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Abstract—Sentence embedding is a very important technique
in most natural language processing (NLP) tasks, such as answer
generation, semantic similarity detection, text classification and
information retrieval. This technique aims to transform the
semantic meaning of a sentence into a fixed-dimensional vector,
allowing machines to understand human language. Sentence
embedding has moved in recent years from simple word vector
averaging methods to the development of more sophisticated
models, particularly those based on transformer structures such
as the BERT model and its variants. However, systematic reviews
that critical, analyze and compare the performance of these
models are still limited, particularly the selection of the
appropriate embedding model for a specific NLP task. This study
aims to address this gap by a comprehensive review for sentence
embedding models and a systematic evaluation of their
performance on NLP tasks, such as semantic similarity, clustering,
and retrieval. The study enabled us to identify the appropriate
embedding model for eachtask, identify the main challenges faced
by embedding models, and propose effective solutions to improve
the performance and efficiency of sentence embedding.
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I.  INTRODUCTION

Embedding is one of the most techniques used in natural
language processing applications [1] [2]. The performance of
these applications is affected by the quality of the fixed-
dimensional vectors generated [3]. Several studies have
underscored the importance of developing sentence embedding
models [4],[5], especially with the capabilities offered by deep
neural networks and transformers. NLP tasks require a deeper
understanding of texts, especially understanding long texts [6],
[7]. Therefore, choosing an appropriate embedding model is
essential for a task. Recent frameworks such as DSPy [8]
underscore the need for more sophisticated and context-aware
sentence representations that are better suited to specific NLP
tasks. Therefore, thereis a need to study and analyze sentence
embedding techniques, from statistical models based on word
vector averages to modernmodels based on deep structures such
as BERT [9] and its variants. In this context, we conducted a
comprehensive literature review of the most sentence
embedding models, from simple aggregation techniques to
transformer-based models.

The main objective of our paper is to identify the most
appropriate embedding model for a specific task. To achieve
this, our paper first presents the most important embedding
models, their characteristics, the challenges that affect their
effectiveness, and solutions that can help overcome them.

Second, it evaluates the performance of these models on three
natural language processing tasks [10], including semantic
similarity, clustering, and retrieval, to identify themost effective
models for each task. The methodology used in our paper is
based on answering three main research questions:

e RQ 1: What are the main categories of sentence
embedding models proposed in the literature?

e RQ 2: What are the strengths, limitations, and challenges
of each model?

e RQ 3: Which modelis appropriate for each NLP task?

We reviewed and analyzed scientific papers published in
peer-reviewed sources (ArXiv, Scopus, Dblp, IEEE) between
2015and2025. Theresults of this study represent an opportunity
for researchers to build an overview of the techniques used in
sentence embedding, to advance this area.

The rest of the paper will be presented as follows. Section II
presents related work on sentence embedding. Section III
discusses categories of sentence embedding models,
highlighting their advantages and challenges. Section IV is
devoted to an empirical study thataims to evaluate these models
across NLP tasks. Section V presents and discusses the results
ofthe study. Section VIconcludes the paperwith future research
directions.

II. RELATED WORK

In this section, we first highlight the importance of
embedding models for natural language processing tasks and
applications. We then trace the evolution of sentence embedding
models. Finally, we summarize the scope and limitations of
previous reviews to underline the relevance ofthe present study.

A. Sentence Embeddings in NLP Tasks

Embedding models have attracted growing interest in NLP
field, as they demonstrate strong effectiveness in a variety of
tasks, such as retrieval, clustering, summarization, and semantic
similarity [11]. The development of embedding techniques has
positively impacted this area [12]. Recent research has
demonstrated that their use significantly improves the
performance of NLP applications. For example, the
performance of text classification and clustering has improved
by pre-trained embeddings [13]. Performance in dense retrieval
across multiple datasets has improved by employing contrastive
learning models [14]. Similarly, extractive summarization
models have improved by enabling the selection of more
semantically rich sentences compared to standard baselines
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[15]. Clustering studies also confirm that embeddings derived
from pre-trained large language models capture accurate
semantic relationships [16]. These results confirm that
exploiting sentence embeddings for a specific task is essential
for improving the performance of NLP tasks and applications.

B. Sentence Embedding Evolution

A text embedding is a vector representation of text (word,
sentence, or paragraph), where similar texts appear close
together in the embedding space [5]. These representations
encode the syntactic and semantic properties of linguistic
elements. Classic representations have relied on the bag-of-
words model or TF-IDF weighting [17], where each word is
represented by a high-dimensional vector reflecting its
frequency in the document (Formula 1). For a word w in a
document d, the TF-IDF vector is defined as:

W = (TFIDF(w,d,), TFIDF(w,d,), ..., TFIDF(w,dy)) (1)
Where TF — IDF(w, d) is calculated by Formula 2.

