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Abstract—Sentence embedding is a very important technique 

in most natural language processing (NLP) tasks, such as answer 

generation, semantic similarity detection, text classification and 

information retrieval. This technique aims to transform the 

semantic meaning of a sentence into a fixed-dimensional vector, 

allowing machines to understand human language. Sentence 

embedding has moved in recent years from simple word vector 

averaging methods to the development of more sophisticated 

models, particularly those based on transformer structures such 

as the BERT model and its variants. However, systematic reviews 

that critical, analyze and compare the performance of these 

models are still limited, particularly the selection of the 

appropriate embedding model for a specific NLP task. This study 

aims to address this gap by a comprehensive review for sentence 

embedding models and a systematic evaluation of their 

performance on NLP tasks, such as semantic similarity, clustering, 

and retrieval. The study enabled us to identify the appropriate 

embedding model for each task, identify the main challenges faced 

by embedding models, and propose effective solutions to improve 

the performance and efficiency of sentence embedding. 
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I. INTRODUCTION 

Embedding is one of the most techniques used in natural 
language processing applications [1] [2]. The performance of 
these applications is affected by the quality of the fixed-
dimensional vectors generated [3]. Several studies have 
underscored the importance of developing sentence embedding 
models [4], [5], especially with the capabilities offered by deep 
neural networks and transformers. NLP tasks require a deeper 
understanding of texts, especially understanding long texts [6], 
[7]. Therefore, choosing an appropriate embedding model is 
essential for a task. Recent frameworks such as DSPy [8] 
underscore the need for more sophisticated and context-aware 
sentence representations that are better suited to specific NLP 
tasks. Therefore, there is a need to study and analyze sentence 
embedding techniques, from statistical models based on word 
vector averages to modern models based on deep structures such 
as BERT [9] and its variants. In this context, we conducted a 
comprehensive literature review of the most sentence 
embedding models, from simple aggregation techniques to 
transformer-based models. 

The main objective of our paper is to identify the most 
appropriate embedding model for a specific task. To achieve 
this, our paper first presents the most important embedding 
models, their characteristics, the challenges that affect their 
effectiveness, and solutions that can help overcome them. 

Second, it evaluates the performance of these models on three 
natural language processing tasks [10], including semantic 
similarity, clustering, and retrieval, to identify the most effective 
models for each task. The methodology used in our paper is 
based on answering three main research questions: 

• RQ 1: What are the main categories of sentence 
embedding models proposed in the literature? 

• RQ 2: What are the strengths, limitations, and challenges 
of each model? 

• RQ 3: Which model is appropriate for each NLP task? 

We reviewed and analyzed scientific papers published in 
peer-reviewed sources (ArXiv, Scopus, Dblp, IEEE) between 
2015 and 2025. The results of this study represent an opportunity 
for researchers to build an overview of the techniques used in 
sentence embedding, to advance this area. 

The rest of the paper will be presented as follows. Section II 
presents related work on sentence embedding. Section III 
discusses categories of sentence embedding models, 
highlighting their advantages and challenges. Section IV is 
devoted to an empirical study that aims to evaluate these models 
across NLP tasks. Section V presents and discusses the results 
of the study. Section VI concludes the paper with future research 
directions. 

II. RELATED WORK 

In this section, we first highlight the importance of 
embedding models for natural language processing tasks and 
applications. We then trace the evolution of sentence embedding 
models. Finally, we summarize the scope and limitations of 
previous reviews to underline the relevance of the present study. 

A. Sentence Embeddings in NLP Tasks 

Embedding models have attracted growing interest in NLP 
field, as they demonstrate strong effectiveness in a variety of 
tasks, such as retrieval, clustering, summarization, and semantic 
similarity [11]. The development of embedding techniques has 
positively impacted this area [12]. Recent research has 
demonstrated that their use significantly improves the 
performance of NLP applications. For example, the 
performance of text classification and clustering has improved 
by pre-trained embeddings [13]. Performance in dense retrieval 
across multiple datasets has improved by employing contrastive 
learning models [14]. Similarly, extractive summarization 
models have improved by enabling the selection of more 
semantically rich sentences compared to standard baselines 
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[15]. Clustering studies also confirm that embeddings derived 
from pre-trained large language models capture accurate 
semantic relationships [16]. These results confirm that 
exploiting sentence embeddings for a specific task is essential 
for improving the performance of NLP tasks and applications. 

B. Sentence Embedding Evolution 

A text embedding is a vector representation of text (word, 
sentence, or paragraph), where similar texts appear close 
together in the embedding space [5]. These representations 
encode the syntactic and semantic properties of linguistic 
elements. Classic representations have relied on the bag-of-
words model or TF-IDF weighting [17], where each word is 
represented by a high-dimensional vector reflecting its 
frequency in the document (Formula 1). For a word 𝑤 in a 
document 𝑑, the TF-IDF vector is defined as: 

𝑊⃗⃗⃗ = (𝑇𝐹𝐼𝐷𝐹(𝑤,𝑑1), 𝑇𝐹𝐼𝐷𝐹(𝑤,𝑑2),… , 𝑇𝐹𝐼𝐷𝐹(𝑤,𝑑𝑁))  (1) 

Where 𝑇𝐹 − 𝐼𝐷𝐹(𝑤,𝑑) is calculated by Formula 2. 

