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Abstract—Face recognition systems have become prevalent in
mobile devices and security applications, increasing the demand
for robust face presentation attack detection. Early efforts based
on handcrafted features struggled to cope with variations in
illumination, pose, and attack modalities, prompting a transition
toward deep learning solutions capable of extracting subtle
discriminative cues. A novel architecture built upon an
EfficientNet-V2 backbone, combined with a Shuffle Attention
module and Fourier heads, was developed to capture both spatial
and frequency domain characteristics. A dual-path approach
processes each input face image through conventional
convolutional blocks and a 2D Discrete Fourier Transform path,
with dedicated Fourier heads reconstructing frequency maps that
reveal minute discrepancies between genuine and spoofed
presentations. Experimental evaluation on the Oulu-NPU dataset
demonstrates strong performance across four protocols, including
robust detection under varying environmental conditions, low
error rates with novel attack types, and consistent results across
different sensor inputs. Metrics such as APCER, BPCER, and
ACER validate the method’s ability to distinguish between live
and fake faces reliably. The outcomes suggest that combining
spatial and frequency cues addresses limitations observed in
earlier approaches, offering valuable insights for deployment in
security-sensitive applications and setting a strong foundation for
future research in face anti-spoofing.
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I INTRODUCTION

Face recognition systems have grown in popularity in
various applications such as mobile devices and security
systems. Early research in face liveness detection relied on
handcrafted features such as local binary patterns and
histograms of oriented gradients to capture subtle texture and
motion cues [1-2], using simple image analysis and rule-based
methods to separate real faces from spoof attempts. However,
they often struggled with changes in illumination and pose and
could not adapt well to different attack scenarios [3-4].

The field later shifted to the use of deep learning methods.
Convolutional Neural Networks brought a new way to extract
features from face images and proved better at detecting minute
differences between live faces and fakes [5-7]. Recent studies
have also focused on integrating attention mechanisms and
frequency domain analysis into CNNs to improve face anti-
spoofing [8-9], showing improvements in accuracy and
robustness compared to traditional approaches.

In this work, EfficientNet-V2-S was used as the backbone
network. EfficientNet-V2-S is known for its speed and accuracy
in image processing tasks [10]. The network works by
processing an input face image through several convolutional
blocks that extract features at different scales. Shuffle Attention
[11] introduces a novel mechanism for processing deep
convolutional features by partitioning input channels and
applying concurrent spatial operations. Grouping feature maps
allows parallel extraction of spatial and channel information,
followed by a channel shuffle that redistributes features
effectively. Extensive experiments onstandard networks suchas
ResNet-50 indicate significant performance improvements in
classification and detection tasks while maintaining low
computational overhead. Researchers have integrated the
module into multiple vision tasks, yielding promising accuracy
and efficiency results. Recent empirical evaluations validate the
approach as a valuable alternative to traditional attention
methods in diverse computer visionapplications. Further studies
corroborate findings.

Alongside the backbone and attention module, Fourierheads
are added to the architecture. They reconstruct Fourier maps
from the features extracted by the backbone. The Fourier maps
capture frequency domain information that often holds clues to
subtle differences between live faces and spoof attempts [12-
14]. The Fourier heads use a series of deconvolution and dilated
convolution layers to build these maps. By including frequency
information, the network can detect differences that may not be
clear in the spatial domain alone.

The network is built in steps that allow it to process the
image, compute attention weights, and reconstruct Fourier
maps. The outputs from the different stages are then combined
to produce a final prediction. Such a design aims to capture both
spatial and frequency cues that are important for distinguishing
genuine faces from presentation attacks. Each component of the
network plays a role in addressing the weaknesses of earlier
methods and in improving the overall detection accuracy.

Face anti-spoofing remains a subject of great interest due to
the increasing use of face recognition in security-sensitive
applications. As presentation attacks grow more complex,
researchers must continue to search for better ways to detect
both obvious and subtle forms of spoofing. The need for robust
and efficient systems is clear given the evolving methods of
attack and the widespread use of biometric systems. Current
study adds to this growing body of work by combining modermn
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network architectures, attention mechanisms, and Fourier
domain analysis to address these challenges. Ongoing research
in this area is essential to keep up with the rapid progress in
attack techniques and to ensure the safety and reliability of face
recognition systems [15].

