
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

521 | P a g e
www.ijacsa.thesai.org

SEARCHX: An Integrated Framework of Distributed

Intelligent Search Services Based on Web Browser

Zehui Zhang*, Lin Zhou, Jie Peng, Liwei Wang, Bo Cheng

Inner Mongolia Power Digital Research Institute, Hohhot 010000, China

Abstract—To address the growing demand for web search and

improve the performance and accuracy of search systems, this

study proposes a distributed intelligent search service integration

framework based on SEARCHX. This framework leverages the

local computational power of the browser, integrating inverted

indexing, data sharding, and replication mechanisms, as well as

the Term Frequency-Inverse Document Frequency (TF-IDF)

intelligent ranking algorithm. These components enable front-end

distributed processing of search tasks and multi-source result

fusion. Experiments are conducted on six major browser

platforms, Chrome, Firefox, Edge, Safari, etc., using the open-

source Text REtrieval Conference (TREC) dataset. The system’s

response performance and accuracy are evaluated under varying

search loads. The experimental results show that, compared to the

unoptimized version, the optimized SEARCHX reduces the

average response time by approximately 27 per cent under

medium-to-high load conditions. Precision improves by an

average of 0.05, and the F1 score increased by more than 0.04 on

all platforms. The system also demonstrates good stability and

consistency across multiple platforms. SEARCHX provides a

viable approach to building decentralized, high-efficiency, and

easily deployable intelligent search services, with strong practical

value and expansion potential. This study aims to construct a

decentralized, cross-platform, and high-performance intelligent

search service framework, offering a more efficient, stable, and

accurate technical support solution for users in complex search

environments.

Keywords—Web; TF-IDF; distributed network; intelligent

search; SEARCHX

I. INTRODUCTION

In the context of rapid advancements in information
technology, internet data is experiencing exponential growth,
and users face unprecedented challenges of information
overload and retrieval difficulties in the web environment. As
the core tool for information access, intelligent search engines
have permeated multiple fields such as knowledge acquisition,
data mining, and personalized recommendation systems [1].
However, mainstream search engines are predominantly based
on centralized server architectures. While they offer powerful
computational capabilities and global indexing services, they
increasingly show issues in handling massive concurrent
requests, ensuring user privacy, and supporting flexible
deployments. These problems include high latency, poor
scalability, high deployment costs, and data security risks [2].
Meanwhile, web browser technology is undergoing significant
evolution. New-generation browser-side technologies,
represented by JavaScript engine optimizations, WebAssembly
(Wasm), and Service Workers, have transformed web browsers
from mere information display tools into powerful computing

platforms [3]. The enhanced local storage, local execution, and
multi-threading capabilities of browsers provide a practical
foundation for running high-performance applications directly
within the browser. This shift enables parts or even the entire
search process to be offloaded to the browser, which alleviates
server load, reduces response latency, enhances data localization
capabilities, and strengthens user privacy protection [4]. In
enterprise-level information systems, distributed search
architectures like Elasticsearch are widely deployed, relying on
mechanisms such as inverted indexing, data sharding, and
replica redundancy to improve search efficiency and system
fault tolerance [5]. However, these technologies are still
primarily server-side and have not been effectively migrated or
integrated into the browser side, leaving a gap in research and
practical application [6]. Therefore, fully leveraging the
potential of browsers as client-side computing platforms to
construct a cross-platform, intelligent, distributed search
framework becomes an important and worthy direction for
further exploration.

Based on the above background, this study proposes the
SEARCHX framework, a distributed search engine optimization
solution that integrates inverted indexing, data sharding, replica
synchronization, and the Term Frequency–Inverse Document
Frequency (TF-IDF) intelligent ranking algorithm. The
framework is introduced within the browser environment to
enable distributed task scheduling, plugin-based service
integration, and local search result fusion. This design supports
cross-platform deployment and flexible scalability, and
significantly enhances system response efficiency and user data
privacy control capabilities. The main innovation of this study
is to systematically migrate the complete distributed search
engine architecture—including inverted index, data sharding,
replica synchronization, and TF-IDF intelligent ranking
algorithm—to the Web browser side. This design is expected to
realize truly decentralized, cross-platform search processing and
local multi-source result fusion, thus filling the gap in the
research and practice of a complete distributed search
architecture on the browser side.

The subsequent structure of this study is arranged as follows:
Section II reviews the related work on intelligent search,
distributed architecture, and browser computing. Section III
elaborates on the design of the SEARCHX framework and
distributed optimization methods in detail. Section IV presents
the performance evaluation and comparative experimental
results under multi-browser platforms. Section V summarizes
the research results and looks forward to future directions.
Through systematic discussion and empirical analysis, this study
aims to comprehensively present the technical implementation

*Corresponding author.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

522 | P a g e
www.ijacsa.thesai.org

and performance advantages of the SEARCHX framework to
readers.

