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Abstract—Grading Harumanis mangoes is traditionally done 

through manual visual inspection, which is subjective, 

inconsistent, and labor-intensive. Industry practices report only 

70–80% consistency among human graders, with accuracy further 

declining under fatigue or high volumes. These limitations hinder 

uniform quality assurance, especially for export markets. To 

address this, an image-based, non-destructive grading system was 

developed, focusing on external features such as surface defect 

severity, ripeness index, shape uniformity, and size. A dataset of 

1,018 mango samples was collected and analyzed using a machine 

vision system. Features were extracted through image 

segmentation and color–shape analysis, then classified using a 

Fuzzy Inference System (FIS) and Machine Learning (ML) models 

including SVM, MLPNN, and ANFIS. Enhanced SVM variants 

were also implemented to assess performance gains. Results 

showed strong performance across all parameters: ripeness index 

accuracy reached 93.5%, shape uniformity 91.6%, and size 

classification over 96%. The enhanced SVM+ achieved the best 

overall accuracy at 95.1% with the lowest error rates. The 

proposed system demonstrated clear improvements over manual 

grading and effectively classified mangoes into PREMIUM, 

GRADE 1, GRADE 2, and REJECT categories, supporting its 

potential for reliable real-world deployment. 

Keywords—Machine learning; image processing; quality 
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I. INTRODUCTION 

Mango is a widely cultivated tropical fruit that is highly 
valued for its unique flavor, aroma, and nutritional benefits. 
Among the various cultivars, the Harumanis mango is 
particularly renowned for its exceptional quality and popularity 
in Malaysia [1]. Harumanis mangoes are in high demand for 
both export and local consumption, and must therefore meet 
predetermined quality standards. Failure to meet these standards 
can result in substantial economic losses and reduced returns for 
vendors. Consequently, it is necessary to sort mangoes based on 
key grading parameters, including size, shape, maturity, defects, 
firmness, and nutritional content. The post-harvest grading 
process classifies mangoes into predefined quality categories, 
where effective grading enhances vendor and farmer confidence 

while expanding export opportunities. However, the traditional 
manual grading process is frequently subjective, laborious, and 
inconsistent, with reported grader consistency as low as 70–80% 
[2-3]. 

To overcome these challenges, researchers have increasingly 
explored advanced computer vision and ML techniques for 
automated mango quality assessment [4-6].[22]. While these 
studies demonstrated promising results, most were limited to 
individual features (e.g., color or size) or lacked extensive 
validation, reducing their robustness for real-world deployment. 

Building on this foundation, the present study makes three 
key contributions. First, it proposes a multi-feature image-based 
grading framework for Harumanis mangoes that integrates 
surface defect severity, ripeness index, shape uniformity, and 
size—parameters rarely evaluated together in previous works. 
Second, the study evaluates multiple classification models, 
including FIS, SVM, MLPNN, and ANFIS, with enhanced 
SVM variants achieving an accuracy of 95.1%, outperforming 
earlier studies that typically reported accuracies below 90%. 
Third, to ensure robustness and reduce risks of overfitting, the 
study employs a k-fold cross-validation strategy with 
independent testing, while also acknowledging limitations such 
as lighting variability, dataset imbalance, and cultivar 
generalizability. 

By addressing both methodological gaps and performance 
limitations in existing approaches, this study provides a more 
reliable, scalable, and high-accuracy grading system that offers 
clear improvements over traditional manual inspection and prior 
automated methods. 

II. RELATED WORKS 

Recent studies span defect synthesis, ripeness, shape, and 
size assessment. For surface defects, image-to-image translation 
with conditional GANs can augment rare defect cases [7], but 
synthetic artifacts risk domain shift and inflated accuracy if not 
validated on truly independent, real-world images. CNN-based 
defect classifiers [8-9] often report high accuracy on single-
cultivar, lab-lighting datasets, with limited discussion of class 
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imbalance, inter-rater agreement for labels, or external test sites 
[21]. Classical pipelines using color/texture + SVM/kNN [10]. 
The study in [13] are interpretable but may be sensitive to 
illumination and background variability; they also evaluate a 
narrow set of varieties and typically do not integrate multiple 
attributes into a single grading decision. 

