
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

510 | P a g e
www.ijacsa.thesai.org

Leveraging AI and Hybrid Intelligence for Robust

Geospatial Data Fusion in Autonomous Terrestrial

Navigation

Manel Salhi1, Mounir Bouzguenda2, Faouzi Benzarti3, Fawaz Alanazi4, Ezzeddine Touti5,*

Research Laboratory of Signal Image and Information Technology LR-SITI,
University of Tunis El Manar-National Engineering School of Tunis, Tunis, Tunisia1, 3

Department of Electrical Engineering, College of Engineering,

King Faisal University, Al Ahsa, Saudi Arabia2
Computer Science Department, Northern Border University, Arar 73213, Saudi Arabia 4

Center for Scientific Research and Entrepreneurship, Northern Border Unive rsity, Arar 73213, Saudi Arabia5

Abstract—Rapid advancement of artificial intelligence (AI)

and geospatial data fusion has enabled the development of highly

autonomous terrestrial navigation systems with improved

accuracy, adaptability, and robustness. This paper proposes a

novel framework integrating multi-source geospatial data fusion

with deep learning-based decision-making for autonomous

terrestrial navigation. Unlike conventional approaches that rely

solely on Global Navigation Satellite Systems (GNSS) or inertial

sensors, our system leverages a hybrid fusion model combining

GNSS, LiDAR, camera vision, and high-resolution geospatial

databases. A deep reinforcement learning (DRL) paradigm is

introduced to enhance the system’s adaptability in dynamic

environments, optimizing route planning and obstacle avoidance

in real-time. Additionally, a hybrid AI model incorporating

Graph Neural Networks (GNN) and Transformer-based

architectures processes spatial and temporal dependencies in

navigation data, improving localization precision and resilience

against sensor failures. The proposed system is evaluated

through extensive simulations and real-world tests,

demonstrating superior performance in complex urban and off-

road scenarios compared to traditional Kalman filter-based

methods. Our findings highlight the potential of AI-driven

geospatial data fusion in redefining autonomous navigation,

paving the way for next-generation intelligent mobility solutions.

Keywords—Autonomous navigation; geospatial data fusion;

graph neural networks; transformer-based models; sensor fusion;

AI-driven mobility

I. INTRODUCTION

Autonomous terrestrial navigation has witnessed significant
progress over the past decade, driven by advancements in
artificial intelligence (AI), sensor technologies, and geospatial
data processing. The ability of a vehicle to navigate
autonomously in complex and dynamic environments requires
precise perception, localization, decision-making, and control
[1], [2], [3]. Traditional navigation systems rely primarily on
global navigation satellite systems (GNSS) and inertial sensors,
or on predefined maps and rule-based algorithms, which often
struggle in unstructured or rapidly changing conditions, which
can suffer from limitations in urban environments and adverse
weather conditions [4], [5]. Recent developments in geospatial
data fusion, integrating multiple sensor modalities, have

opened new possibilities for robust and intelligent navigation
systems. Combining AI-driven algorithms with multi-source
geospatial data enhances precision, resilience, and adaptability
in dynamic terrains.

The proposed system integrates multi-modal sensor data,
including GNSS, LiDAR, camera vision, and high-resolution
geographic information system (GIS) databases. The geospatial
data is processed using a hybrid AI framework incorporating
deep reinforcement learning (DRL) for decision-making and
graph neural networks (GNN) coupled with Transformer-based
architectures for spatiotemporal data modeling. The system
continuously learns and adapts to environmental changes
through real-time sensor fusion and AI-based prediction
models. Optimization techniques are applied to improve route
planning and obstacle avoidance, ensuring reliable navigation
in both structured and unstructured environments.

This research aims to develop a hybrid AI-driven
navigation system that enhances localization and navigation
through geospatial data fusion. It focuses on optimizing
decision-making and obstacle avoidance using reinforcement
learning strategies while improving robustness in GNSS-
denied environments through deep learning techniques. The
proposed model will be validated through extensive
simulations and real-world testing across diverse environments.

Despite the progress in autonomous navigation, several
challenges remain unaddressed. GNSS-based methods face
signal occlusion in urban canyons and dense forests, while
traditional sensor fusion techniques struggle with adaptability
in unstructured terrains [6], [7], [8]. AI-driven approaches have
shown promise but require optimized architectures to handle
the complexity and real-time constraints of navigation. This
study aims to bridge these gaps by introducing a robust, AI-
enhanced geospatial data fusion framework that ensures real-
time adaptability and high-precision localization. The
implementation involves acquiring multi-source geospatial data
from GNSS, LiDAR, cameras, and GIS databases, followed by
preprocessing to ensure data consistency and accuracy. Deep
learning techniques are then used for feature extraction to
capture spatial and temporal patterns. A hybrid AI model
combining GNNs and Transformers is developed for sensor

*Corresponding author.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

511 | P a g e
www.ijacsa.thesai.org

fusion, while a deep reinforcement learning agent handles
adaptive path planning and obstacle avoidance. The system
undergoes simulations and real-world testing, with model
optimization and validation performed based on experimental
feedback to enhance robustness and reliability. By combining
AI-driven techniques with multi-source geospatial data fusion,
this paper aims to advance the control methodologies in
autonomous terrestrial navigation, contributing to safer and
more efficient mobility solutions.

This paper is organized as follows: Section 1 introduces the
study. Section II reviews existing models for land navigation
system control. Section III details the proposed control
approach. Section IV presents experimental results based on
selected datasets and compares the proposed method with
existing models. Section V provides analysis and discussion of
the results. Finally, Section VI concludes the paper.

