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Abstract—In order to improve the accuracy and generalization 

ability of asphalt mixture fatigue life prediction, this study 

introduces the meta-learning method, which aims to solve the 

problems of poor adaptability and strong data dependence of the 

traditional prediction model under complex working conditions. 

In this study, a prediction framework based on the Model-

Agnostic Meta-Learning (MAML) algorithm is constructed, 

which realizes the fast and accurate prediction of asphalt mixture 

fatigue life under multi-task conditions through feature 

extraction, meta-knowledge learning, and a fast adaptive 

mechanism. The experiments were conducted using multi-class 

mixture data and compared with linear regression and BP neural 

network methods under the MATLAB platform. The results show 

that the meta-learning model achieves a prediction accuracy of 

0.98 within 500 iterations, which is significantly better than that of 

the BP neural network (0.89) and linear regression (0.84), and the 

prediction error is controlled to be between 40 and 60 under 

typical working conditions, while the traditional method has an 

error of up to 150. Further analysis shows that the meta-learning 

method has a faster convergence rate (the convergence index is 0.9 

for 100 iterations) and a higher convergence index of 0.9 for 100 

iterations. 0.9) with higher robustness. In conclusion, the meta-

learning-based prediction method shows excellent performance in 

fatigue life modeling, which is suitable for rapid application in 

real-world engineering with diverse materials and loading 

environments. 
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I. INTRODUCTION 

With the rapid development of the economy, the cause of 
transportation has also made great progress, asphalt pavement 
as one of the main forms of highway, its performance is directly 
related to the service life of the road and driving safety [1, 2]. 
Asphalt mixture is the main constituent material of asphalt 
pavement, which is prone to fatigue damage under the repeated 
action of long-term traffic load, which in turn leads to cracks, 
potholes and other disorders on the road surface, affecting the 
normal use of the road [3]. Accurately predicting the fatigue life 
of asphalt mixtures is of great significance for the rational 
design of pavement structure, optimization of material 
composition, development of scientific maintenance plans, and 
reduction of road construction and maintenance costs [4]. 
Therefore, exploring new prediction methods has important 
theoretical and practical application value. 

Asphalt mixture fatigue life prediction is an important 
research field in transportation engineering and materials 

science, and its core objective is to accurately predict the 
service life of asphalt mixtures under long-term repeated 
loading through theoretical analysis, experimental research, 
and numerical simulation [5], so as to provide a scientific basis 
for road design, construction, and maintenance [6]. Asphalt 
mixture fatigue life prediction research mainly includes asphalt 
mixture fatigue mechanism research [7], fatigue life influencing 
factors analysis [8], fatigue life prediction method research [9], 
fatigue life prediction without model validation and 
optimization [10], and so on. Currently, asphalt mixture fatigue 
life prediction research started relatively early, and after years 
of development, has achieved a series of more mature results 
[11]. Wang et al. [12], based on experimental observation and 
theoretical derivation, put forward the classical fatigue life 
prediction model represented by linear cumulative damage 
theory. Abdulmawjoud [13] used a deep neural network to 
predict the fatigue life of asphalt mixture under different asphalt 
types, aggregate gradation, and loading frequency, and 
achieved better prediction results. Zhao et al. [14] used a deep 
learning algorithm, combined a convolutional neural network 
and Long Short-Term Memory (LSTM) structure to predict the 
fatigue life of asphalt mixtures containing dynamic fatigue test 
data, material composition parameters, environmental 
monitoring data, and other multi-source information. Ameri 
and Ebrahimzadeh [15] utilized the viscoelastic continuum 
damage model and successfully predicted the mid-temperature 
fatigue performance of aged asphalt binder through a linear 
amplitude scanning test, indicating that the nonlinear prediction 
model can well fit the fatigue performance of asphalt binder 
with different aging times, showing that the nonlinear 
prediction model can fit the fatigue life of asphalt binder with 
different aging times well. Harne et al. [16] proposed a fatigue 
life prediction method for green mixtures based on support 
vector machines, which transforms the fatigue life prediction 
problem of asphalt mixtures into a classification or regression 
problem by searching for the optimal classification hyperplane 
with good generalization ability and prediction accuracy. Yue 
et al. [17] adopted an optimization neural network-based 
method using genetic algorithms for the architecture of the 
neural network is optimized to further improve the prediction 
performance of the asphalt fatigue life prediction model. 
Although extensive and in-depth research has been carried out 
at home and abroad in the field of fatigue life prediction of 
asphalt mixtures and a series of fruitful results have been 
achieved [18], there are still some urgent deficiencies and 
challenges faced by the existing technology: 1) the traditional 
prediction model lacks an in-depth portrayal of the fatigue 
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mechanism of the material, and it is difficult to accurately 
reflect the complex process of fatigue damage accumulation in 
asphalt mixtures [19]; 2) the Machine learning method models 
usually require a large amount of high-quality data for training, 
and in practice, there are greater difficulties in obtaining a 
sufficient amount of representative fatigue data, which to a 
certain extent restricts the model's performance improvement 
[20]. 