II. RELATED WORKS

Face anti-spoofing has attracted significant research interest
owing to the security implications of deploying face recognition
systems. Over time, methods evolved from reliance on
handcrafted features like local binary patterns and histograms of
oriented gradients to modern deep learning frameworks capable
ofautomatically extracting discriminative representations. Early
techniques concentrated on identifying subtle texture and
motion cues to differentiate between live and spoof
presentations, though challenges with varying illumination and
pose limited their practical applications.

A. Face Anti-Spoofing: Definitions and Impact

Face anti-spoofing deals with the task of telling apart live
faces from fake ones produced by photographs, video replays,
ormasks. The goal is to protect systems that use facerecognition
by stopping attempts to bypass security. Research in this area
has shown that proper detection is vital for preventing
unauthorized access and misuse in various applications [16].

B. Traditional Methods

Earlier work in face anti-spoofing focused on hand-designed
features and rule-based procedures. Texture features extracted
using methods such as local binary patterns and histogram of
oriented gradients were combined with classifiers like support
vector machines. Thus, such systems worked by identifying
subtle texture differences between real faces and printed or
replayed images. While these methods were simple and fast,
their performance dropped in conditions with varying lighting,
pose, or image quality [17].

C. Machine Learning Methods

As the field advanced, researchers introduced machine
learningmethods that improved detection rates. Classifiers were
built on top of handcrafted or shallow learned features extracted
from facial images. Several studies combined texture
information with motion cues, attempting to capture both spatial
and temporal variations in the input. Fusion of multiple cues
improved performance under diverse conditions, although the
reliance on manually designed features still limited the overall
accuracy [18].

D. Deep Learning Methods

Deep learning has introduced new possibilities in various
domains, ranging from computer vision to medicine [19-21].
One of these fields involves addressing security issues such as
face anti-spoofing, where models automatically learn
meaningful features directly from raw data. Convolutional
neural networks have been applied to capture intricate spatial
details that differentiate live faces from spoof attacks. Some
works introduced additional supervision or auxiliary tasks to
guide the network toward discriminative patterns. Recent
studies have also brought in attention mechanisms that help the
network focus on regions with strong cues and methods that
analyze frequency domaininformationto detect hidden patterns.
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Many deep learning approaches have reached state-of-the-art
results on standard datasets such as CASIA-FASD and Replay-
Attack, proving their advantage over earlier methods [22-23].

E. Challenges

Despite progress, several challenges remain. One difficulty
is the wide range of attack types, from simple printed photos to
complex 3D masks. Another is the gap between controlled
experimental conditions and real-world scenarios. Variations in
camera quality, lighting, and environmental conditions can lead
to degraded performance when a model is deployed outside its
training setting. Moreover, models sometimes struggle with
unexpected spoofing methods not seen during training, which
calls for solutions that can generalize well across different
domains [24].

Another persistent challenge is the limited availability of
large-scale, diverse datasets that accurately represent real-world
spoofing variations. Many face anti-spoofing datasets are
collected under controlled conditions, resulting in a lack of
generalization when applied to heterogeneous environments
such as hospitals or telemedicine platforms. Medical
applications introduce unique challenges, including the presence
of masks, occlusions, and patient motion artifacts, which
complicate spoofing detection. Moreover, privacy constraints
often limit the amount of publicly available medical facial data
for model training, further exacerbating overfitting and bias
issues [25-26]. To mitigate these problems, researchers have
begun exploring domain adaptation, transfer learning, and
synthetic data generation using generative adversarial networks
(GANs) to expand dataset diversity and improve model
robustness [27].

Another significant challenge is the computational
complexity and real-time inference requirements for
deployment in practical medical environments. Deep neural
networks with attention and frequency-domain components,
such as Fourier-based modules, demand high processing power,
which can hinder integration into low-latency telemedicine
systems or edge devices. Lightweight architectures, model
pruning, and knowledge distillation are being investigated to
reduce inference time while maintaining accuracy [28].
Furthermore, there is growing attention to explainability and
transparency in model decisions, especially in healthcare
contexts, where interpretability is critical for clinical trust and
regulatory approval [29]. Future advancements will likely focus
on integrating efficient model compression, interpretable
attention visualization, and adaptive frequency analysis to
enhance both performance and reliability in medical face anti-
spoofing systems.