II. EXISTING MODELS

Several models have been developed for autonomous
terrestrial navigation, each demonstrating different levels of
accuracy, efficiency, and robustness. Traditional methods such
as Kalman Filters (KF) and Extended Kalman Filters (EKF)
offer reliable localization but struggle in GNSS-denied
environments due to their reliance on linear assumptions,
achieving accuracy scores around 82% with moderate
computational efficiency about 170ms. Particle Filters (PF)
provide improved robustness, reaching accuracies of 87-90%,
but at the cost of higher computational complexity, making
them less suitable for real-time applications, around 400ms.
More recently, deep learning models such as Convolutional
Neural Networks (CNN) and Recurrent Neural Networks
(RNN) have been integrated into navigation systems,
enhancing feature extraction and adaptability in dynamic
environments, achieving accuracies between 90-94% but
requiring high processing power [9], [10], [11]. They react
under an approximate time of 180ms. Hybrid AI models,
including Graph Neural Networks (GNN) and Transformer-
based architectures, have emerged as state-of-the-art solutions,
excelling in fusing multi-source geospatial data for improved
decision-making, with accuracy rates exceeding 95% while
maintaining efficient computational performance. Additionally,
Deep Reinforcement Learning (DRL) demonstrated
exceptional performance in real-time adaptive navigation,
optimizing path planning and obstacle avoidance with
unprecedented efficiency, reaching reaction times of under
50ms and accuracy scores of 96-98%. These advanced models
significantly outperform traditional approaches in terms of
accuracy, computational efficiency, and robustness, making
them ideal for next-generation autonomous navigation systems
[12], [13], [14]. By leveraging a combination of these AI-
driven techniques, the proposed research aims to develop a
navigation system that achieves high precision and adaptability
in complex environments.

The GNSS model provides an approximate distance given
in equation below:

ρ𝑖 = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2 + c ⋅ Δ𝑡 (1)

ρ𝑖 : approximate distance between the satellite i and the
autonomous navigation system.

(𝑥𝑖, 𝑦𝑖, 𝑧𝑖): known coordinates of satellite i.

(x, y, z): unknown coordinates of the GNSS receiver (to be
determined)

c : light speed (≈ 299792458 m/s)

Δ𝑡: navigation system clock error [15], [16].

The GNSS localization process involves several key steps:
first, pseudo range measurements are calculated for each
visible satellite. These measurements are then used in position
determination algorithms, such as trilateration, to estimate the
receiver’s location. Velocity is obtained by differentiating the
position data over time, and continuous tracking of position
enables the mapping of the receiver’s trajectory [17].

The position 𝑃 in 3D space (latitude, longitude, and
altitude) is calculated from the pseudorange 𝑅 (distance from
the satellite to the receiver) using the following equation:

𝑃(𝑥, 𝑦, 𝑧) = (
𝑅

√(𝑅𝑥
2+𝑅𝑦

2+𝑅𝑧
2)

) (2)

𝑥, 𝑦,𝑧 are the coordinates of the receiver.

𝑅𝑥, 𝑅𝑦,𝑅𝑧 are the positions of the satellite in 3D space [18].

The pseudo range 𝑅 is measured by comparing the time
difference between the signal transmission and reception.

The velocity vector 𝑉 of the receiver can be estimated by
differentiating the position over time:

𝑉 =
𝑑𝑃

𝑑𝑡
 (3)

𝑉 = (𝑉𝑥,𝑉𝑦 ,𝑉𝑧) represents the velocity components in each

direction. 𝑃 is the position vector of the receiver. Velocity is
calculated by tracking the movement of the receiver and
differentiating position data in time [19].

The trajectory 𝑇 is a continuous path of positions over time:

𝑇(𝑡) = 𝑃(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) (4)

𝑇(𝑡) is the trajectory at time 𝑡 , describing the movement
over time. Trajectory is essentially the collection of positions at
different time instances, providing a continuous path for the
receiver.

The general GIS data extraction process involves defining a
region or point of interest, querying the dataset using spatial
criteria, and extracting the relevant features (points, lines,
polygons, or raster cells) that meet the query conditions [20].

For a given point of interest (𝑥, 𝑦), the equation to extract
features from the map is:

𝐹 = {𝑓 ∣ 𝑓 ∈ 𝐴,where 𝑓 contains (𝑥, 𝑦)} (5)

𝐹: The set of map features that contain the point (𝑥, 𝑦).

𝐴 : The entire map or dataset of features (points, lines,
polygons).

(𝑥, 𝑦): The coordinates of the point of interest.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

512 | P a g e
www.ijacsa.thesai.org

This equation retrieves features that intersect with or
contain the specified point on the map.

For line features (e.g., roads, rivers), if 𝐿 is a line feature
and 𝑃 is the point set of a map, the extraction can be
represented as:

𝐹 = {𝐿 ∣ 𝐿 ∈ 𝑃, 𝐿 intersects with a specified region }

𝐿: Line feature (like roads or rivers).

𝑃: Map of all features.

Intersection is checked with a predefined region or
coordinates. For polygon features (e.g., boundaries, areas of
interest), extraction can be expressed as:

𝐹 = {𝑃 ∣ 𝑃 ∈ 𝐴, 𝑃 contains the point (𝑥,𝑦)}

𝑃: Polygon feature (e.g., land parcels, administrative areas).

𝐴: The complete map data.

(𝑥, 𝑦): The query point inside the polygon.

This retrieves all polygons containing a specific point or
within a defined boundary.

In raster data (grid-based data, like satellite images),
extraction can be represented as:

𝐷𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 = {𝑅(𝑖, 𝑗) ∣ 𝑅(𝑖, 𝑗) is within the region of interest}

𝐷𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑: The extracted raster data.

𝑅(𝑖, 𝑗): A specific cell in the raster grid.

Region of interest: The spatial subset defined by user input.

In the fields of statistics and control theory, the Kalman
filter is a mathematical algorithm representing a type of infinite
impulse response filter that continuously estimates the internal
state of a dynamic system over time. It does this by processing
a sequence of measurements, even if those measurements are
noisy or partially missing [21], [22]. The filter updates its
estimates whenever new data becomes available, making it
especially useful for tracking systems that evolve over time,
such as navigation, robotics, or signal processing. The update
state said prediction is given by Eq. (6).

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘 (6)

The measurement is determinate using the following
relation.

 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (7)

𝑥𝑘: state vector at time 𝑘.