TF = IDF(w,d) = =224 — xlog (—2——) (2)

wealw’a m
Where:
® fua: Frequency of the word w in document d.
e N:Number of documents in corpus D.

o |{deD:wed}|: Number of documents containing the
word w.

However, these models suffer from several limitations,
including their high dimensionality and their inability to capture
semantic similarity between terms.

Word embedding, through models such as Word2 Vec [18]
and GloVe [19], has enabled the representation of words using
low-dimensional vectors while considering relevant semantic
contexts. On the other hand, the same vector is assigned to a
word regardless of its context. Therefore, these models ignore
the context in which the word appears, making them unsuitable
for modeling sentences or paragraphs. Fig. 1 provides an
example of this challenge.

The fisherman sat by

the bank of the river.
Corpus

She went to the bank

to deposit money.

Fig. 1. Contextual limitation of Word2Vec and GloVe.

Word2Vec

/ GloVe
same
vector

Limitation:
ignores context

To address the need to model text units containing more than
one word, sentence embeddings were developed that aim to
represent each sentence as a fixed-dimensional dense vector.

Sentence embedding techniques are classified into two main
categories [20]. The first includes statistical techniques, such as
Doc2Vec [21] and SIF [22]. These techniques are
computationally inexpensive. However, they remain limited
because they only capture a portionofthe semantic context. The
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second set consists of deep neural techniques, which rely on
advanced encoding models. These include InferSent [23] and
Universal Sentence Encoder [24], Sentence-BERT [25] and
SimCSE [26]. These models use transformers to contextually
model complex relationships between words and sentences.
They therefore provide more expressive vector representations
suitable for advanced NLP tasks.

C. Comprehensive Review of Sentence Embedding

Several research papers havestudied and reviewed proposed
sentence embedding models, offering different perspectives on
their classification, evaluation, and application. The work
presented in [27] is one of the first general reviews of sentence
representations. This study was limited to unsupervised neural
approaches. Other reviews such as [23], [28] have analyzed and
compared sentence representation learning, proposed unified
evaluation metrics such as SentEval [29], and focused on
classical RNN and CNN encoders. In contrast, studies, such as
[24], [25], have highlighted the effectiveness of transformer
learningusingpre-trained models suchas BERT and its variants.
Finally, recent published studies [26], [30] have focused on the
importance of contrastive learning and pre-trained models.
Despite the comprehensiveness of these reviews, the
development of embedding models across NLP tasks, and the
difficulty of identifying the appropriate model for each task, is a
challenge that motivates a comprehensive and updated review
that considers the importance of models to the nature of NLP
tasks and their applications.

III. SENTENCE EMBEDDING MODELS

This section introduces two main categories of sentence
embedding models. Statistical sentence embedding models
represent sentences usingaggregated word-level statistics, while
transformer-based sentence embedding models represent
sentences using pre-trained contextual language models. This
classification highlights the shift from shallow frequency-based
representations to neural structures that better encode semantic
and syntactic relationships.

A. Statistical Sentence Embedding Techniques

Statistical methods for sentence embedding rely on simple
aggregation techniques, such as averaging or weighted
summation of word embeddings, or distributional models.
Although computationally efficient and easy to implement,
these methods provide an approximate semantic representation
of a sentence, ignoring word order and syntactic structures.

1) Unweighted averaging: Unweighted averaging is one of
the most techniques widely used to generate sentence
embeddings. The method consists of representinga sentence by
computing the arithmetic mean of the vector representations of
its constituent words. According to study [18], a sentence
embedding is defined by Formula 3.

1

L% = n ?=1vwl- (3)

sentence
Where:
e n: Number of words in the sentence.

* v, : The embedding representation of word w;.
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Despite its simplicity, it has been shown to capture some of
the semantic meaning of vectors. However, its limitations
include ignoringthe significance of words in a sentence. It treats
all words equally, including frequent terms.

2) TF-IDF weighted averaging: The TF-IDF weighted
averaging incorporates word importance by exploiting the TF-
IDF coefficient. This allows us to overcome the challenge of
treating all words equally and reduce the influence of common
words. Formally, according to [22], the sentence embeddings
are obtained by calculatinga weighted average of word vectors,
where the weights are determined by TF-IDF coefficient
(Formula 4).

v, LiLy TF—IDF(W) vy,
sentence — Y TF—IDF(w})

4)
Where:
e 1n: Number of words in the sentence.

¢ v,,: The embedding representation of word w;.

e TF —IDF(w;): Weight of word w;, is calculated by
Formula 2.

This model generates better semantic representations than
unweighted averaging. However, it still ignores the syntactic
information and sequential order of words, which may limit its
effectiveness in more complex NLP tasks.

