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Abstract—Rapid advancement of artificial intelligence (AI) 

and geospatial data fusion has enabled the development of highly 

autonomous terrestrial navigation systems with improved 

accuracy, adaptability, and robustness. This paper proposes a 

novel framework integrating multi-source geospatial data fusion 

with deep learning-based decision-making for autonomous 

terrestrial navigation. Unlike conventional approaches that rely 

solely on Global Navigation Satellite Systems (GNSS) or inertial 

sensors, our system leverages a hybrid fusion model combining 

GNSS, LiDAR, camera vision, and high-resolution geospatial 

databases. A deep reinforcement learning (DRL) paradigm is 

introduced to enhance the system’s adaptability in dynamic 

environments, optimizing route planning and obstacle avoidance 

in real-time. Additionally, a hybrid AI model incorporating 

Graph Neural Networks (GNN) and Transformer-based 

architectures processes spatial and temporal dependencies in 

navigation data, improving localization precision and resilience 

against sensor failures. The proposed system is evaluated 

through extensive simulations and real-world tests, 

demonstrating superior performance in complex urban and off-

road scenarios compared to traditional Kalman filter-based 

methods. Our findings highlight the potential of AI-driven 

geospatial data fusion in redefining autonomous navigation, 

paving the way for next-generation intelligent mobility solutions. 
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I. INTRODUCTION  

Autonomous terrestrial navigation has witnessed significant 
progress over the past decade, driven by advancements in 
artificial intelligence (AI), sensor technologies, and geospatial 
data processing. The ability of a vehicle to navigate 
autonomously in complex and dynamic environments requires 
precise perception, localization, decision-making, and control 
[1], [2], [3]. Traditional navigation systems rely primarily on 
global navigation satellite systems (GNSS) and inertial sensors, 
or on predefined maps and rule-based algorithms, which often 
struggle in unstructured or rapidly changing conditions, which 
can suffer from limitations in urban environments and adverse 
weather conditions [4], [5]. Recent developments in geospatial 
data fusion, integrating multiple sensor modalities, have 

opened new possibilities for robust and intelligent navigation 
systems. Combining AI-driven algorithms with multi-source 
geospatial data enhances precision, resilience, and adaptability 
in dynamic terrains. 

The proposed system integrates multi-modal sensor data, 
including GNSS, LiDAR, camera vision, and high-resolution 
geographic information system (GIS) databases. The geospatial 
data is processed using a hybrid AI framework incorporating 
deep reinforcement learning (DRL) for decision-making and 
graph neural networks (GNN) coupled with Transformer-based 
architectures for spatiotemporal data modeling. The system 
continuously learns and adapts to environmental changes 
through real-time sensor fusion and AI-based prediction 
models. Optimization techniques are applied to improve route 
planning and obstacle avoidance, ensuring reliable navigation 
in both structured and unstructured environments. 

This research aims to develop a hybrid AI-driven 
navigation system that enhances localization and navigation 
through geospatial data fusion. It focuses on optimizing 
decision-making and obstacle avoidance using reinforcement 
learning strategies while improving robustness in GNSS-
denied environments through deep learning techniques. The 
proposed model will be validated through extensive 
simulations and real-world testing across diverse environments. 

Despite the progress in autonomous navigation, several 
challenges remain unaddressed. GNSS-based methods face 
signal occlusion in urban canyons and dense forests, while 
traditional sensor fusion techniques struggle with adaptability 
in unstructured terrains [6], [7], [8]. AI-driven approaches have 
shown promise but require optimized architectures to handle 
the complexity and real-time constraints of navigation. This 
study aims to bridge these gaps by introducing a robust, AI-
enhanced geospatial data fusion framework that ensures real-
time adaptability and high-precision localization. The 
implementation involves acquiring multi-source geospatial data 
from GNSS, LiDAR, cameras, and GIS databases, followed by 
preprocessing to ensure data consistency and accuracy. Deep 
learning techniques are then used for feature extraction to 
capture spatial and temporal patterns. A hybrid AI model 
combining GNNs and Transformers is developed for sensor 
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fusion, while a deep reinforcement learning agent handles 
adaptive path planning and obstacle avoidance. The system 
undergoes simulations and real-world testing, with model 
optimization and validation performed based on experimental 
feedback to enhance robustness and reliability. By combining 
AI-driven techniques with multi-source geospatial data fusion, 
this paper aims to advance the control methodologies in 
autonomous terrestrial navigation, contributing to safer and 
more efficient mobility solutions. 

This paper is organized as follows: Section 1 introduces the 
study. Section II reviews existing models for land navigation 
system control. Section III details the proposed control 
approach. Section IV presents experimental results based on 
selected datasets and compares the proposed method with 
existing models. Section V provides analysis and discussion of 
the results. Finally, Section VI concludes the paper. 