𝑇𝐹 − 𝐼𝐷𝐹(𝑤,𝑑) =
𝑓𝑤,𝑑

∑ 𝑓𝑤′,𝑑𝑤′𝜖𝑑

× 𝑙𝑜𝑔 (
𝑁

1+|{𝑑𝜖𝐷:𝑤𝜖𝑑}|
)     (2) 

Where:  

• 𝑓𝑤,𝑑: Frequency of the word 𝑤 in document d. 

• 𝑁: Number of documents in corpus D. 

• |{𝑑𝜖𝐷:𝑤𝜖𝑑}| : Number of documents containing the 
word 𝑤. 

However, these models suffer from several limitations, 
including their high dimensionality and their inability to capture 
semantic similarity between terms. 

Word embedding, through models such as Word2Vec [18] 
and GloVe [19], has enabled the representation of words using 
low-dimensional vectors while considering relevant semantic 
contexts. On the other hand, the same vector is assigned to a 
word regardless of its context. Therefore, these models ignore 
the context in which the word appears, making them unsuitable 
for modeling sentences or paragraphs. Fig. 1 provides an 
example of this challenge. 

 
Fig. 1. Contextual limitation of Word2Vec and GloVe. 

To address the need to model text units containing more than 
one word, sentence embeddings were developed that aim to 
represent each sentence as a fixed-dimensional dense vector. 

Sentence embedding techniques are classified into two main 
categories [20]. The first includes statistical techniques, such as 
Doc2Vec [21] and SIF [22]. These techniques are 
computationally inexpensive. However, they remain limited 
because they only capture a portion of the semantic context. The 

second set consists of deep neural techniques, which rely on 
advanced encoding models. These include InferSent [23] and 
Universal Sentence Encoder [24], Sentence-BERT [25] and 
SimCSE [26]. These models use transformers to contextually 
model complex relationships between words and sentences. 
They therefore provide more expressive vector representations 
suitable for advanced NLP tasks. 

C. Comprehensive Review of Sentence Embedding  

Several research papers have studied and reviewed proposed 
sentence embedding models, offering different perspectives on 
their classification, evaluation, and application. The work 
presented in [27] is one of the first general reviews of sentence 
representations. This study was limited to unsupervised neural 
approaches. Other reviews such as [23], [28] have analyzed and 
compared sentence representation learning, proposed unified 
evaluation metrics such as SentEval [29], and focused on 
classical RNN and CNN encoders. In contrast, studies, such as 
[24], [25], have highlighted the effectiveness of transformer 
learning using pre-trained models such as BERT and its variants. 
Finally, recent published studies [26], [30] have focused on the 
importance of contrastive learning and pre-trained models. 
Despite the comprehensiveness of these reviews, the 
development of embedding models across NLP tasks, and the 
difficulty of identifying the appropriate model for each task, is a 
challenge that motivates a comprehensive and updated review 
that considers the importance of models to the nature of NLP 
tasks and their applications. 

III. SENTENCE EMBEDDING MODELS 

This section introduces two main categories of sentence 
embedding models. Statistical sentence embedding models 
represent sentences using aggregated word-level statistics, while 
transformer-based sentence embedding models represent 
sentences using pre-trained contextual language models. This 
classification highlights the shift from shallow frequency-based 
representations to neural structures that better encode semantic 
and syntactic relationships. 

A. Statistical Sentence Embedding Techniques 

Statistical methods for sentence embedding rely on simple 
aggregation techniques, such as averaging or weighted 
summation of word embeddings, or distributional models. 
Although computationally efficient and easy to implement, 
these methods provide an approximate semantic representation 
of a sentence, ignoring word order and syntactic structures. 

1) Unweighted averaging: Unweighted averaging is one of 

the most techniques widely used to generate sentence 

embeddings. The method consists of representing a sentence by 

computing the arithmetic mean of the vector representations of 

its constituent words. According to study [18], a sentence 

embedding is defined by Formula 3. 

𝑣𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 =
1

𝑛
∑ 𝑣𝑤𝑖

𝑛
𝑖=1  (3) 

Where: 

• n: Number of words in the sentence. 

• 𝑣𝑤𝑖
 : The embedding representation of word 𝑤𝑖. 
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Despite its simplicity, it has been shown to capture some of 
the semantic meaning of vectors. However, its limitations 
include ignoring the significance of words in a sentence. It treats 
all words equally, including frequent terms. 

2) TF-IDF weighted averaging: The TF-IDF weighted 

averaging incorporates word importance by exploiting the TF-

IDF coefficient. This allows us to overcome the challenge of 

treating all words equally and reduce the influence of common 

words. Formally, according to [22], the sentence embeddings 

are obtained by calculating a weighted average of word vectors, 

where the weights are determined by TF-IDF coefficient 

(Formula 4). 

𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 =
∑ 𝑇𝐹−𝐼𝐷𝐹(𝑤𝑖)∙𝑣𝑤𝑖

𝑛
𝑖=1

∑ 𝑇𝐹−𝐼𝐷𝐹(𝑤𝑖)
𝑛
𝑖=1

                     (4) 

Where: 

• n: Number of words in the sentence. 

• 𝑣𝑤𝑖
 : The embedding representation of word 𝑤𝑖. 

• 𝑇𝐹 − 𝐼𝐷𝐹(𝑤𝑖): Weight of word 𝑤𝑖 , is calculated by 
Formula 2. 

This model generates better semantic representations than 
unweighted averaging. However, it still ignores the syntactic 
information and sequential order of words, which may limit its 
effectiveness in more complex NLP tasks. 

3) Max  and min pooling models: Max and min pooling is a 

statistical model for generating sentence embeddings by 

selecting the maximum (or minimum) value of all word 

embeddings in a sentence. This approach captures the most 

prominent features present in any word vector, making it robust 

to noise. According to [23], the sentence embedding can be 

generated using either max-pooling or min-pooling as defined 

by Formulas (5) and (6). 

𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
𝑚𝑎𝑥 = [𝑚𝑎𝑥

𝑖=1..𝑛
(𝑣𝑤𝑖

(1)
),𝑚𝑎𝑥

𝑖=1..𝑛
(𝑣𝑤𝑖

(2)
),… 𝑚𝑎𝑥

𝑖=1..𝑛
(𝑣𝑤𝑖

(𝑑)
)]    (5) 

𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
𝑚𝑖𝑛 = [𝑚𝑖𝑛

𝑖=1..𝑛
(𝑣𝑤𝑖

(1)
),𝑚𝑖𝑛

𝑖=1..𝑛
(𝑣𝑤𝑖

(2)
),… 𝑚𝑖𝑛

𝑖=1..𝑛
(𝑣𝑤𝑖

(𝑑)
)]     (6) 

Where: 

• n: Number of words in the sentence. 

• 𝑣𝑤𝑖

(𝑘)
: the value of the k-th dimension of word 𝑤𝑖 (each of 

dimension d). 

However, it still ignores syntactic information and may 
oversimplify the semantic representation. The semantic 
structure of sentences may be overly simplified. 

4) Smooth inverse frequency model: The Smoothed Inverse 

Frequency (SIF) [22] model reduces the influence of common 

words on sentence embeddings by weighting word embeddings 

inversely with their frequency in a corpus. To generate sentence 

embeddings, SIF calculates a weighted average (Formula 7) 

and removes the first principal component that defines common 

directions in the embedding space to produce more 

discriminative sentence representations (Formula 8). 

𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 =
1

𝑛
∑

𝛼

𝛼+𝑝(𝑤𝑖)
𝑛
𝑖=1 ∙ 𝑣𝑤𝑖

                 (7) 

Where: 

• n: Number of words in the sentence. 

• 𝑣𝑤𝑖
 : Embedding representation of word 𝑤𝑖. 

• 𝑝(𝑤𝑖): Frequency of 𝑤𝑖 in the corpus. 

• 𝛼: Smoothing parameter (default 10−3) 

To remove the first principal component F that defines the 
common directions in the embedding space, we need to calculate 
𝐹𝐹𝑇𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 the Projection of 𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 onto F (𝐹𝑇𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 is 
the scalar product between F and 𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒). 

𝑉𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒
𝑆𝐼𝐹 = 𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 −  𝐹𝐹𝑇𝑉𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒             (8) 

Although SIF is efficient, and robust, but its reliance on 
frequency statistics, principal component analysis calculations, 
and inability to capture syntax or context limits its effectiveness 
for more complex NLP tasks. 

B. Transformer-Based Sentence Embedding Models 

Sentence embedding using transformers has contributed to 
generating contextual representations that capture the semantic 
meaning of sentences and reducing the challenges of statistical 
models.  Bidirectional Encoder from Transformers (BERT) [9] 
is the first transformer used for sentence embedding. Other 
transformers have followed, improving the performance of the 
sentence embedding task. In this part, we provide a 
comprehensive overview of the transformer-based sentence 
embedding models, based on the classification shown in Fig. 2. 

 
Fig. 2. Taxonomy of transformer-based sentence embedding models. 

1) Foundational models: BERT is the first transformer 

model for sentence embedding. Unlike statistical approaches, 

BERT relies on self-attention mechanisms rather than recurrent 

or convolutional networks. It has bidirectional encoding, which 

allows it to read sequences of tokens in both directions. It uses 

multiple transformer layers (12 in BERT-base and 24 in BERT-

large), each consisting of multi-head self-attention networks 

and feed-forward networks. Its pre-training combines masked 

language modeling (MLM), where random tokens are predicted 

from context, and next-sentence prediction (NSP), which 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

542 | P a g e  
www.ijacsa.thesai.org 

captures sentence-level relationships. Fig. 3 illustrates the 

process by which BERT produces these embeddings. These 

features make BERT more effective to learn deep contextual 

representations. 

 
Fig. 3. The BERT sentence embedding process, reproduced from study [9]. 