For ripeness, hyperspectral + deep models [8] achieve fine 
spectral discrimination, yet sensor cost, throughput, and 
calibration burden constrain deployment; generalization across 
orchards and seasons is seldom shown. RGB image approaches 
[11-12] are cheaper but frequently rely on controlled setups and 
lack cross-cultivar validation. Shape-based grading [14-15] 
demonstrates that geometry helps detect deformities and even 
distinguish varieties. However, many methods assume clean 
silhouettes; occlusions, stem/calyx variability, and pose changes 
can degrade performance. Fourier descriptors [16] are 
transformation-invariant but may miss localized defects and can 
be sensitive to imperfect segmentation. 

Size estimation [17-19] via dimension/mass prediction is 
useful, yet several works depend on explicit calibration objects, 
single-view assumptions, or manual placement, limiting 
throughput and robustness on conveyors. Across these threads, 
common gaps persist: (i) single-attribute focus rather than multi-
attribute fusion aligned to market grades; (ii) limited head-to-
head baselines vs human graders (e.g., inter-grader consistency); 
(iii) under-specified validation (few use stratified k-fold plus an 
independent test set); (iv) sparse reporting of deployment factors 
(speed, cost, lighting variation). 

Positioning of this study. To address these gaps, this work 
integrates defect severity, ripeness index, shape uniformity, and 
size into a unified, non-destructive grading pipeline tailored for 
Harumanis mangoes [20]. The system is benchmarked against 
human grading consistency and validated through k-fold cross-
validation with an independent test split, reducing overfitting 
risk and strengthening evidence of real-world applicability. 

III. MATERIALS AND METHODS 

A. A Structure of Quality Grading System 

This study was conducted in multiple orchards across Perlis, 
where the grading system hardware, shown in Fig. 1, was 
deployed. To acquire image data and evaluate the geometric 
parameters of mangoes, the system integrates both image 
capture and analytical models. The sorting setup consists of two 
main components. The first is the image processing module, 
which applies conventional algorithms to transform 
unstructured image data into structured descriptors and extract 
external features such as size, color index, shape similarity, and 
surface defects. Although external features can also be obtained 
using ML or deep learning methods [23-25], this study employs 
image processing because of its efficiency, lower computational 
cost, and ability to operate without extensive training datasets. 
Moreover, it offers greater flexibility in parameter adjustment 
compared to ML and deep learning approaches. 

The second component combines the extracted features into 
a comprehensive dataset, which is subsequently used to train 
ML models. These models classify Harumanis mangoes into 
four quality categories: PREMIUM, GRADE 1, GRADE 2, and 
REJECT. 

B. Data Preparation for Grading Process 

In this study, 1018 samples of mango fruits were used. These 
mangoes of the Harumanis cultivar were provided by Federal 
Agricultural Marketing Authority (FAMA) and randomly 
collected from different commercial orchards located in Perlis. 
All the fruits without any damage and major defects were 
selected and classified manually into four ripeness levels by the 
farmer based on their visual assessment. The farmer manually 
classified the mangoes into four ripening levels based on peel 
color. All the data were recorded and classified under the 
ripeness levels of M1, M2, M3, and M4, respectively. Then, the 
sample was transported to the lab and inspected by expert 
workers from FAMA for quality validation. 

All the samples were manually measured with respect to 
their length and width using a mechanical vernier caliper with 
an accuracy of 0.1mm. After the data on the geometry dimension 
was collected, all the samples were weighted using a digital 
scale with an accuracy of 0.1g to measure the mangoes. To 
predict the quality of Harumanis mangoes, a data set was made 
to classify the ripening level, surface defect, shape uniformity, 
and size that were obtained from selected mangoes. 
Simultaneously, the classification of quality and grading of the 
same samples are done by the proposed system using image 
processing method. This system was configured as shown in 
Fig. 1. 

 
Fig. 1. System configuration for data collection. 

The digital camera used for color image acquisition is the 
Basler acA1600-60gc GigE, with the e2v EV76C570 CMOS 
sensor that captures images of 1600x1200-pixel resolution. This 
camera is mounted 400mm on top of the chamber, and the 
illumination system provides two 10-watt LEDs. A generalized 
block diagram of the proposed research methodology for quality 
assessment of Harumanis is shown in Fig. 2. 

C. Image Processing 

In this work, the research methodology is structured as a 
sequential pipeline for the quality assessment of Harumanis 
mangoes, where each stage improves its respective task and 
provides input to the next. The generalized methodology (Fig. 3) 
consists of four main parts: 1) image acquisition, 2) image 
preprocessing and segmentation, 3) feature extraction, and 
4) classification. 
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Fig. 2. Block diagram of the image processing technique for quality 

assessment. 

 
Fig. 3. Block diagram image processing technique. 