II. RELATED WORK

A. Distributed Intelligent Search Algorithm

In recent years, both academia and industry have conducted
extensive research on intelligent search systems, distributed
architectures, and front-end computing, resulting in several
valuable development paths [7]. In the field of intelligent search,
Wang et al. discovered that pre-trained encoders such as
Bidirectional Encoder Representations from Transformers
(BERT) were mainstream methods for information retrieval.
BERT could be categorized into six technical paths, including
long document processing, semantic integration, and efficiency
balancing. Their results indicated that BERT-based models
outperformed traditional methods in terms of accuracy and
adaptability, with lower computational costs [8]. He et al.
proposed that personalized recommendation mechanisms could
enhance search user satisfaction and result relevance by
modeling user historical behaviors and interest preferences [9].
In the domain of distributed search systems, Fan et al. found that
inverted index structures significantly improved recall and
precision in large-scale text retrieval, making it a core
technology for building high-performance search engines [10].
Merlin and Prem identified that the MapReduce framework
based on the Jaya-Sine Cosine Algorithm (Jaya-SCA) enabled
efficient indexing and retrieval in big data. This method
achieved an F1 score of 0.5323, a recall rate of 0.4400, and a
precision rate of 0.6867 on the StatLog heart disease dataset,
significantly improving information retrieval performance [11].
Soltanmohammadi et al. found that a consistent hashing-based
data partitioning strategy effectively avoided data loss due to
node failures [12].

B. Browser-Side Computing and Search Results Sorting

Regarding browser-side computing and collaboration
mechanisms, Kjorveziroski and Filiposka highlighted that, with
the development of WebAssembly, modern browsers had the
ability to execute local computational tasks, showing potential
to serve as edge nodes in distributed systems [13]. Putra et al.
designed the SearchX platform, which supported user behavior
tracking and collaborative task allocation, demonstrating that
browsers could serve as both execution and collection terminals
for search services. However, their system mainly focused on
research purposes and lacked complete distributed indexing and
search capabilities [14]. In ranking algorithms, Dai et al. found
that while the TF-IDF algorithm was simple, it effectively
reflected keyword importance and document relevance in static
document collections, serving as the foundation for search
ranking [15]. Yang and Choi discovered that the Best Matching
(BM) 25 algorithm, by introducing a document length
normalization factor, further improved ranking accuracy [16]. In
search service integration systems, Dejonckheere found that
search service platforms based on microservice architectures
effectively enhanced module decoupling and deployment
flexibility, widely applied in cloud computing and large-scale
web services [17].

In summary, although significant progress has been made in
areas such as distributed search, intelligent ranking, and

browser-side computing, there is currently a lack of a unified
integrated platform that can simultaneously support local
browser computation, cross-node collaborative search, and
intelligent result fusion. The SEARCHX framework proposed
here builds upon the aforementioned research achievements and
fills the gap in browser-side distributed search integration. This
framework holds significant theoretical and practical value.

III. RESEARCH METHODOLOGY

A. SEARCHX Framework

SEARCHX is a distributed intelligent search service
integration framework based on modern web browsers, designed
to leverage the computational and communication capabilities
of browsers to provide a low-barrier, high-performance
collaborative search experience. Its architecture adopts a client-
server model, with the front-end implemented using the React
framework for modular and component-based design. It
supports multi-browser cross-platform access without the need
for additional software installations. Users can simply
participate in search tasks by specifying a Uniform Resource
Locator (URL). The front-end is responsible for displaying the
user interface, managing search sessions, and collecting user
operation logs in real-time. The back-end, based on the Node.js
platform, uses Express and Socket.io to handle efficient
Hypertext Transfer Protocol (HTTP) requests and WebSocket
real-time communication, managing user grouping, task
synchronization, and data storage [18]. For database
management, SEARCHX utilizes MongoDB to support
dynamic data structures, enabling flexible storage of massive
logs and experimental data. The basic framework of SEARCHX
is illustrated in Fig. 1.

B. SEARCHX Framework Based on Distributed Search

Optimization

To meet the high-performance requirements of massive data
searches and enhance the accuracy and stability of the system,
the SEARCHX framework introduces several distributed search
optimization techniques on the browser side. These techniques
include the construction of inverted indexes, the TF-IDF ranking
algorithm, data sharding and replication mechanisms, as well as
task scheduling and result fusion based on real-time
communication.

Inverted indexing is the core data structure of modern search
engines. It establishes a mapping from keywords to document
lists, enabling fast keyword location and retrieval. In a
distributed environment, local construction of inverted indexes
helps improve search speed and the system's parallel processing
capabilities [19]. Specifically, the inverted index is composed of
a keyword and the inverted list of documents. The calculation
equation is as follows:

𝐼 = { (𝑡𝑖,𝐿𝑖) ∣∣ 𝑡𝑖 ∈ 𝑇 } (1)

𝐿𝑖 = {(𝑑𝑗, 𝑓𝑖𝑗) ∣ 𝑑𝑗 ∈ 𝐷, 𝑓𝑖𝑗 > 0} (2)

𝐼 is an inverted index set. 𝑡𝑖 is the 𝑖-th keyword in the
keyword set 𝑇 . 𝐿𝑖 is the inverted list corresponding to the

keyword 𝑡𝑖. 𝑑𝑗 is the 𝑗 th document in the document set 𝐷.