3) Max and min pooling models: Max and min pooling is a
statistical model for generating sentence embeddings by
selecting the maximum (or minimum) value of all word
embeddings in a sentence. This approach captures the most
prominent features present in any word vector, making it robust
to noise. According to [23], the sentence embedding can be
generated using either max-pooling or min-pooling as defined
by Formulas (5) and (6).

max _ (€3] ) (@)
e = [max (i) max(v)), .. max(v))]  (5)

in i Dy o (2) (@)
Vsentence = [Zﬂfrﬁ W, )y min (v,/), ... min (v, )] (6)
Where:

e n: Number of words in the sentence.

().

* v, :thevalue ofthe k-th dimension of word w; (each of

dimension d).

However, it still ignores syntactic information and may
oversimplify the semantic representation. The semantic
structure of sentences may be overly simplified.

4) Smooth inverse frequency model: The Smoothed Inverse
Frequency (SIF) [22] model reduces the influence of common
words on sentence embeddings by weighting word embeddings
inversely with their frequencyina corpus. To generate sentence
embeddings, SIF calculates a weighted average (Formula 7)
and removes the first principal component that defines common
directions in the embedding space to produce more
discriminative sentence representations (Formula 8).
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1

a
— n .
Vsentence T pai=l a+p(wy) Vwi (7)

Where:

e n: Number of words in the sentence.

* v, : Embedding representation of word w;.
e p(w;): Frequency of w; in the corpus.

e «a: Smoothing parameter (default 10~3)

To remove the first principal component F that defines the
common directions in theembedding space, we needto calculate
FFTVsentence the Projection Ostentence ontoF (FTVsentence is
the scalar product between F and V., tence)-

SIF _ _ T
VSentence - Vsentence FF Vsentence (8)

Although SIF is efficient, and robust, but its reliance on
frequency statistics, principal component analysis calculations,
and inability to capture syntax or context limits its effectiveness
for more complex NLP tasks.

B. Transformer-Based Sentence Embedding Models

Sentence embedding using transformers has contributed to
generating contextual representations that capture the semantic
meaning of sentences and reducing the challenges of statistical
models. Bidirectional Encoder from Transformers (BERT) [9]
is the first transformer used for sentence embedding. Other
transformers have followed, improving the performance of the
sentence embedding task. In this part, we provide a
comprehensive overview of the transformer-based sentence
embedding models, based on the classification shown in Fig. 2.

— Foundatianal Madels *{ BERT, ReBERTa }
2
-
2
E
o
._E Senteie-Level Optimized Modeks SBERT, SReBERTa
E
=
&
B
‘_l; | S Damnin-Spicitic Model { BioBERT, SciBERT }
2
3
H
=
o
E ——  Multilingual & Cros s-lingeal Models { ml/SE, LaBSE }
£
3
8
g
=
Conirastive Leaming Models { SimeCSE, ConSERT }

Fig.2. Taxonomy of transformer-based sentence embedding models.

1) Foundational models: BERT is the first transformer
model for sentence embedding. Unlike statistical approaches,
BERT relies on self-attention mechanisms rather than recurrent
or convolutional networks. It has bidirectional encoding, which
allows it to read sequences of tokens in both directions. It uses
multiple transformer layers (12 in BERT-base and 24 in BERT-
large), each consisting of multi-head self-attention networks
and feed-forward networks. Its pre-training combines masked
language modeling(MLM), where random tokens are predicted
from context, and next-sentence prediction (NSP), which
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captures sentence-level relationships. Fig. 3 illustrates the
process by which BERT produces these embeddings. These
features make BERT more effective to learn deep contextual
representations.

Token

Embeddings [ELS] [59‘] W EE"]
Segment

Embeddings

Position
Embeddings

Fig.3. The BERT sentence embedding process, reproduced from study [9].

However, the computational cost of pretraining, biases in
pretraining data, and sequence length constraints limit its
performance to represent long documents. This challenge has
prompted the development of BERT variants such as RoOBERT
[31] that uses the same transformer encoder architecture as
BERT, but with improvements in the pre-training phase. It
Eliminates the NSP task, employs dynamic masking in the
MLM objective, and trains on larger datasets (over 160 GB).
This allows it to benefit from longer training schedules and
higher learning, enhancing the quality of its contextual
representations.

Despite their effective performance, Foundational models
face several challenges. The large training dataset makes them
computationally expensive, and they are also affected by biases
present in pre-training datasets. Furthermore, the input length
limit of 512 tokens limits their ability to represent longer
sequences.

2) Sentence-level optimized models: To overcome the
challenges of foundational models, sentence-level optimized
models, suchas SBERT and SRoBERTa [25], rely on Siamese
and triplet network architectures, which improve the accuracy
of transformer encoders to generate semantically meaningful
sentence representations. They also reduce computational cost
on semantic text similarity (STS) tasks. The time to find the
most similar pair of sentences in a set of 10,000 sentences is
reduced from 65 hours using BERT to about 5 seconds using
SBERT. Using a Siamese and triplet network also embeds
sentences into higher-dimensional semantic spaces to better
capture hierarchical information.

