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Abstract—To address the growing demand for web search and 

improve the performance and accuracy of search systems, this 

study proposes a distributed intelligent search service integration 

framework based on SEARCHX. This framework leverages the 

local computational power of the browser, integrating inverted 

indexing, data sharding, and replication mechanisms, as well as 

the Term Frequency-Inverse Document Frequency (TF-IDF) 

intelligent ranking algorithm. These components enable front-end 

distributed processing of search tasks and multi-source result 

fusion. Experiments are conducted on six major browser 

platforms, Chrome, Firefox, Edge, Safari, etc., using the open-

source Text REtrieval Conference (TREC) dataset. The system’s 

response performance and accuracy are evaluated under varying 

search loads. The experimental results show that, compared to the 

unoptimized version, the optimized SEARCHX reduces the 

average response time by approximately 27 per cent under 

medium-to-high load conditions. Precision improves by an 

average of 0.05, and the F1 score increased by more than 0.04 on 

all platforms. The system also demonstrates good stability and 

consistency across multiple platforms. SEARCHX provides a 

viable approach to building decentralized, high-efficiency, and 

easily deployable intelligent search services, with strong practical 

value and expansion potential. This study aims to construct a 

decentralized, cross-platform, and high-performance intelligent 

search service framework, offering a more efficient, stable, and 

accurate technical support solution for users in complex search 

environments. 
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I. INTRODUCTION 

In the context of rapid advancements in information 
technology, internet data is experiencing exponential growth, 
and users face unprecedented challenges of information 
overload and retrieval difficulties in the web environment. As 
the core tool for information access, intelligent search engines 
have permeated multiple fields such as knowledge acquisition, 
data mining, and personalized recommendation systems [1]. 
However, mainstream search engines are predominantly based 
on centralized server architectures. While they offer powerful 
computational capabilities and global indexing services, they 
increasingly show issues in handling massive concurrent 
requests, ensuring user privacy, and supporting flexible 
deployments. These problems include high latency, poor 
scalability, high deployment costs, and data security risks [2]. 
Meanwhile, web browser technology is undergoing significant 
evolution. New-generation browser-side technologies, 
represented by JavaScript engine optimizations, WebAssembly 
(Wasm), and Service Workers, have transformed web browsers 
from mere information display tools into powerful computing 

platforms [3]. The enhanced local storage, local execution, and 
multi-threading capabilities of browsers provide a practical 
foundation for running high-performance applications directly 
within the browser. This shift enables parts or even the entire 
search process to be offloaded to the browser, which alleviates 
server load, reduces response latency, enhances data localization 
capabilities, and strengthens user privacy protection [4]. In 
enterprise-level information systems, distributed search 
architectures like Elasticsearch are widely deployed, relying on 
mechanisms such as inverted indexing, data sharding, and 
replica redundancy to improve search efficiency and system 
fault tolerance [5]. However, these technologies are still 
primarily server-side and have not been effectively migrated or 
integrated into the browser side, leaving a gap in research and 
practical application [6]. Therefore, fully leveraging the 
potential of browsers as client-side computing platforms to 
construct a cross-platform, intelligent, distributed search 
framework becomes an important and worthy direction for 
further exploration. 

Based on the above background, this study proposes the 
SEARCHX framework, a distributed search engine optimization 
solution that integrates inverted indexing, data sharding, replica 
synchronization, and the Term Frequency–Inverse Document 
Frequency (TF-IDF) intelligent ranking algorithm. The 
framework is introduced within the browser environment to 
enable distributed task scheduling, plugin-based service 
integration, and local search result fusion. This design supports 
cross-platform deployment and flexible scalability, and 
significantly enhances system response efficiency and user data 
privacy control capabilities. The main innovation of this study 
is to systematically migrate the complete distributed search 
engine architecture—including inverted index, data sharding, 
replica synchronization, and TF-IDF intelligent ranking 
algorithm—to the Web browser side. This design is expected to 
realize truly decentralized, cross-platform search processing and 
local multi-source result fusion, thus filling the gap in the 
research and practice of a complete distributed search 
architecture on the browser side. 

