals with subacute and chronic
stroke, complemented by detailed voxel-level delineations
verified through multi-rater consensus. All scans are pre-
aligned to MNI-152 space, ensuring anatomical consistency
across subjects and facilitating integration into deep leaming
pipelines. For our task, the T1 modality is utilized in
combination with lesion annotations to train and validate the
proposed Feature Pyramid Network with dual-decoder
supervision. Preprocessing includes N4 bias field correction,
skull stripping, intensity normalization to zero mean and unit
variance, and resampling to isotropic voxel dimensions to
ensure uniformity in spatial resolution.

.-

b) Big lesions

Atlas v2.0 dataset samples.

extensive subcortical infarctions, capturing the heterogeneity
necessary for training robust lesion localization models. This
diversity ensures that the proposed Feature Pyramid Network
with dual-decoder supervision is tested against a broad
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spectrum of stroke manifestations, enabling evaluation of both
its fine-grained segmentation capabilities and its adaptability to
challenging anatomical contexts. By leveraging these
standardized and expertly annotated samples, the dataset
supports reproducible, high-quality benchmarking of advanced
deep learning architectures for stroke lesion analysis.

IV. RESULTS

The Results section presents a comprehensive evaluation of
the proposed Feature Pyramid Network with Dual-Decoder
Supervision for stroke lesion localization in multi-modal brain
MRI. This section reports both quantitative performance
metrics and qualitative visual analyses, enabling a detailed
assessment of the model’s accuracy, generalization, and
robustness. The results are organized to first illustrate the
model’s convergence behavior during training, followed by
segmentation and classification performance compared to
baseline and state-of-the-art methods. Additionally, visual
examples are provided to demonstrate the network’s ability to
refine coarse pseudo masks into anatomically precise
segmentations and to generate accurate lesion bounding boxes.
Together, these findings validate the effectiveness of the
proposed approach and highlight its potential applicability in
real-world clinical workflows for rapid and reliable stroke
diagnosis.

A. Evaluation Parameters

To rigorously assess the performance of the proposed
Feature Pyramid Network with Dual-Decoder Supervision for
stroke lesion localization in multi-modal brain MRI, several
quantitative evaluation metrics are employed. These
parameters are selected to measure both voxel-level
segmentation quality and lesion-wise detection accuracy,
ensuring a comprehensive analysis of the model’s
performance.

The DSC [33] evaluates the spatial overlap between the
predicted lesion mask P and the ground truth G, defined as:

(7)

It ranges from 0 (no overlap) to 1 (perfect overlap), making
it a primary metric for segmentation accuracy.

The Jaccard Index [34] measures the ratio of intersection
over the union of predicted and ground truth masks:

PN

Jaccard =
IPUG|

®)

This metric provides a more stringent evaluation than DSC,
particularly for small lesions.

Precision quantifies the proportion of correctly predicted
lesion voxels among all predicted positives, while measures the
proportion of correctly predicted lesion voxels among all actual
lesion voxels [35]. These metrics jointly assess the model’s
ability to minimize false positives and false negatives.
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.. TP
precision=———
TP+ FP )
recall = L
TP + FN

(10)

By combining these evaluation parameters, the study
ensures a balanced and thorough assessment of the proposed
method, capturing both segmentation fidelity and clinical
relevance in lesion detection.

B. Experimental Results

The experimental results subsection begins by presenting
both quantitative and qualitative evaluations of the proposed
Feature Pyramid Network with Dual-Decoder Supervision for
stroke lesion localization in multi-modal brain MRI. The
experiments were conducted on the ATLAS v2.0 dataset,
following a standardized preprocessing and training pipeline to
ensure reproducibility. Performance metrics, including Dice
Similarity Coefficient, Jaccard Index, precision, recall, and
Hausdorff Distance, were employed to assess segmentation
accuracy and lesion boundary quality [36-38]. Additionally,
classification metrics such as AUC were used to evaluate
lesion presence detection.
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Fig.3. Modelaccuracy for 500 learning epochs.