𝑢𝑘: control input

𝑧𝑘: measurement

𝑤𝑘 ∼ 𝑁(0, 𝑄): process noise

𝑣𝑘 ∼ 𝑁(0, 𝑅): measurement noise

𝐴: state transition matrix

𝐵: control input matrix

𝐻: observation matrix

The Extended Kalman filter EKF as a nonlinear state space
model, is used for determining nonlinear systems. It is involved
by the following equations:

 𝑥𝑘 = 𝑓(𝑥𝑘−1 ,𝑢𝑘) + 𝑤𝑘 (8)

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 (9)

𝑓(⋅): nonlinear state transition

ℎ(⋅): nonlinear measurement function

The Particle Filter is a probabilistic estimation technique
used to estimate the hidden (or latent) states of a non-linear and
non-Gaussian dynamic system over time, based on noisy and
partial measurements. It approximates the posterior probability
distribution of the system's state using a set of random samples,
called particles. Each particle represents a possible state of the
system and has a weight that reflects how well it agrees with
the observed measurements [23], [24]. This model is applied
essentially in robot localization and navigation or for object
detection in complex dynamic environments. It is flexible and
adaptable to complex systems, while having as limitation: it is
computationally expensive especially with large particle sets.

Bayesian filtering seeks to estimate the posterior
distribution of the hidden state 𝑥𝑡 from the observations 𝑧1:𝑡,
as: 𝑝(𝑥𝑡 ∣ 𝑧1:𝑡)

Since this distribution is often analytically intractable, the
particle filter approximates it by a set of N particles

{𝑥𝑡
(𝑖)

,𝑤𝑡
(𝑖)

}𝑖=1
𝑁

𝑥𝑡
(𝑖)

 is the i-th particle (a sample of the state),

𝑤𝑡
(𝑖)

 is its weight.

In its initialization step: for 𝑡 = 0, we initialize the particles
according to the initial distribution 𝑝(𝑥0) :

𝑥0
(𝑖)

∼ 𝑝(𝑥0), 𝑤0
(𝑖)

=
1

𝑁
 (10)

In Prediction step for system evolution, for each particle

𝑥𝑡−1
(𝑖)

, we generate: 𝑥𝑡
(𝑖)

∼ 𝑝(𝑥𝑡 ∣ 𝑥𝑡−1
(𝑖)

)

This simulates the dynamics of the system.

In the update step (Weighting), we update the weight of
each particle based on the likelihood of the current
observation 𝑧𝑡:

𝑤𝑡
(𝑖)

= 𝑤𝑡−1
(𝑖)

⋅ 𝑝(𝑧𝑡 ∣ 𝑥𝑡
(𝑖)

) (11)

Then we normalize the weights as:

𝑤𝑡
(𝑖)

=
𝑤𝑡

(𝑖)

∑ 𝑤𝑡
(𝑗)𝑁

𝑗=1

 (12)

To avoid the problem of particle degeneracy, where a few
particles have high weight and most have near zero, we applied
the resampling step. We resample the particles based on their
weights: replace low-weight particles with copies of high-

weight ones. We take 𝑁 new particles 𝑥𝑡
(𝑖)

 function of their

weights and set all of them at: 𝑤𝑡
(𝑖)

=
1

𝑁

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

513 | P a g e
www.ijacsa.thesai.org

The estimated state is usually the weighted average of all
particles:

𝑥𝑡̂ =
1

𝑁
 ∑ 𝑤𝑡

(𝑖)
. 𝑥𝑡

(𝑖)𝑁
𝑖=1 (13)

The Convolutional Neural Networks CNNs models are a
class of deep learning models widely used for image
processing, pattern recognition, feature extraction and
computer vision tasks. The key idea is to automatically learn
spatial hierarchies of features from input data through a series
of operations. The main operations include convolution,
activation, and pooling [25].

The Purpose of convolution operation step is to extract
local features (e.g., edges, textures) from the input image using
learnable filters (kernels). It works as: a small matrix (kernel)
slides across the input image (or feature map). At each
location, the dot product between the kernel and the
overlapping input patch is computed. The result is a feature
map that highlights specific patterns. A single kernel filter 𝑊 is
applied to an input 𝑋:

𝑍𝑖,𝑗 = (𝑋 ∗ 𝑊)𝑖,𝑗 + 𝑏 = ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛𝑛𝑚 ⋅ 𝑊𝑚,𝑛 + 𝑏 (14)

𝑋: input image or feature map

𝑊: filter (kernel)

𝑏: bias term

𝑍: output feature map

This step has the property to reduce number of parameters
compared to fully connected layers. In the activation function
step, we applied to the output a nonlinear function such as a
Sigmoid or Rectified Linear Unit (ReLU):

f(𝑍𝑖,𝑗) = ReLU(𝑍𝑖,𝑗) = max(0, 𝑍𝑖,𝑗) (15)

This step introduces non-linearity into the model, which
allows it to capture complex patterns and enhances the
network's ability to learn more expressive and meaningful
features.

In the pooling step (e.g., max pooling) is used to reduce
spatial dimensions (width and height) of feature maps while
retaining important features.

There are two pooling types: the max pooling takes the
maximum value in each patch. The average pooling takes the
average values in each patch. It works as: a window (e.g., 2×2)
slides over the input feature map. Only the max or average
value from each window is kept.

𝑃𝑖,𝑗 = max
(𝑚,𝑛)∈pooling window

𝑋𝑖+𝑚,𝑗+𝑛 (16)

As benefit it reduces computational load.

Recurrent Neural Networks RNNs models are used for
sequential data like time series, text, or audio. They maintain a
memory through hidden states [26], [27], [28].

Let: 𝑥𝑡 input at time step 𝑡, ℎ𝑡 hidden state at time
𝑡 𝑎𝑛𝑑 𝑦𝑡: output at time 𝑡. The update of hidden state is given
in equation below.

ℎ𝑡 = tanh(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (17)

𝑊𝑥ℎ: input-to-hidden weights

𝑊ℎℎ: hidden-to-hidden weights

𝑏ℎ: bias term

tanh: activation function

The output is presented as follows.

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (18)

𝑊ℎ𝑒𝑟𝑒 𝑊ℎ𝑦 are hidden-to-output weights and 𝑏𝑦 are

output bias.

Graph Neural Networks GNNs models are designed to
work with graph-structured data, where data is represented as
nodes (vertices) and edges (connections). They are powerful
for applications like social networks, recommendation systems,
knowledge graphs, and molecular analysis.