The subsequent structure of this study is arranged as follows: 
Section II reviews the related work on intelligent search, 
distributed architecture, and browser computing. Section III 
elaborates on the design of the SEARCHX framework and 
distributed optimization methods in detail. Section IV presents 
the performance evaluation and comparative experimental 
results under multi-browser platforms. Section V summarizes 
the research results and looks forward to future directions. 
Through systematic discussion and empirical analysis, this study 
aims to comprehensively present the technical implementation 

*Corresponding author. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

522 | P a g e  
www.ijacsa.thesai.org 

and performance advantages of the SEARCHX framework to 
readers. 

II. RELATED WORK 

A. Distributed Intelligent Search Algorithm 

In recent years, both academia and industry have conducted 
extensive research on intelligent search systems, distributed 
architectures, and front-end computing, resulting in several 
valuable development paths [7]. In the field of intelligent search, 
Wang et al. discovered that pre-trained encoders such as 
Bidirectional Encoder Representations from Transformers 
(BERT) were mainstream methods for information retrieval. 
BERT could be categorized into six technical paths, including 
long document processing, semantic integration, and efficiency 
balancing. Their results indicated that BERT-based models 
outperformed traditional methods in terms of accuracy and 
adaptability, with lower computational costs [8]. He et al. 
proposed that personalized recommendation mechanisms could 
enhance search user satisfaction and result relevance by 
modeling user historical behaviors and interest preferences [9]. 
In the domain of distributed search systems, Fan et al. found that 
inverted index structures significantly improved recall and 
precision in large-scale text retrieval, making it a core 
technology for building high-performance search engines [10]. 
Merlin and Prem identified that the MapReduce framework 
based on the Jaya-Sine Cosine Algorithm (Jaya-SCA) enabled 
efficient indexing and retrieval in big data. This method 
achieved an F1 score of 0.5323, a recall rate of 0.4400, and a 
precision rate of 0.6867 on the StatLog heart disease dataset, 
significantly improving information retrieval performance [11]. 
Soltanmohammadi et al. found that a consistent hashing-based 
data partitioning strategy effectively avoided data loss due to 
node failures [12]. 

B. Browser-Side Computing and Search Results Sorting  

Regarding browser-side computing and collaboration 
mechanisms, Kjorveziroski and Filiposka highlighted that, with 
the development of WebAssembly, modern browsers had the 
ability to execute local computational tasks, showing potential 
to serve as edge nodes in distributed systems [13]. Putra et al. 
designed the SearchX platform, which supported user behavior 
tracking and collaborative task allocation, demonstrating that 
browsers could serve as both execution and collection terminals 
for search services. However, their system mainly focused on 
research purposes and lacked complete distributed indexing and 
search capabilities [14]. In ranking algorithms, Dai et al. found 
that while the TF-IDF algorithm was simple, it effectively 
reflected keyword importance and document relevance in static 
document collections, serving as the foundation for search 
ranking [15]. Yang and Choi discovered that the Best Matching 
(BM) 25 algorithm, by introducing a document length 
normalization factor, further improved ranking accuracy [16]. In 
search service integration systems, Dejonckheere found that 
search service platforms based on microservice architectures 
effectively enhanced module decoupling and deployment 
flexibility, widely applied in cloud computing and large-scale 
web services [17]. 

In summary, although significant progress has been made in 
areas such as distributed search, intelligent ranking, and 

browser-side computing, there is currently a lack of a unified 
integrated platform that can simultaneously support local 
browser computation, cross-node collaborative search, and 
intelligent result fusion. The SEARCHX framework proposed 
here builds upon the aforementioned research achievements and 
fills the gap in browser-side distributed search integration. This 
framework holds significant theoretical and practical value. 