F. Research Gaps and Opportunities

Current work has made notable strides, yet there are several
open areas forinvestigation. One gap lies in fully exploiting the
frequency domain, as few methods integrate frequency
information with spatial features for a more robust detection
scheme [30]. Further studies are needed to understand how
attention mechanisms can be combined with alternative
representations to better capture subtle spoofcues. In addition,
there is an opportunity to improve the generalization of anti-
spoofing systems by addressing the domain shift between
training and real-world environments [31]. Future research
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should consider the integration of multiple modalities and richer
representations to build systems that are both accurate and
robust against evolving spoof attacks.

III.  MATERIALS AND METHODS

A. Proposed Model

The method illustrated in Fig. 1 begins by detectinga face
using the Multitask Cascaded Convolutional Network [32]. The
bounding box output by MTCNN is cropped and resized to 512
x 512 pixels. Each face image then follows two main paths. The
first branch is a common path, where various stochastic
augmentations (e.g., random horizontal flips, color jitter) were
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applied. The augmented image is forwarded througha pretrained
EfficientNetV2-S backbone, which consists of eight blocks of
modified convolutional layers. EfficientNetV2-S - because it
offers a strong accuracy-latency trade-off for 512x512 inputs
while maintaining a moderate parameter count, which is
important for real-time mobile or access-control deployments.
Its compound scaling and fused-MBConv layers provide large
effective receptive fields and robust texture sensitivity without
incurring the inference cost of deeper backbones (e.g., ResNet-
101/152) or the capacity limits of lighter models (e.g.,
MobileNet variants). The second pathis Frequency. The same
512x512 image go through a 2D Discrete Fourier Transform to
produce a frequency-domain representation.

Fourier

| > Augmentations —>  Block 1

Block 2

——

Block 3

[ E—

Block 6

Block 7

Cropped Face
512x512

Block 8
Shuffle Attention
Module

AdaptiveAvgPool
FC Layer

}
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Fig. 1.

After Blocks 3, 6, and 7 of the EfficientNetV2-S backbone
in Fig. 2, intermediate feature mapsX;, X4 andX;, are each
passed to a custom “Fourier Head” to reconstruct the ground-
truth frequency map F . Each head contains six sequential

‘ Fourier
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Head
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##
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Architecture of the proposed model.

convolutional layers (with kernel sizes of 3 x 3 or 1 x 1)
interspersed with batch normalization and ReLU activation.
After the third convolution, a dropout layer with probability p =
0.5 is inserted to reduce overfitting. The output of the fifth
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convolutional layer is a single-channel feature map Fj, € R"*H
(where k = 3,6,7 indicates the block index), intended to
approximate F. The Mean Squared Error loss for each head k is
computed as Eq. (1):

1 .
LMSE,k = ﬂ2%123€=1(1:x,y - Fk,x,y)z (D

After the final block, Block 8, of the EfficientNetV2-S
backbone, the resulting feature map Xg € R1280x16x16 g
processed by a Shuffle Attention module. Shuffle Attention
rearranges spatial and channel dimensions for efficient
information exchange without additional squeeze-and-
excitation blocks. It was decided to choose Shuffle Attention
over squeeze-and-excitation or CBAM because SA jointly
captures channel and spatial dependencies with minimal
parameter overhead and no extra bottlenecks, which is
advantageous at the 16x16, 1280-channel stage of
EfficientNetV2-S. The output of Shuffle Attention is a refined
feature map X,,, € R1280x16x16

Following the Shuffle Attention block, the refined features
X, pass through an Adaptive Average Pooling layer, resulting
in a single vector z. A fully connected layer transforms z into
logits p € R? (or a single logit for binary tasks). The
classification loss is the binary cross-entropy (BCE) with logits,
as in Eq. (2):

BCELoss = —izﬁzl(ym xlog(o(pm)) +(1— yp) *
log(1 - a(py))) ()

where, y,, € {0,1} is the label for sample m, p,, is the
predicted logit, o (+) is the logistic sigmoid function, and M is
the number of samples in a batch. The total loss £;,;,; combines
BCE and the average MSE from the three Fourier heads, as in

Eq. (3):
1
Liotar = Lpcp + 52ke{3,6,7} Lysg (3)

Thus, by enforcing frequency consistency, the model is
encouraged to learn both spatial and frequency-based
characteristics pertinent to face spoofing detection.