Based on the shortcomings of the existing research, this 
study is dedicated to introducing the cutting-edge technology of 
meta-learning [21] into the field of fatigue life prediction of 
asphalt mixtures, with a view to provide an innovative 
methodology and ideas for solving the existing technical 
problems. The main contributions of this study are reflected in 
the following: 1) constructing a fatigue life prediction model 
system for asphalt mixtures based on meta-learning; 2) 
combining the fatigue damage mechanism of asphalt mixtures 
with the material properties, exploring how to integrate the a 
priori knowledge in the physical model into the meta-learning 
model; and 3) verifying the validity and superiority of the 
proposed model through a large number of simulation 
experiments. 

This study centers on the fatigue life prediction problem of 
asphalt mixtures, and constructs a meta-learning-centered 
intelligent prediction framework. 

 The structure of the whole study is arranged as follows: 
Firstly, the fatigue mechanism and life prediction of asphalt 
mixture are systematically analyzed in Section II, which 
clarifies the influencing factors and the demand of prediction 
model. Section III describes the basic principle of meta-
learning, the classification of the method and the typical 
application, which provides theoretical support for the 
subsequent construction of the model. Section IV focuses on 
proposing the fatigue life prediction model based on meta-
learning, and describes the design of its structure in detail. 
Section V carries out experimental validation to evaluate the 
model performance from multiple dimensions, such as 
prediction accuracy, error control, convergence speed and 
generalization ability, by comparing and analyzing with the 
traditional methods. Finally, Section VI summarizes the 
research results, points out the limitations of the current 
research, and proposes the direction of improvement in the 
future. Through the above structural arrangement, this study 
aims to provide an innovative, low-sample, and highly 
adaptable solution idea for the efficient prediction of asphalt 
mixture fatigue life. 

II. FATIGUE LIFE PREDICTION PROBLEMS OF ASPHALT 

MIXTURE 

A. Fatigue Mechanism Analysis of Asphalt Mixtures 

Asphalt mixture fatigue refers to the phenomenon of 
gradual deterioration of the internal structure of asphalt 
mixtures under the repeated action of cyclic loading with 
decreasing strength and stiffness, which ultimately leads to the 
destruction of the material [22], as shown in Fig. 1. 

 

Fig. 1. Fatigue phenomenon in asphalt mixture. 

1) Fatigue damage analysis: Asphalt mixture is a typical 

composite material, which consists of a variety of components 

such as asphalt, aggregate, filler, etc., as shown in Fig. 2. Under 

the action of loading, the interactions between the constituents 

jointly affect the fatigue performance of the material. From a 

microscopic point of view, the fatigue damage of asphalt 

mixtures is mainly reflected in three aspects, as shown in Fig. 3. 

 

Fig. 2. Asphalt mixture. 

 

Fig. 3. Fatigue damage of asphalt mixture. 

• Aging and rupture of asphalt: Under repeated loading, 
the lightweight components in asphalt gradually 
evaporate, resulting in asphalt hardening, its viscosity 
and elasticity decrease, and resistance to deformation is 
weakened. At the same time, under the repeated action 
of the load, the asphalt will also produce small cracks 
within the asphalt, and these cracks gradually expand, 
eventually leading to asphalt rupture.  

• Aggregate fracture and loosening: Aggregate will 
produce micro-cracks under the action of load, and these 
cracks expand with the repeated action of load, which 
ultimately leads to the fracture of aggregate particles. In 
addition, the friction and misalignment between the 
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aggregate particles will also loosen the aggregate and 
reduce the embedding effect of the aggregate, thus 
affecting the overall strength of the asphalt mixture.  

• Damage at the asphalt-aggregate interface: The bond at 
the interface between asphalt and aggregate is an 
important source of asphalt mixture strength. Under the 
action of load, the stress concentration at the interface 
will lead to a gradual weakening of the bond, and even 
the phenomenon of debonding. Once the bond at the 
interface fails, the aggregate particles will undergo 
relative displacement under load, accelerating the fatigue 
damage of asphalt mixture. 