𝑓𝑖𝑗 is the word frequency of keyword 𝑡𝑖 in document 𝑑𝑗.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

523 | P a g e
www.ijacsa.thesai.org

Interface

Guide
Session Sync

Page

Components

Questionnaire
Search

Session

Search

Results

Document

Viewe

Collaborative

Components

 Query

History
Ratings Bookmarks Group Chat Annotation

Logger

Search

Results

Task Session

Regulator Provider
Result

Caching

Retrieval

Search Task
User

Grouping

Session

Collaboration Log Collector
Uniform Resource

Locator Scraper

URL

Renderer

MongoDB

Elastic IndriBing

MongoDB

Front-end

Back-end

Hypertext Transfer

Protocol

Fig. 1. SEARCHX basic framework.

The TF-IDF algorithm is a classical weighting method based
on the vector space model, which combines the frequency of
keywords in a single document and their rarity in the whole
document set, thus weighting keywords and highlighting
important and highly differentiated words [20-22]. The specific
calculation equation is as follows:

𝑡𝑓𝑖𝑗 =
𝑓𝑖𝑗

max
𝑡𝑘∈𝑑𝑗

𝑓𝑘𝑗
 (3)

𝑖𝑑𝑓𝑖 = log(
𝑁

𝑑𝑓𝑖+1
) (4)

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑖,𝑑𝑗) = 𝑡𝑓𝑖𝑗 ⋅ 𝑖𝑑𝑓𝑖 (5)

𝑡𝑓𝑖𝑗 is the normalized word frequency. 𝑖𝑑𝑓𝑖 is the inverse
document frequency. 𝑑𝑓𝑖 is the number of documents
containing the keyword 𝑡𝑖 . 𝑁 is the total number of
documents.

The vector space model represents documents and queries as
multidimensional vectors, and quantifies the correlation
between them by calculating the cosine similarity of the
included angle between the vectors [23]. This measurement
method not only overcomes the rigid limitation of the traditional
Boolean model but also flexibly reflects the similarity between
texts and improves the accuracy of search matching. The
calculation equation of the vector space model is as follows:

𝐯𝑑𝑗 = (𝑣𝑗1, … , 𝑣𝑗𝑀) (6)

𝑣𝑗𝑖 = 𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑖,𝑑𝑗) (7)

𝐯𝑄 = (𝑤1 ,… , 𝑤𝑀) (8)

𝑤𝑖 = {
𝑤𝑖, 𝑡𝑖 ∈ 𝑄
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9)

𝑆𝑖𝑚(𝑑𝑗 ,𝑄) =
𝒗𝑑𝑗⋅𝒗𝑄

∥𝒗𝑑𝑗∥⋅∥𝒗𝑄∥
 (10)

𝐯𝑑𝑗 is the vector representation of document 𝑑𝑗. 𝐯𝑄 is the

vector representation of query 𝑄 . 𝑀 is the total number of
keywords. 𝑤𝑖 is the weight of keyword 𝑡𝑖 in the query.

𝑆𝑖𝑚(𝑑𝑗 ,𝑄) is the similarity value between the document and

query.

Sharding is a commonly used data partitioning method in
distributed systems, where large-scale data is horizontally split
across multiple nodes to reduce the load on individual nodes and
enable parallel processing. A hash function ensures that data is
evenly distributed, preventing load imbalance across nodes [24].
The sharding mechanism is a key technology for achieving
system scalability and handling high concurrency. The specific
partitioning expression is as follows:

𝑆𝑚 = {𝑑𝑗 ∈ 𝐷 ∣ ℎ(𝑑𝑗)𝑚𝑜𝑑𝐾 = 𝑚} (11)

𝑆𝑚 is the 𝑚-th slice. ℎ(𝑑𝑗) is the hash value of document

𝑑𝑗. 𝐾 is the total number of slices. 𝑚 is the slice number.

The replication mechanism enhances the fault tolerance and
availability of the system by storing identical data across
multiple nodes. In the event of a node failure, the system can
switch to a backup replica, ensuring continuous and stable

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

524 | P a g e
www.ijacsa.thesai.org

operation [25]. Additionally, replication helps with load
balancing and improves access efficiency. The replica selection
algorithm can be expressed as follows:

𝑅𝑚 = {𝑛𝑚1,𝑛𝑚2 , … , 𝑛𝑚𝑅} (12)

𝑛∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑛∈𝑅𝑚

𝐿𝑜𝑎𝑑(𝑛) (13)

𝑅𝑚 is the copy set of the 𝑚-th slice. 𝑛𝑚1 is the replica
node. 𝐿𝑜𝑎𝑑(𝑛) is the current load value of node 𝑛. 𝑛∗ is the
selected replica node.