II. EXISTING MODELS 

Several models have been developed for autonomous 
terrestrial navigation, each demonstrating different levels of 
accuracy, efficiency, and robustness. Traditional methods such 
as Kalman Filters (KF) and Extended Kalman Filters (EKF) 
offer reliable localization but struggle in GNSS-denied 
environments due to their reliance on linear assumptions, 
achieving accuracy scores around 82% with moderate 
computational efficiency about 170ms. Particle Filters (PF) 
provide improved robustness, reaching accuracies of 87-90%, 
but at the cost of higher computational complexity, making 
them less suitable for real-time applications, around 400ms. 
More recently, deep learning models such as Convolutional 
Neural Networks (CNN) and Recurrent Neural Networks 
(RNN) have been integrated into navigation systems, 
enhancing feature extraction and adaptability in dynamic 
environments, achieving accuracies between 90-94% but 
requiring high processing power [9], [10], [11]. They react 
under an approximate time of 180ms. Hybrid AI models, 
including Graph Neural Networks (GNN) and Transformer-
based architectures, have emerged as state-of-the-art solutions, 
excelling in fusing multi-source geospatial data for improved 
decision-making, with accuracy rates exceeding 95% while 
maintaining efficient computational performance. Additionally, 
Deep Reinforcement Learning (DRL) demonstrated 
exceptional performance in real-time adaptive navigation, 
optimizing path planning and obstacle avoidance with 
unprecedented efficiency, reaching reaction times of under 
50ms and accuracy scores of 96-98%. These advanced models 
significantly outperform traditional approaches in terms of 
accuracy, computational efficiency, and robustness, making 
them ideal for next-generation autonomous navigation systems 
[12], [13], [14]. By leveraging a combination of these AI-
driven techniques, the proposed research aims to develop a 
navigation system that achieves high precision and adaptability 
in complex environments. 

The GNSS model provides an approximate distance given 
in equation below: 

ρ𝑖 = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2 + c ⋅ Δ𝑡   (1) 

ρ𝑖  : approximate distance between the satellite i  and the 
autonomous navigation system. 

(𝑥𝑖, 𝑦𝑖, 𝑧𝑖): known coordinates of satellite i. 

(x, y, z): unknown coordinates of the GNSS receiver (to be 
determined) 

c : light speed (≈ 299792458 m/s) 

Δ𝑡: navigation system clock error [15], [16]. 

The GNSS localization process involves several key steps: 
first, pseudo range measurements are calculated for each 
visible satellite. These measurements are then used in position 
determination algorithms, such as trilateration, to estimate the 
receiver’s location. Velocity is obtained by differentiating the 
position data over time, and continuous tracking of position 
enables the mapping of the receiver’s trajectory [17]. 

The position 𝑃  in 3D space (latitude, longitude, and 
altitude) is calculated from the pseudorange 𝑅 (distance from 
the satellite to the receiver) using the following equation: 

𝑃(𝑥, 𝑦, 𝑧) = (
𝑅

√(𝑅𝑥
2+𝑅𝑦

2+𝑅𝑧
2)

)                           (2) 

𝑥, 𝑦,𝑧 are the coordinates of the receiver. 

𝑅𝑥, 𝑅𝑦,𝑅𝑧 are the positions of the satellite in 3D space [18]. 

The pseudo range 𝑅 is measured by comparing the time 
difference between the signal transmission and reception. 

The velocity vector 𝑉 of the receiver can be estimated by 
differentiating the position over time: 

𝑉 =
𝑑𝑃

𝑑𝑡
                                       (3) 

𝑉 = (𝑉𝑥,𝑉𝑦 ,𝑉𝑧) represents the velocity components in each 

direction. 𝑃 is the position vector of the receiver. Velocity is 
calculated by tracking the movement of the receiver and 
differentiating position data in time [19]. 

The trajectory 𝑇 is a continuous path of positions over time: 

𝑇(𝑡) = 𝑃(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))                  (4) 

𝑇(𝑡) is the trajectory at time 𝑡 , describing the movement 
over time. Trajectory is essentially the collection of positions at 
different time instances, providing a continuous path for the 
receiver. 

The general GIS data extraction process involves defining a 
region or point of interest, querying the dataset using spatial 
criteria, and extracting the relevant features (points, lines, 
polygons, or raster cells) that meet the query conditions [20]. 

For a given point of interest (𝑥, 𝑦), the equation to extract 
features from the map is: 

𝐹 = {𝑓 ∣ 𝑓 ∈ 𝐴,where 𝑓 contains (𝑥, 𝑦)}             (5) 

𝐹: The set of map features that contain the point (𝑥, 𝑦). 

𝐴 : The entire map or dataset of features (points, lines, 
polygons). 

(𝑥, 𝑦): The coordinates of the point of interest. 
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This equation retrieves features that intersect with or 
contain the specified point on the map. 

For line features (e.g., roads, rivers), if 𝐿 is a line feature 
and 𝑃  is the point set of a map, the extraction can be 
represented as: 

𝐹 = {𝐿 ∣ 𝐿  ∈ 𝑃, 𝐿 intersects with a specified region } 

𝐿: Line feature (like roads or rivers). 

𝑃: Map of all features. 

Intersection is checked with a predefined region or 
coordinates. For polygon features (e.g., boundaries, areas of 
interest), extraction can be expressed as: 

𝐹 = {𝑃 ∣ 𝑃 ∈ 𝐴, 𝑃 contains the point (𝑥,𝑦)} 

𝑃: Polygon feature (e.g., land parcels, administrative areas). 

𝐴: The complete map data. 

(𝑥, 𝑦): The query point inside the polygon. 

This retrieves all polygons containing a specific point or 
within a defined boundary. 

In raster data (grid-based data, like satellite images), 
extraction can be represented as: 

𝐷𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 = {𝑅(𝑖, 𝑗) ∣ 𝑅(𝑖, 𝑗) is within the region of interest} 

𝐷𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑: The extracted raster data. 

𝑅(𝑖, 𝑗): A specific cell in the raster grid. 