TABLE . KEY DISTINCTIONS BETWEEN SBERT AND SROBERTA
Criterion SBERT SRoBERTa
Encoder BERT or | RoBERTa (with enhanced
RoBERTa pretraining)
Trainine Dat STS/NLI Larger and more diverse datasets,
ramng LData datasets often domain-adapted
Specialized Tasks S.en?an'tlc Semantic similarity, clustering
similarity
Performance Strong ) for ngh-e-r perforrpance, especially in
semantic tasks | specific domain

Table I shows the key differences between SBERT and
SRoBERTa. In SBERT, the input sentence is encoded using
BERT or RoBERTa, followed by a pooling layer that produces
a fixed-size embedding, which is then applied to semantic
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similarity tasks. In contrast, SROBERTa uses the RoOBERTa
encoderand incorporates structured training strategies, such as
variance and classification losses, to produce more accurate
embeddings. These embeddings are particularly effective for
semantic search and clustering, and therefore SROBERTa
outperforms SBERT.

The performance of SBERT and SRoBERTa on Cross-
lingual data is low, compared to their results on English data.
Therefore, their performance depends on the language of their
training data (English) which makes their generalization to
complex languages difficult. Therefore, multilingual and cross-
linguistic sentence embedding models are important to achieve
robust performance on multilingual applications.

3) Multilingual and cross-linguistic models: Semantic
similarity Detection between sentences across different
languages has been a challenge for monolingual sentence
embedding models. In contrast, multilingual and cross-
linguistic models, such as the Multilingual Universal Sentence
Encoder (mUSE) [32] and Language-Independent BERT
Sentence Embeddings (LaBSE) [33], achieve minimal
linguistic bias, leading to better performance.

The mUSE model uses a universal sentence encoder and is
trained on a set of translation pairs in multilingual datasets.
mUSE supports more than 16 universal languages, and achieves
a semantic similarity and effective cross-language retrieval.
However, its performance deteriorates on untrained languages,
this limit its application in global contexts. Unlike mUSE,
LaBSE is a language-agnostic model trained on over 110
languages using a dual-encoder architecture and translation
ranking objectives. LaBSE achieved state-of-the-art results on
benchmarks such as Tatoeba [34] and cross-linguistic STS [35].
It demonstrated its ability to encode semantically equivalent
sentences from different languages, making it one of the most
robust models for multilingual applications.

Overall, these models have achieved the transition from
English-centric sentence embeddings to multilingual sentence
embeddings. Despite this contribution, these models still face
significant challenges. Their reliance on massive parallel
datasets and complex training pipelines limits their adaptability
to resource-limited languages. They also rely on translation-
based alignment objectives, whichcan introduce biasesand limit
the generalization of sentence representations in monolingual or
domain-specific. To overcome these challenges, contrastive
learning models have emerged, which aim to learn sentence
embeddings by exploiting self-supervised objectives.

4) Contrastive learning models: To overcome the
challenges faced by multilingual sentence embedding models,
contrastive learning models has been adopted as a paradigm for
learning universal sentence representations. these models aim
to approximate semantically similar sentences in the
embeddingspace while separatingunrelated sentences, without
the need for massive parallel datasets. SImCSE [26] and
ConSERT [36] are the most widely used contrastive learning
models for sentence embedding.

SimCSE relies on two different representations of the same
sentence by applying contrastive dropout masks within a pre-

542 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

trained model such as BERT or RoBERTa. These
representations are considered as positive pairs, while the other
sentencesaretreated as negative samples. By the contrastive loss
optimization (InfoNCE) [37], SimCSE is learn to align
semantically consistent representations without the need for
external supervision. The ConSERT sentence embedding model
relies on contrastive learning to efficiently fine-tune BERT,
leveraging positive pair construction through strategies
including word reordering, token masking, and embedding
dimension masking. Sentence representations are obtained by
aggregating mean pooling instead of CLS. Which makes it able
to adapt in low-resource contexts.

However, some challenges are remained. These models
require fine-tuning of hyperparameters (dropout rates, and
augmentation strategies), making their performance unstable
across domains. Their performance is also affected in resources
lacking sufficient negative samples due to their reliance on
aggregated negatives. Furthermore, these models are largely
trained on English corpora, offering limited cross-language
generalization without extensive retraining.

IV. EMPIRICAL STUDY

This section presents the evaluation process adopted in our
study. Fig. 4 shows the most important stages of this process.
We introduce the benchmark datasets commonly used to
evaluate the performance of sentence embedding models. Next,
we present the evaluation metrics used to measure the
performance of NLP tasks such as semantic similarity,
clustering, retrieval information, and classification. We present
empirical results on the performance of these models. Finally,
we discuss the results, identifying the appropriate models for
each NLP task.