However, the computational cost of pretraining, biases in 
pretraining data, and sequence length constraints limit its 
performance to represent long documents. This challenge has 
prompted the development of BERT variants such as RoBERT 
[31] that uses the same transformer encoder architecture as 
BERT, but with improvements in the pre-training phase. It 
Eliminates the NSP task, employs dynamic masking in the 
MLM objective, and trains on larger datasets (over 160 GB). 
This allows it to benefit from longer training schedules and 
higher learning, enhancing the quality of its contextual 
representations. 

Despite their effective performance, Foundational models 
face several challenges. The large training dataset makes them 
computationally expensive, and they are also affected by biases 
present in pre-training datasets. Furthermore, the input length 
limit of 512 tokens limits their ability to represent longer 
sequences. 

2) Sentence-level optimized models: To overcome the 

challenges of foundational models, sentence-level optimized 

models, such as SBERT and SRoBERTa [25], rely on Siamese 

and triplet network architectures, which improve the accuracy 

of transformer encoders to generate semantically meaningful 

sentence representations. They also reduce computational cost 

on semantic text similarity (STS) tasks. The time to find the 

most similar pair of sentences in a set of 10,000 sentences is 

reduced from 65 hours using BERT to about 5 seconds using 

SBERT. Using a Siamese and triplet network also embeds 

sentences into higher-dimensional semantic spaces to better 

capture hierarchical information. 

TABLE I.  KEY DISTINCTIONS BETWEEN SBERT AND SROBERTA 

Criterion SBERT SRoBERTa 

Encoder 
BERT or 

RoBERTa 

RoBERTa (with enhanced 

pretraining) 

Training Data  
STS/NLI 

datasets 

Larger and more diverse datasets, 

often domain-adapted 

Specialized Tasks 
Semantic 

similarity 
Semantic similarity, clustering 

Performance 
Strong for 

semantic tasks 

Higher performance, especially in  

specific domain 

Table I shows the key differences between SBERT and 
SRoBERTa. In SBERT, the input sentence is encoded using 
BERT or RoBERTa, followed by a pooling layer that produces 
a fixed-size embedding, which is then applied to semantic 

similarity tasks. In contrast, SRoBERTa uses the RoBERTa 
encoder and incorporates structured training strategies, such as 
variance and classification losses, to produce more accurate 
embeddings. These embeddings are particularly effective for 
semantic search and clustering, and therefore SRoBERTa 
outperforms SBERT. 

The performance of SBERT and SRoBERTa on Cross-
lingual data is low, compared to their results on English data. 
Therefore, their performance depends on the language of their 
training data (English) which makes their generalization to 
complex languages difficult. Therefore, multilingual and cross-
linguistic sentence embedding models are important to achieve 
robust performance on multilingual applications. 

3) Multilingual and cross-linguistic models: Semantic 

similarity Detection between sentences across different 

languages has been a challenge for monolingual sentence 

embedding models. In contrast, multilingual and cross-

linguistic models, such as the Multilingual Universal Sentence 

Encoder (mUSE) [32] and Language-Independent BERT 

Sentence Embeddings (LaBSE) [33], achieve minimal 

linguistic bias, leading to better performance. 

The mUSE model uses a universal sentence encoder and is 
trained on a set of translation pairs in multilingual datasets. 
mUSE supports more than 16 universal languages, and achieves 
a semantic similarity and effective cross-language retrieval. 
However, its performance deteriorates on untrained languages, 
this limit its application in global contexts. Unlike mUSE, 
LaBSE is a language-agnostic model trained on over 110 
languages using a dual-encoder architecture and translation 
ranking objectives. LaBSE achieved state-of-the-art results on 
benchmarks such as Tatoeba [34] and cross-linguistic STS [35]. 
It demonstrated its ability to encode semantically equivalent 
sentences from different languages, making it one of the most 
robust models for multilingual applications. 

Overall, these models have achieved the transition from 
English-centric sentence embeddings to multilingual sentence 
embeddings. Despite this contribution, these models still face 
significant challenges. Their reliance on massive parallel 
datasets and complex training pipelines limits their adaptability 
to resource-limited languages. They also rely on translation-
based alignment objectives, which can introduce biases and limit 
the generalization of sentence representations in monolingual or 
domain-specific. To overcome these challenges, contrastive 
learning models have emerged, which aim to learn sentence 
embeddings by exploiting self-supervised objectives. 

4) Contrastive learning models: To overcome the 

challenges faced by multilingual sentence embedding models, 

contrastive learning models has been adopted as a paradigm for 

learning universal sentence representations. these models aim 

to approximate semantically similar sentences in the 

embedding space while separating unrelated sentences, without 

the need for massive parallel datasets. SimCSE [26] and 

ConSERT [36] are the most widely used contrastive learning 

models for sentence embedding. 

SimCSE relies on two different representations of the same 
sentence by applying contrastive dropout masks within a pre-
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trained model such as BERT or RoBERTa. These 
representations are considered as positive pairs, while the other 
sentences are treated as negative samples. By the contrastive loss 
optimization (InfoNCE) [37], SimCSE is learn to align 
semantically consistent representations without the need for 
external supervision. The ConSERT sentence embedding model 
relies on contrastive learning to efficiently fine-tune BERT, 
leveraging positive pair construction through strategies 
including word reordering, token masking, and embedding 
dimension masking. Sentence representations are obtained by 
aggregating mean pooling instead of CLS. Which makes it able 
to adapt in low-resource contexts. 