In the first stage, mango images were captured using a 
controlled imaging setup with uniform illumination, neutral 
background, and fixed camera distance to minimize variation. 
Preprocessing included noise reduction using a Gaussian filter, 
contrast enhancement with histogram equalization, and 
background removal through thresholding to isolate the fruit. 
Segmentation was performed using a combination of color-
based thresholding and morphological operations to accurately 
delineate the mango boundary, as illustrated in Fig. 4. 

 

Fig. 4. Image segmentation process. 

The second stage, feature extraction, involved computing 
color features (RGB, HSV, and statistical color moments) and 
shape descriptors (area, perimeter, eccentricity, Fourier 
descriptors) from the segmented region. These features were 
sampled across 1,018 mango images to ensure 
representativeness of different ripeness stages, sizes, and surface 
conditions. 

Finally, in the classification stage, the extracted features 
were fed into a Fuzzy Inference System (FIS) to grade ripeness, 
shape uniformity, and defect severity, while size grading was 

conducted by categorizing fruit dimensions into four predefined 
classes. The configuration of membership functions and rule 
bases in FIS was optimized through iterative tuning and cross-
validation to achieve robust performance. 

D. Extracting Mango External Features 

The feature extraction stage represents the most critical 
component of computer vision–based grading, wherein salient 
numerical descriptors are systematically derived from mango 
images and extraneous information is eliminated to ensure 
analytical relevance. In this study, two categories of features 
were selected—color and shape—because they directly reflect 
the criteria used in commercial grading of Harumanis mangoes 
as shown in Fig. 5. Color features were used to capture two 
important quality aspects: the ripeness index and external 
defects. Ripeness was quantified by analyzing pixel intensity 
distributions in RGB and HSV spaces, since skin color 
transitions from green to yellow or orange are strongly 
correlated with physiological maturity. 

External defects such as bruises, dark spots, and blemishes 
were detected as localized deviations in color patterns, providing 
an objective means of assessing defect severity, which is critical 
for maintaining export quality standards [18], [26]. Shape 
features, on the other hand, were extracted to evaluate both 
shape uniformity and fruit size. Geometric descriptors such as 
aspect ratio, eccentricity, and contour smoothness were applied 
to determine how well the fruit conforms to the typical 
elongated-oval profile of Harumanis mangoes, as misshapen 
fruits are usually downgraded in grading practice. 

Size was estimated using dimensional attributes including 
length, width, and projected area, since fruit size is one of the 
main determinants of market grade categories such as 
PREMIUM, GRADE 1, GRADE 2, and REJECT. By 
integrating these color- and shape-based features, the system 
provides a robust representation of the visual attributes most 
relevant to consumer acceptance and commercial value. 

 
Fig. 5. Block diagram of object detection. 

E. Determination of Quality Parameters 

1) Surface defects: The evaluation of the Surface Defect 

Severity Index (SDSI) for fruit entails measuring and 

quantifying the skin imperfections on fruits. This is a common 

procedure in the fruit business to assess the quality and 

marketability of fruits. A numerical scoring system or grading 

scale is established to assess the severity of problems. This 

scale ranges from 0 to 5, where 0 indicates no problems, 1 

signifies very minor superficial faults, 2 denotes slight 

superficial defects, 3 represents moderate defects, 4 indicates 

severe defects, and 5 reflects extremely severe defects, as seen 

in Table I. To evaluate this score scale, the binary picture is 

analyzed to determine the quantity of lesions, the cumulative 

size of the lesions, and the overall area of the mango. The total 

area of the mango and the area of the defective areas are utilized 
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to compute the percentage of defect, referred to as PoD. The 

PoD is often computed using the following equation: 

PoD =  
total area of defected portions

area of the entire mango
∗ 100          (1) 

Finally, the value of 𝑃𝑜𝐷 is used as the input to the FIS to 
compute the membership functions for the prediction of the 
Surface Defect Severity Index (SDSI). The measurement of 
SDSI is based on three methods: 𝑃𝑜𝐷𝑝𝑐, which counts pixels to 

measure area; 𝑃𝑜𝐷𝑔𝑡 , which uses mathematical analysis to 

understand spatial relationships; and 𝑃𝑜𝐷𝑐𝑙, which divides the 
area into grid cells for systematic assessment. Additionally, the 
hybridization method (𝑃𝑜𝐷ℎ𝑦) integrates these approaches to 

enhance overall accuracy. Together, these methods provide a 
comprehensive and reliable framework for classifying SDSI. 