Parallel computing divides large tasks into smaller sub-tasks
and assigns them to different computation nodes for
simultaneous execution, reducing the overall response time.
Search tasks are split into shard queries, and high-efficiency
collaboration between nodes is achieved through modern Web
asynchronous communication protocols [26]. The system
response time can be calculated as follows:

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑚𝑎𝑥
0≤𝑚<𝐾

𝑇𝑚 (14)

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is the overall response time of the system. 𝑇𝑚 is

the query response time of the 𝑚-th fragment.

Multi-source result fusion, based on data fusion theory,
integrates partial results from each shard, eliminates duplicates,
and forms the final ordered result set [27]. Merge sorting ensures
the correctness of the overall ranking, while deduplication
prevents result redundancy, enhancing the user experience. The
specific calculation equation is as follows:

𝑅 = ⋃𝑅𝑚
𝐾−1

𝑚=0
 (15)

𝑅𝑓𝑖𝑛𝑎𝑙 = (𝑅) (16)

𝑅 is the combination result set. 𝑅𝑓𝑖𝑛𝑎𝑙 is the result set after

final sorting and deduplication.

The load balancing theory provides a dynamic adjustment
strategy for task allocation. By monitoring the node load in real-
time and combining it with the weighted smoothing algorithm,
the task scheduling weight is adjusted to prevent the overload of
a single node and improve the system stability and resource
utilization [28]. The dynamic updating equation of scheduling
weight is as follows:

𝑤𝑛
(𝑡+1) = 𝛼𝑤𝑛

(𝑡)+ (1− 𝛼)
1

𝐿𝑜𝑎𝑑(𝑛)
 (17)

The maximum concurrency control calculation equation is
as follows:

𝐶 = 𝑚𝑖𝑛 (
𝑋

𝑇𝑡
, 𝐶𝑚𝑎𝑥) (18)

𝑤𝑛
(𝑡) is the scheduling weight of node 𝑛 at time 𝑡. 𝛼 is a

smoothing factor (0~1). 𝑋 is the total number of tasks to be
processed. 𝑇𝑡 is the time window size. 𝐶𝑚𝑎𝑥 is the maximum
number of concurrent tasks supported by the system.

The process of SEARCHX based on distributed search
optimization is shown in Fig. 2.

User Query

Query Parsing

Coordinator

Parallel

Processing

Replica Selection

Browser Node 1

Shard Routing

Browser Node 2

Browser Node N Cosine similarity

Inverted index

search

TF-IDF Shard Results

Fusion Center

De-duplication

and Sorting

Load feedback

Final Results

User Interface

Fig. 2. The process of SEARCHX based on distributed search optimization .

C. System Assembly Design

The experimental platform of this study consists of six
identical physical computers, each equipped with an Intel Core
i7-10700 CPU, 6GB of RAM, and 512GB solid-state drive
storage. The operating system on all machines is Linux Ubuntu
20.04 Long-term Support (LTS). The latest versions of
mainstream web browsers, including Chrome, Firefox, Edge,
Safari, Opera, and Brave, are deployed on each node to test the

compatibility and performance differences of SEARCHX in a
multi-platform browser environment. The software
development environment includes Node.js v18.0 for the
backend service runtime, React v18.2 for frontend component
development, and MongoDB v6.0 for lightweight local indexing
and data storage. Additionally, the system communication layer
incorporates WebSocket and Web Real-Time Communications
(WebRTC) protocols to support distributed collaborative search
across browsers.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

525 | P a g e
www.ijacsa.thesai.org

SEARCHX adopts a modular and component-based system
deployment strategy. The main node runs the backend service
responsible for task scheduling and user sessions, while the
browser nodes act as independent search sub-nodes that load the
frontend interface and locally execute indexing and query tasks.
The deployment process includes the following steps:
1) Configure Node.js and Express backend services on the main
node and open the WebSocket communication port. 2) Run the
frontend page on each browser node, loading the SEARCHX
interface via a unified URL. 3) Each browser node
autonomously registers and identifies its role based on the
system initialization logic. 4) Use browser-side Service Workers
and localStorage to achieve local data persistence and offline
accessibility. This architecture allows the browser to function
both as a lightweight client for displaying the interface and as a
search computation node, enabling a truly decentralized search
system at the edge.

The testing plan is divided into two stages: functional testing
and performance testing. In functional testing, the system
verifies the functionality of critical modules, including: task
scheduling, index construction, result sorting, node
communication, and failover mechanisms. The goal is to ensure
that these modules are operational and functioning as expected
within the system. In performance testing, the system is tested
under different search request volumes (10, 100, 500, 1000,
2000, 5000 requests). The tests are conducted on six major
browser platforms, and the system's response time, stability, and
other performance metrics are evaluated. Each node
automatically logs data, which is sent back to the main node for
analysis and assessment.