Region of interest: The spatial subset defined by user input. 

In the fields of statistics and control theory, the Kalman 
filter is a mathematical algorithm representing a type of infinite 
impulse response filter that continuously estimates the internal 
state of a dynamic system over time. It does this by processing 
a sequence of measurements, even if those measurements are 
noisy or partially missing [21], [22]. The filter updates its 
estimates whenever new data becomes available, making it 
especially useful for tracking systems that evolve over time, 
such as navigation, robotics, or signal processing. The update 
state said prediction is given by Eq. (6). 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘                           (6) 

The measurement is determinate using the following 
relation. 

       𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘                                    (7) 

𝑥𝑘: state vector at time 𝑘. 

𝑢𝑘: control input 

𝑧𝑘: measurement 

𝑤𝑘 ∼ 𝑁(0, 𝑄): process noise 

𝑣𝑘 ∼ 𝑁(0, 𝑅): measurement noise 

𝐴: state transition matrix 

𝐵: control input matrix 

𝐻: observation matrix 

The Extended Kalman filter EKF as a nonlinear state space 
model, is used for determining nonlinear systems. It is involved 
by the following equations: 

   𝑥𝑘 = 𝑓(𝑥𝑘−1 ,𝑢𝑘) + 𝑤𝑘                              (8) 

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘                               (9) 

𝑓(⋅): nonlinear state transition 

ℎ(⋅): nonlinear measurement function 

The Particle Filter is a probabilistic estimation technique 
used to estimate the hidden (or latent) states of a non-linear and 
non-Gaussian dynamic system over time, based on noisy and 
partial measurements. It approximates the posterior probability 
distribution of the system's state using a set of random samples, 
called particles. Each particle represents a possible state of the 
system and has a weight that reflects how well it agrees with 
the observed measurements [23], [24]. This model is applied 
essentially in robot localization and navigation or for object 
detection in complex dynamic environments. It is flexible and 
adaptable to complex systems, while having as limitation: it is 
computationally expensive especially with large particle sets. 

Bayesian filtering seeks to estimate the posterior 
distribution of the hidden state 𝑥𝑡 from the observations 𝑧1:𝑡, 
as: 𝑝(𝑥𝑡 ∣ 𝑧1:𝑡) 

Since this distribution is often analytically intractable, the 
particle filter approximates it by a set of N particles 

{𝑥𝑡
(𝑖)

,𝑤𝑡
(𝑖)

}𝑖=1
𝑁  

𝑥𝑡
(𝑖)

 is the i-th particle (a sample of the state), 

𝑤𝑡
(𝑖)

 is its weight. 

In its initialization step: for 𝑡 = 0, we initialize the particles 
according to the initial distribution 𝑝(𝑥0) : 

𝑥0
(𝑖)

∼ 𝑝(𝑥0), 𝑤0
(𝑖)

=
1

𝑁
                                    (10) 

In Prediction step for system evolution, for each particle 

𝑥𝑡−1
(𝑖)

, we generate: 𝑥𝑡
(𝑖)

∼ 𝑝(𝑥𝑡 ∣ 𝑥𝑡−1
(𝑖)

) 

This simulates the dynamics of the system. 

In the update step (Weighting), we update the weight of 
each particle based on the likelihood of the current 
observation 𝑧𝑡: 

𝑤𝑡
(𝑖)

= 𝑤𝑡−1
(𝑖)

⋅ 𝑝(𝑧𝑡 ∣ 𝑥𝑡
(𝑖)

)                       (11) 

Then we normalize the weights as: 

𝑤𝑡
(𝑖)

=
𝑤𝑡

(𝑖)

∑ 𝑤𝑡
(𝑗)𝑁

𝑗=1

                                    (12) 

To avoid the problem of particle degeneracy, where a few 
particles have high weight and most have near zero, we applied 
the resampling step. We resample the particles based on their 
weights: replace low-weight particles with copies of high-

weight ones. We take 𝑁  new particles 𝑥𝑡
(𝑖)

 function of their 

weights and set all of them at:  𝑤𝑡
(𝑖)

=
1

𝑁
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The estimated state is usually the weighted average of all 
particles: 

𝑥𝑡̂ =  
1

𝑁
 ∑ 𝑤𝑡

(𝑖)
.  𝑥𝑡

(𝑖)𝑁
𝑖=1                              (13) 

The Convolutional Neural Networks CNNs models are a 
class of deep learning models widely used for image 
processing, pattern recognition, feature extraction and 
computer vision tasks. The key idea is to automatically learn 
spatial hierarchies of features from input data through a series 
of operations. The main operations include convolution, 
activation, and pooling [25]. 

The Purpose of convolution operation step is to extract 
local features (e.g., edges, textures) from the input image using 
learnable filters (kernels). It works as: a small matrix (kernel) 
slides across the input image (or feature map). At each 
location, the dot product between the kernel and the 
overlapping input patch is computed. The result is a feature 
map that highlights specific patterns. A single kernel filter 𝑊 is 
applied to an input 𝑋: 

𝑍𝑖,𝑗 = (𝑋 ∗ 𝑊)𝑖,𝑗 + 𝑏 = ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛𝑛𝑚 ⋅ 𝑊𝑚,𝑛 + 𝑏    (14) 

𝑋: input image or feature map 

𝑊: filter (kernel) 

𝑏: bias term 

𝑍: output feature map 

This step has the property to reduce number of parameters 
compared to fully connected layers. In the activation function 
step, we applied to the output a nonlinear function such as a 
Sigmoid or Rectified Linear Unit (ReLU): 

f(𝑍𝑖,𝑗) = ReLU(𝑍𝑖,𝑗) = max(0, 𝑍𝑖,𝑗)                  (15) 

This step introduces non-linearity into the model, which 
allows it to capture complex patterns and enhances the 
network's ability to learn more expressive and meaningful 
features. 