TABLE I.  CLASSIFICATION OF SDSI 

Quality Class 

Scori

ng 

Scale 

% of Defect 

(PoD) 
Inference 

Commer

cial 

standard 

PREMIU

M 
1≤ 0 - 5 

Free or very slight 

superficial defects 

1 2 5-Oct 
Slight superficial 

defects 

2 3 Oct-15 Moderate defect 

Reject 
3 4 15 - 40 Severe defect 

4 5 >40 Very severe defect 

2) Ripeness index: A fuzzy classifier is used to create the 

classification system for the ripeness level of the Harumanis 

mango. The fuzzy logic system has three inputs with a 

membership function for each input. These three inputs are 

represented by color measurement of U, Cr and a* channels 

that were extracted from the color space of YUV, YCrCb and 

L*a*b, respectively. The determination of the ripeness index is 

based on the closeness of the values between the ripeness 

classes in terms of parameters and consumer preferences. Table 

II presents the mean pixel values for the Cr, U and a* color 

channels, which severe as indicators of the ripeness level in 

Harumanis mangoes. There are 18 rules to be the basis for the 

input pattern, and the number for the output is four: unripe, 

underripe, ripe, and overripe. On the other hand, color channels 

with distinct points of range were employed with triangular 

membership functions. When values for the color channel are 

too close together, triangle membership functions have a 

tendency to overlap. 

Concurrently, the output value is being defuzzified using the 
centroid approach. The set of rules that form the basis of the 
input pattern that produces an output was displayed by the rule 
viewer. The membership function combination utilizing the OR 
operation and the associated output are represented as the rule’s 
viewer. It is composed of four membership functions: unripe, 
underripe, ripe, and overripe. Since a part of the unripe and 
overripe membership functions have instantly distinguishable 
color characteristics, they were trapezoidal in shape. Both the 
ripe and underripe classifications often have similar values and 
sometimes even the same color. They were represented by a 
triangular membership function. 

At each level of classification, two types of data are 
separated into a testing set and a training set in order to validate 
the model. The value of training data will be a benchmark whose 
value is used as a differentiator for each class. To determine 
whether or not the system is operating correctly, test samples are 
created using the test data from the defuzzification process. Each 
of the training and test sets of data has 250 of the Harumanis 
mangos. 

TABLE II.  HARUMANIS RIPENESS INDEX ESTABLISHED VISUALLY BY THE 

COLOUR CHANNEL 

Ripeness 

Index 

Color Channel (Pixel) Scoring 

Scale Cr U a* 

M1 ≤120 ≤116 ≤125 1 

M2 >120 - 125 >116 - 120 >125 - 130 2 

M3 >125 - 130 >120 - 124 >130 - 135 3 

M4 >130 >124 >35 4 

3) Shape uniformity: The Shape Uniformity Index (SUI) is 

classified as abnormal if it measures less than 80%, which may 

be caused by a misshapen, another clone, or grafting with 

another variety of mangoes. The shape uniformity is based on 

calculating the degree of uniformity of the sets between the 

Euclidean distance of the boundaries, and the differences in the 

parameters of the vertices of areal spatial objects. Fourier 

descriptors are features that can represent boundary shape of an 

object. They are scale, translation and rotation invariant. 

Contour detection was applied to the binary image to identify 

the largest contour (the mango), and the centroid was obtained 

from contour image moments. Distance of centroid from 

contour boundary points were computed and discrete Fourier 

Transform was calculated. Six standard samples selected by 

expert are used for comparison. These samples are labeled as 

T1-T6, with masses ranging from 240 g to 580 g. The Euclidean 

distance 𝑑𝐸 between two vectors is defined using Eq. (2). 

𝑑𝐸(𝐺1,𝐺2)   = ∑ √(|𝐺1(𝑚)| − |𝐺2(𝑚)|)2𝑚=𝑀𝑝

𝑚=1          (2) 

where, 𝑀𝑝 denotes the number of Fourier Descriptors pairs 

used for matching. 𝐺1 and 𝐺2 is Fourier shape descriptors, and 
m is the pixels numbered from 0 to m – 1 at regularly spaced 
position. Then, the Euclidean distance, 𝑑𝐸  from Eq. (2) is 
applied to measure the uniformity index of shape. The 
percentage of uniformity in shape 𝑆 can be calculated as in the 
equation below. 