D Taput T
: Sentences :
Embedding
Models
]
\] v
Similarity Clustering Retrieval
Tasks Tasks Tasks
Evaluation Evaluation Evaluation
Metrics Metrics Metrics
Final Report

Fig. 4. Process of the evaluation sentence embedding models.

In the first stage, sentences are received by the embedding
model to be evaluated, which converts them into numerical
vectors in the second stage. These vectors are tested on three
main tasks in the third stage. Similarity tasks to measure the
degree of meanings similarity, clustering tasks to test the ability
to cluster similar sentences, and retrieval tasks to evaluate the
effectiveness of sentence retrieval. For each task, appropriate
evaluation metrics are adopted to reflect the model's accuracy
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and performance. Finally, the results are analyzed in a
comprehensive report that allows for model comparison.

A. Evaluation Datasets

The evaluation of sentence embedding models relies on
datasets that capture task requirements. Semantic text similarity
(STS) datasets, such as STS-Benchmark [35] and SICK-R [38],
are used because they allow for easy interpretation of the
semantic quality scores of embeddings. However, its small size
and focus on a specific domain limit its generalizability.
Therefore, Natural Language Inference (NLI) datasets,
including SNLI [39] and MultiNLI [40], are also commonly
used to evaluate embedding techniques. Despite its large size
and diversity of sentence pairs, it can lead to embedding without
a real understanding of the meaning. Datasets such as MRPC
[41]and QQP[42] areused to measure the ability of embeddings
to capture paraphrasing and lexical diversity. For retrieval and
clustering tasks, datasets suchas MS MARCO [43], BEIR [44],
and StackExchange [45] are used. Their challenges lie in high
variability and data noisy.

@ Approximate adoption

PubMed 25%

Tatoeba | 42%

MTEB ‘ 51%

BEIR ‘ 56%

SNLI ‘ 2%

STS-B ‘ 78%

Fig. 5. Approximate adoption rates of training and evaluation datasets in
sentence embedding research.

The multilingual datasets, including XNLI [46], Tatoeba
[47], and the MTEB [48] multilingual path, are essential for
evaluating models across different languages. However, they
remain limited in low-resource languages. Fig. 5 shows the
approximate adoption rates of datasets in sentence embedding
research. TableIl compares the most important datasetsused for
evaluation, in terms of task, size, language, and challenges.

Domain-specific models such as BioBERT, SciBERT
instead rely on specialized datasets such as the PubMed
biomedical dataset or scientific papers from Semantic Scholar.

B. Evaluation Metrics

To measure the performance of sentence embedding models,
the NLP tasks identify the appropriate metric. For semantic
textual similarity (STS) tasks, correlation metrics such as
Pearson correlation coefficient and Spearman correlation
coefficient [49] are used. Cosine similarity [50] is used to
measure how closely embeddings converge in vector space,
making it suitable for tasks such as clustering and paraphrase
detection.
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TABLE II. COMPARISON OF DATASETS USED TO TRAIN AND EVALUATE SENTENCE EMBEDDING MODELS

Dataset Task Size Language Challenges
STS-B Semantic Textual Similarity 8,600 pairs English Small size, domain-limited
SICK-R IS{ZIII;?:(;fess Textual  Similarity — + 10,000 pairs English Domain-limited, relatively small
SNLI Natural Language Inference 570,000 pairs English Annotation in English-only
MultiNLI Natural Language Inference 430,000 pairs g:ngrléssl)l (multiple Still English-only, annotation bias
MRPC Paraphrase Identification 5,800 pairs English Small dataset, domain bias (news)
QQP Paraphrase Identification 400,000 pairs English Noise, duplicates, biased toward question style
MS MARCO Passage Retrieval / Ranking (llﬁ/iriespassages, 100k English Noisy labels, domain-specific (web queries)
StackExchange | Clustering & Retrieval 100k+ QA pairs English Annotation ambiguity , Duplicate questions
XNLI Cross-lingual NLI 750k (15 languages) Multilingual Limited low-resource language support
Tatoeba Cross-lingual Sentence Similarity 1,000+ pairsper language | 100+ languages Uneven quality across languages
e | M gt TS | i e 5 | ¥OonT | Gyps o i o

Also, for clustering tasks, Normalized Mutual Information
(NMI), Silhouette score, and Adjusted Rand Index (ARI) [51],
can be used to evaluate how well embeddings cluster
semantically similar sentences. For classification and natural
language inference (NLI) tasks, Accuracy andF1-Score [52] are

the most appropriate metrics. For information retrieval and
classification tasks, metrics such as mean average precision
(MAP) and mean reciprocal rank (MRR) [53] are preferred.
Table III presents the most important metrics for evaluating
sentence embedding models for each NLP task.