In the pooling step (e.g., max pooling) is used to reduce 
spatial dimensions (width and height) of feature maps while 
retaining important features. 

There are two pooling types: the max pooling takes the 
maximum value in each patch. The average pooling takes the 
average values in each patch. It works as: a window (e.g., 2×2) 
slides over the input feature map. Only the max or average 
value from each window is kept. 

𝑃𝑖,𝑗 = max
(𝑚,𝑛)∈pooling window

𝑋𝑖+𝑚,𝑗+𝑛                    (16) 

As benefit it reduces computational load. 

Recurrent Neural Networks RNNs models are used for 
sequential data like time series, text, or audio. They maintain a 
memory through hidden states [26], [27], [28]. 

Let: 𝑥𝑡  input at time step 𝑡, ℎ𝑡  hidden state at time 
𝑡 𝑎𝑛𝑑 𝑦𝑡: output at time 𝑡. The update of hidden state is given 
in equation below. 

ℎ𝑡 = tanh(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)               (17) 

𝑊𝑥ℎ: input-to-hidden weights 

𝑊ℎℎ: hidden-to-hidden weights 

𝑏ℎ: bias term 

tanh: activation function 

The output is presented as follows. 

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦                                      (18) 

𝑊ℎ𝑒𝑟𝑒 𝑊ℎ𝑦  are hidden-to-output weights and 𝑏𝑦  are 

output bias. 

Graph Neural Networks GNNs models are designed to 
work with graph-structured data, where data is represented as 
nodes (vertices) and edges (connections). They are powerful 
for applications like social networks, recommendation systems, 
knowledge graphs, and molecular analysis. 

A graph is defined as: 

𝐺 = (𝑉, 𝐸)                                       (19) 

𝑉  is a set of nodes (vertices) and 𝐸  is a set of edges 
(connections between nodes). Each node 𝑣 ∈ 𝑉  has a feature 

vector 𝑥𝑣 ∈ ℝ𝑑. 

GNNs typically operate in layers. At each layer 𝑙 , nodes 
aggregate features from their neighbors and update their own 
representation. The general formula for node representation 
update is expressed below: 

ℎ𝑣
(𝑙) = 𝜎 (AGGREGATE

(𝑙)
({ℎ𝑢

(𝑙−1):𝑢 ∈ 𝒩(𝑣)}))   (20) 

ℎ𝑣
(𝑙) = 𝜎 (𝑊(𝑙) ⋅ CONCAT (ℎ𝑣

(𝑙−1),AGG({ℎ𝑢
(𝑙−1): 𝑢 ∈

𝒩(𝑣)})))                             (21) 

ℎ𝑣
(𝑙)

: hidden state of node 𝑣 at layer 𝑙 

𝒩(𝑣): set of neighbors of node 𝑣 

𝑊(𝑙): learnable weight matrix 

𝜎: non-linear activation (e.g., ReLU) 

AGG: aggregation function (mean, sum, max) 

A common variant of GNN is the Graph Convolutional 
Network (GCN) proposed by Kipf and Welling. The update 
rule of GCN layer is represented below [29], [30]. 

𝐻(𝑙+1) = 𝜎 (𝐷
∼

−1/2𝐴
∼

𝐷
∼

−1/2𝐻(𝑙)𝑊(𝑙))                 (22) 

𝐴
∼

= 𝐴 + 𝐼: adjacency matrix with self-loops 

𝐷
∼

: degree matrix of 𝐴
∼

 

𝐻(𝑙): matrix of node features at layer 𝑙 

𝑊(𝑙): weight matrix at layer 𝑙 

𝜎: activation function (e.g., ReLU) 

Transformer-based models operate on the principle of self-
attention, which allows the model to weigh the importance of 
different input elements relative to each other, regardless of 
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their position in the sequence. Instead of processing data 
sequentially like RNNs, Transformers handle input in parallel, 
using multi-head attention and positional encoding to capture 
contextual relationships and order information. This 
architecture enables efficient learning of long-range 
dependencies and complex patterns in data, making 
Transformers highly effective for a wide range of tasks, 
including natural language processing, vision, and autonomous 
systems. 

III. ADOPTED APPROACH 

This research adopts a multi-layered AI-driven approach to 
achieve high-precision autonomous terrestrial navigation. The 
framework consists of four key components: data acquisition 
with preprocessing, sensor fusion, and decision-making. 

In data Acquisition, the system collects geospatial data 
from GNSS, LiDAR, cameras, and GIS databases. Sensor 
calibration, noise filtering, and data synchronization ensure 
consistency and reliability. 

Hybrid sensor fusion concerns the combination of Graph 
Neural Networks (GNNs) and Transformer-based architectures 
to integrate spatial and temporal data for enhanced localization. 
Redundant sensor data is managed through an AI-driven fusion 
mechanism, minimizing discrepancies in sensor outputs. 