This study uses the Text REtrieval Conference (TREC) open
text retrieval dataset as the training and evaluation data source
for the system [29, 30]. This study selects this dataset mainly
based on the following considerations: the dataset includes 250
real user queries, more than 520,000 news documents, and
manually annotated relevance judgments. It features diverse
query topics, moderate document scale, and high annotation
quality, which can comprehensively evaluate the precision,
recall, and system stability of the search engine under different
query complexities and document scales, and meet the needs of
this study for empirical verification of retrieval performance.
The subset used in this study is the TREC 2004 Robust Track,
which includes 250 standard query tasks, 528,000 English news
and article documents, and manually annotated relevance grade
labels. This makes it suitable for analyzing precision, recall,
accuracy, and F1 score metrics.

IV. EXPERIMENTAL EVALUATION OF SEARCHX

PERFORMANCE

A. Results of Performance Analysis

The comparison results of the performance changes of the
search framework under different platforms with the query
volume are shown in Fig. 3 to Fig. 8.

Analysis of Fig. 3 shows that, as the number of query entries
increases, the average response time for all browsers tends to
rise, indicating that an increase in search request volume has a
significant impact on system response. Among all browsers,
Chrome performs the best, with the shortest response time,

suggesting that its JavaScript engine and network
communication optimizations are more suitable for distributed
search loads. Safari, on the other hand, performs relatively
poorly, with the longest response time. The increase in response
time accelerates as the query volume grows, and for 5000
queries, the average response time is approximately 6 to 7 times
higher than that for 10 queries. It indicates that the system can
still maintain relatively stable response performance even under
large-scale tasks.

0 1,000 2,000 3,000 4,000 5,000

0

100

200

300

400

500

600

700

V
al

u
e
/m

s

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

Fig. 3. Comparison results of average response time.

Fig. 4 shows that the CPU utilization increases significantly
with the growth of query volume, reflecting the increasing
computational resource consumption of search tasks. Chrome
and Brave demonstrate lower CPU usage under varying query
loads compared to other browsers, indicating more efficient
resource management. Safari and Edge exhibit the highest CPU
utilization under heavy loads, which could potentially affect
their ability to handle multiple tasks concurrently. Overall, in
distributed tasks, it is essential to allocate the load reasonably in
this system to avoid CPU bottlenecks on a single node.

0 1,000 2,000 3,000 4,000 5,000

20

40

60

80

100

V
al

u
e/

%

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

Fig. 4. CPU occupancy comparison results.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

526 | P a g e
www.ijacsa.thesai.org

0 1,000 2,000 3,000 4,000 5,000

150

200

250

300

350

400

450

500

550

600
V

al
u
e/

m
b

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

Fig. 5. Memory usage comparison result.

Fig. 5 reveals that memory consumption in all browsers
increases linearly with the number of query entries, indicating
that search result indexing and cached data consume a
significant amount of memory. Chrome and Brave exhibit
relatively lower memory usage, suggesting optimized memory
management and recycling mechanisms. Safari, on the other
hand, shows the highest memory consumption, indicating
potential issues with memory leakage or room for improvement
in cache management strategies.

Fig. 6 shows that the throughput rate decreases as the query
volume increases on all platforms, indicating a certain
processing capacity bottleneck. Chrome maintains the highest
throughput, handling more requests consistently, which reflects
its strong support for distributed search tasks. Edge and Safari,
however, exhibit lower throughput, likely due to limitations in
network communication efficiency and multi-threading
processing capabilities. This result underscores the critical
importance of improving network communication and
concurrent processing technologies for system performance
optimization

0 1,000 2,000 3,000 4,000 5,000

-25

0

25

50

75

100

125

150

re
q
/s

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

Fig. 6. Throughput comparison results.

0 1,000 2,000 3,000 4,000 5,000

0

15

30

45

60

75

V
al

u
e/

m
s

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

Fig. 7. Data synchronization delay result.

Fig. 7 shows that data synchronization latency increases as
the query volume grows, indicating a higher communication
burden between nodes. Chrome and Brave maintain the lowest
synchronization delay, reflecting superior WebSocket or
WebRTC communication performance. Safari, on the other
hand, exhibits the highest latency, which could degrade the user
experience, particularly in collaborative search scenarios. The
study suggests that optimizing the synchronization mechanism
is a key factor in enhancing system response speed and stability.

Fig. 8 reveals that the overall score decreases as the query
load increases, reflecting the system's stability pressure under
high load conditions. Chrome and Brave maintain higher scores
than other platforms, indicating better stability in complex load
environments. Edge and Safari have lower scores. It suggests
that future optimization of the SEARCHX framework should
focus on improving error recovery and resource management
strategies to ensure stable operation during prolonged high-load
conditions.