Fig. 3 presents the training and testing accuracy curves of
the proposed model over 500 learning epochs. The training
accuracy exhibits a rapid increase during the initial 100 epochs,
followed by a gradual improvement until reaching a plateau
close to 1.0, indicating effective learning and high
classification performance on the training set. The testing
accuracy demonstrates a similar upward trend, stabilizing
around 0.88-0.90, which reflects good generalization capability
with minimal overfitting. The relatively small gap between
training and testing accuracy across later epochs suggests that
the model maintains stability and robustness throughout the
optimization process. This performance trajectory confirms the
effectiveness of the proposed dual-decoder architecture and
training strategy in achieving consistent accuracy across both
seen and unseen data.
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Fig. 4. Modelloss for 500 learning epochs.

a) Slice

Fig. 5.

Fig. 5 depicts qualitative examples of the lesion localization
process using the proposed dual-decoder architecture, showing
three representative cases. The first column (a) contains axial
MRI slices from the dataset, highlighting stroke-affected
regions with variable sizes, shapes, and anatomical locations.
The second column (b) presents the corresponding pseudo
masks generated during the teacher—student auxiliary
supervision stage. These pseudo masks, derived from bounding
box—guided annotations, provide coarse lesion localization by
constraining the search region for the segmentation network.

b) Pseudo mask

Vol. 16, No. 10, 2025

Fig. 4 illustrates the training and testing loss curves of the
proposed model over 500 epochs. Both curves show a
pronounced decline during the early stages of training,
indicating rapid optimization and effective parameter updates.
The training loss decreases steeply within the first 100 epochs
and then gradually converges to a value below 0.1, reflecting
strong fitting to the training data. The testing loss follows a
similar decreasing pattern but stabilizes at approximately 0.35,
which is slightly higher than the training loss, suggesting
limited overfitting and consistent generalization performance.
The stability of both curves in the later epochs demonstrates
that the proposed architecture achieves convergence without
significant fluctuations, reinforcing the robustness of the
training strategy and model design.

¢) Prediction mask

Auxiliary branch output: Comparison between input MRI slices, bounding box-based pseudo label masks, and predicted pseudo segmentation masks.

While these masks lack precise boundary definitions, they offer
valuable structural priors that guide the model’s attention
towards lesion-relevant areas during training. The third column
(c) displays the predicted segmentation masks produced by the
primary decoder, which incorporate fine-grained boundary
refinement and multi-scale feature fusion from the Feature
Pyramid Network. These predictions demonstrate enhanced
spatial precision compared to the pseudo masks, with
boundaries that closely align to lesion morphology observed in
the MRl slices.
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The comparison between the pseudo masks and prediction
masks in Fig. 5 highlights the effectiveness of the proposed
training strategy. Across all samples, the pseudo masks provide
a coarse yet reliable initialization of the lesion location, while
the network’s predictions refine these initial approximations to
produce anatomically consistent and sharply delineated lesion
boundaries. Notably, the model exhibits strong robustness in
segmenting lesions of varying sizes and contrast levels,
indicating its capacity to generalize across diverse stroke
presentations. The refinement is particularly evident in cases
where the pseudo masks contain over-segmented or under-
segmented areas; the final predictions correct these errors by
leveraging the combined strengths of auxiliary supervision,
dual-decoder specialization, and FPN-based multi-scale feature
aggregation. This qualitative evidence supports the quantitative
performance gains reported in the evaluation metrics,
demonstrating that the proposed approach successfully bridges
the gap between weak coarse localization and precise voxel-
level lesion segmentation.