2) Fatigue damage principle: The fatigue damage of 

asphalt mixture is a complex physicochemical process, and its 

principle is mainly based on energy dissipation theory, 

microcrack extension theory and other parties [23], as shown in 

Fig. 4. As can be seen from Fig. 4, one is the energy dissipation 

theory, with the repeated action of the load, the energy 

dissipation within the material is increasing, resulting in a 

gradual decrease in the internal energy of the material, the 

structure is gradually loosened, and eventually fatigue damage 

occurs; the second is the theory of micro-crack expansion, the 

micro-cracks generated within the asphalt mixture under the 

repeated action of the load continue to expand and 

interpenetrate, the formation of macroscopic cracks, which 

ultimately leads to the fracture of the material. 

 

Fig. 4. Fatigue damage principle of asphalt mixture. 

3) Characteristics: The fatigue of asphalt mixture has the 

following characteristics: 1) with the increase of load, the 

deformation of the material will gradually increase, showing 

obvious nonlinear characteristics; 2) asphalt mixture has both 

viscous and elasticity, and its mechanical behavior changes 

with time; 3) each load action will cause some damage to the 

asphalt mixture, and it continues to accumulate, which 

ultimately leads to the fatigue damage of the material [24]. The 

fatigue characteristics of asphalt mixtures are shown in Fig. 5. 

 

Fig. 5. Fatigue damage characteristics of the asphalt mixture. 

B. Fatigue Life Prediction of Asphalt Mixtures 

1) Definition and analysis: Fatigue life prediction of 

asphalt mixtures refers to the prediction of the number of cycles 

or service time, i.e., fatigue life that the material can withstand 

under a certain load, based on factors such as its composition, 

structure, and loading conditions [25]. The concept of fatigue 

life prediction for asphalt mixtures is shown in Fig. 6. 

 

Fig. 6. Concept of fatigue life prediction for asphalt mixtures. 

The key to fatigue life prediction is to establish a 
quantitative relationship between fatigue life and various 
influencing factors. There are many factors affecting the fatigue 
life of asphalt mixtures, including material composition, 
loading conditions, environmental factors, and so on. Material 
composition determines the basic physical and mechanical 
properties of asphalt mixtures, such as asphalt type and 
aggregate gradation. Load conditions include load size, 
frequency, loading mode, etc., which directly determine the 
level of stress and strain on the material. Environmental factors 
such as temperature and humidity also have a significant effect 
on the fatigue properties of the material (see Fig. 7). 

 

Fig. 7. Fatigue life prediction influencing factors. 

2) Principles and characteristics: The principles of fatigue 

life prediction include fatigue damage accumulation model and 

material mechanics model. Fatigue damage accumulation 

model is to predict the fatigue life of materials by establishing 

the relationship between the fatigue damage and the number of 

loading cycles; material mechanics model: according to the 

mechanical properties of materials, establish the stress-strain 
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relationship of materials, combined with the fatigue damage 

mechanism, to predict the fatigue life of materials [26]. 

Fatigue life prediction has the following characteristics: 
1) uncertainty; 2) multi-factor coupling; 3) model dependence. 

III. META-LEARNING 

A. Principles and Methods 

1) Principle of meta-learning: Meta-learning, i.e., 

“learning to learn”, is an advanced machine learning concept, 

which aims to enable the model to quickly adapt to new tasks 

through the accumulation of experience, and significantly 

improve the learning efficiency and generalization ability [27]. 

The principle of meta-learning is shown in Fig. 8. 

 

Fig. 8. Principle of meta-learning. 

Traditional learning methods usually train models for a 
single task, while meta-learning extracts common knowledge 
from multiple related tasks to form a common knowledge base. 
When faced with a new task, the model utilizes the meta-
knowledge to quickly adjust and efficiently find a solution with 
little data and computational resources. 

2) Types of methods: Meta-learning methods are divided 

into optimization-based meta-learning, metric-based meta-

learning, model-based meta-learning, etc., as shown in Fig. 9. 

 

Fig. 9. Classification of meta -learning algorithms. 

Optimization-based meta-learning makes the model learn 
quickly on a small amount of new data by adjusting the initial 
parameters or learning rate, the typical representative is MAML 
(Model-Agnostic Meta-Learning). Metric-based meta-learning 
constructs metric space to facilitate sample similarity metrics 
and classification, the representative algorithm is Prototypical 
Networks. Model-based meta-learning constructs models to 
quickly adapt to new tasks. 