0 1,000 2,000 3,000 4,000 5,000

7.5

8.0

8.5

9.0

9.5

10.0

V
al

u
e

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

Fig. 8. System stability score results.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

527 | P a g e
www.ijacsa.thesai.org

0 1,000 2,000 3,000 4,000 5,000
0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90
V

al
u
e

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

0 1,000 2,000 3,000 4,000 5,000

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

V
al

u
e

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

0 1,000 2,000 3,000 4,000 5,000
0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

V
al

u
e

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

0 1,000 2,000 3,000 4,000 5,000

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

V
al

u
e

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

(a) Precision (b) Recall

(c) Accuracy (d) F1-score
Fig. 9. Comparison of query accuracy under different platforms.

The comparison of query accuracy under different platforms
as the query volume increases is shown in Fig. 9.

Fig. 9 shows that as the number of query entries increases
from 10 to 5000, the search result accuracy across all browser
platforms exhibits a gradual decline. Taking Chrome as an
example, the accuracy drops from 0.901 to 0.821, but it remains
at a high level, indicating excellent performance in intelligent
ranking and index optimization. Firefox and Brave follow
closely, with accuracy dropping from 0.884 and 0.892 to 0.804
and 0.811, respectively. Safari and Edge show slightly weaker
performance, starting at 0.857 and 0.870, dropping to 0.772 and
0.786, but still maintaining stability. Regarding recall rate,
Chrome and Brave platforms decrease from 0.893 and 0.883 to
0.809 and 0.798, demonstrating strong document coverage and
distributed indexing effects. Firefox and Opera decrease from
0.875 and 0.867 to 0.792 and 0.782. Safari and Edge platforms
start lower, at 0.848 and 0.862, and drop to 0.760 and 0.774,
indicating room for improvement in shard synchronization and
index coverage for these two platforms. As the query load
increases, the accuracy of all platforms gradually decreases but

remains stable. Chrome's accuracy drops from 0.896 to 0.817,
and Brave's from 0.887 to 0.806, showing the best performance.
Firefox and Opera start at 0.880 and 0.872, and end at 0.799 and
0.790, respectively. Safari and Edge show slightly lower
accuracy, from 0.852 and 0.866 to 0.767 and 0.781. The F1
scores for all platforms decline as the number of queries
increases, but the minimum remains above 0.760. Chrome and
Brave show the best overall performance, with F1 scores
dropping from 0.897 and 0.885 to 0.812 and 0.800, respectively.
Firefox and Opera's F1 scores drop from 0.879 and 0.870 to
0.794 and 0.784, still maintaining a high level. Safari and Edge's
F1 scores decrease from 0.851 and 0.865 to 0.762 and 0.776,
slightly lower than the others but still stable overall.

The results of performance comparison between the search
framework and the unoptimized framework under different
platforms are shown in Table I.

Table I shows that the optimized SEARCHX search
framework outperforms the unoptimized version across six
major browser platforms, demonstrating higher system

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

528 | P a g e
www.ijacsa.thesai.org

performance and search quality. Specifically, the average
response time decreases by approximately 27 per cent, while
CPU and memory usage significantly decrease, indicating
improved efficiency in resource scheduling and task
management. Throughput increased by an average of 34.8 req/s,
greatly enhancing the system's ability to handle concurrent

requests. In terms of accuracy, precision and F1 scores improve
by an average of approximately 0.05. The Safari platform shows
the most significant improvement, with a precision increase of
0.064, highlighting the stability and practicality of the optimized
framework in large-scale distributed query environments.

TABLE I. THE PERFORMANCE COMPARISON RESULTS OF THE SEARCH FRAMEWORK AND UNOPTIMIZED FRAMEWORK UNDER DIFFERENT PLATFORMS IN THIS

STUDY

Platfor

m

Framework

Version

Avg. Response Time

(ms)

CPU Usage

(%)

Memory Usage

(mb)

Throughput

(req/s)

