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Abstract—Face recognition systems have become prevalent in 

mobile devices and security applications, increasing the demand 

for robust face presentation attack detection. Early efforts based 

on handcrafted features struggled to cope with variations in 

illumination, pose, and attack modalities, prompting a transition 

toward deep learning solutions capable of extracting subtle 

discriminative cues. A novel architecture built upon an 

EfficientNet-V2 backbone, combined with a Shuffle Attention 

module and Fourier heads, was developed to capture both spatial 

and frequency domain characteristics. A dual-path approach 

processes each input face image through conventional 

convolutional blocks and a 2D Discrete Fourier Transform path, 

with dedicated Fourier heads reconstructing frequency maps that 

reveal minute discrepancies between genuine and spoofed 

presentations. Experimental evaluation on the Oulu-NPU dataset 

demonstrates strong performance across four protocols, including 

robust detection under varying environmental conditions, low 

error rates with novel attack types, and consistent results across 

different sensor inputs. Metrics such as APCER, BPCER, and 

ACER validate the method’s ability to distinguish between live 

and fake faces reliably. The outcomes suggest that combining 

spatial and frequency cues addresses limitations observed in 

earlier approaches, offering valuable insights for deployment in 

security-sensitive applications and setting a strong foundation for 

future research in face anti-spoofing. 
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I. INTRODUCTION 

Face recognition systems have grown in popularity in 
various applications such as mobile devices and security 
systems. Early research in face liveness detection relied on 
handcrafted features such as local binary patterns and 
histograms of oriented gradients to capture subtle texture and 
motion cues [1-2], using simple image analysis and rule-based 
methods to separate real faces from spoof attempts. However, 
they often struggled with changes in illumination and pose and 
could not adapt well to different attack scenarios [3-4]. 

The field later shifted to the use of deep learning methods. 
Convolutional Neural Networks brought a new way to extract 
features from face images and proved better at detecting minute 
differences between live faces and fakes [5-7]. Recent studies 
have also focused on integrating attention mechanisms and 
frequency domain analysis into CNNs to improve face anti-
spoofing [8-9], showing improvements in accuracy and 
robustness compared to traditional approaches. 

In this work, EfficientNet-V2-S was used as the backbone 
network. EfficientNet-V2-S is known for its speed and accuracy 
in image processing tasks [10]. The network works by 
processing an input face image through several convolutional 
blocks that extract features at different scales. Shuffle Attention 
[11] introduces a novel mechanism for processing deep 
convolutional features by partitioning input channels and 
applying concurrent spatial operations. Grouping feature maps 
allows parallel extraction of spatial and channel information, 
followed by a channel shuffle that redistributes features 
effectively. Extensive experiments on standard networks such as 
ResNet-50 indicate significant performance improvements in 
classification and detection tasks while maintaining low 
computational overhead. Researchers have integrated the 
module into multiple vision tasks, yielding promising accuracy 
and efficiency results. Recent empirical evaluations validate the 
approach as a valuable alternative to traditional attention 
methods in diverse computer vision applications. Further studies 
corroborate findings. 

Alongside the backbone and attention module, Fourier heads 
are added to the architecture. They reconstruct Fourier maps 
from the features extracted by the backbone. The Fourier maps 
capture frequency domain information that often holds clues to 
subtle differences between live faces and spoof attempts [12-
14]. The Fourier heads use a series of deconvolution and dilated 
convolution layers to build these maps. By including frequency 
information, the network can detect differences that may not be 
clear in the spatial domain alone. 

The network is built in steps that allow it to process the 
image, compute attention weights, and reconstruct Fourier 
maps. The outputs from the different stages are then combined 
to produce a final prediction. Such a design aims to capture both 
spatial and frequency cues that are important for distinguishing 
genuine faces from presentation attacks. Each component of the 
network plays a role in addressing the weaknesses of earlier 
methods and in improving the overall detection accuracy. 