B. Applications and Characteristics 

1) Meta-learning applications: In the field of image 

classification, meta-learning can be used to quickly classify 

new categories of images. A large amount of image data 

covering multiple categories and scenes is collected to train the 

classification model. When new image categories, the model 

uses meta-knowledge to quickly and accurately classify them, 

saving time and computational resources. 

In the field of natural language processing, meta-learning 
can be used for tasks such as text categorization, sentiment 
analysis, and machine translation, as shown in Fig. 10. In the 
field of material science, meta-learning can be used for material 
performance prediction, such as predicting the strength, 
hardness, and fatigue life of materials. Performance data of 
multiple materials are collected to train the prediction model. 
When new material properties are predicted, the model utilizes 
meta-knowledge to predict quickly and accurately, accelerating 
research and development. 

 

Fig. 10. Meta-learning application analysis. 

2) Meta-learning characteristics: Meta-learning is 

characterized by rapid adaptability, strong knowledge transfer, 

high learning efficiency, and wide applicability, as follows: 

1) Rapid adaptability. The meta-learning model is trained by 

multi-tasks and has the ability to adapt quickly; 2) Strong 

knowledge migration. Meta-learning can extract generalized 

knowledge from multi-tasks to form a strong knowledge base, 

which can be shared and utilized for different but related tasks 

to enhance the learning effect of new tasks; 3) High learning 

efficiency. Meta-learning uses multi-task experience to 

optimize the learning process, improve efficiency, quickly 

adapt to new tasks, and reduce data and computational resource 

requirements; 4) Wide applicability. Meta-learning is 

applicable to multiple fields such as image classification, 

natural language processing, material science, robot control, etc. 

IV. META-LEARNING BASED FATIGUE LIFE PREDICTION 

METHOD FOR ASPHALT MIXTURES 

A. Structure of the Prediction Model 

1) Overall framework of the model: The overall framework 

of the meta-learning-based fatigue life prediction model for 

asphalt mixtures integrates a meta-learner, a feature extractor, 

and a task-specific model, aiming to efficiently process multi-

task learning and accurately predict the fatigue life of a new 
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task, as shown in Fig. 11. As can be seen in Fig. 11, the meta-

learner extracts generic features and initial parameters from 

multi-task data, the feature extractor deeply processes the input 

data to generate high-dimensional feature representations, and 

the task-specific model is fine-tuned with a small amount of 

data based on the meta-knowledge provided by the meta-learner 

to achieve fast adaptation and accurate prediction of new tasks. 

 

Fig. 11. Overall framework of the prediction model. 

B. Key Technologies 

The meta-learning-based fatigue life prediction model 
construction for asphalt mixtures includes key technologies 
such as feature extraction and fusion, meta-knowledge learning, 
and fast adaptive algorithms, as shown in Fig. 12. 

 

Fig. 12. Key techniques for predictive model construction. 

1) Feature extraction and fusion: For fatigue life 

prediction of asphalt mixtures, the input data include material 

composition (e.g., asphalt type, aggregate gradation, etc.), 

structural parameters (e.g., void ratio, mineral gap ratio, etc.), 

and loading conditions (e.g., stress level, loading frequency, 

etc.). The model needs to automatically extract and fuse the key 

features of these multi-source heterogeneous data. A multi-

layer neural network is used as the feature extractor, with 

different layers extracting different levels of semantic 

information. 

2) Meta-knowledge learning: The model needs to learn 

generic meta-knowledge from multiple related tasks, which can 

help the model quickly adapt to new tasks. The meta-

knowledge includes generic feature representations and initial 

values of model parameters. The generic feature representations 

are common features extracted from the data of multiple tasks, 

which can reflect the basic laws of fatigue life of asphalt 

mixtures. The initial values of the model parameters are the 

optimal initial values obtained after multiple task training, 

which can make the model converge quickly in the new task. 

3) Fast adaptive algorithm: The fast adaptive algorithm is 

the core of meta-learning, which enables the model to use a 

small amount of new task data to quickly adjust the model 

parameters. In optimization-based meta-learning methods, the 

fast adaptive algorithm uses gradient descent for parameter 

updating. In the new task, the model first uses a small amount 

of data to calculate the gradient of the loss function, and then 

combines the initial parameters provided by the meta-learner to 

quickly adjust to get the parameters adapted to the new task. 