𝑆 = (1 − 𝑑𝐸) ∗ 100                          (3) 

In some cases, the shape of the mango does not look like the 
original even though it is actually from a Harumanis clone due 
to the grafting effect. According to Jabatan Pertanian Perlis, they 
still consider as Well-shaped (WS), although it does not follow 
the standard shape. Therefore, the half-shape measurement of 
the uniformity index needs to be performed. This process is 
repeated with new templates consisting only of half-cut 
Harumanis shapes for both the lower and upper parts. Then, 
from Eq. (3), the percentage of uniformity in shape for entire 
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mango, upper and lower half-cut are calculated and defined 𝑆𝐸𝑓, 

𝑆𝐸𝑢  and 𝑆𝐸𝑙, respectively. 

 To predict SSI, fuzzy classifier is used.  The values of these 
three parameters 𝑆𝐸𝑓 , 𝑆𝐸𝑢  and 𝑆𝐸𝑙  for are passed as input to 

fuzzy system and decision has been taken that the mango fruit is 
HS, WS (well-shaped), and AS (deformed). In designing fuzzy 
rules for the system, considerations and assumptions obtained 
from [FAMA] had been taken. The system comprises of eight 
rules obtained from three inputs and one output of membership 
functions. Table III shows summary of rules represents by 
linguistic variable used in system. 

TABLE III.  IF-THEN RULES FOR CONVERTING FUZZY INPUTS TO FUZZY 

OUTPUTS 

Input Variables (%) 
Scoring scale (SUI) 

𝑺𝑬𝒇  𝑺𝑬𝒖 𝑺𝑬𝒍  

>80 >50 >50 1 

>80 >50 <50 1 

>80 <50 >50 1 

>80 <50 <50 2 

<80 >50 >50 2 

<80 <50 >50 3 

<80 >50 <50 3 

<80 <50 <50 4 

4) Size: Optical size grading is a process used in various 

industries, including agriculture, manufacturing, and quality 

control, to sort or classify objects based on their size using 

optical technology [27], [17]. This method involves the use of 

cameras to capture images of the objects and analyse them into 

different size categories. Optical size grading is preferred over 

manual grading in many applications because it offers a fast and 

efficient way to automate the sorting process, improving 

productivity and reducing human error. To classify mango size, 

a fuzzy logic classifier is used. In order to create a modelling 

system, fuzzy logic allows for the use of size features for 

variables and imprecise relationships. Two parameters, 

including weight and area, are employed to determine size 

features. 

TABLE IV.  RANGE OF WEIGHT AND AREA PARAMETER FOR SIZE 

FEATURE 

Size Weight (g) Area (pixels) 
Scoring scale 

(SI) 

Small (S) <300 <78212 4 

Medium (M) >301-400 >78213 - 101102 3 

Large (L) >401-500 >101103 - 127363 2 

Extra Large 

(XL) 
>501 >127364 1 

The size feature is initially derived from the range of each 
individual parameter. These range values will serve as a 
reference and a range input for the fuzzy classification system. 
A total of 566 mangoes are used in determining the range value, 
weight, and area of each category, as shown in Table IV. The 

trapezoidal membership function of weight and area is then 
formed, assigning the proper range to the respective size feature. 

F. Machine Learning for Grading Mangoes 

The final stage focuses on classifying Harumanis mangoes 
into quality grades based on various features, following local 
standards. A dataset of 1018 samples was used to build and 
validate the classification models. Three supervised ML 
methods were applied: Multi-Layer Perceptron Neural 
Networks (MLPNN), Adaptive Neuro-Fuzzy Inference System 
(ANFIS), and Support Vector Machines (SVM). These methods 
were chosen for their individual strengths MLPNN handles 
complex non-linear patterns well [31], ANFIS integrates fuzzy 
logic for dealing with uncertainty and provides interpretable 
results [29], while SVM excels in high-dimensional data and 
resists overfitting with flexible kernel functions [30]. Each 
method classifies input features into one of several distinct 
quality classes. Since all dataset parameters are on similar 
scales, normalization may not be necessary [28]. 

IV. RESULTS AND DISCUSSION 

The study was conducted using a dataset comprising 1,018 
Harumanis mango samples. These samples were provided by the 
Federal Agricultural Marketing Authority and randomly 
collected from various commercial orchards in Perlis. All fruits 
selected were free from damage and major defects, and were 
manually classified into four ripeness indexes by the farmer 
based on visual assessment. The data was recorded and 
classified under the ripeness levels of M1, M2, M3, and M4. The 
results obtained for surface defect estimation, ripeness index, 
size, shape uniformity index classification, and final grading are 
discussed in the following sections. 