Face anti-spoofing remains a subject of great interest due to 
the increasing use of face recognition in security-sensitive 
applications. As presentation attacks grow more complex, 
researchers must continue to search for better ways to detect 
both obvious and subtle forms of spoofing. The need for robust 
and efficient systems is clear given the evolving methods of 
attack and the widespread use of biometric systems. Current 
study adds to this growing body of work by combining modern 
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network architectures, attention mechanisms, and Fourier 
domain analysis to address these challenges. Ongoing research 
in this area is essential to keep up with the rapid progress in 
attack techniques and to ensure the safety and reliability of face 
recognition systems [15]. 

II. RELATED WORKS 

Face anti-spoofing has attracted significant research interest 
owing to the security implications of deploying face recognition 
systems. Over time, methods evolved from reliance on 
handcrafted features like local binary patterns and histograms of 
oriented gradients to modern deep learning frameworks capable 
of automatically extracting discriminative representations. Early 
techniques concentrated on identifying subtle texture and 
motion cues to differentiate between live and spoof 
presentations, though challenges with varying illumination and 
pose limited their practical applications. 

A. Face Anti-Spoofing: Definitions and Impact 

Face anti-spoofing deals with the task of telling apart live 
faces from fake ones produced by photographs, video replays, 
or masks. The goal is to protect systems that use face recognition 
by stopping attempts to bypass security. Research in this area 
has shown that proper detection is vital for preventing 
unauthorized access and misuse in various applications [16]. 

B. Traditional Methods 

Earlier work in face anti-spoofing focused on hand-designed 
features and rule-based procedures. Texture features extracted 
using methods such as local binary patterns and histogram of 
oriented gradients were combined with classifiers like support 
vector machines. Thus, such systems worked by identifying 
subtle texture differences between real faces and printed or 
replayed images. While these methods were simple and fast, 
their performance dropped in conditions with varying lighting, 
pose, or image quality [17]. 

C. Machine Learning Methods 

As the field advanced, researchers introduced machine 
learning methods that improved detection rates. Classifiers were 
built on top of handcrafted or shallow learned features extracted 
from facial images. Several studies combined texture 
information with motion cues, attempting to capture both spatial 
and temporal variations in the input. Fusion of multiple cues 
improved performance under diverse conditions, although the 
reliance on manually designed features still limited the overall 
accuracy [18]. 

D. Deep Learning Methods 

Deep learning has introduced new possibilities in various 
domains, ranging from computer vision to medicine [19-21]. 
One of these fields involves addressing security issues such as 
face anti-spoofing, where models automatically learn 
meaningful features directly from raw data. Convolutional 
neural networks have been applied to capture intricate spatial 
details that differentiate live faces from spoof attacks. Some 
works introduced additional supervision or auxiliary tasks to 
guide the network toward discriminative patterns. Recent 
studies have also brought in attention mechanisms that help the 
network focus on regions with strong cues and methods that 
analyze frequency domain information to detect hidden patterns. 

Many deep learning approaches have reached state-of-the-art 
results on standard datasets such as CASIA-FASD and Replay-
Attack, proving their advantage over earlier methods [22-23]. 

E. Challenges 

Despite progress, several challenges remain. One difficulty 
is the wide range of attack types, from simple printed photos to 
complex 3D masks. Another is the gap between controlled 
experimental conditions and real-world scenarios. Variations in 
camera quality, lighting, and environmental conditions can lead 
to degraded performance when a model is deployed outside its 
training setting. Moreover, models sometimes struggle with 
unexpected spoofing methods not seen during training, which 
calls for solutions that can generalize well across different 
domains [24]. 

Another persistent challenge is the limited availability of 
large-scale, diverse datasets that accurately represent real-world 
spoofing variations. Many face anti-spoofing datasets are 
collected under controlled conditions, resulting in a lack of 
generalization when applied to heterogeneous environments 
such as hospitals or telemedicine platforms. Medical 
applications introduce unique challenges, including the presence 
of masks, occlusions, and patient motion artifacts, which 
complicate spoofing detection. Moreover, privacy constraints 
often limit the amount of publicly available medical facial data 
for model training, further exacerbating overfitting and bias 
issues [25-26]. To mitigate these problems, researchers have 
begun exploring domain adaptation, transfer learning, and 
synthetic data generation using generative adversarial networks 
(GANs) to expand dataset diversity and improve model 
robustness [27]. 