C. Methodological Steps 

Combined with the meta-learning algorithm, a data-driven 
fatigue life prediction method based on asphalt mixtures was 
designed, and the process is shown in Fig. 13 with the following 
steps: 

 

Fig. 13. Fatigue life prediction method for asphalt mixtures. 

Step 1: Data collection and pre-processing. Collect fatigue 
life data under different asphalt mixture types and loading 
conditions, including material composition parameters, 
structural parameters and fatigue life. Clean and normalize the 
data to remove outliers and missing values. 

Step 2: Meta-learning model training. The meta-learning 
model is trained using the training set. Each task data in the 
training set is input into the model, and the parameters of the 
meta-learner are updated by the optimization algorithm. First, 
initialize the parameters of the meta-learner, and then for each 
task, perform a gradient descent update based on the parameters 
of the meta-learner to obtain the model parameters for that task. 
Calculate the value of the loss function for that task and update 
the meta-learner's parameters by backpropagation. Repeat this 
process until the performance of the meta-learner is optimized 
on all tasks. 

Step 3: New task prediction. When a new asphalt mixture 
fatigue life prediction is required, a small amount of data from 
the new task is fed into the trained meta-learning model. The 
model uses the meta-knowledge provided by the meta-learner 
to quickly adjust the parameters of the task-specific model. The 
adjusted model is then used to predict the fatigue life of the new 
task and the predictions are output. 

V. EXPERIMENTAL VALIDATION 

A. Experimental Setup 

In order to verify the effectiveness and superiority of the 
meta-learning based fatigue life prediction method for asphalt 
mixtures, the following experimental setup was conducted: 

1) Data set preparation: Fatigue life data of multiple types 

of asphalt mixtures, including different asphalt types, aggregate 

gradation, and loading conditions, were collected from public 
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databases and laboratory tests. The dataset is divided into 

training set (70%), validation set (15%) and test set (15%). 

2) Experimental environment: MATLAB 2021a platform 

was used for the experiment, and the appropriate meta-learning 

algorithm (MAML) and neural network architecture 

(multilayer perceptual machine) were selected. Set the 

experimental parameters: the learning rate is 0.01, the training 

period is 500 times, and the batch size is 32. 

3) Comparison method: In order to highlight the 

advantages of meta-learning based methods, traditional 

methods (including linear regression and BP neural network) 

are selected for comparison. The parameter settings of the three 

algorithms are shown in Table I. 

TABLE I. ALGORITHM PARAMETER SETTINGS 

ID Algorithm Parameter Settings 

1 
Linear 

Regression 

L2 regularization (ridge regression); Regularization 

coefficient initial value: 0.1 

2 
BP Neural 

Network 

Multi-layer perceptron (MLP) architecture; Initial 

learning rate: 0.001; Batch size: 32; Training 

epochs: 500 

3 

Meta-

Learning 

(MAML) 

Base learning rate: 0.01; Meta -learning rate: 0.001; 

Outer optimizer: Adam; Tasks per batch: 20; 

Training epochs: 500; MLP architecture; Hidden 

layers activated by ReLU 

B. Analysis of Results 

In order to deeply evaluate the practical efficacy of the 
fatigue life prediction model for asphalt mixtures based on 
meta-learning, this section compares it with the traditional 
linear regression and BP neural network methods, and carries 
out the analysis of the results in terms of prediction accuracy, 
error control, convergence speed, and generalization ability, 
and obtains the results shown in Fig. 14 to Fig. 17, Table II to 
Table IV. 

 

Fig. 14. Comparison of actual and predicted fatigue life. 

Fig. 14 shows the comparison between the actual values of 
fatigue life of asphalt mixtures and the results obtained by three 
prediction methods: meta-learning method, traditional linear 
regression method, and BP neural network method. From the 
figure, it can be visualized that the meta-learning method is 
closest to the real value in the overall trend, and its prediction 

curve closely follows the actual life data, showing superior 
fitting accuracy. In contrast, the traditional method shows large 
deviations at several points, especially in the fatigue life of 
higher or lower conditions, and the BP neural network, 
although improved compared with the traditional linear method, 
still shows a certain degree of volatility and instability in some 
segments. 

Further discussion and analysis of Fig. 14 shows that the 
meta-learning method shows a strong generalization ability and 
adaptivity, not only in the high value zone can be accurately 
predicted, but also maintains a good fit in the low value zone. 
This performance is attributed to the “meta-knowledge” 
extracted from multi-task learning, which enables the model to 
quickly adjust the parameters and give accurate results even in 
the face of unseen samples. This method outperforms the 
traditional model in responding to new conditions and data 
fluctuations, which shows that it has a stronger practical value 
and potential for popularization in road engineering. This also 
verifies the effectiveness of the meta-learning-based prediction 
method proposed in this study in improving the accuracy of 
fatigue life prediction of asphalt mixtures. 