In the phase of AI-Based Decision-Making, deep 
reinforcement learning (DRL) agents are trained for adaptive 
route planning and real-time obstacle avoidance. The model 
continuously learns and refines navigation policies through 
simulated and real-world feedback loops. 

Regarding optimization and real-time processing step, the 
system employs real-time inference acceleration techniques to 
maintain reaction times under 50ms. Optimization algorithms 
fine-tune model parameters based on environmental variability 
and sensor reliability. 

This proposed approach therefore adopts a hybrid AI-
driven framework designed to enhance the accuracy, 
adaptability, and efficiency of autonomous terrestrial 
navigation. Unlike traditional models such as the Kalman Filter 
(KF) or Extended Kalman Filter (EKF), which rely on linear 
assumptions and struggle in dynamic environments, this 
approach integrates multi-source geospatial data, including 
GNSS, LiDAR, camera vision, and GIS databases. These data 
are fused using advanced techniques involving Graph Neural 
Networks (GNN) and Transformer-based models, which can 
efficiently process both spatial and temporal data. This fusion 
mechanism outperforms traditional methods like Particle 
Filters (PF) that, while more robust, tend to be computationally 
expensive and exhibit higher reaction times. A key advantage 
of our model lies in the integration of deep reinforcement 
learning (DRL) for decision-making, which allows the system 
to continuously adapt to new environments, optimizing 
navigation strategies in real time. The DRL agent ensures that 
the system responds within 50ms, significantly outperforming 
CNN-based models, which tend to require more processing 
power and exhibit higher latency. The hybrid model ensures 
enhanced localization precision and obstacle avoidance, 
especially in GNSS-denied environments, while maintaining 
computational efficiency and low reaction times. Compared to 

traditional EKF and PF methods, which achieve accuracies 
around 75-90%, our system reaches accuracy rates of over 
95%, providing a substantial improvement in both efficiency 
and performance. By combining these AI-driven techniques 
with sensor fusion, our approach establishes a new benchmark 
for autonomous navigation systems, achieving superior 
robustness, computational efficiency, and precision, 
outperforming traditional models and enabling real-time in 
diverse, complex environments. The proceeded algorithm is 
detailed as follows: 

1) Step 1: Data acquisition: This step involves gathering 

raw geospatial data from various sources, including GNSS 

(providing coordinates, velocity, and time), LiDAR (offering 

point cloud data for terrain mapping), camera systems 

(capturing images or video for object detection and scene 

analysis), and GIS databases (supplying detailed maps, road 

networks, and environmental information). 

2) Step 2: Data preprocessing: In this step, raw sensor 

data is prepared for analysis through several processes: sensor 

calibration corrects distortions and noise; data synchronization 

aligns all sensor inputs in time; noise filtering (e.g., using 

Kalman filters) reduces signal interference; data normalization 

converts measurements into standardized formats or 

coordinate frames; and outlier detection removes inaccurate or 

anomalous data points to ensure reliable input for subsequent 

processing. 

3) Step 3: Feature extraction: This step involves deriving 

meaningful features from preprocessed sensor data. LiDAR 

data is used to extract terrain elements such as ground surfaces 

and obstacles; images are processed using CNNs to detect and 

classify objects like vehicles, pedestrians, and signs; GNSS 

data provides position, velocity, and trajectory for 

localization; and GIS data yields relevant map details, 

including road networks and landmarks. 

4) Step 4: Hybrid sensor fusion (GNN + Transformer): In 

this step, features from all sensors are fused using a hybrid 

architecture combining Graph Neural Networks (GNN) and 

Transformers. The GNN models the environment as a graph, 

where nodes represent objects or landmarks, enabling the 

integration of spatial relationships for better contextual 

understanding. Simultaneously, the Transformer captures 

long-range temporal and spatiotemporal dependencies across 

sensor data, effectively handling dynamic and large-scale 

environments by considering both short- and long-term 

interactions for optimized sensor fusion. 

5) Step 5: Decision-Making using Deep Reinforcement 

Learning (DRL): In this phase, the fused sensor data is used to 

make navigation decisions through a DRL framework. The 

system defines a state space capturing position, velocity, 

obstacles, and environmental factors, and an action space 

representing navigation commands. A reward function guides 

learning by assigning positive rewards for safe, efficient 

actions and penalties for risky behavior. Using algorithms like 

Q-learning or policy gradients, the agent learns optimal 

strategies through interaction with the environment, 
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continuously updating its policy based on experience and real-

time feedback. 

6) Step 6: Path planning and obstacle avoidance: Using 

the current system state and fused sensor data, the system 

plans a safe and efficient path to the destination based on the 

learned DRL policy. It continuously adjusts this path in real 

time to avoid detected obstacles such as vehicles, pedestrians, 

or static objects. When environmental conditions change or 

new obstacles appear, the system triggers dynamic replanning 

to ensure safe and uninterrupted navigation. 

7) Step 7: Real-time execution and control: In this final 

step, the generated path and navigation commands are 

executed by the vehicle’s control system. The system 

continuously monitors the environment through sensors, 

making real-time adjustments if obstacles appear or deviations 

occur. A feedback loop ensures that sensor data dynamically 

refines both decision-making and control actions, allowing the 

vehicle to adapt to changing road conditions and maintain 

optimal navigation. 