Precisio

n

F1

Score

Chrome
Unoptimized 328 72.4 946 143.7 0.762 0.769

The proposed model 238 63.1 802 178.5 0.821 0.812

Firefox
Unoptimized 349 74.8 971 139.1 0.743 0.751

The proposed model 257 65.6 835 168.3 0.804 0.794

Edge
Unoptimized 367 77.2 990 135.2 0.725 0.731

The proposed model 274 68.5 857 162.4 0.786 0.776

Safari
Unoptimized 382 79.1 1014 129.5 0.708 0.717

The proposed model 293 70.2 876 157.2 0.772 0.762

Opera
Unoptimized 341 73.6 938 142.1 0.735 0.742

The proposed model 249 64.9 819 171.3 0.795 0.784

Brave
Unoptimized 330 71.9 925 145.5 0.754 0.761

The proposed model 241 62.8 798 177.8 0.811 0.8

B. Discussions

This study achieves significant improvements over previous
research in multiple dimensions, including performance, system
resource utilization, and search quality, by constructing and
optimizing the SEARCHX search framework. Unlike previous
models that applied BERT for information retrieval, which
excels in semantic understanding but is limited by
computational resources, this study focuses on a lightweight
search architecture with strong deployability. By employing TF-
IDF and distributed inverted indexing, the framework reduces
average response time, lowers CPU utilization, and optimizes
memory consumption across six major browser platforms, while
also improving average throughput. In contrast to previous
approaches that used optimization algorithms to enhance recall
performance, this study shows an average improvement of
approximately 0.043 in F1 score and more than 0.05 in
precision, demonstrating superior practicality and platform
adaptability. Additionally, building on previous browser
collaboration models that are limited to laboratory settings,
SEARCHX has successfully implemented a real-world
framework supporting local computation and multi-node
collaboration. In summary, this study inherits the theoretical
advancements in search quality enhancement, system fault
tolerance, and architecture design from prior literature. It also
makes a substantial breakthrough in performance, efficiency,
and adaptability by constructing a unified integrated platform
and conducting cross-platform experimental validation. This
study fills the gap in existing search systems related to front-end
collaboration and resource optimization, providing a new
paradigm for the edge deployment and platform independence
of future intelligent search systems.

V. CONCLUSION

This study systematically evaluates the performance of the
optimized SEARCHX search framework across six major
browser platforms, demonstrating significant improvements in
several key metrics. In terms of performance, the optimized
system reduces the average response time from approximately
350ms to 250ms, representing a 27 per cent decrease. CPU
utilization drops by nearly 9 per cent (for instance, Chrome went
from 72.4 per cent to 63.1 per cent). Memory consumption
decreases by an average of over 140MB, reflecting more
efficient system resource management. Regarding throughput,
the average increase is about 34.8 req/s, with Chrome showing
the most significant improvement, from 143.7 req/s to 178.5
req/s, greatly enhancing concurrent processing capabilities. In
terms of search quality, the optimized SEARCHX framework
achieves an average improvement of over 0.05 in precision, with
Safari showing the most substantial increase, from 0.708 to
0.772, a rise of 0.064. The F1 score also improves, with an
average increase of 0.04-0.05, effectively balancing system
recall and precision. In summary, the optimized SEARCHX
framework outperforms in four key areas: response speed,
system resource usage, throughput performance, and search
quality. The results demonstrate its strong stability, high
efficiency, and high accuracy in multi-platform, large-scale
query environments, making it highly promising for broad
applications. This study selects this dataset mainly based on the
following considerations: the dataset includes 250 real user
queries, more than 520,000 news documents, and manually
annotated relevance judgments. It features diverse query topics,
moderate document scale, and high annotation quality, which
can comprehensively evaluate the precision, recall, and system
stability of the search engine under different query complexities

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

529 | P a g e
www.ijacsa.thesai.org

and document scales, and meet the needs of this study for
empirical verification of retrieval performance.

Although this study verifies the excellent performance of the
SEARCHX framework in a laboratory environment, its
deployment in real network environments still faces many
challenges. For example, heterogeneous network conditions and
differentiated browser computing capabilities may affect the
collaboration efficiency and result consistency among nodes;
although local data processing enhances user privacy protection,
it also brings new client-side security considerations; in addition,
when facing Internet-scale ultra-large datasets, the current
architecture still needs further optimization in terms of index
construction and update efficiency. Identifying these limitations
is crucial for the future development and practical application of
the framework.

Based on this, future research will conduct an in-depth
exploration along the following directions: 1) Attempt to
introduce a dynamic load balancing algorithm to further
improve the collaboration efficiency among heterogeneous
browser nodes. 2) Explore the integration of lightweight
semantic models with the existing TF-IDF algorithm to enhance
the ability to understand complex semantic queries. 3) Extend
the framework to the mobile browser environment and evaluate
its performance, focusing on optimizing the index efficiency
under large-scale data, and simultaneously explore the
integration of lightweight neural ranking models to improve the
ability to understand complex queries.

REFERENCES

[1] Singh B, Wongmahesak K, Chandra S. Content marketing with search

engine optimization: Fostering successful businesses in online marketing

6.0. Practical Strategies and Case Studies for Online Marketing 6.0, 2025,

1(1): 17-36.

[2] Mager A, Norocel O C, Rogers R. Advancing search engine studies: The

evolution of Google critique and intervention. Big Data & Society, 2023,

10(2): 20539517231191528.

[3] Wang Z, Bu D, Wang N, et al. An empirical study on bugs in JavaScript

engines. Information and Software Technology, 2023, 155(1): 107105.

[4] Makrydakis N. SEO mix 6 Oâs model and categorization of search engine

marketing factors for websites ranking on search engine result pages. Int.

J. Res. Mark. Manag. Sales, 2024, 6(1): 18-32.

[5] Ladanavar S M, Kamble R, Goudar R H, et al. Enhancing User Query

Comprehension and Contextual Relevance with a Semantic Search

Engine using BERT and ElasticSearch. EAI Endorsed Transactions on

Internet of Things, 2024, 10(1): 1.

[6] Adnyana I G, Dirgayusari A M, Atmaja K J. Data Visualization for

Building a Cyber Attack Monitoring Dashboard Based on Honeypot.