A graph is defined as:

𝐺 = (𝑉, 𝐸) (19)

𝑉 is a set of nodes (vertices) and 𝐸 is a set of edges
(connections between nodes). Each node 𝑣 ∈ 𝑉 has a feature

vector 𝑥𝑣 ∈ ℝ𝑑.

GNNs typically operate in layers. At each layer 𝑙 , nodes
aggregate features from their neighbors and update their own
representation. The general formula for node representation
update is expressed below:

ℎ𝑣
(𝑙) = 𝜎 (AGGREGATE

(𝑙)
({ℎ𝑢

(𝑙−1):𝑢 ∈ 𝒩(𝑣)})) (20)

ℎ𝑣
(𝑙) = 𝜎 (𝑊(𝑙) ⋅ CONCAT (ℎ𝑣

(𝑙−1),AGG({ℎ𝑢
(𝑙−1): 𝑢 ∈

𝒩(𝑣)}))) (21)

ℎ𝑣
(𝑙)

: hidden state of node 𝑣 at layer 𝑙

𝒩(𝑣): set of neighbors of node 𝑣

𝑊(𝑙): learnable weight matrix

𝜎: non-linear activation (e.g., ReLU)

AGG: aggregation function (mean, sum, max)

A common variant of GNN is the Graph Convolutional
Network (GCN) proposed by Kipf and Welling. The update
rule of GCN layer is represented below [29], [30].

𝐻(𝑙+1) = 𝜎 (𝐷
∼

−1/2𝐴
∼

𝐷
∼

−1/2𝐻(𝑙)𝑊(𝑙)) (22)

𝐴
∼

= 𝐴 + 𝐼: adjacency matrix with self-loops

𝐷
∼

: degree matrix of 𝐴
∼

𝐻(𝑙): matrix of node features at layer 𝑙

𝑊(𝑙): weight matrix at layer 𝑙

𝜎: activation function (e.g., ReLU)

Transformer-based models operate on the principle of self-
attention, which allows the model to weigh the importance of
different input elements relative to each other, regardless of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

514 | P a g e
www.ijacsa.thesai.org

their position in the sequence. Instead of processing data
sequentially like RNNs, Transformers handle input in parallel,
using multi-head attention and positional encoding to capture
contextual relationships and order information. This
architecture enables efficient learning of long-range
dependencies and complex patterns in data, making
Transformers highly effective for a wide range of tasks,
including natural language processing, vision, and autonomous
systems.

III. ADOPTED APPROACH

This research adopts a multi-layered AI-driven approach to
achieve high-precision autonomous terrestrial navigation. The
framework consists of four key components: data acquisition
with preprocessing, sensor fusion, and decision-making.

In data Acquisition, the system collects geospatial data
from GNSS, LiDAR, cameras, and GIS databases. Sensor
calibration, noise filtering, and data synchronization ensure
consistency and reliability.

Hybrid sensor fusion concerns the combination of Graph
Neural Networks (GNNs) and Transformer-based architectures
to integrate spatial and temporal data for enhanced localization.
Redundant sensor data is managed through an AI-driven fusion
mechanism, minimizing discrepancies in sensor outputs.

In the phase of AI-Based Decision-Making, deep
reinforcement learning (DRL) agents are trained for adaptive
route planning and real-time obstacle avoidance. The model
continuously learns and refines navigation policies through
simulated and real-world feedback loops.

Regarding optimization and real-time processing step, the
system employs real-time inference acceleration techniques to
maintain reaction times under 50ms. Optimization algorithms
fine-tune model parameters based on environmental variability
and sensor reliability.

This proposed approach therefore adopts a hybrid AI-
driven framework designed to enhance the accuracy,
adaptability, and efficiency of autonomous terrestrial
navigation. Unlike traditional models such as the Kalman Filter
(KF) or Extended Kalman Filter (EKF), which rely on linear
assumptions and struggle in dynamic environments, this
approach integrates multi-source geospatial data, including
GNSS, LiDAR, camera vision, and GIS databases. These data
are fused using advanced techniques involving Graph Neural
Networks (GNN) and Transformer-based models, which can
efficiently process both spatial and temporal data. This fusion
mechanism outperforms traditional methods like Particle
Filters (PF) that, while more robust, tend to be computationally
expensive and exhibit higher reaction times. A key advantage
of our model lies in the integration of deep reinforcement
learning (DRL) for decision-making, which allows the system
to continuously adapt to new environments, optimizing
navigation strategies in real time. The DRL agent ensures that
the system responds within 50ms, significantly outperforming
CNN-based models, which tend to require more processing
power and exhibit higher latency. The hybrid model ensures
enhanced localization precision and obstacle avoidance,
especially in GNSS-denied environments, while maintaining
computational efficiency and low reaction times. Compared to

traditional EKF and PF methods, which achieve accuracies
around 75-90%, our system reaches accuracy rates of over
95%, providing a substantial improvement in both efficiency
and performance. By combining these AI-driven techniques
with sensor fusion, our approach establishes a new benchmark
for autonomous navigation systems, achieving superior
robustness, computational efficiency, and precision,
outperforming traditional models and enabling real-time in
diverse, complex environments. The proceeded algorithm is
detailed as follows:

1) Step 1: Data acquisition: This step involves gathering

raw geospatial data from various sources, including GNSS

(providing coordinates, velocity, and time), LiDAR (offering

point cloud data for terrain mapping), camera systems

(capturing images or video for object detection and scene

analysis), and GIS databases (supplying detailed maps, road

networks, and environmental information).

2) Step 2: Data preprocessing: In this step, raw sensor

data is prepared for analysis through several processes: sensor

calibration corrects distortions and noise; data synchronization

aligns all sensor inputs in time; noise filtering (e.g., using

Kalman filters) reduces signal interference; data normalization

converts measurements into standardized formats or

coordinate frames; and outlier detection removes inaccurate or

anomalous data points to ensure reliable input for subsequent

processing.

3) Step 3: Feature extraction: This step involves deriving

meaningful features from preprocessed sensor data. LiDAR

data is used to extract terrain elements such as ground surfaces

and obstacles; images are processed using CNNs to detect and

classify objects like vehicles, pedestrians, and signs; GNSS

data provides position, velocity, and trajectory for

localization; and GIS data yields relevant map details,

including road networks and landmarks.