III. RESEARCH METHODOLOGY 

A. SEARCHX Framework 

SEARCHX is a distributed intelligent search service 
integration framework based on modern web browsers, designed 
to leverage the computational and communication capabilities 
of browsers to provide a low-barrier, high-performance 
collaborative search experience. Its architecture adopts a client-
server model, with the front-end implemented using the React 
framework for modular and component-based design. It 
supports multi-browser cross-platform access without the need 
for additional software installations. Users can simply 
participate in search tasks by specifying a Uniform Resource 
Locator (URL). The front-end is responsible for displaying the 
user interface, managing search sessions, and collecting user 
operation logs in real-time. The back-end, based on the Node.js 
platform, uses Express and Socket.io to handle efficient 
Hypertext Transfer Protocol (HTTP) requests and WebSocket 
real-time communication, managing user grouping, task 
synchronization, and data storage [18]. For database 
management, SEARCHX utilizes MongoDB to support 
dynamic data structures, enabling flexible storage of massive 
logs and experimental data. The basic framework of SEARCHX 
is illustrated in Fig. 1. 

B. SEARCHX Framework Based on Distributed Search 

Optimization 

To meet the high-performance requirements of massive data 
searches and enhance the accuracy and stability of the system, 
the SEARCHX framework introduces several distributed search 
optimization techniques on the browser side. These techniques 
include the construction of inverted indexes, the TF-IDF ranking 
algorithm, data sharding and replication mechanisms, as well as 
task scheduling and result fusion based on real-time 
communication. 

Inverted indexing is the core data structure of modern search 
engines. It establishes a mapping from keywords to document 
lists, enabling fast keyword location and retrieval. In a 
distributed environment, local construction of inverted indexes 
helps improve search speed and the system's parallel processing 
capabilities [19]. Specifically, the inverted index is composed of 
a keyword and the inverted list of documents. The calculation 
equation is as follows: 

𝐼 = { (𝑡𝑖,𝐿𝑖) ∣∣ 𝑡𝑖 ∈ 𝑇 }                 (1) 

𝐿𝑖 = {(𝑑𝑗, 𝑓𝑖𝑗) ∣ 𝑑𝑗 ∈ 𝐷, 𝑓𝑖𝑗 > 0}            (2) 

𝐼  is an inverted index set. 𝑡𝑖  is the 𝑖-th keyword in the 
keyword set 𝑇 . 𝐿𝑖  is the inverted list corresponding to the 

keyword 𝑡𝑖. 𝑑𝑗 is the 𝑗 th document in the document set 𝐷. 

𝑓𝑖𝑗  is the word frequency of keyword 𝑡𝑖 in document 𝑑𝑗. 
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Fig. 1. SEARCHX basic framework. 

The TF-IDF algorithm is a classical weighting method based 
on the vector space model, which combines the frequency of 
keywords in a single document and their rarity in the whole 
document set, thus weighting keywords and highlighting 
important and highly differentiated words [20-22]. The specific 
calculation equation is as follows: 

𝑡𝑓𝑖𝑗 =
𝑓𝑖𝑗

max
𝑡𝑘∈𝑑𝑗

𝑓𝑘𝑗
                  (3) 

𝑖𝑑𝑓𝑖 = log(
𝑁

𝑑𝑓𝑖+1
)                (4) 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑖,𝑑𝑗) = 𝑡𝑓𝑖𝑗 ⋅ 𝑖𝑑𝑓𝑖            (5) 

𝑡𝑓𝑖𝑗  is the normalized word frequency. 𝑖𝑑𝑓𝑖  is the inverse 
document frequency. 𝑑𝑓𝑖  is the number of documents 
containing the keyword 𝑡𝑖 . 𝑁  is the total number of 
documents. 

The vector space model represents documents and queries as 
multidimensional vectors, and quantifies the correlation 
between them by calculating the cosine similarity of the 
included angle between the vectors [23]. This measurement 
method not only overcomes the rigid limitation of the traditional 
Boolean model but also flexibly reflects the similarity between 
texts and improves the accuracy of search matching. The 
calculation equation of the vector space model is as follows: 

𝐯𝑑𝑗 = (𝑣𝑗1, … , 𝑣𝑗𝑀)              (6) 

𝑣𝑗𝑖 = 𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑖,𝑑𝑗)            (7) 