A. Surface Defect Prediction 

Fig. 6 shows the comparison of the SDSI index for the actual 
values (expert-provided) and the predictor methods (𝑃𝑜𝐷𝑝𝑐, 

𝑃𝑜𝐷𝑔𝑡 , 𝑃𝑜𝐷𝑐𝑙 , and 𝑃𝑜𝐷ℎ𝑦) is indicative of distinctions that 

occur in predictive accuracy across different SDSI categories.  
In this case SDSI 1, the actual value is around 500, and slightly 
overestimates 𝑃𝑜𝐷𝑝𝑐 , as for 𝑃𝑜𝐷𝑔𝑡 and 𝑃𝑜𝐷𝑐𝑙  they provide 

quite equal estimates. 𝑃𝑜𝐷ℎ𝑦 gives pretty much underestimates 

value. SDSI 2 reveals a true value much lower (~180) with 
𝑃𝑜𝐷𝑝𝑐 and 𝑃𝑜𝐷𝑔𝑡 being somehow lower than the real value, 

whereas 𝑃𝑜𝐷𝑐𝑙 significantly overestimates it, followed by 

𝑃𝑜𝐷ℎ𝑦 and which is also above the actual value. 

 
Fig. 6. Comparison of classifying the SDSI. 
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The actual value and the different predictor methods show 
SDSI 3, where most methods present lower sums than the actual 
value (~300), 𝑃𝑜𝐷𝑝𝑐 and 𝑃𝑜𝐷𝑔𝑡being the farthest off. 𝑃𝑜𝐷ℎ𝑦 

gets the nearest value to the actual one that is why it is the most 
accurate predictor in this category. In the last group named SDSI 
4, there is a partial match for 𝑃𝑜𝐷𝑔𝑡 as the actual value is heavily 

overestimated by it. For 𝑃𝑜𝐷𝑝𝑐 the actual value is overestimated 

as well. 𝑃𝑜𝐷𝑐𝑙 has underestimated the value massively. 
𝑃𝑜𝐷ℎ𝑦 is slightly overestimated but is closer than the others.  In 

general, 𝑃𝑜𝐷ℎ𝑦  is found to be a very well-balanced approach 

that delivers predictions falling inside the correct range of values 
for various SDSI types. 𝑃𝑜𝐷𝑝𝑐 and 𝑃𝑜𝐷𝑔𝑡 mainly vary between 

the two extremes of under- and overestimation regarding the 
level of SDSI. 𝑃𝑜𝐷𝑐𝑙 is not in a steady situation, in SDSI 2 and 
SDSI 4 especially, it is able to either drastically underestimate 
or overestimate the issue. 

B. Ripeness Index Prediction 

From the confusion matrix in Table V, it shows that overall, 
the ripeness level M1-M4 achieved accuracies above than 90%. 
M4 groups has only three misclassification and thus attained 
95.8% of accuracy. Subsequently, M3, M2 and M1 achieved 
accuracies with 91.7%, 92.2% and 94.4% accordingly. Seven 
samples from M3 were misclassified into M4 and M2, 
respectively. On top of that, 71 out of 77 samples from M2 are 
correctly classified to their group whilst two sample is 
misclassified into M3 and four samples in M1. Meanwhile, 51 
out 54 image samples from M1 were correctly classified to their 
group whilst three sample was falsely classified to M2. 

TABLE V.  CONFUSION MATRIX FOR DETERMINING THE ACCURACY OF 

FUZZY 

Actual 

Ripeness Level 

based on Brix 

No. of 

Sample 

Predicted Ripeness Level Accuracy 

(%) M1 M2 M3 M4 

M1 54 51 3 0 0 94.4 

M2 77 4 71 2 0 92.2 

M3 84 0 3 77 4 91.7 

M4 72 0 0 3 69 95.8 

TOTAL 287   Average 93.5 

C. Shape Uniformity Index (SUI) Prediction 

The experiment was conducted to evaluate the effectiveness 
of a proposed method in distinguishing the standard shape of 
Harumanis mangoes from other categories, specifically well-
shaped, and abnormal shape. Each category comprised 1018 
samples of mangoes that varied in size. Initially, these samples 
underwent visual inspection by FAMA staff to assess their shape 
characteristics, aligning with the conditions for the SUI. The 
confusion matrix in Table VI showcases a discriminant model 
utilizing a fuzzy algorithm to predict the quality of Harumanis 
mangoes based on the SUI, achieving an impressive overall 
average accuracy of 91.6%. 