Another significant challenge is the computational 
complexity and real-time inference requirements for 
deployment in practical medical environments. Deep neural 
networks with attention and frequency-domain components, 
such as Fourier-based modules, demand high processing power, 
which can hinder integration into low-latency telemedicine 
systems or edge devices. Lightweight architectures, model 
pruning, and knowledge distillation are being investigated to 
reduce inference time while maintaining accuracy [28]. 
Furthermore, there is growing attention to explainability and 
transparency in model decisions, especially in healthcare 
contexts, where interpretability is critical for clinical trust and 
regulatory approval [29]. Future advancements will likely focus 
on integrating efficient model compression, interpretable 
attention visualization, and adaptive frequency analysis to 
enhance both performance and reliability in medical face anti-
spoofing systems. 

F. Research Gaps and Opportunities 

Current work has made notable strides, yet there are several 
open areas for investigation. One gap lies in fully exploiting the 
frequency domain, as few methods integrate frequency 
information with spatial features for a more robust detection 
scheme [30]. Further studies are needed to understand how 
attention mechanisms can be combined with alternative 
representations to better capture subtle spoof cues. In addition, 
there is an opportunity to improve the generalization of anti-
spoofing systems by addressing the domain shift between 
training and real-world environments [31]. Future research 
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should consider the integration of multiple modalities and richer 
representations to build systems that are both accurate and 
robust against evolving spoof attacks. 

III. MATERIALS AND METHODS 

A. Proposed Model 

The method illustrated in Fig. 1 begins by detecting a face 
using the Multitask Cascaded Convolutional Network [32]. The 
bounding box output by MTCNN is cropped and resized to 512 
× 512 pixels. Each face image then follows two main paths. The 
first branch is a common path, where various stochastic 
augmentations (e.g., random horizontal flips, color jitter) were 

applied. The augmented image is forwarded through a pretrained 
EfficientNetV2-S backbone, which consists of eight blocks of 
modified convolutional layers. EfficientNetV2-S - because it 
offers a strong accuracy-latency trade-off for 512×512 inputs 
while maintaining a moderate parameter count, which is 
important for real-time mobile or access-control deployments. 
Its compound scaling and fused-MBConv layers provide large 
effective receptive fields and robust texture sensitivity without 
incurring the inference cost of deeper backbones (e.g., ResNet-
101/152) or the capacity limits of lighter models (e.g., 
MobileNet variants). The second path is Frequency. The same 
512×512 image go through a 2D Discrete Fourier Transform to 
produce a frequency-domain representation. 

 

Fig. 1. Architecture of the proposed model. 

After Blocks 3, 6, and 7 of the EfficientNetV2-S backbone 
in Fig. 2, intermediate feature maps𝑋3 , 𝑋6  and𝑋7 , are each 
passed to a custom “Fourier Head” to reconstruct the ground-
truth frequency map 𝐹 . Each head contains six sequential 

convolutional layers (with kernel sizes of 3 × 3 or 1 × 1) 
interspersed with batch normalization and ReLU activation. 
After the third convolution, a dropout layer with probability 𝑝 = 
0.5 is inserted to reduce overfitting. The output of the fifth 
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convolutional layer is a single-channel feature map 𝐹𝑘̂ ∈ ℝ𝑊𝑥𝐻 
(where 𝑘 = 3,6,7 indicates the block index), intended to 
approximate 𝐹. The Mean Squared Error loss for each head 𝑘 is 
computed as Eq. (1): 

ℒ𝑀𝑆𝐸,𝑘 =
1

𝑊𝐻
∑ ∑ (𝐹𝑥,𝑦 − 𝐹𝑘,𝑥,𝑦)2𝐻

𝑦=1
𝑊
𝑥=1             () 

After the final block, Block 8, of the EfficientNetV2-S 
backbone, the resulting feature map 𝑋8 ∈ ℝ1280𝑥16𝑥16  is 
processed by a Shuffle Attention module. Shuffle Attention 
rearranges spatial and channel dimensions for efficient 
information exchange without additional squeeze-and-
excitation blocks. It was decided to choose Shuffle Attention 
over squeeze-and-excitation or CBAM because SA jointly 
captures channel and spatial dependencies with minimal 
parameter overhead and no extra bottlenecks, which is 
advantageous at the 16×16, 1280-channel stage of 
EfficientNetV2-S. The output of Shuffle Attention is a refined 
feature map 𝑋𝑎𝑡𝑡 ∈ ℝ1280𝑥16𝑥16. 