4) Step 4: Hybrid sensor fusion (GNN + Transformer): In

this step, features from all sensors are fused using a hybrid

architecture combining Graph Neural Networks (GNN) and

Transformers. The GNN models the environment as a graph,

where nodes represent objects or landmarks, enabling the

integration of spatial relationships for better contextual

understanding. Simultaneously, the Transformer captures

long-range temporal and spatiotemporal dependencies across

sensor data, effectively handling dynamic and large-scale

environments by considering both short- and long-term

interactions for optimized sensor fusion.

5) Step 5: Decision-Making using Deep Reinforcement

Learning (DRL): In this phase, the fused sensor data is used to

make navigation decisions through a DRL framework. The

system defines a state space capturing position, velocity,

obstacles, and environmental factors, and an action space

representing navigation commands. A reward function guides

learning by assigning positive rewards for safe, efficient

actions and penalties for risky behavior. Using algorithms like

Q-learning or policy gradients, the agent learns optimal

strategies through interaction with the environment,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

515 | P a g e
www.ijacsa.thesai.org

continuously updating its policy based on experience and real-

time feedback.

6) Step 6: Path planning and obstacle avoidance: Using

the current system state and fused sensor data, the system

plans a safe and efficient path to the destination based on the

learned DRL policy. It continuously adjusts this path in real

time to avoid detected obstacles such as vehicles, pedestrians,

or static objects. When environmental conditions change or

new obstacles appear, the system triggers dynamic replanning

to ensure safe and uninterrupted navigation.

7) Step 7: Real-time execution and control: In this final

step, the generated path and navigation commands are

executed by the vehicle’s control system. The system

continuously monitors the environment through sensors,

making real-time adjustments if obstacles appear or deviations

occur. A feedback loop ensures that sensor data dynamically

refines both decision-making and control actions, allowing the

vehicle to adapt to changing road conditions and maintain

optimal navigation.

8) Step 8: System evaluation and optimization: This step

involves assessing system performance using data from

simulations and real-world tests. Key metrics such as

accuracy, reaction time, and obstacle avoidance are analyzed

to identify areas for improvement. Based on these results,

model parameters and architectures are fine-tuned, such as

adjusting DRL reward functions or fusion settings. The DRL

agent is also continually retrained using new real-world data

to enhance adaptability and performance in dynamic

environments.
Fig. 1 presents the diagram of the adopted strategy.

Fig. 1. Representative diagram of adopted approach.

The role of the autonomous navigation system's algorithm
within the previously mentioned stages is illustrated in the
schematic representation shown in Fig. 2.

Fig. 2. Position of autonomous navigation system algorithm.

This algorithm provides a clear and detailed outline of the
steps involved in the adopted approach, from data acquisition
to real-time execution.

IV. OBTAINED RESULTS

To evaluate the proposed approach on autonomous
terrestrial navigation using AI-driven geospatial data fusion,
several databases can be used. These databases provide diverse
datasets for different aspects of the system, including GNSS,
LiDAR, camera images, and GIS data, enabling comprehensive
evaluation in various environments. Below are some prominent
databases that could be applied:

1) TUM autonomous driving dataset: developed by the

Technical University of Munich, this dataset offers multi-

modal sensor data, including LiDAR scans, camera images,

GNSS, and IMU measurements, for autonomous driving

research. It provides real-world driving scenarios in both

urban and rural settings, making it suitable for tasks like

object detection, path planning, and obstacle avoidance.

However, it mainly focuses on urban environments and lacks

extensive high-resolution geospatial map content.

2) KITTI vision benchmark: the KITTI dataset is a widely

used benchmark for computer vision and autonomous driving

research, offering stereo camera images, LiDAR, and

GPS/IMU data. It supports key tasks such as object detection,

tracking, and localization across urban and highway

environments. While it provides essential data for geospatial

fusion, it is primarily vision-focused and lacks comprehensive

support for complex sensor fusion scenarios and high-

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

516 | P a g e
www.ijacsa.thesai.org

resolution GIS data required for advanced autonomous

navigation.

3) Apollo autonomous driving dataset: developed by

Baidu, the Apollo dataset provides extensive multi-sensor

data, such as camera images, LiDAR scans, GNSS, and

detailed road network information, covering both urban and

rural environments. It includes high-resolution geospatial data

and rich semantic annotations like lane markings and traffic

signs, making it ideal for route planning and navigation.

However, its large data size demands substantial

computational resources, and some content is more tailored to

obstacle detection and path planning than comprehensive

sensor fusion.

4) Waymo open dataset: offered by Waymo, this large-

scale dataset features high-definition sensor data, including

LiDAR, camera images, and GNSS, from autonomous

vehicles operating in diverse real-world scenarios. It covers

dynamic urban and suburban environments and supports tasks

like localization and obstacle avoidance. While it includes

high-definition maps and rich visual data, it places less

emphasis on GIS databases and advanced sensor fusion

methods, and its large size can pose significant computational

challenges.

5) Oxford robotcar dataset: provided by the University of

Oxford, this dataset includes over 1000 km of driving data

from various UK cities, capturing diverse conditions such as

different seasons, weather, and times of day. It features high-

quality sensor data, including LiDAR, camera, GNSS, and

IMU, making it ideal for testing sensor fusion, localization,

and navigation in GNSS-denied environments. However, it

lacks high-resolution GIS map data and is more focused on

evaluating localization and path planning rather than

comprehensive geospatial data fusion.

6) GeoTIFF Data (GIS Data): this GIS dataset offering

high-resolution, georeferenced raster data, including terrain

models, land cover, and urban maps. It provides detailed

geospatial information crucial for analyzing terrain, road

networks, and environmental features, and can be integrated

with LiDAR and camera data for comprehensive spatial

representation. However, it primarily focuses on static data

and lacks real-time dynamic information necessary for tasks

like obstacle detection and path planning. While there are

several valuable datasets for autonomous navigation research,

the KITTI Autonomous Driving Dataset is best suited for the

evaluation of this research due to its comprehensive, multi-

modal sensor data and real-world driving scenarios, which

align with the focus on geospatial data fusion, AI-driven

decision-making, and navigation in complex environments.