𝐯𝑄 = (𝑤1 ,… , 𝑤𝑀)              (8) 

𝑤𝑖 = {
𝑤𝑖, 𝑡𝑖 ∈ 𝑄
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (9) 

𝑆𝑖𝑚(𝑑𝑗 ,𝑄) =
𝒗𝑑𝑗⋅𝒗𝑄

∥𝒗𝑑𝑗∥⋅∥𝒗𝑄∥
            (10) 

𝐯𝑑𝑗 is the vector representation of document 𝑑𝑗. 𝐯𝑄 is the 

vector representation of query 𝑄 . 𝑀  is the total number of 
keywords. 𝑤𝑖  is the weight of keyword 𝑡𝑖  in the query. 

𝑆𝑖𝑚(𝑑𝑗 ,𝑄) is the similarity value between the document and 

query. 

Sharding is a commonly used data partitioning method in 
distributed systems, where large-scale data is horizontally split 
across multiple nodes to reduce the load on individual nodes and 
enable parallel processing. A hash function ensures that data is 
evenly distributed, preventing load imbalance across nodes [24]. 
The sharding mechanism is a key technology for achieving 
system scalability and handling high concurrency. The specific 
partitioning expression is as follows: 

𝑆𝑚 = {𝑑𝑗 ∈ 𝐷 ∣ ℎ(𝑑𝑗)𝑚𝑜𝑑𝐾 = 𝑚}        (11) 

𝑆𝑚 is the 𝑚-th slice. ℎ(𝑑𝑗) is the hash value of document 

𝑑𝑗. 𝐾 is the total number of slices. 𝑚 is the slice number. 

The replication mechanism enhances the fault tolerance and 
availability of the system by storing identical data across 
multiple nodes. In the event of a node failure, the system can 
switch to a backup replica, ensuring continuous and stable 
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operation [25]. Additionally, replication helps with load 
balancing and improves access efficiency. The replica selection 
algorithm can be expressed as follows: 

𝑅𝑚 = {𝑛𝑚1,𝑛𝑚2 , … , 𝑛𝑚𝑅}             (12) 

𝑛∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑛∈𝑅𝑚

𝐿𝑜𝑎𝑑(𝑛)              (13) 

𝑅𝑚 is the copy set of the 𝑚-th slice. 𝑛𝑚1 is the replica 
node. 𝐿𝑜𝑎𝑑(𝑛) is the current load value of node 𝑛. 𝑛∗ is the 
selected replica node. 

Parallel computing divides large tasks into smaller sub-tasks 
and assigns them to different computation nodes for 
simultaneous execution, reducing the overall response time. 
Search tasks are split into shard queries, and high-efficiency 
collaboration between nodes is achieved through modern Web 
asynchronous communication protocols [26]. The system 
response time can be calculated as follows: 

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑚𝑎𝑥
0≤𝑚<𝐾

𝑇𝑚               (14) 

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is the overall response time of the system. 𝑇𝑚 is 

the query response time of the 𝑚-th fragment. 

Multi-source result fusion, based on data fusion theory, 
integrates partial results from each shard, eliminates duplicates, 
and forms the final ordered result set [27]. Merge sorting ensures 
the correctness of the overall ranking, while deduplication 
prevents result redundancy, enhancing the user experience. The 
specific calculation equation is as follows: 

𝑅 = ⋃𝑅𝑚
𝐾−1

𝑚=0
                  (15) 

𝑅𝑓𝑖𝑛𝑎𝑙 = (𝑅)                   (16) 

𝑅 is the combination result set. 𝑅𝑓𝑖𝑛𝑎𝑙 is the result set after 

final sorting and deduplication. 