Following the Shuffle Attention block, the refined features 
𝑋𝑎𝑡𝑡  pass through an Adaptive Average Pooling layer, resulting 
in a single vector z. A fully connected layer transforms z into 
logits 𝑝 ∈ ℝ2   (or a single logit for binary tasks). The 
classification loss is the binary cross-entropy (BCE) with logits, 
as in Eq. (2): 

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 =  −
1

𝑀
∑ (𝑦𝑚 ∗ log(𝜎(𝑝𝑚))  +(1 − 𝑦𝑚) ∗𝑀

𝑚=1

 𝑙𝑜𝑔(1 − 𝜎(𝑝𝑚 )))                         () 

where, 𝑦𝑚 ∈ {0,1}  is the label for sample m, 𝑝𝑚  is the 
predicted logit, σ (⋅) is the logistic sigmoid function, and M is 
the number of samples in a batch. The total loss ℒ𝑡𝑜𝑡𝑎𝑙 combines 
BCE and the average MSE from the three Fourier heads, as in 
Eq. (3): 

ℒ𝑡𝑜𝑡𝑎𝑙 =  ℒ𝐵𝐶𝐸 +
1

3
∑ ℒ𝑀𝑆𝐸,𝑘𝑘∈{3,6,7}                () 

Thus, by enforcing frequency consistency, the model is 
encouraged to learn both spatial and frequency-based 
characteristics pertinent to face spoofing detection. 

B. Dataset 

All experiments are conducted on the Oulu-NPU [33] dataset 
illustrated in Fig. 3, which contains 4,950 recorded videos. From 
each video, 8 frames at indices {10,30,50,70,90,100,120,140} 
were extracted, totaling approximately 39,000 images. These 
videos contain: 

• Six smartphone cameras (Samsung Galaxy S6 edge, 
HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, 
Sony XPERIA C5 Ultra Dual, OPPO N3). 

• Three recording sessions with varying illumination and 
backgrounds. 

• Two display types and two printer types. 

• 55 participants. 

• Four standard protocols for training and testing under 
different environmental and cross-device conditions. 

 
Fig. 2. Custom Fourier heads. From top to bottom: after 3rd block, after 6th 

block and after 7th block. 

C. Experimental Setup 

All models are trained and evaluated on a workstation with 
an NVIDIA RTX 4090 GPU (24 GB VRAM), 64 GB of CPU 
memory, and 24 CPU cores. The main hyperparameters are: 
batch size 16, Adam optimizer with weight_decay = 5 × 10-5, 
number of epochs 30, ReduceLROnPlateau scheduler with 
patience = 3, reduce factor = 0.5. The metric used to trigger 
reduction in the learning rate is APCER, with an initial learning 
rate: 1 × 10-4. Preliminary experiments showed that higher 
learning rates as 10-2 or 10-3 led to poor convergence, even when 
the Shuffle Attention block was removed. Consequently, a 
smaller learning rate with a pre-trained backbone yielded more 
stable results, suggesting that retaining initialization from 
EfficientNetV2-S is essential for this task. Each training epoch 
processes every sample in the dataset once. Early stopping is 
triggered if no improvement is observed in the validation metrics 
for more than five epochs, and the best model snapshot based on 
the validation set is preserved for final testing. 