TABLE III. EVALUATION METRICS FOR SENTENCE EMBEDDING MODELS ON NLP TASKS
Metric STS Clustering Paraphrase Retrieval NLI Classification
Cosine Similarity X X X
Pearson Correlation X
Spearman Correlation X
Accuracy X X
F1-Score X X X
Mean Average Precision (MAP) X
Mean Reciprocal Rank (MRR) X
Normalized Mutual Information (NMI) X
Adjusted Rand Index (ARI) X
Silhouette Score X
Analysis of sentence embedding research shows that most @ Approximate adoption
sentence embedding models prefer evaluation based on
Silbovesre T 12%

semantic textual similarity tasks, while evaluation tasks such as
information retrieval and classification are neglected. Fig. 6
shows the approximate adoption rates of evaluation metrics in
sentence embedding research.

C. Evaluation protocol

1) Statistical sentence embedding techniques: To evaluate
statistical sentence embeddingtechniques, popular datasets and
evaluation metrics were used. The STS-Benchmark dataset and
Spearman and Pearson correlations were used to measure the
effectiveness of embedding on semantic textual similarity
(STS). For sentiment classification tasks, the Stanford
Sentiment Treebank (SST-2) dataset [ 54] and the classification
accuracy metric were used. Additionally, the clustering quality
was measured on sentence embeddings derived from the STS-
B corpus using the silhouette score.

rvt T 200
%
Al T 1s%

MR

Accuracy

] 35%

MRR | 400

| s0%%

Spearman’s

Pearson | 40%%

Cosine Smilanity | &30

Fig. 6. Approximate adoption rates of evaluation metrics in sentence
embedding research.

According to the evaluation results presented in Fig. 7, the
performance of unweighted averaging was affected by uniform
treatment of words, especially in semantic similarity tasks. The
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resultsof TF-IDF weighted averaging also make it more suitable
for classification tasks. While the performance of max/min
pooling, which oversimplifies the semantic of a sentence,
remains inconsistent.

Seotiment Classification
{Accuracy)

06
0.3
A
03
02
il
o

TF-IDF Weighted Avg.  Max&Min Pooling

®5TS (Speanman) Clustering (Silhouette)

Unwelglted Avg

Fig. 7. Performance of statistical sentence embedding techniques across STS,
sentiment classification, and clustering.

Conversely, the results demonstrate that SIF outperforms
other methods by removing the most common directions in the
embedding space, especially in semantic similarity and
clustering tasks.

2) Transformer-based models: To ensure a comprehensive
evaluation of sentence embedding models, three NLP tasks
were adopted. Semantic similarity, clustering, and retrieval.
This evaluation requires specific datasets and evaluation
metrics for each task. For semantic similarity task, STS-B and
Tatoeba were used. STS-B is a widely used for semantic
similarity in English, while Tatoeba extends the evaluation to
include multilingual sentence pairs. The performance was
measuredusing Pearson and Spearman coefficients. In contrast,
for the clustering task, MTEB and STS Clustering were
adopted, which test the ability of embeddings to cluster
semantically similar texts. Cosine similarity and silhouette
score are used to measure the performance. Retrieval task was
evaluated using BEIR and MIRACL datasets. BEIR provides a
unified framework for information retrieval, while MIRACL
focuses on cross-linguistic retrieval performance. MAP and
MRR, which reflect the importance of retrieval, were used to
measure the performance. Table IV presents the performance
of the sentence embedding models on the semantic similarity
task evaluation in STS-B and Tatoeba datasets.

The results showed modest performance of BERT and
RoberTa, compared to the effectiveness of SBERT and
SRoBERTa, on semantic similarity tasks. The multilingual
models (mUSE and LabSE) also demonstrated effective
performance, particularly on Tatoeba, confirming their
performance on cross-linguistic representations. In addition to
their computational efficiency, the contrastive learning models
(SimCSE and ConSERT) achieved competitive results, making
them attractive for light applications. Overall, these results
suggest that domain, resource constraints, and language
requirements determine the appropriate model.

The performance of sentence embedding models on the
clustering task was evaluated using the MTEB Clustering and
STS Clustering datasets as a practical benchmark for document
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clustering. Performance is measured using cosine similarity,
which measures the convergence of embeddings within clusters,
and the Silhouette score, which reflects cohesion and separation
within a cluster. Table V presents the performance results of
these models for each dataset.