B. Dataset

All experiments are conducted onthe Oulu-NPU [33] dataset
illustrated in Fig. 3, which contains 4,950recorded videos. From
each video, 8 frames at indices {10,30,50,70,90,100,120,140}
were extracted, totaling approximately 39,000 images. These
videos contain:

e Six smartphone cameras (Samsung Galaxy S6 edge,
HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie,
Sony XPERIA C5 Ultra Dual, OPPO N3).

e Three recording sessions with varying illumination and
backgrounds.

e Two display types and two printer types.
e 55 participants.

e Four standard protocols for training and testing under
different environmental and cross-device conditions.
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Fig.2. Custom Fourier heads. From top to bottom: after 3" block, after 6™
block and after 7" block.

C. Experimental Setup
All models are trained and evaluated on a workstation with

an NVIDIA RTX 4090 GPU (24 GB VRAM), 64 GB of CPU
memory, and 24 CPU cores. The main hyperparameters are:
batch size 16, Adam optimizer with weight decay =15 x 107,
number of epochs 30, ReduceLROnPlateau scheduler with
patience = 3, reduce factor = 0.5. The metric used to trigger
reduction in the learning rate is APCER, with an initial learning
rate: 1 x 10-4. Preliminary experiments showed that higher
learningrates as 102 or 10~ led to poor convergence, even when
the Shuffle Attention block was removed. Consequently, a
smaller learning rate with a pre-trained backbone yielded more
stable results, suggesting that retaining initialization from
EfficientNetV2-S is essential for this task. Each training epoch
processes every sample in the dataset once. Early stopping is
triggeredifno improvementis observedin the validation metrics
formore than five epochs, and the best model snapshot based on
the validation set is preserved for final testing.

2

B

A
-

Fig. 3. Dataset samples. From left to right: live face, printed attack and
replay attack.
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Several transformations are applied to modify image
properties while preserving essential features. Horizontal
flipping reverses the image along the vertical axis, helping the
model generalize to different orientations. Adjustments in
contrast, gamma, and brightness alter pixel intensity
distributions, simulating variations in lighting conditions.
Elastic transformations, grid distortions, and optical distortions
introduce non-linear deformations, making the model more
resilient to geometric variations. Cutout randomly masks
portions of the image, encouraging the model to focus on
essential patterns rather than specific regions. Shift, scale, and
rotation transformations modify the position and size of objects,
aiding in generalization across different viewpoints.

IV. RESULTS

A. Evaluation Metrics

In our evaluation of biometric authentication systems, we
use three key metrics: Attack Presentation Classification Error
Rate (APCER), Bona Fide Presentation Classification Error
Rate (BPCER), and Average Classification Error Rate (ACER).

APCER [Eq. (4)] measures the frequency of falsely
acceptingan attack attempt. A higher APCER indicates a greater
likelihood of incorrectly classifying an attack as a genuine
attempt. BPCER [Eq. (5)] represents the proportion of falsely
rejected genuine presentations. A high BPCER means that
genuine users are more frequently denied access. ACER
[Eq. (6)] provides an overall error measurement by averaging
APCER and BPCER. Lower ACER values indicate better
system performance in distinguishing between genuine and
attack presentations.

Number of False Accepts

APCER = - (4)
Total Number of Attack Presentations
Number of False Rejects
BPCER = f False Rej : (5)
Total Number of Genuine Presentations
APCER+BPCER
ACER = /= (6)

2
B. Experimental Results

1) State-of-the-art  comparison: The  experimental
outcomes were obtained from four distinct protocols designed
to evaluate face presentation attack detection under various
challenging conditions, as illustrated in Table I.

Protocol I focuses on generalization across environmental
variations. Data recorded in three sessions with differing
illumination and background settings were partitioned into
training, development, and evaluation sets. The proposed
method achieved zero errors, with APCER, BPCER, and ACER
all measuring 0%. An analysis of the error metrics confirms an
exceptional ability to differentiate between authentic and attack
samples under fluctuating lighting and background conditions.

Protocol II examines the impact of novel attack artifacts
generated by previously unseen printand video-replay attacks.
A new print attack and a video-replay attack were incorporated
into the test set to assess vulnerability to unconventional

Vol. 16, No. 10, 2025

spoofing techniques. The approach recorded an ACER of 1.6%,
with APCER at0.4%and BPCER at2.8%. A detailed evaluation
of the figures reveals a robust performance in minimizing false
acceptance errors, demonstrating a strong capacity to counteract
artifacts introduced by diverse display and printing sources.