The load balancing theory provides a dynamic adjustment 
strategy for task allocation. By monitoring the node load in real-
time and combining it with the weighted smoothing algorithm, 
the task scheduling weight is adjusted to prevent the overload of 
a single node and improve the system stability and resource 
utilization [28]. The dynamic updating equation of scheduling 
weight is as follows: 

𝑤𝑛
(𝑡+1) = 𝛼𝑤𝑛

(𝑡)+ (1− 𝛼)
1

𝐿𝑜𝑎𝑑(𝑛)
       (17) 

The maximum concurrency control calculation equation is 
as follows: 

𝐶 = 𝑚𝑖𝑛 (
𝑋

𝑇𝑡
, 𝐶𝑚𝑎𝑥)             (18) 

𝑤𝑛
(𝑡) is the scheduling weight of node 𝑛 at time 𝑡. 𝛼 is a 

smoothing factor (0~1). 𝑋 is the total number of tasks to be 
processed. 𝑇𝑡 is the time window size. 𝐶𝑚𝑎𝑥 is the maximum 
number of concurrent tasks supported by the system. 

The process of SEARCHX based on distributed search 
optimization is shown in Fig. 2. 
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Fig. 2. The process of SEARCHX based on distributed search optimization . 

C. System Assembly Design 

The experimental platform of this study consists of six 
identical physical computers, each equipped with an Intel Core 
i7-10700 CPU, 6GB of RAM, and 512GB solid-state drive 
storage. The operating system on all machines is Linux Ubuntu 
20.04 Long-term Support (LTS). The latest versions of 
mainstream web browsers, including Chrome, Firefox, Edge, 
Safari, Opera, and Brave, are deployed on each node to test the 

compatibility and performance differences of SEARCHX in a 
multi-platform browser environment. The software 
development environment includes Node.js v18.0 for the 
backend service runtime, React v18.2 for frontend component 
development, and MongoDB v6.0 for lightweight local indexing 
and data storage. Additionally, the system communication layer 
incorporates WebSocket and Web Real-Time Communications 
(WebRTC) protocols to support distributed collaborative search 
across browsers. 
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SEARCHX adopts a modular and component-based system 
deployment strategy. The main node runs the backend service 
responsible for task scheduling and user sessions, while the 
browser nodes act as independent search sub-nodes that load the 
frontend interface and locally execute indexing and query tasks. 
The deployment process includes the following steps: 
1) Configure Node.js and Express backend services on the main 
node and open the WebSocket communication port. 2) Run the 
frontend page on each browser node, loading the SEARCHX 
interface via a unified URL. 3) Each browser node 
autonomously registers and identifies its role based on the 
system initialization logic. 4) Use browser-side Service Workers 
and localStorage to achieve local data persistence and offline 
accessibility. This architecture allows the browser to function 
both as a lightweight client for displaying the interface and as a 
search computation node, enabling a truly decentralized search 
system at the edge. 

The testing plan is divided into two stages: functional testing 
and performance testing. In functional testing, the system 
verifies the functionality of critical modules, including: task 
scheduling, index construction, result sorting, node 
communication, and failover mechanisms. The goal is to ensure 
that these modules are operational and functioning as expected 
within the system. In performance testing, the system is tested 
under different search request volumes (10, 100, 500, 1000, 
2000, 5000 requests). The tests are conducted on six major 
browser platforms, and the system's response time, stability, and 
other performance metrics are evaluated. Each node 
automatically logs data, which is sent back to the main node for 
analysis and assessment. 

This study uses the Text REtrieval Conference (TREC) open 
text retrieval dataset as the training and evaluation data source 
for the system [29, 30]. This study selects this dataset mainly 
based on the following considerations: the dataset includes 250 
real user queries, more than 520,000 news documents, and 
manually annotated relevance judgments. It features diverse 
query topics, moderate document scale, and high annotation 
quality, which can comprehensively evaluate the precision, 
recall, and system stability of the search engine under different 
query complexities and document scales, and meet the needs of 
this study for empirical verification of retrieval performance. 
The subset used in this study is the TREC 2004 Robust Track, 
which includes 250 standard query tasks, 528,000 English news 
and article documents, and manually annotated relevance grade 
labels. This makes it suitable for analyzing precision, recall, 
accuracy, and F1 score metrics. 

IV. EXPERIMENTAL EVALUATION OF SEARCHX 

PERFORMANCE 

A. Results of Performance Analysis 

The comparison results of the performance changes of the 
search framework under different platforms with the query 
volume are shown in Fig. 3 to Fig. 8. 