     
Fig. 3. Dataset samples. From left to right: live face, printed attack and 

replay attack. 
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Several transformations are applied to modify image 
properties while preserving essential features. Horizontal 
flipping reverses the image along the vertical axis, helping the 
model generalize to different orientations. Adjustments in 
contrast, gamma, and brightness alter pixel intensity 
distributions, simulating variations in lighting conditions. 
Elastic transformations, grid distortions, and optical distortions 
introduce non-linear deformations, making the model more 
resilient to geometric variations. Cutout randomly masks 
portions of the image, encouraging the model to focus on 
essential patterns rather than specific regions. Shift, scale, and 
rotation transformations modify the position and size of objects, 
aiding in generalization across different viewpoints. 

IV. RESULTS 

A. Evaluation Metrics 

In our evaluation of biometric authentication systems, we 
use three key metrics: Attack Presentation Classification Error 
Rate (APCER), Bona Fide Presentation Classification Error 
Rate (BPCER), and Average Classification Error Rate (ACER). 

APCER [Eq. (4)] measures the frequency of falsely 
accepting an attack attempt. A higher APCER indicates a greater 
likelihood of incorrectly classifying an attack as a genuine 
attempt. BPCER [Eq. (5)] represents the proportion of falsely 
rejected genuine presentations. A high BPCER means that 
genuine users are more frequently denied access. ACER 
[Eq. (6)] provides an overall error measurement by averaging 
APCER and BPCER. Lower ACER values indicate better 
system performance in distinguishing between genuine and 
attack presentations. 

𝐴𝑃𝐶𝐸𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑡𝑡𝑎𝑐𝑘 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠
             () 

𝐵𝑃𝐶𝐸𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑒𝑛𝑢𝑖𝑛𝑒 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠
           () 

𝐴𝐶𝐸𝑅 = 
𝐴𝑃𝐶𝐸𝑅+𝐵𝑃𝐶𝐸𝑅

2
                       ()  

B. Experimental Results 

1) State-of-the-art comparison: The experimental 

outcomes were obtained from four distinct protocols designed 

to evaluate face presentation attack detection under various 

challenging conditions, as illustrated in Table I. 

Protocol I focuses on generalization across environmental 
variations. Data recorded in three sessions with differing 
illumination and background settings were partitioned into 
training, development, and evaluation sets. The proposed 
method achieved zero errors, with APCER, BPCER, and ACER 
all measuring 0%. An analysis of the error metrics confirms an 
exceptional ability to differentiate between authentic and attack 
samples under fluctuating lighting and background conditions. 

Protocol II examines the impact of novel attack artifacts 
generated by previously unseen print and video-replay attacks. 
A new print attack and a video-replay attack were incorporated 
into the test set to assess vulnerability to unconventional 

spoofing techniques. The approach recorded an ACER of 1.6%, 
with APCER at 0.4% and BPCER at 2.8%. A detailed evaluation 
of the figures reveals a robust performance in minimizing false 
acceptance errors, demonstrating a strong capacity to counteract 
artifacts introduced by diverse display and printing sources. 

Protocol III investigates sensor interoperability using a 
Leave One Camera Out setup. Video recordings from five 
smartphones contributed to training and tuning, while 
recordings from a sixth device provided the testing material. An 
ACER of 0.8 ± 0.6% was obtained, with both APCER and 
BPCER reflecting similarly low error margins. Consistency in 
performance across various camera sensors confirms a reliable 
level of operation among different acquisition devices. A careful 
review of the stability of these metrics confirms the method’s 
applicability in scenarios involving heterogeneous imaging 
sensors. 

Protocol IV presents the most challenging scenario by 
combining environmental variations, attack types, and sensor 
diversity. Under these complex conditions, the method achieved 
an ACER of 1.9 ± 2.0%, outperforming competing approaches 
that exhibited higher error rates. Error metrics for both APCER 
and BPCER were noticeably reduced under the simultaneous 
influence of multiple factors. 

2) Contribution of the modules and ablation: To prove that 

the combination of additional modules works, the different 

stages by adding modules progressively were tested. In 

Table II, the EfficientNet-V2-S model achieves APCER of 

0.8%, BPCER of 3.8%, and ACER of 2.4%. Introducing a 

Fourier Heads at the 3rd, 6th, and 7th blocks results in lower error 

rates, reducing APCER to 0.7%, BPCER to 3.2%, and ACER 

to 2.1%, suggesting an improvement in attack detection. 