Protocol III investigates sensor interoperability using a
Leave One Camera Out setup. Video recordings from five
smartphones contributed to training and tuning, while
recordings froma sixth device provided the testing material. An
ACER of 0.8+0.6% was obtained, with both APCER and
BPCER reflecting similarly low error margins. Consistency in
performance across various camera sensors confirms a reliable
level of operation amongdifferent acquisition devices. A careful
review of the stability of these metrics confirms the method’s
applicability in scenarios involving heterogeneous imaging
sensors.

Protocol IV presents the most challenging scenario by
combining environmental variations, attack types, and sensor
diversity. Under these complex conditions, the method achieved
an ACER of 1.9 +2.0%, outperforming competing approaches
that exhibited higher errorrates. Error metrics forboth APCER
and BPCER were noticeably reduced under the simultaneous
influence of multiple factors.

2) Contribution of the modules and ablation: To prove that
the combination of additional modules works, the different
stages by adding modules progressively were tested. In
Table II, the EfficientNet-V2-S model achieves APCER of
0.8%, BPCER of 3.8%, and ACER of 2.4%. Introducing a
Fourier Heads atthe 314, 6™, and 7" blocks results in lower error
rates, reducing APCER to 0.7%, BPCER to 3.2%, and ACER
to 2.1%, suggesting an improvement in attack detection.

Further refinement by integrating the Shuffle Attention
module into those blocks leads to the best performance, with
APCER droppingto 0.4%,BPCER to 2.8%,and ACER to 1.6%.
The consistent reduction in error rates indicates that the
combination of Fourier Heads and SA Module contributes to
more effective feature extraction, strengthening the model’s
ability to distinguish genuine faces from spoofing attempts.

3) Dynamic thresholding: Dynamic thresholding is a
technique used in biometric security systems to adaptively
determine decision boundaries based on varying conditions.
Unlike fixed thresholding, which applies a single static
threshold across all samples, dynamic thresholding adjusts the
classification boundary according to contextual factors such as
environmental conditions, device variability, or individual user
characteristics. This approach enhances the robustness of
biometric systems by mitigatingthe impact of variations in data
distributions and reducing misclassification errors. In
presentation attack detection, dynamic thresholding is
particularly effective in balancing security and usability, as it
allows the system to refine its decision-making process based
on real-time inputs.
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TABLE 1. EXPERIMENTAL RESULTS AND COMPARISON WITH DIFFERENT STATE-OF-THE-ART METHODS ON OULU-NPU DATASET
Protocol Method APCER (%) BPCER (%) ACER (%)
STASN [35] 1.2 2.5 1.9
Auxiliary [36] 1.6 1.6 1.6
Disentangle [37] 1.7 0.8 1.3
STDN [38] 0.8 1.3 1.1
| CDCN [39] 0.4 1.7 1
DC-CDN [40] 0.5 0.3 0.4
NAS-FAS [41] 0.4 0 0.2
PatchNet [42] 0 0 0
TransFas [43] 0.8 0 0.4
Ours 0 0 0
STASN [35] 42 0.3 22
Auxiliary [36] 2.7 2.7 2.7
Disentangle [37] 1.1 3.6 2.4
STDN [38] 23 1.6 1.9
5 CDCN [39] 1.5 1.4 1.5
DC-CDN [40] 0.7 1.9 1.3
NAS-FAS [41] 1.5 0.8 1.2
PatchNet [42] 1.1 1.2 1.2
TransFas [43] 1.5 0.5 1
Ours 0.4 2.8 1.6
STASN [35] 4.743.9 0.9+1.2 2.8+1.6
Auxiliary [36] 2.7+1.3 3.1+1.7 2.9+1.5
Disentangle [37] 2.842.2 1.74£2.6 22422
STDN [38] 1.6+1.6 4.0+54 2.843.3
CDCN [39] 24+1.3 2.2+2.0 2.3+14
} DC-CDN [40] 22428 1.6+2.1 1.9+1.1
NAS-FAS [41] 2.1£1.3 1.4+1.1 1.7£0.6
PatchNet [42] 1.8+1.5 0.6+1.2 1.2+1.3
TransFas [43] 0.6+0.7 1.1£2.5 0.9£1.1
Ours 0.8+0.5 0.8+0.8 0.8+0.6
STASN [35] 6.7£10.6 8.3+8.4 7.5+4.7
Auxiliary [36] 93+56 10.4+6.0 95+6.0
Disentangle [37] 54+29 3.346.0 4.4+3.0
STDN [38] 2.343.6 52454 3.84+4.2
4 CDCN [39] 4.6+4.6 9.248.0 6.94+2.9
DC-CDN [40] 54433 2.544.2 4.0+£3.1
NAS-FAS [41] 42453 1.7+£2.6 2.9+2.8
PatchNet [42] 2.543.8 3.343.7 2.943.0
TransFas [43] 2.1+2.2 3.843.5 29+2.4
Ours 2.542.5 1.242.1 1.9£2.0
TABLE II. INDIVIDUAL CONTRIBUTION OF EACH MODULE TESTED ON PROTOCOL II
Method APCER (%) BPCER (%) ACER (%)
EfficientNet-V2-S 0.8 3.8 24
EfficientNet-V2-S w/ 3rd, 6th, 7th blocks Fourier Heads 0.7 32 2.1
EfficientNet-V2-S+SA Module w/ 3rd, 6th, 7th blocks Fourier Heads 0.4 2.8 1.6
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Fig. 4. Dynamic thresholding for 3 protocols.