Analysis of Fig. 3 shows that, as the number of query entries 
increases, the average response time for all browsers tends to 
rise, indicating that an increase in search request volume has a 
significant impact on system response. Among all browsers, 
Chrome performs the best, with the shortest response time, 

suggesting that its JavaScript engine and network 
communication optimizations are more suitable for distributed 
search loads. Safari, on the other hand, performs relatively 
poorly, with the longest response time. The increase in response 
time accelerates as the query volume grows, and for 5000 
queries, the average response time is approximately 6 to 7 times 
higher than that for 10 queries. It indicates that the system can 
still maintain relatively stable response performance even under 
large-scale tasks. 
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Fig. 3. Comparison results of average response time. 

Fig. 4 shows that the CPU utilization increases significantly 
with the growth of query volume, reflecting the increasing 
computational resource consumption of search tasks. Chrome 
and Brave demonstrate lower CPU usage under varying query 
loads compared to other browsers, indicating more efficient 
resource management. Safari and Edge exhibit the highest CPU 
utilization under heavy loads, which could potentially affect 
their ability to handle multiple tasks concurrently. Overall, in 
distributed tasks, it is essential to allocate the load reasonably in 
this system to avoid CPU bottlenecks on a single node. 

0 1,000 2,000 3,000 4,000 5,000

20

40

60

80

100

V
al

u
e/

%

Number of query entries

 Chrome

 Firefox

 Edge

 Safari

 Opera

 Brave

 
Fig. 4. CPU occupancy comparison results. 
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Fig. 5. Memory usage comparison result. 

Fig. 5 reveals that memory consumption in all browsers 
increases linearly with the number of query entries, indicating 
that search result indexing and cached data consume a 
significant amount of memory. Chrome and Brave exhibit 
relatively lower memory usage, suggesting optimized memory 
management and recycling mechanisms. Safari, on the other 
hand, shows the highest memory consumption, indicating 
potential issues with memory leakage or room for improvement 
in cache management strategies. 

Fig. 6 shows that the throughput rate decreases as the query 
volume increases on all platforms, indicating a certain 
processing capacity bottleneck. Chrome maintains the highest 
throughput, handling more requests consistently, which reflects 
its strong support for distributed search tasks. Edge and Safari, 
however, exhibit lower throughput, likely due to limitations in 
network communication efficiency and multi-threading 
processing capabilities. This result underscores the critical 
importance of improving network communication and 
concurrent processing technologies for system performance 
optimization 
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Fig. 6. Throughput comparison results. 
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Fig. 7. Data synchronization delay result. 

Fig. 7 shows that data synchronization latency increases as 
the query volume grows, indicating a higher communication 
burden between nodes. Chrome and Brave maintain the lowest 
synchronization delay, reflecting superior WebSocket or 
WebRTC communication performance. Safari, on the other 
hand, exhibits the highest latency, which could degrade the user 
experience, particularly in collaborative search scenarios. The 
study suggests that optimizing the synchronization mechanism 
is a key factor in enhancing system response speed and stability. 

Fig. 8 reveals that the overall score decreases as the query 
load increases, reflecting the system's stability pressure under 
high load conditions. Chrome and Brave maintain higher scores 
than other platforms, indicating better stability in complex load 
environments. Edge and Safari have lower scores. It suggests 
that future optimization of the SEARCHX framework should 
focus on improving error recovery and resource management 
strategies to ensure stable operation during prolonged high-load 
conditions. 
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Fig. 8. System stability score results. 
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Fig. 9. Comparison of query accuracy under different platforms. 

The comparison of query accuracy under different platforms 
as the query volume increases is shown in Fig. 9. 