Further refinement by integrating the Shuffle Attention 
module into those blocks leads to the best performance, with 
APCER dropping to 0.4%, BPCER to 2.8%, and ACER to 1.6%. 
The consistent reduction in error rates indicates that the 
combination of Fourier Heads and SA Module contributes to 
more effective feature extraction, strengthening the model’s 
ability to distinguish genuine faces from spoofing attempts. 

3) Dynamic thresholding: Dynamic thresholding is a 

technique used in biometric security systems to adaptively 

determine decision boundaries based on varying conditions. 

Unlike fixed thresholding, which applies a single static 

threshold across all samples, dynamic thresholding adjusts the 

classification boundary according to contextual factors such as 

environmental conditions, device variability, or individual user 

characteristics. This approach enhances the robustness of 

biometric systems by mitigating the impact of variations in data 

distributions and reducing misclassification errors. In 

presentation attack detection, dynamic thresholding is 

particularly effective in balancing security and usability, as it 

allows the system to refine its decision-making process based 

on real-time inputs. 
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TABLE I.  EXPERIMENTAL RESULTS AND COMPARISON WITH DIFFERENT STATE-OF-THE-ART METHODS ON OULU-NPU DATASET 

Protocol Method APCER (%) BPCER (%) ACER (%) 

1 

STASN [35] 1.2 2.5 1.9 

Auxiliary [36] 1.6 1.6 1.6 

Disentangle [37] 1.7 0.8 1.3 

STDN [38] 0.8 1.3 1.1 

CDCN [39] 0.4 1.7 1 

DC-CDN [40] 0.5 0.3 0.4 

NAS-FAS [41] 0.4 0 0.2 

PatchNet [42] 0 0 0 

TransFas [43] 0.8 0 0.4 

Ours 0 0 0 

2 

STASN [35] 4.2 0.3 2.2 

Auxiliary [36] 2.7 2.7 2.7 

Disentangle [37] 1.1 3.6 2.4 

STDN [38] 2.3 1.6 1.9 

CDCN [39] 1.5 1.4 1.5 

DC-CDN [40] 0.7 1.9 1.3 

NAS-FAS [41] 1.5 0.8 1.2 

PatchNet [42] 1.1 1.2 1.2 

TransFas [43] 1.5 0.5 1 

Ours 0.4 2.8 1.6 

3 

STASN [35] 4.7±3.9 0.9±1.2 2.8±1.6 

Auxiliary [36] 2.7±1.3 3.1±1.7 2.9±1.5 

Disentangle [37] 2.8±2.2 1.7±2.6 2.2±2.2 

STDN [38] 1.6±1.6 4.0±5.4 2.8±3.3 

CDCN [39] 2.4±1.3 2.2±2.0 2.3±1.4 

DC-CDN [40] 2.2±2.8 1.6±2.1 1.9±1.1 

NAS-FAS [41] 2.1±1.3 1.4±1.1 1.7±0.6 

PatchNet [42] 1.8±1.5 0.6±1.2 1.2±1.3 

TransFas [43] 0.6±0.7 1.1±2.5 0.9±1.1 

Ours 0.8±0.5 0.8±0.8 0.8±0.6 

4 

STASN [35] 6.7±10.6 8.3±8.4 7.5±4.7 

Auxiliary [36] 9.3 ± 5.6 10.4 ± 6.0 9.5 ± 6.0 

Disentangle [37] 5.4±2.9 3.3±6.0 4.4±3.0 

STDN [38] 2.3±3.6 5.2±5.4 3.8±4.2 

CDCN [39] 4.6±4.6 9.2±8.0 6.9±2.9 

DC-CDN [40] 5.4±3.3 2.5±4.2 4.0±3.1 

NAS-FAS [41] 4.2±5.3 1.7±2.6 2.9±2.8 

PatchNet [42] 2.5±3.8 3.3±3.7 2.9±3.0 

TransFas [43] 2.1±2.2 3.8±3.5 2.9±2.4 

Ours 2.5±2.5 1.2±2.1 1.9±2.0 

TABLE II.  INDIVIDUAL CONTRIBUTION OF EACH MODULE TESTED ON PROTOCOL II 

Method APCER (%) BPCER (%) ACER (%) 

EfficientNet-V2-S 0.8 3.8 2.4 

EfficientNet-V2-S w/ 3rd, 6th, 7th blocks Fourier Heads 0.7 3.2 2.1 

EfficientNet-V2-S+SA Module w/ 3rd, 6th, 7th blocks Fourier Heads 0.4 2.8 1.6 
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Fig. 4. Dynamic thresholding for 3 protocols. 