Fig. 4 illustrates the performance of three different protocols
under dynamic thresholding on the OULU-NPU-Test dataset.
The x-axis represents the BPCER, which indicates the
proportion of genuine samples misclassified as attacks. The y-
axis corresponds to the APCER, reflecting the proportion of
attack presentations misclassified as genuine. Lower values on
both axes indicate a more effective system, as it minimizes both
types of errors.

Protocol I, represented in blue, demonstrates a steep decline
in APCER as BPCER increases. At very low BPCER values,
APCER remains considerably high, indicating that the system is
prone to false acceptance when a strict threshold is applied. This

Vol. 16, No. 10, 2025

pattern suggests that the protocol may be highly sensitive to
variations in presentation attacks but suffers from instability
when distinguishing bona fide samples. The rapid decrease in
APCER as BPCER increases further suggests that a slight
relaxation of the threshold significantly improves attack
detection, albeit at the cost of increased false rejection.

Protocol II, visualized in red, follows a more stable
trajectory, exhibiting a gradual reduction in APCER as BPCER
increases. Compared to Protocol I, this approach achieves a
more balanced trade-off between false acceptance and false
rejection, indicating that it may be more reliable in practical
deployment scenarios. The smoother trendline suggests that
Protocol II is less sensitive to minor variations in input data,
making it a more consistent option for presentation attack
detection.

Protocol Il, shown in orange, consistently maintains the
lowest APCER across the observed BPCER range. The results
indicate that this protocol outperforms the other two in
minimizing attack presentation errors while maintaining a
relatively low bona fide classification error. The stability of the
curve suggests that Protocol IIl achieves a well-calibrated
balance between security and accessibility, making it the most
effective among the three.

4) Grad-Cam results: Grad-Cam [34] results in Fig. 5
provide an insightful interpretation of thedeep learningmodel’s
decision-making process for detecting presentation attacks.
Heatmaps indicate which facial regions contribute most to
classification, revealing distinct patterns across live, print, and
video-replay samples.
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Fig.5. Grad-Cam results. From left to right columns: live, print, and video-replay.

In live face images, attention is primarily focused around the
mouth and nose, where color, texture, and depth cues play a
significant role in distinguishing genuine faces. The uniform
blue background suggests that the model effectively ignores
non-relevant areas, reinforcing its reliance on intrinsic facial
details.

For print and video-replay attacks, activations shift towards
facial boundaries, where red and yellow highlights suggest the
model detectsinconsistencies in edgesandlighting artifacts. The
presence of strong activations around the periphery indicates an
effort to identify unnatural textures, which are often present in
spoofing attempts.

Images with glasses introduce additional complexity, with
attention distributed around the frames and nose bridge. Higher
activations in print and video attacks suggest reflections and
distortions are key factors in classification.

Variations in heatmap intensity between attack types
confirm the model’s ability to differentiate genuine and spoofed
faces. Attention shifts in predictable ways, aligning with
expected signs of presentation attacks, demonstrating the
model’s capacity to detect spoofing artifacts with reliability.