TABLEIV. PERFORMANCE OF THE TRANSFORMER-BASED MODELS ON
THE SEMANTIC SIMILARITY TASK
STS-B Tatoeba
Model Pearson Spearman Pearson Spearman
BERT 0.63 0.60 0.42 0.40
RoBERTa 0.66 0.65 0.45 0.42
SBERT 0.85 0.81 0.72 0.70
SRoBERTa 0.86 0.82 0.71 0.68
BioBERT 0.60 0.55 0.40 0.43
SciBERT 0.70 0.62 0.50 0.46
mUSE 0.76 0.72 0.85 0.82
LaBSE 0.78 0.75 0.88 0.86
SimCSE 0.82 0.79 0.78 0.75
ConSERT 0.80 0.76 0.76 0.73
TABLE V. PERFORMANCE OF THE TRANSFORMER-BASED MODELS ON
THE CLUSTERING TASK
MTEB Clustering STS Clustering
Model
Cosine Silhouette Cosine Silhouette

BERT 0.38 0.14 0.42 0.15
RoBERTa 0.40 0.16 0.44 0.20
SBERT 0.58 0.27 0.60 0.30
SRoBERTa 0.62 031 0.63 0.30
BioBERT 0.45 0.20 0.50 0.20
SciBERT 0.48 0.23 0.54 0.23
mUSE 0.58 0.25 0.60 0.25
LaBSE 0.62 0.29 0.62 0.28
SimCSE 0.64 0.32 0.67 0.31
ConSERT 0.61 0.28 0.65 0.29

The clustering results demonstrate the superior performance
of the SimCSE and ConSERT models, confirming the
effectiveness of contrastive learningto produce embeddings that
enable the formation of coherent clusters. However, the
performance of domain-specific models, such as BioBERT and
SciBERT, is affected by the specialization of their training data
and thus unsuitable for clustering tasks. In contrast, the
multilingual models (mUSE and LabSE) provide competitive
results. LaBSE achieves strong performance in multilingual
clustering, making it suitable for clustering multilingual
documents.

The performance of sentence embedding models on the
retrieval task was evaluated using the BEIR and MIRACL
benchmarks, which serve as widely adopted frameworks for
testing retrieval effectiveness across both monolingual and
multilingual settings. Evaluation was carried out using Mean

545|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Average Precision (MAP), which measures the overall ranking
quality, and Mean Reciprocal Rank (MRR), which reflects the
ability of models to return relevant results at top ranks. Table VI
presents the results of all models across both datasets.

TABLE VI.  PERFORMANCE OF THE TRANSFORMER-BASED MODELS ON
THE RETRIEVAL TASK
BEIR MIRACL
Model
MAP MRR MAP MRR

BERT 0.27 0.30 021 0.25
RoBERTa 0.30 0.32 0.23 0.26
SBERT 0.41 0.45 0.35 0.38
SRoBERTa 0.44 0.46 0.40 0.42
BioBERT 0.33 0.37 0.20 0.23
SciBERT 0.35 0.40 0.22 0.24
mUSE 0.32 0.35 0.42 0.46
LaBSE 0.34 0.39 0.45 0.48
SimCSE 0.48 0.52 041 0.45
ConSERT 0.45 0.50 0.38 041

Evaluation results showed that baseline models, such as
BERT and RoberTa, underperformed on the retrieval task. In
contrast, fine-tuning the semantic similarity tasksin SBERT and
SRoBERTa improved this performance. Domain-specific
models,suchas BioBERT and SciBERT, faced challengesin the
cross-domain. Contrast learning models (SimCSE and
ConSERT) produced embeddings that improved the retrieval
task. In contrast, cross-linguistic models (mUSE and LabSE)
outperformed only on the MIRACL dataset, where cross-
linguistic coverage is essential, but their performance lagged
behind the English models in BEIR.

V. DISCUSSION

The evaluation of sentence embedding models focused on
quantitative results for natural language processing tasks,
including semantic similarity, clustering, and retrieval. While
these results provide a numerical comparison of performance, a
deeper analysis requires discussion and interpretation that
considers practical aspects, such as training costs, model size,
generalizability, and cross-linguistic applicability. This section
interprets the results and links them to the research questions.
This provides a consistent understanding of how each result
contributes to answering these questions. This will enable
researchers to use embedding models effectively in NLP tasks.

e RQI1: What families of sentence embeddings exist?

Regardless of whether the models are supervised or
unsupervised, our results identify two main categories:

Statistical models such as Bag-of-Words, TF-IDF, and SIF,
which are fast, interpretable, and easy to implementbut fail to
capture word order and deeper semantic relations. Statistical
models are still inexpensive, but their performance on semantic
tasks is low.

Transformer-based models such as BERT, SBERT, SimCSE
and LaBSE, which produce contextualized and semantically rich

Vol. 16, No. 10, 2025

representations. Transformer-based models, on the other hand,
achieve significantly higher scores on NLP tasks (semantic
similarity, clustering, and retrieval).

e RQ2: What are their strengths and limitations?

Statistical models are simple and easy to interpret, making
them suitable for fields with limited resources. However, their
representation neglects word order and context, limiting their
semantic performance. A comparative analysis showed
differences between the four statistical models in simplicity,
interpretation, and representation. The unweighted average
model provides a straightforward baseline with minimal
computational cost, but it often fails to capture semantic
relationships. The weighted average TF-IDF model focuses on
meaningful words in a sentence, making it more effective for
classification tasks. Max-min pooling provides richer
embeddings by considering extreme feature values, which can
better reflect sentence variance. Finally, the SIF model emerges
as a more accurate approach, balancing simplicity and semantic
accuracy by reducing the dominance of frequent words and
processing meaning at the sentence level.