Fig. 4 illustrates the performance of three different protocols 
under dynamic thresholding on the OULU-NPU-Test dataset. 
The x-axis represents the BPCER, which indicates the 
proportion of genuine samples misclassified as attacks. The y-
axis corresponds to the APCER, reflecting the proportion of 
attack presentations misclassified as genuine. Lower values on 
both axes indicate a more effective system, as it minimizes both 
types of errors. 

Protocol I, represented in blue, demonstrates a steep decline 
in APCER as BPCER increases. At very low BPCER values, 
APCER remains considerably high, indicating that the system is 
prone to false acceptance when a strict threshold is applied. This 

pattern suggests that the protocol may be highly sensitive to 
variations in presentation attacks but suffers from instability 
when distinguishing bona fide samples. The rapid decrease in 
APCER as BPCER increases further suggests that a slight 
relaxation of the threshold significantly improves attack 
detection, albeit at the cost of increased false rejection. 

Protocol II, visualized in red, follows a more stable 
trajectory, exhibiting a gradual reduction in APCER as BPCER 
increases. Compared to Protocol I, this approach achieves a 
more balanced trade-off between false acceptance and false 
rejection, indicating that it may be more reliable in practical 
deployment scenarios. The smoother trendline suggests that 
Protocol II is less sensitive to minor variations in input data, 
making it a more consistent option for presentation attack 
detection. 

Protocol III, shown in orange, consistently maintains the 
lowest APCER across the observed BPCER range. The results 
indicate that this protocol outperforms the other two in 
minimizing attack presentation errors while maintaining a 
relatively low bona fide classification error. The stability of the 
curve suggests that Protocol III achieves a well-calibrated 
balance between security and accessibility, making it the most 
effective among the three. 

4) Grad-Cam results: Grad-Cam [34] results in Fig. 5 

provide an insightful interpretation of the deep learning model’s 

decision-making process for detecting presentation attacks. 

Heatmaps indicate which facial regions contribute most to 

classification, revealing distinct patterns across live, print, and 

video-replay samples. 
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Fig. 5. Grad-Cam results. From left to right columns: live, print, and video-replay. 

In live face images, attention is primarily focused around the 
mouth and nose, where color, texture, and depth cues play a 
significant role in distinguishing genuine faces. The uniform 
blue background suggests that the model effectively ignores 
non-relevant areas, reinforcing its reliance on intrinsic facial 
details. 

For print and video-replay attacks, activations shift towards 
facial boundaries, where red and yellow highlights suggest the 
model detects inconsistencies in edges and lighting artifacts. The 
presence of strong activations around the periphery indicates an 
effort to identify unnatural textures, which are often present in 
spoofing attempts. 

Images with glasses introduce additional complexity, with 
attention distributed around the frames and nose bridge. Higher 
activations in print and video attacks suggest reflections and 
distortions are key factors in classification. 

Variations in heatmap intensity between attack types 
confirm the model’s ability to differentiate genuine and spoofed 
faces. Attention shifts in predictable ways, aligning with 
expected signs of presentation attacks, demonstrating the 
model’s capacity to detect spoofing artifacts with reliability. 

Overall, the experimental results indicate several advantages 
of the proposed method. The approach demonstrates flawless 
performance in the face of environmental variations, maintains 
a low false acceptance rate against novel attack artifacts, and 
exhibits consistent error rates across different sensor inputs. 
When confronted with a combination of challenges, it delivers 
competitive performance with reduced error metrics, suggesting 
promising applicability for real-world face presentation attack 
detection systems. 