However, some challenges are remained. These models 
require fine-tuning of hyperparameters (dropout rates, and 
augmentation strategies), making their performance unstable 
across domains. Their performance is also affected in resources 
lacking sufficient negative samples due to their reliance on 
aggregated negatives. Furthermore, these models are largely 
trained on English corpora, offering limited cross-language 
generalization without extensive retraining. 

IV. EMPIRICAL STUDY 

This section presents the evaluation process adopted in our 
study. Fig. 4 shows the most important stages of this process. 
We introduce the benchmark datasets commonly used to 
evaluate the performance of sentence embedding models. Next, 
we present the evaluation metrics used to measure the 
performance of NLP tasks such as semantic similarity, 
clustering, retrieval information, and classification. We present 
empirical results on the performance of these models. Finally, 
we discuss the results, identifying the appropriate models for 
each NLP task. 

 
Fig. 4. Process of the evaluation sentence embedding models. 

In the first stage, sentences are received by the embedding 
model to be evaluated, which converts them into numerical 
vectors in the second stage. These vectors are tested on three 
main tasks in the third stage. Similarity tasks to measure the 
degree of meanings similarity, clustering tasks to test the ability 
to cluster similar sentences, and retrieval tasks to evaluate the 
effectiveness of sentence retrieval. For each task, appropriate 
evaluation metrics are adopted to reflect the model's accuracy 

and performance. Finally, the results are analyzed in a 
comprehensive report that allows for model comparison. 

A. Evaluation Datasets 

The evaluation of sentence embedding models relies on 
datasets that capture task requirements. Semantic text similarity 
(STS) datasets, such as STS-Benchmark [35] and SICK-R [38], 
are used because they allow for easy interpretation of the 
semantic quality scores of embeddings. However, its small size 
and focus on a specific domain limit its generalizability. 
Therefore, Natural Language Inference (NLI) datasets, 
including SNLI [39] and MultiNLI [40], are also commonly 
used to evaluate embedding techniques. Despite its large size 
and diversity of sentence pairs, it can lead to embedding without 
a real understanding of the meaning. Datasets such as MRPC 
[41] and QQP [42] are used to measure the ability of embeddings 
to capture paraphrasing and lexical diversity. For retrieval and 
clustering tasks, datasets such as MS MARCO [43], BEIR [44], 
and StackExchange [45] are used. Their challenges lie in high 
variability and data noisy. 

 
Fig. 5. Approximate adoption rates of training and evaluation datasets in 

sentence embedding research. 

The multilingual datasets, including XNLI [46], Tatoeba 
[47], and the MTEB [48] multilingual path, are essential for 
evaluating models across different languages. However, they 
remain limited in low-resource languages. Fig. 5 shows the 
approximate adoption rates of datasets in sentence embedding 
research. Table II compares the most important datasets used for 
evaluation, in terms of task, size, language, and challenges. 

Domain-specific models such as BioBERT, SciBERT 
instead rely on specialized datasets such as the PubMed 
biomedical dataset or scientific papers from Semantic Scholar. 

B. Evaluation Metrics 

To measure the performance of sentence embedding models, 
the NLP tasks identify the appropriate metric. For semantic 
textual similarity (STS) tasks, correlation metrics such as 
Pearson correlation coefficient and Spearman correlation 
coefficient [49] are used. Cosine similarity [50] is used to 
measure how closely embeddings converge in vector space, 
making it suitable for tasks such as clustering and paraphrase 
detection. 
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TABLE II.  COMPARISON OF DATASETS USED TO TRAIN AND EVALUATE SENTENCE EMBEDDING MODELS 

Dataset Task Size Language Challenges 

STS-B Semantic Textual Similarity 8,600 pairs English Small size, domain-limited 

SICK-R 
Semantic Textual Similarity + 

Relatedness 
10,000 pairs English Domain-limited, relatively small 

SNLI Natural Language Inference 570,000 pairs English Annotation in English-only 

MultiNLI Natural Language Inference 430,000 pairs 
English (multiple 

genres) 
Still English-only, annotation bias 

MRPC Paraphrase Identification 5,800 pairs English Small dataset, domain bias (news) 

QQP Paraphrase Identification 400,000 pairs English Noise, duplicates, biased toward question style 

MS MARCO Passage Retrieval / Ranking 
1M passages, 100k 

queries 
English Noisy labels, domain-specific (web queries) 

StackExchange Clustering & Retrieval 100k+ QA pairs English Annotation ambiguity ,  Duplicate questions 

XNLI Cross-lingual NLI 750k (15 languages) Multilingual Limited low-resource language support 

Tatoeba Cross-lingual Sentence Similarity 1,000+ pairs per language 100+ languages Uneven quality across languages 

MTEB 
Multi-task, multi-lingual (STS, 

retrieval, classification, clustering) 

8M examples across 50 

datasets 

Multilingual 

(100+ languages) 
Complex to run, requires large compute 

 

Also, for clustering tasks, Normalized Mutual Information 
(NMI), Silhouette score, and Adjusted Rand Index (ARI) [51], 
can be used to evaluate how well embeddings cluster 
semantically similar sentences. For classification and natural 
language inference (NLI) tasks, Accuracy and F1-Score [52] are 

the most appropriate metrics. For information retrieval and 
classification tasks, metrics such as mean average precision 
(MAP) and mean reciprocal rank (MRR) [53]  are preferred. 
Table III presents the most important metrics for evaluating 
sentence embedding models for each NLP task.