8) Step 8: System evaluation and optimization: This step 

involves assessing system performance using data from 

simulations and real-world tests. Key metrics such as 

accuracy, reaction time, and obstacle avoidance are analyzed 

to identify areas for improvement. Based on these results, 

model parameters and architectures are fine-tuned, such as 

adjusting DRL reward functions or fusion settings. The DRL 

agent is also continually retrained using new real-world data 

to enhance adaptability and performance in dynamic 

environments. 
Fig. 1 presents the diagram of the adopted strategy. 

 
Fig. 1. Representative diagram of adopted approach. 

The role of the autonomous navigation system's algorithm 
within the previously mentioned stages is illustrated in the 
schematic representation shown in Fig. 2. 

 

Fig. 2. Position of autonomous navigation system algorithm. 

This algorithm provides a clear and detailed outline of the 
steps involved in the adopted approach, from data acquisition 
to real-time execution. 

IV. OBTAINED RESULTS 

To evaluate the proposed approach on autonomous 
terrestrial navigation using AI-driven geospatial data fusion, 
several databases can be used. These databases provide diverse 
datasets for different aspects of the system, including GNSS, 
LiDAR, camera images, and GIS data, enabling comprehensive 
evaluation in various environments. Below are some prominent 
databases that could be applied: 

1) TUM autonomous driving dataset: developed by the 

Technical University of Munich, this dataset offers multi-

modal sensor data, including LiDAR scans, camera images, 

GNSS, and IMU measurements, for autonomous driving 

research. It provides real-world driving scenarios in both 

urban and rural settings, making it suitable for tasks like 

object detection, path planning, and obstacle avoidance. 

However, it mainly focuses on urban environments and lacks 

extensive high-resolution geospatial map content. 

2) KITTI vision benchmark: the KITTI dataset is a widely 

used benchmark for computer vision and autonomous driving 

research, offering stereo camera images, LiDAR, and 

GPS/IMU data. It supports key tasks such as object detection, 

tracking, and localization across urban and highway 

environments. While it provides essential data for geospatial 

fusion, it is primarily vision-focused and lacks comprehensive 

support for complex sensor fusion scenarios and high-
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resolution GIS data required for advanced autonomous 

navigation. 

3) Apollo autonomous driving dataset: developed by 

Baidu, the Apollo dataset provides extensive multi-sensor 

data, such as camera images, LiDAR scans, GNSS, and 

detailed road network information, covering both urban and 

rural environments. It includes high-resolution geospatial data 

and rich semantic annotations like lane markings and traffic 

signs, making it ideal for route planning and navigation. 

However, its large data size demands substantial 

computational resources, and some content is more tailored to 

obstacle detection and path planning than comprehensive 

sensor fusion. 

4) Waymo open dataset: offered by Waymo, this large-

scale dataset features high-definition sensor data, including 

LiDAR, camera images, and GNSS, from autonomous 

vehicles operating in diverse real-world scenarios. It covers 

dynamic urban and suburban environments and supports tasks 

like localization and obstacle avoidance. While it includes 

high-definition maps and rich visual data, it places less 

emphasis on GIS databases and advanced sensor fusion 

methods, and its large size can pose significant computational 

challenges. 

5) Oxford robotcar dataset: provided by the University of 

Oxford, this dataset includes over 1000 km of driving data 

from various UK cities, capturing diverse conditions such as 

different seasons, weather, and times of day. It features high-

quality sensor data, including LiDAR, camera, GNSS, and 

IMU, making it ideal for testing sensor fusion, localization, 

and navigation in GNSS-denied environments. However, it 

lacks high-resolution GIS map data and is more focused on 

evaluating localization and path planning rather than 

comprehensive geospatial data fusion. 

6) GeoTIFF Data (GIS Data): this GIS dataset offering 

high-resolution, georeferenced raster data, including terrain 

models, land cover, and urban maps. It provides detailed 

geospatial information crucial for analyzing terrain, road 

networks, and environmental features, and can be integrated 

with LiDAR and camera data for comprehensive spatial 

representation. However, it primarily focuses on static data 

and lacks real-time dynamic information necessary for tasks 

like obstacle detection and path planning. While there are 

several valuable datasets for autonomous navigation research, 

the KITTI Autonomous Driving Dataset is best suited for the 

evaluation of this research due to its comprehensive, multi-

modal sensor data and real-world driving scenarios, which 

align with the focus on geospatial data fusion, AI-driven 

decision-making, and navigation in complex environments. 

This dataset offers the necessary data diversity for developing 

and evaluating the proposed AI-based fusion model.  

Based on the evaluation criteria defined by their 
mathematical equations and using the Python tool, we present 
the comparative scores across different models in Table I. The 
criteria considered significant for this stage include localization 
accuracy, reaction time, and computational efficiency. The 

localization accuracy in percent for a 3D system, is determinate 
by normalizing the Euclidean distance error relative to the true 
position or the maximum possible error. The equation for the 
percentage accuracy is: 

Localization Accuracy (%) = (1 −  
𝐸𝑟𝑟𝑜𝑟

𝑀𝑎𝑥 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟
) 𝑥100  (23) 

Error is the Euclidean distance between the true position 
(xtrue, ytrue, ztrue) and the estimated position (xest, yest, zest). 

𝐸𝑟𝑟𝑜𝑟 =  √(𝑥𝑡𝑟𝑢𝑒 − 𝑥𝑒𝑠𝑡   )2 + (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑒𝑠𝑡   ) 2 + (𝑧𝑡𝑟𝑢𝑒 − 𝑧𝑒𝑠𝑡   )2 
      (24) 

Max Possible Error is the maximum possible distance that 
could be measured between the true position and estimated 
position in the 3D space, which could be determined based on 
the operational environment's constraints (e.g., the size of the 
navigation area). Thus, the localization accuracy is the 
percentage of how close the system's estimated position is to 
the true position, relative to the maximum error expected in the 
environment as shown in Table I. 