Sinkron: jurnal dan penelitian teknik informatika, 2024, 8(4): 2510-2518.

[7] Tkachenko O, Chechet A, Chernykh M, et al. Scalable Front -End

Architecture: Building for Growth and Sustainability. Informatica, 2025,

49(1): 1.

[8] Wang J, Huang J X, Tu X, et al. Utilizing bert for information retrieval:

Survey, applications, resources, and challenges. ACM Computing

Surveys, 2024, 56(7): 1-33.

[9] He X, Liu Q, Jung S. The impact of recommendation system on user

satisfaction: A moderated mediation approach. Journal of Theoretical and

Applied Electronic Commerce Research, 2024, 19(1): 448-466.

[10] Fan J, Khan J, Singh N P, et al. Fulgor: a fast and compact k-mer index

for large-scale matching and color queries. Algorithms for Molecular

Biology, 2024, 19(1): 3.

[11] Merlin N R G, Prem. M V. Efficient indexing and retrieval of patient

information from the big data using MapReduce framework and

optimisation. Journal of Information Science, 2023, 49(2): 500-518.

[12] Soltanmohammadi E, Dilek A, Hikmet N. Tailored Partitioning for

Healthcare Big Data: A Novel Technique for Efficient Data Management

and Hash Retrieval in RDBMS Relational Architectures. Journal of Data

Analysis and Information Processing, 2024, 13(1): 46-65.

[13] Kjorveziroski V, Filiposka S. Webassembly as an enabler for next

generation serverless computing. Journal of Grid Computing, 2023, 21(3):

34.

[14] Putra S R, Moraes F, Hauff C. Searchx: Empowering collaborative search

research. The 41st International ACM SIGIR Conference on Research &

Development in Information Retrieval, 2018, 1(1): 1265-1268.

[15] Dai S, Li K, Luo Z, et al. AI-based NLP section discusses the application

and effect of bag-of-words models and TF-IDF in NLP tasks. Journal of

Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2024,

5(1): 13-21.

[16] Yang H J, Choi I Y. Enhancing Search Functionality for Website Posts

and Product Reviews: Improving BM25 Ranking Algorithm Performance

Using the ResNet-Transformer Model. Journal of The Korea Society of

Computer and Information, 2024, 29(11): 67-77.

[17] Dejonckheere F. Automated Microservice Identification in Modular

Monolith Architectures. 2024, 101(1): 4.

[18] Putra S R, Grashoff K, Moraes F, et al. On the Development of a

Collaborative Search System. DESIRES, 2018, 1(1): 76-82.

[19] Zhou Y J, Yao J, Dou Z C, et al. Dynamicretriever: A pre-trained model-

based ir system without an explicit index. Machine Intelligence Research,

2023, 20(2): 276-288.

[20] Paulsen D, Govind Y, Doan A H. Sparkly: A simple yet surprisingly

strong TF/IDF blocker for entity matching. Proceedings of the VLDB

Endowment, 2023, 16(6): 1507-1519.

[21] Gomes L, da Silva Torres R, CÃ´rtes M L. BERT-and TF-IDF-based

feature extraction for long-lived bug prediction in FLOSS: a comparative

study. Information and Software Technology, 2023, 160(1): 107217.

[22] Danyal M M, Khan S S, Khan M, et al. Sentiment analysis of movie

reviews based on NB approaches using TF-IDF and count vectorizer.

Social network analysis and mining, 2024, 14(1): 87.

[23] Kungumaraj E, Lathanayagam E, Saikia U, et al. Neutrosophic

Topological Vector Spaces and its Properties. International Journal of

Neutrosophic Science (IJNS), 2024, 23(2): 63.

[24] Chung Y, Kraska T, Polyzotis N, et al. Automated data slicing for model

validation: A big data -ai integration approach. IEEE Transactions on

Knowledge and Data Engineering, 2019, 32(12): 2284-2296.

[25] De Falco A, Caruso F, Su X D, et al. A variational algorithm to detect the

clonal copy number substructure of tumors from scRNA-seq data. Nature

Communications, 2023, 14(1): 1074.

[26] Zhou X, Shen X, Liu Z, et al. A novel shadow calculation approach based

on multithreaded parallel computing. Energy and Buildings, 2024, 312(1):

114237.

[27] Xiao F, Wen J, Pedrycz W, et al. Complex evidence theory for

multisource data fusion. Chinese Journal of Information Fusion, 2024,

1(2): 134-159.

[28] Manoharan J S. A novel load balancing aware graph theory based node

deployment in wireless sensor networks. Wireless Personal

Communications, 2023, 128(2): 1171-1192.

[29] Roberts K, Alam T, Bedrick S, et al. Searching for scientific evidence in

a pandemic: An overview of TREC-COVID. Journal of Biomedical

Informatics, 2021, 121(1): 103865.

[30] Chen J S, Hersh W R. A comparative analysis of system features used in

the TREC-COVID information retrieval challenge. Journal of Biomedical

Informatics, 2021, 117(1): 103745.