This dataset offers the necessary data diversity for developing

and evaluating the proposed AI-based fusion model.

Based on the evaluation criteria defined by their
mathematical equations and using the Python tool, we present
the comparative scores across different models in Table I. The
criteria considered significant for this stage include localization
accuracy, reaction time, and computational efficiency. The

localization accuracy in percent for a 3D system, is determinate
by normalizing the Euclidean distance error relative to the true
position or the maximum possible error. The equation for the
percentage accuracy is:

Localization Accuracy (%) = (1 −
𝐸𝑟𝑟𝑜𝑟

𝑀𝑎𝑥 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟
) 𝑥100 (23)

Error is the Euclidean distance between the true position
(xtrue, ytrue, ztrue) and the estimated position (xest, yest, zest).

𝐸𝑟𝑟𝑜𝑟 = √(𝑥𝑡𝑟𝑢𝑒 − 𝑥𝑒𝑠𝑡)2 + (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑒𝑠𝑡) 2 + (𝑧𝑡𝑟𝑢𝑒 − 𝑧𝑒𝑠𝑡)2
 (24)

Max Possible Error is the maximum possible distance that
could be measured between the true position and estimated
position in the 3D space, which could be determined based on
the operational environment's constraints (e.g., the size of the
navigation area). Thus, the localization accuracy is the
percentage of how close the system's estimated position is to
the true position, relative to the maximum error expected in the
environment as shown in Table I.

TABLE I. COMPARED LOCALIZATION ACCURACY BASED ON KITTI

ACROSS MODELS

Model

Localization

Accuracy

(%)

Reaction

Time (ms)

Computational

efficiency (%)

Extended Kalman

Filter (EKF)
80,3 170 77

Particle Filter (PF) 87,5 400 60,7

Convolutional Neural

Networks (CNN)
92 180 70,2

Hybrid AI (GNN +

Transformer + DRL) 97,2 <50 95,4

Proposed Approach

(AI-Driven Geospatial

Data Fusion)
98 <50 98

This table highlights the superiority of the Proposed AI-
Driven Geospatial Data Fusion approach, demonstrating its
high accuracy, low reaction time, computational efficiency,
and robustness compared to traditional and contemporary
models. The localization accuracy and reaction time for
different models are highlighted through Fig. 3 and Fig. 4.

Fig. 3. Localization accuracy and reaction time across models.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

517 | P a g e
www.ijacsa.thesai.org

Fig. 4. Histogram of localization accuracy and reaction time across models.

To calculate obstacle avoidance accuracy as a percentage
for an autonomous navigation system, we measure how well
the system avoids collisions or obstacles by considering the
ratio of successful avoidance actions to the total number of
situations where obstacles were present. The formula can be
expressed as:

Obstacle avoidance (%) =

 (
Number of Successful Avoidances

Total Number of Obstacle Encounters
)𝑥100 (25)

Number of Successful Avoidances is the number of times
the system successfully navigated around an obstacle without
collision.

Total Number of Obstacle Encounters is the total number
of instances where an obstacle was detected in the system’s
path. This gives the percentage of obstacle avoidance success
over all detected obstacle encounters during the operation of
the system.

Table II shows evaluating scores for obstacle avoidance,
adaptability, and overall robustness for the different models
compared to the proposed AI-Driven Geospatial Data Fusion
approach:

TABLE II. COMPARED OBSTACLE AVOIDANCE BASED ON KITTI ACROSS

MODELS

Model
Obstacle

Avoidance
Adaptability

Overall

Robustness

Extended Kalman

Filter (EKF)
75% 66% 75%

Particle Filter (PF) 87,5% 75% 87%

Convolutional Neural

Networks (CNN)
85% 87,5% 82,5%

Hybrid AI (GNN +

Transformer + DRL)
96,5% 97% 96,5%

Proposed Approach

(AI-Driven Geospatial

Data Fusion)

98% 99% 99%

These recorded results will be considered and clarified by
means of the curves in Fig. 5 and the histogram with radar
respectively in Fig. 6 and Fig. 7 below.

Fig. 5. Obstacle avoidance and adaptability across models.

Fig. 6. Histogram of obstacle avoidance across models.

Fig. 7. Radar of obstacle avoidance across models.

The different models are then tested using the main
databases to verify which model excels and with which
database. Results are recorded in Table III while evaluating the
obstacle avoidance efficiency (%) and localization accuracy
(%) of different models across principal databases: KITTI,
Oxford RobotCar, nuScenes, and TUM. Table III recorded
these results.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

518 | P a g e
www.ijacsa.thesai.org

TABLE III. COMPARED OBSTACLE AVOIDANCE BASED ON PRINCIPAL

DATABASES ACROSS MODELS

Model

Obstacle

Avoidance

(KITTI,

%)

Obstacle

Avoidance

(Oxford

RobotCar,

%)

Obstacle

Avoidance

(nuScenes,

%)

Obstacle

Avoidance

(TUM, %)

Extended

Kalman Filter

(EKF)

75 65,4 60,5 58,9

Particle Filter

(PF)
87,5 70 65 62

Convolutional

Neural

Networks

(CNN)

85 80,2 78 76,1

Hybrid AI

(GNN +

Transformer +

DRL)

96,5 92 90,3 89

Proposed

Approach (AI-

Driven

Geospatial

Data Fusion)

98 96 95 94

These findings are illustrated by curves in Fig. 8 and
histogram with radar respectively in Fig. 9 and Fig. 10 below.

Fig. 8. Obstacle avoidance for models through principal databases.

Fig. 9. Histogram of obstacle avoidance for models through principal

databases.

Fig. 10. Radar of obstacle avoidance for models through principal databases.

The harvest of the different model evaluations, in terms of
localization accuracy, using the main databases indicated
above is established in Table IV.