Fig. 9 shows that as the number of query entries increases 
from 10 to 5000, the search result accuracy across all browser 
platforms exhibits a gradual decline. Taking Chrome as an 
example, the accuracy drops from 0.901 to 0.821, but it remains 
at a high level, indicating excellent performance in intelligent 
ranking and index optimization. Firefox and Brave follow 
closely, with accuracy dropping from 0.884 and 0.892 to 0.804 
and 0.811, respectively. Safari and Edge show slightly weaker 
performance, starting at 0.857 and 0.870, dropping to 0.772 and 
0.786, but still maintaining stability. Regarding recall rate, 
Chrome and Brave platforms decrease from 0.893 and 0.883 to 
0.809 and 0.798, demonstrating strong document coverage and 
distributed indexing effects. Firefox and Opera decrease from 
0.875 and 0.867 to 0.792 and 0.782. Safari and Edge platforms 
start lower, at 0.848 and 0.862, and drop to 0.760 and 0.774, 
indicating room for improvement in shard synchronization and 
index coverage for these two platforms. As the query load 
increases, the accuracy of all platforms gradually decreases but 

remains stable. Chrome's accuracy drops from 0.896 to 0.817, 
and Brave's from 0.887 to 0.806, showing the best performance. 
Firefox and Opera start at 0.880 and 0.872, and end at 0.799 and 
0.790, respectively. Safari and Edge show slightly lower 
accuracy, from 0.852 and 0.866 to 0.767 and 0.781. The F1 
scores for all platforms decline as the number of queries 
increases, but the minimum remains above 0.760. Chrome and 
Brave show the best overall performance, with F1 scores 
dropping from 0.897 and 0.885 to 0.812 and 0.800, respectively. 
Firefox and Opera's F1 scores drop from 0.879 and 0.870 to 
0.794 and 0.784, still maintaining a high level. Safari and Edge's 
F1 scores decrease from 0.851 and 0.865 to 0.762 and 0.776, 
slightly lower than the others but still stable overall. 

The results of performance comparison between the search 
framework and the unoptimized framework under different 
platforms are shown in Table I. 

Table I shows that the optimized SEARCHX search 
framework outperforms the unoptimized version across six 
major browser platforms, demonstrating higher system 
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performance and search quality. Specifically, the average 
response time decreases by approximately 27 per cent, while 
CPU and memory usage significantly decrease, indicating 
improved efficiency in resource scheduling and task 
management. Throughput increased by an average of 34.8 req/s, 
greatly enhancing the system's ability to handle concurrent 

requests. In terms of accuracy, precision and F1 scores improve 
by an average of approximately 0.05. The Safari platform shows 
the most significant improvement, with a precision increase of 
0.064, highlighting the stability and practicality of the optimized 
framework in large-scale distributed query environments. 

TABLE I.  THE PERFORMANCE COMPARISON RESULTS OF THE SEARCH FRAMEWORK AND UNOPTIMIZED FRAMEWORK UNDER DIFFERENT PLATFORMS IN THIS 

STUDY 

Platfor

m 

Framework 

Version 

Avg. Response Time 

(ms) 

CPU Usage 

(%) 

Memory Usage 

(mb) 

Throughput 

(req/s) 