Transformer-based sentence embedding models also have
strengths and weaknesses. Foundational models, such as BERT
and RoBERTa, have formed the basis of most models, but they
are not optimized sentence level and lack cross-linguistic
support. Optimized models, such as SBERT and SRoBERTa,
have improved performance onNLPtasks, but theyrequire fine-
tuning specific to the task and remain mostly English-focused.
While specialized models, such as BioBERT and SciBERT, are
effective at embedding biomedical and scientific terms, their
performance declines outside of specialized domains. Contrast
learning models, such as SimCSE and ConSERT, produce
embeddings that achieve high performance on similarity and
clustering through simple and efficient contrastive objectives,
although they are highly sensitive to training strategies and
require large datasets. The main strength of multilingual models,
such as mUSE and LabSE, is their ability to exploit common
embedding spaces across more than 100 languages, particularly
for cross-linguistic retrieval. However, their performance
declines in low-resource languages and requires intensive
training resources.

Overall, the analysis results indicate that statistical
embedding models are more suitable for simple applications,
while transformer-based models have become the preferred
choice for most NLP tasks, especially those requiring precise
semantic analysis. Future research could explore hybrid
strategies that combine the efficiency of statistical models with
the semantic depth of transformers.

e RQ3: What model is appropriate for each NLP task?

The evaluation results, presented in Tables IV, V, and VI,
demonstrate the appropriate sentence embedding model for each
NLP task. For semantic similarity tasks, SROBERTa and
SBERT achieved the highest correlation rates on the STS
dataset, thus capturing subtle semantic nuances. While LaBSE
achieved the highest correlation rates on the Tatoeba dataset,
making it more suitable for multilingual scenarios. For
clustering tasks, SImCSE outperformed the other models,
achieving sentence clustering without being affected by
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multilingualism. For retrieval tasks, SImMCSE and ConSERT
performed best, followed by SRoBERTa, making them most
effective for monolingual retrieval tasks. Conversely, LaBSE
outperformed on the MIRACL dataset, making it more suitable
for multilingual retrieval tasks. Table VII presents the
classification of NLP tasks according to appropriate sentence
embedding model.

TABLE VII. CLASSIFICATION OF NLP TASKS ACCORDING TO BEST
SENTENCE EMBEDDING MODELS
Task Best Models Description

SimCSE, Contrastive models (SimCSE,

Retrieval ConSERT, ConSERT) are strong baselines, while
SBERT SBERT remain very competitive.

Clustering SimCSE, Contrastive mo@els generate _ well-
ConSERT separated embeddings for clustering.

Semantic SBERT, SBERT is traditionally strongest for

Similarity SRoBERTa similarity tasks

Multilingual LaBSE is outperformed for Multilingual
LaBSE

tasks tasks

In general, SBERT and SRoBERTa are suitable for semantic
similarity, SimCSE and ConSERT are effective for retrieval and
clustering, and LaBSE is best suited for multilingual tasks.

VI. CONCLUSION

The study presented in our paper combines a review and
empirical assessment of sentence embedding models to address
the challenge of selecting the most appropriate model for each
NLP task. The study answers three main research questions.
First, (RQ1), there are two main categories of embeddings:
statistical models suchas unweighted average, weighted average
TF-IDF, Max-min pooling and SIF, which remain simple and
interpretable, and transformer-based models such as BERT,
RoBERTa, SBERT, BioBERT, LabSE and SimCSE, which
exploit contextual representations. Second, (RQ2), we analyzed
their strengths and weaknesses, while lightweight statistical
models appear to be incapable of semantic representations.
Transformer-based models capture rich contextual information
but require significant computational resources and may face
challenges in domain transfer. Finally, (RQ4), we determined
the appropriate model for three specific NLP tasks. Our
empirical study showed that SBERT and SRoBERTa produce
embeddings thatare well-suited for semantic similarity tasks. In
contrast, the embedding generated by the SimCSE model
performs best for clustering tasks, while the embeddings
generated by the SImCSE, ConSERT, and SRoBERTa models
are well-suited for retrieval tasks. In general, the selection of an
appropriate model depends on the task requirements, available
resources, and language context. For low-resource or
interpretable applications, statistical embeddings remain
appropriate. For semantically rich applications, despite their
computational cost, transformer models are highly efficient. In
contrast, multilingual applications can benefit from models such
as LaBSE. Future work should explore hybrid strategies that
combine efficiencyand semantic depth, and expand the scope of
evaluations to include multimodal embeddings to meet the
growing needs of NLP systems.
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