 

Fig. 15. Comparison of prediction errors. 

Fig. 15 shows the error comparison of the three prediction 
methods (meta-learning, linear regression, and BP neural 
network) in the fatigue life prediction task of asphalt mixtures. 
It can be clearly seen in the figure that the meta-learning method 
has the lowest prediction error as a whole, and the error 
distribution is more concentrated and less fluctuating, 
indicating that it has stronger stability and accuracy. In contrast, 
the traditional linear regression method has the largest range of 
error fluctuations, with multiple high error points, indicating 
that its ability to fit the nonlinear law of fatigue life is limited, 
and it cannot effectively capture the complex feature 
interactions. While the BP neural network reduces the error to 
a certain extent, the overall error level is still higher than that of 
the meta-learning method, especially in some of the test 
samples where large deviations still occur. 

Further observing the trend of the error curves, the meta-
learning method keeps the error in a lower range in several data 
segments, showing its good adaptability to different working 
conditions and sample types. Its lower maximum error and 
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standard deviation indicate that meta-learning has obvious 
advantages in generalization and robustness. This is due to the 
“meta-knowledge” accumulated through multi-task learning, 
which can be quickly and accurately adapted to new tasks. In 
contrast, BP neural network still relies on a large number of 
samples for training, while linear regression lacks the ability to 
model nonlinear factors. Therefore, Fig. 15 further verifies that 
the meta-learning method is more stable and practical than 
traditional methods in real engineering prediction. 

 

Fig. 16. Training process curve. 

Fig. 16 demonstrates the trend of training loss and 
validation loss with the number of iterations for the meta-
learning-based approach in fatigue life prediction of asphalt 
mixtures. From the overall trend, both the training loss and the 
validation loss decrease rapidly with the increase of the number 
of iterations and level off at a certain stage, indicating that the 
model training process has good convergence. Especially in the 
first 100 iterations, the loss value shows a rapid decline, 
indicating that the meta-learning model is able to effectively 
capture the common knowledge among tasks and establish a 
stable prediction structure at the early stage. Compared with the 
slow convergence process of traditional neural networks, this 
feature significantly improves the training efficiency of the 
model. 

From the change curve of the validation loss, the model 
does not show any obvious oscillation or overfitting trend 
throughout the training process, indicating its strong 
generalization ability. The change in loss on the validation set 
is consistent with the training set, indicating that the meta-
learning method still maintains a stable performance in the face 
of unseen tasks or samples. This is because the model extracts 
more generalizable meta-parameters through the learning 
process of multiple tasks, allowing the model to adapt quickly 
with a small amount of fine-tuning even when faced with a new 
task with a slightly different distribution from the training set. 
This performance is of great practical importance for life 
prediction of asphalt mixtures under variable operating 
conditions. 

From the final stabilized value of the loss curve, the loss 
value of the model after the training of the meta-learning 
method is significantly lower than that of the traditional method, 

which reflects its higher prediction accuracy and model 
robustness. Since the fatigue life prediction of asphalt mixtures 
involves the complex coupling of multiple factors, the 
traditional method is often difficult to fully express the deep 
relationship between variables due to the limited modeling 
capability. The meta-learning method not only accelerates the 
training convergence speed by extracting and utilizing multi-
task synergistic information, but also improves the model's 
ability to fit the complex fatigue damage mechanism, which 
provides theoretical support for further popularizing the 
technology to road material performance prediction. 

 

Fig. 17. Comparison of prediction errors under different working conditions. 

Fig. 17 shows the comparison results of the errors of the 
three methods (meta-learning, BP neural network, and linear 
regression) in the fatigue life prediction of asphalt mixtures 
under different working conditions. It can be clearly seen that 
the meta-learning method shows the lowest prediction error 
under all kinds of working conditions, which is significantly 
better than the BP neural network and the traditional linear 
regression method, indicating that it has a stronger adaptive 
ability and robustness to working conditions. Especially under 
the more complex or nonlinear conditions such as working 
conditions 2 and 3, the error control ability of the meta-learning 
method is still stable with almost no obvious fluctuation, which 
demonstrates its strong modeling ability in the face of high-
dimensional and multivariate input scenarios. 