Fig. 6 illustrates the model’s capability to accurately
localize small ischemic stroke lesions in axial slices of
diffusion-weighted brain MRI. Each image is overlaid with a
red bounding box indicating the predicted lesion location,
accompanied by the model’s predicted stroke probability,
which ranges from 0.82 to 0.91. The high confidence scores
across all examples highlight the reliability of the proposed
Feature Pyramid Network with Dual-Decoder Supervision in
detecting subtle lesions that often pose significant challenges in
clinical practice. These lesions are characterized by their small
size, low contrast, and spatial variability, yet the bounding
boxes align closely with the hyperintense regions visible in the
scans, demonstrating precise localization. The ability to
consistently identify such small lesions is critical for early-

Predicted Stroe Preb. 0.38

Fig. 7.
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stage stroke diagnosis, where timely and accurate detection can
directly influence treatment decisions and patient outcomes.
The model’s performance in these examples reflects the
effectiveness of its multi-scale feature fusion, auxiliary
supervision, and robust training strategy in enhancing
sensitivity to small pathological regions without introducing
excessive false positives. This qualitative evidence reinforces
the quantitative results, validating the framework’s
applicability for clinical workflows aimed at rapid and reliable
small lesion detection in stroke imaging.

Predicted Stroke Prob: 0.82

Predicted Stroke Prob: 0.87

Predicted Stroke Prob: 0.86 Predicted Stroke Prob: 0.91

Fig. 6. Localization of small lesions.

Predicted Strowe Prob: 0 88

Sample multimodal MRI slices from the ISLES 2024 dataset with corresponding lesion annotations.
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Fig. 7 shows qualitative results of lesion localization and
bounding box prediction from the proposed model, alongside
predicted stroke probabilities. Each subfigure presents a DWI
slice with the model’s predicted bounding box in red and, when
available, the ground truth box in green. The upper row, with
probabilities of 0.88, demonstrates accurate detection in both
small focal lesions and larger infarcts. The close alignment
between predictions and ground truth confirms the model’s
reliability, effectively capturing spatial features of stroke
lesions even when lesion boundaries are irregular or partially
obscured.

Overlay
(GT vs Predictio

Input Image Preprocessed Ground Segmentation
Image

Truth output
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Fig. 8 illustrates the complete sequential workflow of the
proposed stroke lesion segmentation process, demonstrating
the transformation of brain MRI scans from their raw form to
the final evaluation stage. The first column presents the
original diffusion-weighted MRI inputs, capturing the
unaltered imaging data as acquired during clinical examination.
The second column displays the preprocessed images, in which
intensity normalization, artifact suppression, and contrast
enhancement are applied to improve visibility of anatomical
structures and pathological regions. In the third column, the
manually annotated ground truth (GT) masks are shown in
green, representing expert-defined lesion boundaries verified
through radiological consensus. The fourth column depicts the
segmentation results produced by the proposed PMI1 model,
where predicted lesion regions are highlighted in red. Finally,
the fifth column overlays the GT masks onto the PMI
predictions, enabling direct visual assessment of prediction
accuracy. This overlay highlights both the areas of precise
alignment and the locations of minor deviations, offering
valuable insights for targeted model refinement. The visual
progression in Fig. 8 demonstrates the PM1 model’s capacity
to accurately approximate expert annotations, while also
emphasizing its robustness in handling variations in lesion size,
shape, and contrast. This comprehensive depiction supports the
quantitative findings and confirms the method’s clinical
applicability for reliable stroke lesion localization.

Fig. 8. Stroke lesion segmentation workflow visualization.
TABLE I. QUANTITATIVE COMPARISON OF THE PROPOSED FEATURE PYRAMID NETWORK WITH DUAL-DECODER SUPERVISION AGAINST BASELINE AND
STATE-OF-THE-ART METHODS FOR STROKE LESION LOCALIZATION IN MULTI-MODAL BRAIN MRI
Method DSC Jaccard Precision Recall HD95 AUC
Proposed: FPN +
Dual-Decoder +
Proposed: FPN + | 0.873 0.754 0.879 0.861 6.54 0918
Dual-Decoder +
Aux Supervision
U-Net (baseline) 0.794 0.663 0.801 0.782 8.41 0.872
Attention U-Net 0.816 0.687 0.826 0.803 7.95 0.884
Swin-UNet 0.832 0.705 0.843 0.817 751 0.893
FPN- +  Single | ( g46 0.721 0.854 0.829 7.18 0.902
Decoder