The model effectively classifies samples across four quality 
categories: Class 1 (232 samples) with 92.7% accuracy, Class 2 
(622 samples) at 87.9%, Class 3 (131 samples) with 88.5%, and 
Class 4 (368 samples) attaining the highest accuracy of 97.1%. 
Despite the model's robustness, slight misclassifications 

between adjacent quality classes indicate potential for 
improvement in accurately handling borderline cases. Overall, 
the results affirm the model's effectiveness in enhancing quality 
control processes for Harumanis mangoes. 

TABLE VI.  CONFUSION MATRIX OF DISCRIMINANT MODEL FOR 

PREDICTING THE QUALITY OF HARUMANIS BASED ON SUI 

Subjective 

classification 

No. of 

Sample 

Fuzzy algorithm output Accuracy (%) 

1 2 3 4  

1 250 232 18 0 0 92.8 

2 708 56 622 30 0 87.9 

3 148 0 10 131 7 88.5 

4 379 0 0 11 368 97.1 

Average      91.6 

D. Size Estimation 

The estimated mass, 𝑀𝐸𝑠𝑡, was further used in classifying 
Harumanis mangoes into four categories of size classes. 
Classification results from 1018 Harumanis mangoes samples 
show the effectiveness of the proposed size prediction using 
fuzzy logic in categorizing mangoes into four size classes: Small 
(S), Medium (M), Large (L), and Extra-Large (XL) as shown 
confusion matrix in Table VII. The confusion matrix reveals that 
the Harumanis mangoes size prediction model performs well, 
with most predictions being correct, especially for the XL 
category. The diagonal elements, which show correct 
predictions, are dominant, indicating high accuracy. However, 
some misclassifications occur, particularly between Medium 
(M) and Large (L) sizes, where Medium (M) mangoes are 
sometimes mistaken for Large (L) ones (0.99%). There are also 
a few cases where Large (L) mangoes are predicted as Extra-
Large (XL) with 2.01%. Although there are some 
misclassifications, the overall accuracy is still strong. These 
errors are relatively small compared to the correct predictions, 
but they suggest that the model could benefit from further 
refinement, especially in distinguishing between Medium (M) 
and Large (L) sizes. 

TABLE VII.  CONFUSION MATRIX FOR SIZE PREDICTION 

Actual Size Estimated Size Accuracy 

(%) Category Total S M L XL 

S 196 191 5 0 0 97.5 

M 505 8 492 5 0 97.4 

L 547 0 10 526 11 96.3 

XL 210 0 0 3 207 98.6 

TABLE VIII.  CLASSIFICATION RESULTS OF COMPLETE SAMPLES INTO SIZE 

Actual Size 
Prediction Performance (%) 

Precision Recall F1-Score 

S 97.76 97.32 97.54 

M 96.3 97.41 96.85 

L 97.2 96.19 96.7 

XL 98.93 98.23 98.39 

Table VIII shows the analysis of the mango size prediction 
model demonstrates strong performance across all size 
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categories. The model exhibits high Precision, with Extra-Large 
(XL) mangoes having the highest value at 98.6%, indicating that 
when the model predicts Extra-Large (XL), it is almost always 
correct. Small (S) and Large (L) categories also show very high 
Precision scores of 97.76% and 97.20%, respectively, while 
Medium (M) has a slightly lower Precision at 96.30%. 

In terms of Recall, which measures how well the model 
identifies all instances of each size, XL mangoes again perform 
the best with a Recall of 98.23%, ensuring that few XL mangoes 
are missed. The Small (S) category follows closely with a Recall 
of 97.42%. However, Large (L) has a slightly lower Recall of 
96.19%, likely due to some misclassifications with Medium (M) 
mangoes. The F1-Score, which balances both Precision and 
Recall, also shows that the model performs well overall, with 
Extra-Large (XL) leading at 98.93%, followed by Small (S) at 

97.54%. While Medium (M) and Large (L) have slightly lower 
F1-Scores of 96.85% and 96.70%, respectively, they still reflect 
strong performance. 

E. Quality Classification 

Table IX summarizes the evaluation of multiple 
classification models. The performance of seven different 
models, including ANFIS, MLPNN, SVM, SVM+ 𝑃𝑜𝐷𝑝𝑐 , 

SVM+𝑃𝑜𝐷𝑔𝑡, SVM+𝑃𝑜𝐷𝑐𝑙, and SVM+𝑃𝑜𝐷ℎ𝑦, was analyzed 

based on various evaluation metrics such as Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), Accuracy, Precision, Recall, and F1-Score. The 
results indicate significant differences in how well each model 
handles classification tasks. 