TABLE IV. COMPARED LOCALIZATION ACCURACY BASED ON PRINCIPAL

DATABASES ACROSS MODELS

Model

Localizatio

n Accuracy

(KITTI, %)

Localizatio

n Accuracy

(Oxford

RobotCar,

%)

Localizatio

n Accuracy

(nuScenes,

%)

Localizatio

n Accuracy

(TUM, %)

Extended

Kalman

Filter (EKF)

80.3 75 72 70,8

Particle

Filter (PF)
87,5 80,6 78 75,4

Convolutiona

l Neural

Networks

(CNN)

92 87 85,5 83

Hybrid AI

(GNN +

Transformer

+ DRL)

97,2 94,7 93,6 92

Proposed

Approach

(AI-Driven

Geospatial

Data Fusion)

98 97 96 95,1

Results are highlighted over the following Fig. 11 and
Fig. 12.

Fig. 11. Localization accuracy for models through principal databases.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

519 | P a g e
www.ijacsa.thesai.org

Fig. 12. Histogram of localization accuracy for models through principal

databases.

V. RESULTS ANALYSIS

The scores reflect each method’s performance in
computational and processing time efficiency. EKF
demonstrates moderate computational efficiency (70%) due to
its reliance on simple linear calculations, while PF scores lower
(60%) because of its intensive resampling processes. CNNs,
demanding in terms of training and inference, show the lowest
efficiency (50%). In contrast, hybrid AI models combining
GNN, Transformer, and DRL achieve 90% efficiency through
optimized parallel processing. The Proposed Approach excels
with 95–98% efficiency by integrating lightweight sensor
fusion and AI models tailored for real-time execution.
Regarding processing time, EKF and PF lag behind with 75–
80% and 50–60% efficiency, respectively, due to their iterative
nature. CNNs perform moderately (65–70%), whereas hybrid
AI models offer near real-time performance (95–98%),
completing tasks in under 50ms. The Proposed Approach
achieves the highest processing time efficiency (98–100%) by
leveraging architectural optimizations and efficient hardware,
enabling rapid data handling and decision-making.

These scores highlight, also, the performance of each
method in obstacle avoidance, adaptability, and overall
robustness. EKF shows limited obstacle avoidance (70–80%)
and low adaptability (60–70%) due to its reliance on GNSS
and inertial data, making it less effective in dynamic or
unknown environments. PF performs better in both aspects
(85–90% for obstacle avoidance, 70–80% for adaptability) but
remains constrained by particle resampling and computational
demands. CNN achieves moderate scores (80–85% obstacle
avoidance, 85–90% adaptability), excelling in visual
environments but struggling in GPS-denied or sensor-degraded
scenarios. Hybrid AI models (GNN + Transformer + DRL)
perform strongly across all categories, scoring 95–98% in
obstacle avoidance, adaptability, and robustness by leveraging
sensor fusion and continuous learning.

The Proposed Approach surpasses all others, achieving 97–
99% in obstacle avoidance and 98–99% in adaptability and
robustness through real-time integration of LiDAR, camera,
GNSS, and advanced AI, enabling it to adapt to dynamic
conditions and maintain high performance even in challenging,
sensor-compromised environments.

The performance scores on the KITTI Autonomous Driving
Dataset highlight the strengths and limitations of each
approach. EKF and PF exhibit slightly lower performance due
to the dataset’s complex, dynamic urban scenarios with
frequent occlusions. CNN models perform well but are
challenged by highly cluttered environments.

Hybrid AI models (GNN + Transformer + DRL)
demonstrate strong results, leveraging their adaptability to
urban structures and real-time learning capabilities. The
Proposed Approach outperforms all others, achieving the
highest scores in localization accuracy and obstacle avoidance
through optimized AI-driven sensor fusion and real-time
responsiveness. Overall, the results confirm the Proposed AI-
Driven Geospatial Data Fusion as the most efficient and robust
solution across diverse datasets.

The total evaluation highlights the superiority of the Hybrid
AI (GNN + Transformer + DRL) and the Proposed AI-Driven
Geospatial Data Fusion approaches over traditional methods
like EKF and PF. In terms of accuracy, both advanced models
achieve 97–99%, excelling in complex, multi-modal
environments. They also offer significantly faster reaction
times, under 50ms, compared to the slower EKF and PF
models (150–500ms), making them more suitable for real-time
autonomous navigation.

Computationally, the Proposed Approach stands out with
optimized, low-FLOP architectures that maintain high
accuracy, whereas PF and CNNs are more resource-intensive.
Finally, in terms of robustness, the Hybrid AI and Proposed
Approach demonstrate strong adaptability across varied
environments, outperforming traditional models that often
falter under GNSS-denied or unpredictable conditions.

VI. CONCLUSION

This paper presents a novel AI-driven geospatial data
fusion framework for autonomous terrestrial navigation,
combining multi-source sensor fusion with deep learning-based
decision-making. Leveraging a hybrid model of Graph Neural
Networks (GNN), Transformers, and Deep Reinforcement
Learning (DRL), the proposed approach surpasses traditional
methods like EKF, PF, and CNNs in accuracy, efficiency, and
adaptability. Validated on benchmark datasets including
KITTI, Oxford RobotCar, nuScenes, and TUM, the system
achieved up to 98% localization accuracy and obstacle
avoidance efficiency, with reaction times under 50ms.

Different finding tables confirm its superiority in
computational performance, obstacle handling, and robustness,
positioning it as a highly effective solution for real-world
deployment. Future work will focus on enhancing model
generalization and integrating edge computing for real-time
embedded applications.

ACKNOWLEDGMENT

The authors extend their appreciation to Northern Border
University, Saudi Arabia, for supporting this research work
through project number “NBU-CRP-2025-2448”.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

520 | P a g e
www.ijacsa.thesai.org

REFERENCES

[1] S. Wilko, A.M. Javier, and R. Daniela. “Planning and decision -making

for autonomous vehicles”. Annual Review of Control, Robotics, and

Autonomous Systems, vol. 1, no 1, p. 187-210. 2018.

[2] T. Yang, Z. Chaoqiang, W. Jianrui. “Perception and navigation in

autonomous systems in the era of learning: A survey”. IEEE

Transactions on Neural Networks and Learning Systems, vol. 34, no 12,

p. 9604-9624. 2022.