TABLE III.  EVALUATION METRICS FOR SENTENCE EMBEDDING MODELS ON NLP TASKS 

Metric STS Clustering Paraphrase Retrieval NLI Classification 

Cosine Similarity X X X    

Pearson Correlation X      

Spearman Correlation X      

Accuracy     X X 

F1-Score   X  X X 

Mean Average Precision (MAP)    X   

Mean Reciprocal Rank (MRR)    X   

Normalized Mutual Information (NMI)  X     

Adjusted Rand Index (ARI)  X     

Silhouette Score  X     
 

Analysis of sentence embedding research shows that most 
sentence embedding models prefer evaluation based on 
semantic textual similarity tasks, while evaluation tasks such as 
information retrieval and classification are neglected. Fig. 6 
shows the approximate adoption rates of evaluation metrics in 
sentence embedding research. 

C. Evaluation protocol 

1) Statistical sentence embedding techniques: To evaluate 

statistical sentence embedding techniques, popular datasets and 

evaluation metrics were used. The STS-Benchmark dataset and 

Spearman and Pearson correlations were used to measure the 

effectiveness of embedding on semantic textual similarity 

(STS). For sentiment classification tasks, the Stanford 

Sentiment Treebank (SST-2) dataset [54] and the classification 

accuracy metric were used. Additionally, the clustering quality 

was measured on sentence embeddings derived from the STS-

B corpus using the silhouette score. 

 
Fig. 6. Approximate adoption rates of evaluation metrics in sentence 

embedding research. 

According to the evaluation results presented in Fig. 7, the 
performance of unweighted averaging was affected by uniform 
treatment of words, especially in semantic similarity tasks. The 
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results of TF-IDF weighted averaging also make it more suitable 
for classification tasks. While the performance of max/min 
pooling, which oversimplifies the semantic of a sentence, 
remains inconsistent. 

 
Fig. 7. Performance of statistical sentence embedding techniques across STS, 

sentiment classification, and clustering. 

Conversely, the results demonstrate that SIF outperforms 
other methods by removing the most common directions in the 
embedding space, especially in semantic similarity and 
clustering tasks. 

2) Transformer-based models: To ensure a comprehensive 

evaluation of sentence embedding models, three NLP tasks 

were adopted. Semantic similarity, clustering, and retrieval. 

This evaluation requires specific datasets and evaluation 

metrics for each task. For semantic similarity task, STS-B and 

Tatoeba were used. STS-B is a widely used for semantic 

similarity in English, while Tatoeba extends the evaluation to 

include multilingual sentence pairs. The performance was 

measured using Pearson and Spearman coefficients. In contrast, 

for the clustering task, MTEB and STS Clustering were 

adopted, which test the ability of embeddings to cluster 

semantically similar texts. Cosine similarity and silhouette 

score are used to measure the performance. Retrieval task was 

evaluated using BEIR and MIRACL datasets. BEIR provides a 

unified framework for information retrieval, while MIRACL 

focuses on cross-linguistic retrieval performance. MAP and 

MRR, which reflect the importance of retrieval, were used to 

measure the performance. Table IV presents the performance 

of the sentence embedding models on the semantic similarity 

task evaluation in STS-B and Tatoeba datasets. 

The results showed modest performance of BERT and 
RoberTa, compared to the effectiveness of SBERT and 
SRoBERTa, on semantic similarity tasks. The multilingual 
models (mUSE and LabSE) also demonstrated effective 
performance, particularly on Tatoeba, confirming their 
performance on cross-linguistic representations. In addition to 
their computational efficiency, the contrastive learning models 
(SimCSE and ConSERT) achieved competitive results, making 
them attractive for light applications. Overall, these results 
suggest that domain, resource constraints, and language 
requirements determine the appropriate model. 

The performance of sentence embedding models on the 
clustering task was evaluated using the MTEB Clustering and 
STS Clustering datasets as a practical benchmark for document 

clustering. Performance is measured using cosine similarity, 
which measures the convergence of embeddings within clusters, 
and the Silhouette score, which reflects cohesion and separation 
within a cluster. Table V presents the performance results of 
these models for each dataset. 