Further analysis shows that the linear regression method has 
the most significant error difference among different working 
conditions, and its prediction error is susceptible to drastic 
changes in variables, with poor stability, showing a typical 
underfitting problem. BP neural network, although improved 
compared with linear regression in most of the working 
conditions, still shows an increase in prediction deviation under 
high loads or complex material parameter combinations. This 
indicates that the traditional methods have limited ability to 
model the nonlinear interactions among multiple variables, 
such as environment, load, and material components, and are 
difficult to perform the task of predicting variable working 
conditions in engineering. 

In contrast, the meta-learning approach, by accumulating 
rich “meta-knowledge” during the multi-task training phase, 
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enables the model to adapt quickly to new working conditions, 
and can realize high-precision prediction with only a very small 
amount of new task data. The analysis results in Fig. 17 further 
demonstrate that the meta-learning method not only improves 
the prediction accuracy and efficiency, but also enhances the 
generalization ability of the model under different external 
environments or parameter fluctuations, which is an effective 
way to solve the problem of “poor adaptability to multiple 
working conditions” in the prediction of the life of asphalt 
mixtures. 

TABLE II. ALGORITHM COMPARISON DATA 

Iterations 
Meta-Learning 

Accuracy 

Linear 

Regression 

Accuracy 

BP Neural 

Network 

Accuracy 

100 0.95 0.80 0.85 

200 0.96 0.82 0.87 

300 0.97 0.83 0.88 

400 0.98 0.84 0.89 

500 0.98 0.84 0.89 

Table II demonstrates the comparison of the prediction 
accuracies of the three methods (meta-learning, linear 
regression, and BP neural network) with different numbers of 
training iterations (100, 200, 300, 400, and 500), aiming to 
assess the evolutionary trend of the accuracy of each method 
with the upper bound performance as the training process 
advances. 

First, from the overall trend, the prediction accuracies of all 
three methods increase with the number of iterations, indicating 
that continuous training helps the models to extract more 
effective features and laws. However, there are significant 
differences in the rise and final accuracy among the three. The 
meta-learning method achieves a high accuracy of 0.95 in the 
initial 100 iterations, much higher than the 0.80 of linear 
regression and the 0.85 of BP neural network, which indicates 
that it has a strong learning and fitting ability under a small 
amount of training, reflecting the core advantage of meta-
learning of “fast adaptation with few samples”. 

Secondly, in terms of stability and final performance, the 
accuracy of the meta-learning model reaches 0.97 at 300 times 
of training, and stabilizes at 0.98 at 500 times, showing high 
training efficiency and convergence performance. In contrast, 
the BP neural network model can only approach 0.89 after 400 
iterations, which is slow to improve and the accuracy fluctuates; 
the linear regression model almost stops the growth of accuracy 
after 200 iterations, and finally stays at 0.84, reflecting the 
existence of an obvious model upper limit, which is difficult to 
further approximate the actual data. This also indicates that the 
linear model has limited performance in the face of complex 
nonlinear relationships in asphalt mixtures. 

Thirdly, from the perspective of model variability, the 
performance of meta-learning is much better than the other two, 
because it obtains “common initialization parameters” and 
“task adaptation ability” through multi-task learning, which 

makes the model jump out of the local optimum faster, and 
avoids the traditional method of high-dimensional nonlinear 
problems falling into the “common initialization parameters” 
and “task adaptation ability”. It avoids the traditional methods 
from falling into the dilemma of “underfitting” or “overfitting” 
in high-dimensional nonlinear problems. Thus, the data in 
Table II not only verifies the significant advantage of the meta-
learning method in training accuracy, but also further supports 
its potential as an efficient, stable and strongly generalized 
prediction tool in engineering practice. 

TABLE III. PREDICTION ERROR DATA UNDER DIFFERENT WORKING 

CONDITIONS 

Condition 
Meta-Learning 

Error 

Linear 

Regression Error 

BP Neural 

Network Error 

1 50 120 90 

2 60 150 100 

3 40 100 80 

Table III lists the prediction errors of the three methods in 
three typical conditions: 50, 60, 40 for the meta-learning 
method, 120, 150, 100 for the linear regression, and 90, 100, 80 
for the BP neural network, and the meta-learning method has 
the lowest error in all the conditions, which shows the strongest 
prediction accuracy and error control ability. Among them, 
Case 2 usually represents a more complex or extreme test 
scenario, in which the error of traditional methods rises 
significantly (up to 150 for linear regression and 100 for BP), 
while the meta-learning method still controls the error within 
60, which shows that it still has a high stability and 
generalization ability under the high-complexity task. This 
advantage stems from the meta-learning's extraction and 
migration of common knowledge from multiple historical tasks, 
which gives the model the ability to be quickly tuned under new 
working conditions without the need for a large number of 
samples to be relearned. 