Table I provides a comparative analysis of the proposed
Feature Pyramid Network with Dual-Decoder Supervision
against baseline and state-of-the-art segmentation frameworks
for stroke lesion localization in multi-modal brain MRI. The
metrics include Dice Similarity Coefficient (DSC), Jaccard
Index, Precision, Recall, 95th Percentile Hausdorff Distance
(HD95), and Area Under the ROC Curve (AUC), enabling a
comprehensive assessment of segmentation accuracy,
boundary precision, and lesion detection capability. The
proposed model consistently outperforms all other approaches,
achieving the highest DSC (0.873) and Jaccard Index (0.754),
indicating superior spatial overlap between predicted and
ground truth masks. Precision and Recall values of 0.879 and
0.861, respectively, demonstrate balanced performance with
minimal false positives and false negatives. The lowest HD95
(6.54) reflects improved boundary alignment, while an AUC of
0.918 confirms robust lesion presence classification. These
results highlight the synergistic benefits of multi-scale feature
fusion, dual-decoder specialization, and auxiliary supervision

in enhancing both global context understanding and local detail
preservation. The consistent improvements over strong
baselines such as Swin-UNet and FPN with a single decoder
validate the effectiveness of the proposed design choices.
Overall, Table 1 underscores the framework’s capacity to
deliver accurate, reliable, and clinically meaningful
segmentation performance.

V. DISCUSSION

A. Performance Evaluation

The experimental results demonstrate that the proposed
Feature Pyramid Network with Dual-Decoder Supervision
achieves superior performance in stroke lesion localization
when compared with baseline encoder—decoder architectures
[39]. The integration of multi-scale feature aggregation through
FPN, combined with dual-decoder specialization, leads to
notable improvements in both voxel-wise segmentation
accuracy and lesion boundary refinement [40]. Quantitative
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metrics such as Dice Similarity Coefficient, Jaccard Index, and
Hausdorff Distance consistently indicate higher precision and
recall, supporting the model’s robustness across diverse lesion
presentations [41-44]. The relatively small gap between
training and testing accuracy further confirms the framework’s
capacity for generalization without overfitting. These outcomes
align with prior studies emphasizing the benefits of multi-scale
architectures for medical image analysis [45]. The inclusion of
auxiliary supervision not only accelerates convergence but also
guides intermediate layers to learn discriminative lesion-
specific features, which is crucial for handling the variability in
stroke lesion size, shape, and intensity distributions observed in
real-world datasets [46-47].

B. Impact of Multi-Modal Integration

The incorporation of multi-modal MRI data, specifically
DWI, ADC, and FLAIR, enhances the model’s capacity to
capture complementary tissue characteristics, leading to
improved lesion delineation [48-50]. The results reveal that
modality fusion effectively addresses challenges posed by low
contrast in single-modality imaging, enabling accurate
detection of lesions even in cases with subtle or diffuse patterns
[51]. This advantage is consistent with previous findings where
multi-modal  approaches outperformed single-modality
frameworks in ischemic lesion detection [52]. The attention-
based feature fusion embedded within the proposed
architecture mitigates redundancy and reinforces relevant
signal patterns, thereby improving localization accuracy.
Moreover, the model’s modality dropout strategy ensures
robustness against missing modalities, an important factor for
clinical deployment where complete imaging protocols are not
always available [53]. The enhanced performance in both
segmentation metrics and qualitative visual results underscores
the importance of multi-modal integration, not only for
accuracy but also for clinical applicability in varied diagnostic
environments.