TABLE IV.  PERFORMANCE OF THE TRANSFORMER-BASED MODELS ON 

THE SEMANTIC SIMILARITY TASK 

Model 
STS-B Tatoeba 

Pearson Spearman Pearson Spearman 

BERT 0.63 0.60 0.42 0.40 

RoBERTa 0.66 0.65 0.45 0.42 

SBERT 0.85 0.81 0.72 0.70 

SRoBERTa 0.86 0.82 0.71 0.68 

BioBERT 0.60 0.55 0.40 0.43 

SciBERT 0.70 0.62 0.50 0.46 

mUSE 0.76 0.72 0.85 0.82 

LaBSE 0.78 0.75 0.88 0.86 

SimCSE 0.82 0.79 0.78 0.75 

ConSERT 0.80 0.76 0.76 0.73 

TABLE V.  PERFORMANCE OF THE TRANSFORMER-BASED MODELS ON 

THE CLUSTERING TASK 

Model 
MTEB Clustering STS Clustering 

Cosine Silhouette Cosine Silhouette 

BERT 0.38 0.14 0.42 0.15 

RoBERTa 0.40 0.16 0.44 0.20 

SBERT 0.58 0.27 0.60 0.30 

SRoBERTa 0.62 0.31 0.63 0.30 

BioBERT 0.45 0.20 0.50 0.20 

SciBERT 0.48 0.23 0.54 0.23 

mUSE 0.58 0.25 0.60 0.25 

LaBSE 0.62 0.29 0.62 0.28 

SimCSE 0.64 0.32 0.67 0.31 

ConSERT 0.61 0.28 0.65 0.29 

The clustering results demonstrate the superior performance 
of the SimCSE and ConSERT models, confirming the 
effectiveness of contrastive learning to produce embeddings that 
enable the formation of coherent clusters. However, the 
performance of domain-specific models, such as BioBERT and 
SciBERT, is affected by the specialization of their training data 
and thus unsuitable for clustering tasks. In contrast, the 
multilingual models (mUSE and LabSE) provide competitive 
results. LaBSE achieves strong performance in multilingual 
clustering, making it suitable for clustering multilingual 
documents. 

The performance of sentence embedding models on the 
retrieval task was evaluated using the BEIR and MIRACL 
benchmarks, which serve as widely adopted frameworks for 
testing retrieval effectiveness across both monolingual and 
multilingual settings. Evaluation was carried out using Mean 
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Average Precision (MAP), which measures the overall ranking 
quality, and Mean Reciprocal Rank (MRR), which reflects the 
ability of models to return relevant results at top ranks. Table VI 
presents the results of all models across both datasets. 

TABLE VI.  PERFORMANCE OF THE TRANSFORMER-BASED MODELS ON 

THE RETRIEVAL TASK 

Model 
BEIR MIRACL 

MAP MRR MAP MRR 

BERT 0.27 0.30 0.21 0.25 

RoBERTa 0.30 0.32 0.23 0.26 

SBERT 0.41 0.45 0.35 0.38 

SRoBERTa 0.44 0.46 0.40 0.42 

BioBERT 0.33 0.37 0.20 0.23 

SciBERT 0.35 0.40 0.22 0.24 

mUSE 0.32 0.35 0.42 0.46 

LaBSE 0.34 0.39 0.45 0.48 

SimCSE 0.48 0.52 0.41 0.45 

ConSERT 0.45 0.50 0.38 0.41 

Evaluation results showed that baseline models, such as 
BERT and RoberTa, underperformed on the retrieval task. In 
contrast, fine-tuning the semantic similarity tasks in SBERT and 
SRoBERTa improved this performance. Domain-specific 
models, such as BioBERT and SciBERT, faced challenges in the 
cross-domain. Contrast learning models (SimCSE and 
ConSERT) produced embeddings that improved the retrieval 
task. In contrast, cross-linguistic models (mUSE and LabSE) 
outperformed only on the MIRACL dataset, where cross-
linguistic coverage is essential, but their performance lagged 
behind the English models in BEIR. 

V. DISCUSSION 

The evaluation of sentence embedding models focused on 
quantitative results for natural language processing tasks, 
including semantic similarity, clustering, and retrieval. While 
these results provide a numerical comparison of performance, a 
deeper analysis requires discussion and interpretation that 
considers practical aspects, such as training costs, model size, 
generalizability, and cross-linguistic applicability. This section 
interprets the results and links them to the research questions. 
This provides a consistent understanding of how each result 
contributes to answering these questions. This will enable 
researchers to use embedding models effectively in NLP tasks. 

• RQ1: What families of sentence embeddings exist? 

Regardless of whether the models are supervised or 
unsupervised, our results identify two main categories: 

Statistical models such as Bag-of-Words, TF-IDF, and SIF, 
which are fast, interpretable, and easy to implement but fail to 
capture word order and deeper semantic relations. Statistical 
models are still inexpensive, but their performance on semantic 
tasks is low. 

Transformer-based models such as BERT, SBERT, SimCSE 
and LaBSE, which produce contextualized and semantically rich 

representations. Transformer-based models, on the other hand, 
achieve significantly higher scores on NLP tasks (semantic 
similarity, clustering, and retrieval). 

• RQ2: What are their strengths and limitations? 

Statistical models are simple and easy to interpret, making 
them suitable for fields with limited resources. However, their 
representation neglects word order and context, limiting their 
semantic performance. A comparative analysis showed 
differences between the four statistical models in simplicity, 
interpretation, and representation. The unweighted average 
model provides a straightforward baseline with minimal 
computational cost, but it often fails to capture semantic 
relationships. The weighted average TF-IDF model focuses on 
meaningful words in a sentence, making it more effective for 
classification tasks. Max-min pooling provides richer 
embeddings by considering extreme feature values, which can 
better reflect sentence variance. Finally, the SIF model emerges 
as a more accurate approach, balancing simplicity and semantic 
accuracy by reducing the dominance of frequent words and 
processing meaning at the sentence level. 