[3] A. Sara, I. Halima, K. Ali. “Advancing autonomous vehicle control

systems: An in‐depth overview of decision‐making and manoeuvre

execution state of the art”. The Journal of Engineering, vol. 223, no 11,

p. e12333. 2023.

[4] S. Afroosheh, and M. Askari. “Geospatial Data Fusion: Combining

Lidar, SAR, and Optical Imagery with AI for Enhanced Urban

Mapping”. arXiv preprint. 2024.

[5] S. Du, W. Li, and F. Ling. “GeoAI in terrain analysis: Enabling multi -

source deep learning and data fusion for natural feature detection”.

Environmental Modelling & Software, 143, 105103. 2021.

[6] LR, Rolen, BHAT, Soumya J., and KV, Santhosh. “Prospective study on

challenges faced in a perception system”. Cogent Engineering, vol. 11,

no 1, p. 2353498. 2024.

[7] JIN, Ronghe, ZHANG, Guohao, HSU, Li-Ta. “A survey on cooperative

positioning using GNSS measurements”. IEEE Transactions on

Intelligent Vehicles, 2024.

[8] LI, Xiaoyu, GUO, Xiye, LIU, Kai, et al. “Context Awareness Assisted

Integration System for Land Vehicles”. Electronics, vol. 13, no 11, p.

2038. 2024.

[9] Kadrolli, V., and Kalnoor, G. “AI-Infused Strategies for Mit igating

Uncertainty in Continental-Scale Surface Mass Change Analysis

Through GPS and GRACE-FO”. Remote Sensing in Earth Systems

Sciences, 7(1), 80–89. 2024.

[10] Li, W., and Wang, S. “GeoAI: Where machine learning and big data

converge in GIScience”. Journal of Spatial Information Science, vol.

20, 71–83. 2020.

[11] Liu, Y., and Fan, H. “Multi-sensor integrated navigation/positioning

systems using data fusion: From analytics-based to learning-based

approaches”. Information Fusion, 95, 62–90. 2023.

[12] Niantic Inc. “Niantic is building a 'geospatial' AI model based on

Pokémon Go player data”. The Verge. 2024.

[13] SandboxAQ. “The Startup That Wants to Revolutionize Satellite

Navigation”. Wired. 2024.

[14] Sharma, A., and Gupta, R. “AI-driven Real-time System for Land

Surveillance and Reconnaissance”. Proceedings of the 2022 Fourteenth

International Conference on Contemporary Computing (IC3-2022), 710–

715.

[15] Wang, S., and Li, W. “Automated terrain feature identification from

remote sensing imagery: A deep learning approach”. International

Journal of Geographical Information Science, 35(4), 703–726. 2021.

[16] Zhang, T., and Chen, L. “Deep learning-based approach for landform

classification from integrated data sources of digital elevation model and

imagery”. Geomorphology, 357, 107091. 2020.

[17] K. Zhu and T. Zhang. “Deep reinforcement learning based mobile robot

navigation: A review”. Tsinghua Science and Technology, vol. 26, no.

5, pp. 674–691, 2021.

[18] S. Bijjahalli, R. Sabatini, and A. Gardi. “Advances in intelligent and

autonomous navigation systems for small uas”. Progress in Aerospace

Sciences, vol. 115, p. 100617, 2020.

[19] J. Crespo, J. C. Castillo, O. M. Mozos, and R. Barber. “Semantic

information for robot navigation: A survey”. Applied Sciences, vol. 10,

no. 2, p. 497, 2020.

[20] S. Rezwan and W. Choi. “Art ificial intelligence approaches for uav

navigation: Recent advances and future challenges”. IEEE access, vol.

10, pp. 26 320–26 339, 2022.

[21] N. F. A. M. Fadzil, H. M. Fadzir, H. Mansor, and U. Rahardja. “Driver

behaviour classification: A research using obd-ii data and machine

learning”. Journal of Advanced Research in Applied Sciences and

Engineering Technology, pp. 51–61, 2024.

[22] S. Jordan and T. M. Nguyen. “Machine learning in autonomous

vehicles: Current status and future directions”. IEEE Transactions on

Vehicular Technology, vol. 72, no. 6, pp. 7113–7128, 2023.

[23] Sierra N. Young. “Intelligent robots for agricu lture - Ag-robot

development, navigation, and information perception”. Frontiers in

Robotics and AI. Section Industrial Robotics and Automation. Volume

12 – 2025.

[24] Milad Rahmat. “Edge AI-Powered Real-Time Decision-Making for

Autonomous Vehicles in Adverse Weather Conditions”. ArXiv, March

2025.

[25] Shumaila Javaid, Muhammad Asghar Khan, and Hamza Fahim.

“Explainable AI and monocular vision for enhanced UAV navigation in

smart cities: prospects and challenges”. Frontiers in Sustainable Cities.

Volume 7 – March 2025.

[26] Na Tang, Yuehui Liao, Yu Chen, and Guang Yang. “An AI -Driven

Vision Sensor Framework for High-Precision, Real-Time Video Portrait

Segmentation with Enhanced Temporal Consistency and Optimized

Model Design”. Journal Sensors. 25(5). 2025.

[27] G C Sunil, Arjun Upadhyay, and Xin Sun. “Development of software

interface for AI-driven weed control in robotic vehicles, with time-based

evaluation in indoor and field settings”. Smart Agricu ltural Technology -

Elsevier. Volume 9, December 2024.

[28] Mohsen Soori, Behrooz Arezoo, and Roza Dastres . “Art ificial

intelligence, machine learning and deep learning in advanced robotics, a

review”. Cognitive Robotics. Volume 3. Pages 54-70. 2023.

[29] Christos Gkrizis, Nikos Dimitropoulos, Konstantinos Katsampiris-

Salgado. “Intersubjective AI-driven multimodal interaction for advanced

user-centric HRC applications - the JARVIS approach”. Procedia CIRP-

Elsevier. Volume 130. Pages 325-330. 2024.

[30] Omsri Aeddula, Martin Frank, and Ryan Ruvald. “AI-Driven Predictive

Maintenance for Autonomous Vehicles for Product-Serv ice System

Development”. Procedia CIRP- Elsev ier. Volume 128. Pages 84-89.

2024.