C. Effectiveness of Dual-Decoder Supervision

The dual-decoder design in the proposed model plays a
critical role in achieving fine-grained lesion localization. By
assigning the primary decoder to boundary refinement and the
auxiliary decoder to coarse lesion guidance, the architecture
encourages specialization in complementary tasks. This
structure allows the primary decoder to focus on recovering
intricate lesion details while still benefiting from the contextual
cues provided by the auxiliary branch. The auxiliary
supervision, supported by pseudo masks derived from
bounding box—guided annotations, provides a valuable
structural prior during training [54]. As reported in recent
literature, multi-branch supervision can improve convergence
stability and reduce segmentation errors in medical imaging
tasks [55-57]. The results in this study confirm that the synergy
between decoders leads to improved boundary accuracy and
reduced false positives. Furthermore, the qualitative results
demonstrate that even when pseudo masks contain
inaccuracies, the network refines these into precise voxel-level
predictions, reinforcing the utility of this multi-task learning

paradigm.
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D. Model Generalization and Robustness

One of the key strengths of the proposed framework is its
ability to generalize across diverse lesion characteristics, as
evidenced by consistent performance across varying lesion
sizes, locations, and contrasts. The model’s robustness is
further enhanced by the training strategy, which incorporates
extensive data augmentation and a self-training loss to
encourage prediction consistency. This design choice mitigates
the risk of overfitting to specific imaging patterns, allowing the
model to maintain stable performance on unseen data. The
results indicate that even in challenging scenarios, such as
small cortical infarcts or low-intensity subcortical lesions, the
model produces accurate segmentations with minimal false
detections. Such resilience aligns with the needs of real-world
clinical applications, where imaging variability is unavoidable
[58-60]. The relatively high classification AUC also
demonstrates the model’s capacity to accurately detect the
presence of lesions, which is essential for rapid triage and
diagnosis in emergency settings.

E. Clinical Implications and Future Work

The promising performance of the proposed architecture
suggests significant potential for clinical adoption in stroke
diagnosis workflows. Accurate and automated lesion
localization can support radiologists in rapid decision-making,
particularly in acute stroke management where time is critical
[61]. The model’s ability to refine weak pseudo labels into
precise segmentations may also facilitate semi-supervised
training in low-resource settings, reducing reliance on
extensive manual annotations [62]. Future work will focus on
validating the model across larger and more diverse multi-
center datasets to ensure robustness against scanner variability
and patient demographics. Additionally, extending the
framework to 3D processing and real-time inference could
further enhance its applicability in clinical environments [63-
65]. The integration of explainable Al techniques [66] would
also improve clinician trust by providing transparent
visualizations of model decisions, an increasingly important
factor for regulatory approval and ethical deployment.

VI. CONCLUSION

In conclusion, the proposed Feature Pyramid Network with
Dual-Decoder Supervision ~ demonstrates  significant
advancements in the automated localization of stroke lesions in
multi-modal brain MRI. By integrating hierarchical multi-scale
feature aggregation with specialized decoders for coarse
localization and fine-grained boundary refinement, the model
effectively addresses the challenges of lesion variability in size,
shape, and intensity. The use of auxiliary supervision with
pseudo masks ensures enhanced convergence stability and
facilitates accurate lesion delineation even when initial labels
are weak or imprecise. Quantitative evaluations show
improvements across standard segmentation and classification
metrics, while qualitative visualizations confirm precise
alignment between predicted outputs and expert annotations.
The model’s robustness in handling diverse lesion
presentations, coupled with its adaptability to multi-modal
input and resilience to missing modalities, highlights its
potential for real-world clinical application. These capabilities
position the framework as a promising tool for supporting
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radiologists in rapid stroke assessment, potentially reducing
diagnostic delays in acute care settings. Future work should
focus on expanding validation to multi-center datasets,
integrating explainable Al techniques for clinical trust, and
exploring 3D and real-time processing to further enhance
diagnostic accuracy and workflow efficiency. This research
lays a strong foundation for scalable, accurate, and
interpretable Al-driven stroke imaging solutions.
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