Transformer-based sentence embedding models also have 
strengths and weaknesses. Foundational models, such as BERT 
and RoBERTa, have formed the basis of most models, but they 
are not optimized sentence level and lack cross-linguistic 
support. Optimized models, such as SBERT and SRoBERTa, 
have improved performance on NLP tasks, but they require fine-
tuning specific to the task and remain mostly English-focused. 
While specialized models, such as BioBERT and SciBERT, are 
effective at embedding biomedical and scientific terms, their 
performance declines outside of specialized domains. Contrast 
learning models, such as SimCSE and ConSERT, produce 
embeddings that achieve high performance on similarity and 
clustering through simple and efficient contrastive objectives, 
although they are highly sensitive to training strategies and 
require large datasets. The main strength of multilingual models, 
such as mUSE and LabSE, is their ability to exploit common 
embedding spaces across more than 100 languages, particularly 
for cross-linguistic retrieval. However, their performance 
declines in low-resource languages and requires intensive 
training resources. 

Overall, the analysis results indicate that statistical 
embedding models are more suitable for simple applications, 
while transformer-based models have become the preferred 
choice for most NLP tasks, especially those requiring precise 
semantic analysis. Future research could explore hybrid 
strategies that combine the efficiency of statistical models with 
the semantic depth of transformers. 

• RQ3: What model is appropriate for each NLP task? 

The evaluation results, presented in Tables IV, V, and VI, 
demonstrate the appropriate sentence embedding model for each 
NLP task. For semantic similarity tasks, SRoBERTa and 
SBERT achieved the highest correlation rates on the STS 
dataset, thus capturing subtle semantic nuances. While LaBSE 
achieved the highest correlation rates on the Tatoeba dataset, 
making it more suitable for multilingual scenarios. For 
clustering tasks, SimCSE outperformed the other models, 
achieving sentence clustering without being affected by 
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multilingualism. For retrieval tasks, SimCSE and ConSERT 
performed best, followed by SRoBERTa, making them most 
effective for monolingual retrieval tasks. Conversely, LaBSE 
outperformed on the MIRACL dataset, making it more suitable 
for multilingual retrieval tasks. Table VII presents the 
classification of NLP tasks according to appropriate sentence 
embedding model. 

TABLE VII.  CLASSIFICATION OF NLP TASKS ACCORDING TO BEST 

SENTENCE EMBEDDING MODELS 

Task Best Models Description 

Retrieval 

SimCSE, 

ConSERT, 

SBERT 

Contrastive models (SimCSE, 

ConSERT) are strong baselines, while 

SBERT remain very competitive. 

Clustering 
SimCSE, 

ConSERT 

Contrastive models generate well-

separated embeddings for clustering. 

Semantic 

Similarity 

SBERT, 

SRoBERTa 

SBERT is traditionally strongest for 

similarity tasks 

Multilingual 

tasks 
LaBSE 

LaBSE is outperformed for Multilingual 

tasks 

In general, SBERT and SRoBERTa are suitable for semantic 
similarity, SimCSE and ConSERT are effective for retrieval and 
clustering, and LaBSE is best suited for multilingual tasks. 

VI. CONCLUSION 

The study presented in our paper combines a review and 
empirical assessment of sentence embedding models to address 
the challenge of selecting the most appropriate model for each 
NLP task. The study answers three main research questions. 
First, (RQ1), there are two main categories of embeddings: 
statistical models such as unweighted average, weighted average 
TF-IDF, Max-min pooling and SIF, which remain simple and 
interpretable, and transformer-based models such as BERT, 
RoBERTa, SBERT, BioBERT, LabSE and SimCSE, which 
exploit contextual representations. Second, (RQ2), we analyzed 
their strengths and weaknesses, while lightweight statistical 
models appear to be incapable of semantic representations. 
Transformer-based models capture rich contextual information 
but require significant computational resources and may face 
challenges in domain transfer. Finally, (RQ4), we determined 
the appropriate model for three specific NLP tasks. Our 
empirical study showed that SBERT and SRoBERTa produce 
embeddings that are well-suited for semantic similarity tasks. In 
contrast, the embedding generated by the SimCSE model 
performs best for clustering tasks, while the embeddings 
generated by the SimCSE, ConSERT, and SRoBERTa models 
are well-suited for retrieval tasks.  In general, the selection of an 
appropriate model depends on the task requirements, available 
resources, and language context. For low-resource or 
interpretable applications, statistical embeddings remain 
appropriate. For semantically rich applications, despite their 
computational cost, transformer models are highly efficient. In 
contrast, multilingual applications can benefit from models such 
as LaBSE. Future work should explore hybrid strategies that 
combine efficiency and semantic depth, and expand the scope of 
evaluations to include multimodal embeddings to meet the 
growing needs of NLP systems. 
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