TABLE I.  COMPARED LOCALIZATION ACCURACY BASED ON KITTI 

ACROSS MODELS 

Model 

Localization 

Accuracy 

(%) 

Reaction 

Time (ms) 

Computational 

efficiency (%) 

Extended Kalman 

Filter (EKF) 
80,3 170 77 

Particle Filter (PF) 87,5 400 60,7 

Convolutional Neural 

Networks (CNN) 
92 180 70,2 

Hybrid AI (GNN + 

Transformer + DRL) 97,2 <50 95,4 

Proposed Approach 

(AI-Driven Geospatial 

Data Fusion) 
98 <50 98 

This table highlights the superiority of the Proposed AI-
Driven Geospatial Data Fusion approach, demonstrating its 
high accuracy, low reaction time, computational efficiency, 
and robustness compared to traditional and contemporary 
models. The localization accuracy and reaction time for 
different models are highlighted through Fig. 3 and Fig. 4. 

 
Fig. 3. Localization accuracy and reaction time across models. 
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Fig. 4. Histogram of localization accuracy and reaction time across models. 

To calculate obstacle avoidance accuracy as a percentage 
for an autonomous navigation system, we measure how well 
the system avoids collisions or obstacles by considering the 
ratio of successful avoidance actions to the total number of 
situations where obstacles were present. The formula can be 
expressed as: 

Obstacle avoidance (%) =

    (
Number of Successful Avoidances

Total Number of Obstacle Encounters
)𝑥100     (25) 

Number of Successful Avoidances is the number of times 
the system successfully navigated around an obstacle without 
collision. 

Total Number of Obstacle Encounters is the total number 
of instances where an obstacle was detected in the system’s 
path. This gives the percentage of obstacle avoidance success 
over all detected obstacle encounters during the operation of 
the system. 

Table II shows evaluating scores for obstacle avoidance, 
adaptability, and overall robustness for the different models 
compared to the proposed AI-Driven Geospatial Data Fusion 
approach: 

TABLE II.  COMPARED OBSTACLE AVOIDANCE BASED ON KITTI ACROSS 

MODELS 

Model 
Obstacle 

Avoidance 
Adaptability 

Overall 

Robustness 

Extended Kalman 

Filter (EKF) 
75% 66% 75% 

Particle Filter (PF) 87,5% 75% 87% 

Convolutional Neural 

Networks (CNN) 
85% 87,5% 82,5% 

Hybrid AI (GNN + 

Transformer + DRL) 
96,5% 97% 96,5% 

Proposed Approach 

(AI-Driven Geospatial 

Data Fusion) 

98% 99% 99% 

These recorded results will be considered and clarified by 
means of the curves in Fig. 5 and the histogram with radar 
respectively in Fig. 6 and Fig. 7 below. 

 
Fig. 5. Obstacle avoidance and adaptability across models. 

 
Fig. 6. Histogram of obstacle avoidance across models. 

 
Fig. 7. Radar of obstacle avoidance across models. 

The different models are then tested using the main 
databases to verify which model excels and with which 
database. Results are recorded in Table III while evaluating the 
obstacle avoidance efficiency (%) and localization accuracy 
(%) of different models across principal databases: KITTI, 
Oxford RobotCar, nuScenes, and TUM. Table III recorded 
these results. 
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TABLE III.  COMPARED OBSTACLE AVOIDANCE BASED ON PRINCIPAL 

DATABASES ACROSS MODELS 

Model 

Obstacle 

Avoidance 

(KITTI, 

%) 

Obstacle 

Avoidance 

(Oxford 

RobotCar, 

%) 

Obstacle 

Avoidance 

(nuScenes, 

%) 

Obstacle 

Avoidance 

(TUM, %) 

Extended 

Kalman Filter 

(EKF) 

75 65,4 60,5 58,9 

Particle Filter 

(PF) 
87,5 70 65 62 

Convolutional 

Neural 

Networks 

(CNN) 

85 80,2 78 76,1 

Hybrid AI 

(GNN + 

Transformer + 

DRL) 

96,5 92 90,3 89 

Proposed 

Approach (AI-

Driven 

Geospatial 

Data Fusion) 

98 96 95 94 

These findings are illustrated by curves in Fig. 8 and 
histogram with radar respectively in Fig. 9 and Fig. 10 below. 

 
Fig. 8. Obstacle avoidance for models through principal databases. 

 
Fig. 9. Histogram of obstacle avoidance for models through principal 

databases. 

 
Fig. 10. Radar of obstacle avoidance for models through principal databases. 

The harvest of the different model evaluations, in terms of 
localization accuracy, using the main databases indicated 
above is established in Table IV. 