TABLE IX.  PERFORMANCE COMPARISON ACROSS PREDICTORS 

Predictor MAE MSE RMSE Accuracy (%) Precision Recall F1-Score 

ANFIS 120.3 150.5 12.3 81.6 0.78 0.81 0.79 

MLPNN 90.2 110.4 10.5 86.8 0.83 0.86 0.84 

SVM 85.5 102.2 10.1 87.5 0.85 0.88 0.86 

SVM+𝑃𝑜𝐷𝑝𝑐  98.6 115.3 10.7 83 0.81 0.83 0.82 

SVM+𝑃𝑜𝐷𝑔𝑡  95.2 113.7 10.6 83.6 0.82 0.85 0.83 

SVM+𝑃𝑜𝐷𝑐𝑙  180.4 210.6 14.5 65.5 0.65 0.67 0.66 

SVM+𝑃𝑜𝐷ℎ𝑦  70.3 95.2 9.8 95.1 0.91 0.94 0.92 
 

Among the base models, SVM demonstrated the highest 
accuracy (87.5%), outperforming both MLPNN (86.8%) and 
ANFIS (81.6%). SVM also had the lowest error rates, with an 
MAE of 85.5 and RMSE of 10.1, meaning it made fewer 
misclassifications compared to the other standalone models. 
While MLPNN performed better than ANFIS, it still had a 
slightly higher error rate than SVM, making SVM the best base 
model overall. 

When additional enhancements were applied, SVM+𝑃𝑜𝐷ℎ𝑦 

emerged as the best model overall, achieving the highest 
accuracy of 95.1% and the lowest MAE (70.3) and RMSE (9.8), 
indicating that it had the fewest misclassifications and highest 
precision. Furthermore, its recall of 0.94 and F1-score of 0.92 

confirm that SVM+ 𝑃𝑜𝐷ℎ𝑦  had the best balance between 

correctly identifying positives while minimizing false positives 
and false negatives. 

This makes SVM+𝑃𝑜𝐷ℎ𝑦 the most reliable predictor among 

all models tested. On the other hand, SVM+𝑃𝑜𝐷𝑐𝑙 performed 
the worst, with an accuracy of only 65.5% and a significantly 
higher error rate (MAE of 180.4 and RMSE of 14.5). This 
indicates that adding the clustering-based 𝑃𝑜𝐷𝑐𝑙method to SVM 
led to higher misclassifications, making it the least effective 
enhancement. 

The models SVM+ 𝑃𝑜𝐷𝑝𝑐  (83.0%) and SVM+ 𝑃𝑜𝐷𝑔𝑡 

(83.6%) showed moderate improvements but did not surpass the 
accuracy of SVM alone (87.5%), meaning that these 
modifications did not significantly improve performance. Their 
error rates were slightly lower than ANFIS but remained higher 
than standard SVM, suggesting that 𝑃𝑜𝐷𝑝𝑐 and 𝑃𝑜𝐷𝑔𝑡 did not 

contribute substantially to classification accuracy. 

Overall, SVM+ 𝑃𝑜𝐷ℎ𝑦 was the most successful model, 

achieving the highest accuracy, lowest error rates, and best 
balance between precision and recall. In contrast, SVM+𝑃𝑜𝐷𝑐𝑙 
was the weakest model, suffering from high misclassification 
rates and poor overall performance. The findings suggest that 
SVM alone is a strong predictor, but hybrid methods like 𝑃𝑜𝐷ℎ𝑦 

significantly enhance its capabilities, while others, such as 
𝑃𝑜𝐷𝑐𝑙, may introduce inefficiencies. 

V. CONCLUSION 

This study demonstrates a robust image-based framework 
for non-destructive quality assessment of Harumanis mangoes 
by integrating surface defect severity, ripeness index, shape 
uniformity, and size into a unified grading system. Using fuzzy 
inference and ML models, with SVM+ achieving the highest 
accuracy of 95.1%, the system clearly outperformed traditional 
manual grading. While the approach shows strong potential, 
limitations include reliance on a single cultivar and controlled 
imaging conditions, which may restrict generalizability. Future 
work will extend validation to multiple cultivars under real-
world conditions, explore deep learning for richer feature 
extraction, and investigate real-time deployment to support 
scalable adoption in post-harvest supply chains. 
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