Further analyzing the robustness of the model and its ability 
to adapt to the working conditions from the error fluctuation 
amplitude, we find that the error range of the meta-learning 
method is only 20 (from 40 to 60) under the three working 
conditions with the smallest variation, while that of the BP 
neural network is 20 (from 80 to 100), and that of linear 
regression is as high as 50 (from 100 to 150), which indicates 
that meta-learning not only predicts more accurately, but also 
performs more smoothly and reliably among the working 
conditions. Especially when the working condition parameters 
change significantly, the error of linear regression method 
fluctuates drastically and is prone to deviate significantly from 
the actual value, reflecting its lack of modeling ability for 
complex environments. Although BP neural network is more 
flexible, the error is still amplified when there are insufficient 
samples or complex feature interactions. In conclusion, the data 
in Table III fully reflects the system advantages of meta-
learning in terms of “cross-operating conditions, consistency 
and fault tolerance”, which is an effective means to construct a 
highly robust asphalt fatigue life prediction system. 
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TABLE IV. MODEL CONVERGENCE SPEED 

Iterations 

Meta-Learning 

Convergence 

Speed 

Linear 

Regression 

Convergence 

Speed 

BP Neural 

Network 

Convergence 

Speed 

20 0.3 0.1 0.15 

40 0.5 0.15 0.25 

60 0.7 0.2 0.35 

80 0.8 0.25 0.45 

100 0.9 0.3 0.55 

Table IV demonstrates the comparison of the convergence 
speed (i.e., the training accuracy or loss decline speed) of the 
three prediction methods (meta-learning, linear regression, and 
BP neural network) at different numbers of iterations (20, 40, 
60, 80, and 100). From the data, it can be seen that the meta-
learning method shows a clear lead in each iteration stage: at 20 
iterations, the convergence speed has reached 0.3, while linear 
regression and BP neural networks are only 0.1 and 0.15; at 100 
iterations, the meta-learning speed rises to 0.9, much higher 
than the BP's 0.55 and the linear regression's 0.3. This suggests 
that meta-learning has a much faster initial fitting ability and 
overall convergence efficiency, and is able to achieve a much 
higher training accuracy or loss decline speed at different 
numbers (20, 40, 60, 80, and 100). This can build an effective 
prediction model in a very short training cycle, saving training 
time and improving engineering efficiency. The reason is that 
the meta-learning method constructs a good “model 
initialization” by extracting the shared patterns and parameters 
among multiple tasks, thus speeding up the adaptation to new 
tasks. 

In terms of the smoothness and cost of the convergence 
process, meta-learning not only improves the performance 
rapidly at the early stage of training, but also has a smooth and 
persistent convergence curve with almost linear growth trend, 
showing good controllability and stability. This is especially 
critical for engineering applications, especially in environments 
with restricted data or limited training resources, where fast 
convergence can significantly reduce computational costs. 
While linear regression converges slowly and is susceptible to 
data distribution interference, its convergence value is always 
low, indicating its natural limitation in complex feature 
modeling; BP neural network, although it has some nonlinear 
fitting ability, improves slowly in the initial stage (only from 
0.15 to 0.55), has higher training cost, and is sensitive to the 
hyper-parameters and the number of samples, with the risk of 
training instability. 

VI. CONCLUSION 

This study focuses on the fatigue life prediction problem of 
asphalt mixture, innovatively introduces the meta-learning 
method, and proposes the fatigue life prediction method of 
asphalt mixture based on meta-learning algorithm. The method 
analyzes the fatigue mechanism of asphalt mixtures, extracts 
the influencing factors affecting fatigue, analyzes the fatigue 
life prediction problem of asphalt mixtures, and combines the 
meta-learning algorithm to construct the fatigue life prediction 
model of asphalt mixtures. Through systematic experimental 

simulation analysis, the significant advantages of the meta-
learning method in terms of prediction accuracy, error control, 
convergence speed and generalization ability are verified. The 
study shows that the meta-learning method can effectively 
utilize the multi-task learning mechanism, quickly adapt to 
different working conditions, and provide an efficient and 
accurate solution for the fatigue life prediction of asphalt 
mixtures. Future research will focus on further optimizing the 
meta-learning model architecture and expanding its practicality 
and application scenarios, with a view of playing a greater role 
in practical engineering. 
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