TABLE IV.  COMPARED  LOCALIZATION ACCURACY BASED ON PRINCIPAL 

DATABASES ACROSS MODELS 

Model 

Localizatio

n Accuracy 

(KITTI, %) 

Localizatio

n Accuracy 

(Oxford 

RobotCar, 

%) 

Localizatio

n Accuracy 

(nuScenes, 

%) 

Localizatio

n Accuracy 

(TUM, %) 

Extended 

Kalman 

Filter (EKF) 

80.3 75 72 70,8 

Particle 

Filter (PF) 
87,5 80,6 78 75,4 

Convolutiona

l Neural 

Networks 

(CNN) 

92 87 85,5 83 

Hybrid AI 

(GNN + 

Transformer 

+ DRL) 

97,2 94,7 93,6 92 

Proposed 

Approach 

(AI-Driven 

Geospatial 

Data Fusion) 

98 97 96 95,1 

Results are highlighted over the following Fig. 11 and 
Fig. 12. 

 
Fig. 11. Localization accuracy for models through principal databases. 
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Fig. 12. Histogram of localization accuracy for models through principal 

databases. 

V. RESULTS ANALYSIS 

The scores reflect each method’s performance in 
computational and processing time efficiency. EKF 
demonstrates moderate computational efficiency (70%) due to 
its reliance on simple linear calculations, while PF scores lower 
(60%) because of its intensive resampling processes. CNNs, 
demanding in terms of training and inference, show the lowest 
efficiency (50%). In contrast, hybrid AI models combining 
GNN, Transformer, and DRL achieve 90% efficiency through 
optimized parallel processing. The Proposed Approach excels 
with 95–98% efficiency by integrating lightweight sensor 
fusion and AI models tailored for real-time execution. 
Regarding processing time, EKF and PF lag behind with 75–
80% and 50–60% efficiency, respectively, due to their iterative 
nature. CNNs perform moderately (65–70%), whereas hybrid 
AI models offer near real-time performance (95–98%), 
completing tasks in under 50ms. The Proposed Approach 
achieves the highest processing time efficiency (98–100%) by 
leveraging architectural optimizations and efficient hardware, 
enabling rapid data handling and decision-making. 

These scores highlight, also, the performance of each 
method in obstacle avoidance, adaptability, and overall 
robustness. EKF shows limited obstacle avoidance (70–80%) 
and low adaptability (60–70%) due to its reliance on GNSS 
and inertial data, making it less effective in dynamic or 
unknown environments. PF performs better in both aspects 
(85–90% for obstacle avoidance, 70–80% for adaptability) but 
remains constrained by particle resampling and computational 
demands. CNN achieves moderate scores (80–85% obstacle 
avoidance, 85–90% adaptability), excelling in visual 
environments but struggling in GPS-denied or sensor-degraded 
scenarios. Hybrid AI models (GNN + Transformer + DRL) 
perform strongly across all categories, scoring 95–98% in 
obstacle avoidance, adaptability, and robustness by leveraging 
sensor fusion and continuous learning. 

The Proposed Approach surpasses all others, achieving 97–
99% in obstacle avoidance and 98–99% in adaptability and 
robustness through real-time integration of LiDAR, camera, 
GNSS, and advanced AI, enabling it to adapt to dynamic 
conditions and maintain high performance even in challenging, 
sensor-compromised environments. 

The performance scores on the KITTI Autonomous Driving 
Dataset highlight the strengths and limitations of each 
approach. EKF and PF exhibit slightly lower performance due 
to the dataset’s complex, dynamic urban scenarios with 
frequent occlusions. CNN models perform well but are 
challenged by highly cluttered environments. 

Hybrid AI models (GNN + Transformer + DRL) 
demonstrate strong results, leveraging their adaptability to 
urban structures and real-time learning capabilities. The 
Proposed Approach outperforms all others, achieving the 
highest scores in localization accuracy and obstacle avoidance 
through optimized AI-driven sensor fusion and real-time 
responsiveness. Overall, the results confirm the Proposed AI-
Driven Geospatial Data Fusion as the most efficient and robust 
solution across diverse datasets. 

The total evaluation highlights the superiority of the Hybrid 
AI (GNN + Transformer + DRL) and the Proposed AI-Driven 
Geospatial Data Fusion approaches over traditional methods 
like EKF and PF. In terms of accuracy, both advanced models 
achieve 97–99%, excelling in complex, multi-modal 
environments. They also offer significantly faster reaction 
times, under 50ms, compared to the slower EKF and PF 
models (150–500ms), making them more suitable for real-time 
autonomous navigation.  

Computationally, the Proposed Approach stands out with 
optimized, low-FLOP architectures that maintain high 
accuracy, whereas PF and CNNs are more resource-intensive. 
Finally, in terms of robustness, the Hybrid AI and Proposed 
Approach demonstrate strong adaptability across varied 
environments, outperforming traditional models that often 
falter under GNSS-denied or unpredictable conditions. 

VI. CONCLUSION 

This paper presents a novel AI-driven geospatial data 
fusion framework for autonomous terrestrial navigation, 
combining multi-source sensor fusion with deep learning-based 
decision-making. Leveraging a hybrid model of Graph Neural 
Networks (GNN), Transformers, and Deep Reinforcement 
Learning (DRL), the proposed approach surpasses traditional 
methods like EKF, PF, and CNNs in accuracy, efficiency, and 
adaptability. Validated on benchmark datasets including 
KITTI, Oxford RobotCar, nuScenes, and TUM, the system 
achieved up to 98% localization accuracy and obstacle 
avoidance efficiency, with reaction times under 50ms. 

Different finding tables confirm its superiority in 
computational performance, obstacle handling, and robustness, 
positioning it as a highly effective solution for real-world 
deployment. Future work will focus on enhancing model 
generalization and integrating edge computing for real-time 
embedded applications. 
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