Precisio

n 

F1 

Score 

Chrome 
Unoptimized 328 72.4 946 143.7 0.762 0.769 

The proposed model 238 63.1 802 178.5 0.821 0.812 

Firefox 
Unoptimized 349 74.8 971 139.1 0.743 0.751 

The proposed model 257 65.6 835 168.3 0.804 0.794 

Edge 
Unoptimized 367 77.2 990 135.2 0.725 0.731 

The proposed model 274 68.5 857 162.4 0.786 0.776 

Safari 
Unoptimized 382 79.1 1014 129.5 0.708 0.717 

The proposed model 293 70.2 876 157.2 0.772 0.762 

Opera 
Unoptimized 341 73.6 938 142.1 0.735 0.742 

The proposed model 249 64.9 819 171.3 0.795 0.784 

Brave 
Unoptimized 330 71.9 925 145.5 0.754 0.761 

The proposed model 241 62.8 798 177.8 0.811 0.8 
 

B. Discussions 

This study achieves significant improvements over previous 
research in multiple dimensions, including performance, system 
resource utilization, and search quality, by constructing and 
optimizing the SEARCHX search framework. Unlike previous 
models that applied BERT for information retrieval, which 
excels in semantic understanding but is limited by 
computational resources, this study focuses on a lightweight 
search architecture with strong deployability. By employing TF-
IDF and distributed inverted indexing, the framework reduces 
average response time, lowers CPU utilization, and optimizes 
memory consumption across six major browser platforms, while 
also improving average throughput. In contrast to previous 
approaches that used optimization algorithms to enhance recall 
performance, this study shows an average improvement of 
approximately 0.043 in F1 score and more than 0.05 in 
precision, demonstrating superior practicality and platform 
adaptability. Additionally, building on previous browser 
collaboration models that are limited to laboratory settings, 
SEARCHX has successfully implemented a real-world 
framework supporting local computation and multi-node 
collaboration. In summary, this study inherits the theoretical 
advancements in search quality enhancement, system fault 
tolerance, and architecture design from prior literature. It also 
makes a substantial breakthrough in performance, efficiency, 
and adaptability by constructing a unified integrated platform 
and conducting cross-platform experimental validation. This 
study fills the gap in existing search systems related to front-end 
collaboration and resource optimization, providing a new 
paradigm for the edge deployment and platform independence 
of future intelligent search systems. 

V. CONCLUSION 

This study systematically evaluates the performance of the 
optimized SEARCHX search framework across six major 
browser platforms, demonstrating significant improvements in 
several key metrics. In terms of performance, the optimized 
system reduces the average response time from approximately 
350ms to 250ms, representing a 27 per cent decrease. CPU 
utilization drops by nearly 9 per cent (for instance, Chrome went 
from 72.4 per cent to 63.1 per cent). Memory consumption 
decreases by an average of over 140MB, reflecting more 
efficient system resource management. Regarding throughput, 
the average increase is about 34.8 req/s, with Chrome showing 
the most significant improvement, from 143.7 req/s to 178.5 
req/s, greatly enhancing concurrent processing capabilities. In 
terms of search quality, the optimized SEARCHX framework 
achieves an average improvement of over 0.05 in precision, with 
Safari showing the most substantial increase, from 0.708 to 
0.772, a rise of 0.064. The F1 score also improves, with an 
average increase of 0.04-0.05, effectively balancing system 
recall and precision. In summary, the optimized SEARCHX 
framework outperforms in four key areas: response speed, 
system resource usage, throughput performance, and search 
quality. The results demonstrate its strong stability, high 
efficiency, and high accuracy in multi-platform, large-scale 
query environments, making it highly promising for broad 
applications. This study selects this dataset mainly based on the 
following considerations: the dataset includes 250 real user 
queries, more than 520,000 news documents, and manually 
annotated relevance judgments. It features diverse query topics, 
moderate document scale, and high annotation quality, which 
can comprehensively evaluate the precision, recall, and system 
stability of the search engine under different query complexities 
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and document scales, and meet the needs of this study for 
empirical verification of retrieval performance. 

Although this study verifies the excellent performance of the 
SEARCHX framework in a laboratory environment, its 
deployment in real network environments still faces many 
challenges. For example, heterogeneous network conditions and 
differentiated browser computing capabilities may affect the 
collaboration efficiency and result consistency among nodes; 
although local data processing enhances user privacy protection, 
it also brings new client-side security considerations; in addition, 
when facing Internet-scale ultra-large datasets, the current 
architecture still needs further optimization in terms of index 
construction and update efficiency. Identifying these limitations 
is crucial for the future development and practical application of 
the framework. 

Based on this, future research will conduct an in-depth 
exploration along the following directions: 1) Attempt to 
introduce a dynamic load balancing algorithm to further 
improve the collaboration efficiency among heterogeneous 
browser nodes. 2) Explore the integration of lightweight 
semantic models with the existing TF-IDF algorithm to enhance 
the ability to understand complex semantic queries. 3) Extend 
the framework to the mobile browser environment and evaluate 
its performance, focusing on optimizing the index efficiency 
under large-scale data, and simultaneously explore the 
integration of lightweight neural ranking models to improve the 
ability to understand complex queries. 
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