V. DISCUSSION 

The experimental results indicate a promising advancement 
in face presentation attack detection. Findings confirm that 
spatial and frequency domain information combined into a 
unified architecture can significantly improve detection 
accuracy. The adoption of EfficientNet-V2-S as the backbone, 
combined with a Shuffle Attention module, has provided a 
robust framework capable of extracting discriminative features 
even under adverse conditions. Integration of Fourier heads to 
reconstruct frequency maps introduces a novel perspective that 
captures subtle differences between live and spoofed faces, as 
evidenced by the low error rates across various protocols. 

Performance under controlled environmental variations 
demonstrated strong discrimination between genuine and attack 
samples. Minimal errors in protocols addressing different 
illumination and background conditions suggest that the 
network effectively adapts to changes in lighting and scene 
composition. Robust outcomes in scenarios involving 
previously unseen print and video-replay attacks further support 
the method’s aptitude for recognizing unconventional spoof 
artifacts. Results reveal a capacity for mitigating false 
acceptance errors, which remains critical in maintaining the 
integrity of biometric systems. 

Interoperability across different sensor types has been 
confirmed through experiments using diverse smartphone 
cameras. Consistent performance in sensor-specific testing 
scenarios reinforces the network’s reliability, even when 
presented with imaging data acquired from heterogeneous 
sources. Outcomes recorded in the most challenging scenario, 
where multiple factors were simultaneously present, indicate 
competitive error metrics that rival or surpass existing methods. 
Low Average Classification Error Rates across protocols 
suggest that the design effectively balances the detection of 
genuine presentations with the rejection of spoof attacks. 

Observations imply that the fusion of spatial features and 
frequency representations addresses limitations inherent in 
earlier approaches based solely on handcrafted or spatial 
features. The network’s ability to capture minute texture and 
motion cues, while simultaneously processing global frequency 
information, contributes to its overall robustness. A careful 
analysis of the error metrics shows potential avenues for further 
exploration, particularly regarding the model’s performance in 
real-world environments where attack types may be more 
diverse. 

Limitations related to domain shifts between training and 
deployment environments persist, inviting additional research to 
refine generalization capabilities. Future investigations might 
consider the incorporation of alternative modalities or additional 
attention mechanisms to further improve detection rates under 
evolving spoof conditions. Overall, the findings present 
compelling evidence that integrating modern network 
architectures with both spatial and frequency domain analysis 
provides a viable pathway toward more reliable and secure face 
presentation attack detection systems. 
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VI. CONCLUSION 

This work demonstrates that explicitly coupling spatial 
features with frequency-aware supervision yields robust face 
presentation attack detection across environmental, attack-type, 
and sensor variations. An EfficientNetV2-S backbone provides 
an effective accuracy-latency balance for deployment; Fourier 
heads guide the network to preserve high-frequency spoof cues 
that are often attenuated in spatial pipelines; and, Shuffle 
Attention efficiently enhances discriminative regions without 
heavy computation. Across Oulu-NPU’s four protocols, the 
system attains 0% ACER in Protocol I, 1.6% in Protocol II, 0.8 
± 0.6% in Protocol III, and 1.9 ± 2.0% in Protocol IV, indicating 
strong generalization to novel artifacts and unseen sensors. 
Beyond raw numbers, the ablations and interpretability results 
clarify why the method works: frequency supervision reduces 
bona-fide rejections under photometric variation, while attention 
improves rejection of attack-specific structures, together 
producing consistent gains. 

For security-sensitive biometric applications, reducing 
APCER directly lowers the risk of unauthorized access, and 
lowering BPCER preserves user experience. The proposed 
design advances practical anti-spoofing by improving both, 
without sacrificing throughput or model size, making it suitable 
for edge and mobile deployments. Performance under severe 
domain shift can still degrade. Future work will: i) incorporate 
temporal cues (e.g., rPPG or micro-motion) alongside frequency 
supervision, ii) explore self-supervised or domain-
generalization objectives to handle unseen attacks, and iii) 
calibrate dynamic thresholds using cohort/device context to 
further stabilize APCER-BPCER trade-offs in the field. 
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