Overall, the experimental resultsindicate several advantages
of the proposed method. The approach demonstrates flawless
performance in the face of environmental variations, maintains
a low false acceptance rate against novel attack artifacts, and
exhibits consistent error rates across different sensor inputs.
When confronted with a combination of challenges, it delivers
competitive performance with reduced error metrics, suggesting
promising applicability for real-world face presentation attack
detection systems.

V. DISCUSSION

The experimental results indicate a promising advancement
in face presentation attack detection. Findings confirm that
spatial and frequency domain information combined into a
unified architecture can significantly improve detection
accuracy. The adoption of EfficientNet-V2-S as the backbone,
combined with a Shuffle Attention module, has provided a
robust framework capable of extracting discriminative features
even under adverse conditions. Integration of Fourier heads to
reconstruct frequency maps introduces a novel perspective that
captures subtle differences between live and spoofed faces, as
evidenced by the low error rates across various protocols.

Performance under controlled environmental variations
demonstrated strong discrimination between genuine and attack
samples. Minimal errors in protocols addressing different
illumination and background conditions suggest that the
network effectively adapts to changes in lighting and scene
composition. Robust outcomes in scenarios involving
previously unseen print and video-replay attacks further support
the method’s aptitude for recognizing unconventional spoof
artifacts. Results reveal a capacity for mitigating false
acceptance errors, which remains critical in maintaining the
integrity of biometric systems.

Interoperability across different sensor types has been
confirmed through experiments using diverse smartphone
cameras. Consistent performance in sensor-specific testing
scenarios reinforces the network’s reliability, even when
presented with imaging data acquired from heterogeneous
sources. Outcomes recorded in the most challenging scenario,
where multiple factors were simultaneously present, indicate
competitive error metrics that rival or surpass existing methods.
Low Average Classification Error Rates across protocols
suggest that the design effectively balances the detection of
genuine presentations with the rejection of spoof attacks.

Observations imply that the fusion of spatial features and
frequency representations addresses limitations inherent in
earlier approaches based solely on handcrafted or spatial
features. The network’s ability to capture minute texture and
motion cues, while simultaneously processing global frequency
information, contributes to its overall robustness. A careful
analysis of the error metrics shows potential avenues for further
exploration, particularly regarding the model’s performance in
real-world environments where attack types may be more
diverse.

Limitations related to domain shifts between training and
deployment environments persist, inviting additional research to
refine generalization capabilities. Future investigations might
consider the incorporation of alternative modalities or additional
attention mechanisms to further improve detection rates under
evolving spoof conditions. Overall, the findings present
compelling evidence that integrating modern network
architectures with both spatial and frequency domain analysis
provides a viable pathway toward more reliable and secure face
presentation attack detection systems.
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VI. CONCLUSION

This work demonstrates that explicitly coupling spatial
features with frequency-aware supervision yields robust face
presentation attack detection across environmental, attack-type,
and sensor variations. An EfficientNetV2-S backbone provides
an effective accuracy-latency balance for deployment; Fourier
heads guide the network to preserve high-frequency spoof cues
that are often attenuated in spatial pipelines; and, Shuffle
Attention efficiently enhances discriminative regions without
heavy computation. Across Oulu-NPU’s four protocols, the
system attains 0% ACER in Protocol I, 1.6% in ProtocolIl, 0.8
+0.6% in Protocol III, and 1.9 +2.0% in Protocol IV, indicating
strong generalization to novel artifacts and unseen sensors.
Beyond raw numbers, the ablations and interpretability results
clarify why the method works: frequency supervision reduces
bona-fiderejectionsunder photometric variation, while attention
improves rejection of attack-specific structures, together
producing consistent gains.

For security-sensitive biometric applications, reducing
APCER directly lowers the risk of unauthorized access, and
lowering BPCER preserves user experience. The proposed
design advances practical anti-spoofing by improving both,
without sacrificing throughput or model size, making it suitable
for edge and mobile deployments. Performance under severe
domain shift can still degrade. Future work will: 1) incorporate
temporal cues (e.g.,rPPG or micro-motion) alongside frequency
supervision, ii) explore self-supervised or domain-
generalization objectives to handle unseen attacks, and iii)
calibrate dynamic thresholds using cohort/device context to
further stabilize APCER-BPCER trade-offs in the field.
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