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Abstract—In modern software development, achieving high 

performance increasingly relies on effective parallelization. While 

much of the existing research has focused on loop-level 

parallelism, function-level parallelization remains relatively 

underutilized. Yet, in many real-world applications, function calls 

serve as natural units of computation that could greatly benefit 

from concurrent execution. To address this gap, we present an 

automated tool that analyzes sequential C++ code, identifies 

independent function calls, and evaluates their suitability for 

parallel execution. The tool performs three key analyses: 

dependency analysis to detect function calls, context analysis to 

understand execution conditions, and workload assessment to 

determine whether parallelization would result in significant 

performance benefits. Based on the analysis results, the tool 

transforms eligible function calls into parallel equivalents without 

altering the original program logic.  Additionally, the tool 

generates detailed Control Flow Graphs (CFG) for each function 

in three formats, facilitating further structural analysis. Three 

benchmark programs were used in experimental testing. The 

evaluation measured both sequential and parallel execution times, 

along with the computed performance gain expressed as a 

percentage reduction in runtime. Results demonstrated the tool’s 

ability to improve execution efficiency and reduce processing time. 

These outcomes emphasize the tool’s role in advancing function-

level automatic parallelization.  The tool showed notable 

performance improvements across the three benchmark 

applications, with the Employee Performance System achieving 

the highest improvement of 54.6%, followed by the Genomic 

Sequence System at 48.3%, and the Book Reviews System 

achieving an improvement of 36.1%. Demonstrating the tool’s 

ability to improve efficiency via automated function-level 

parallelization. 

Keywords—Automatic parallelization; function-level 

parallelization; C++ code optimization; parallel computing; control 
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I. INTRODUCTION 

Improvements of multi-core processors have increased the 
adoption of parallel programming among software developers. 
However, developing parallel code remains a challenging and 
error-prone task. As a result, automating code parallelization 
has emerged as a hot topic in high-performance applications 
research [1]. Available parallelization techniques usually target 
specific sections of code that are suitable to concurrent 
execution. Loops are the most common candidates. Loops often 
contain iterative operations that can be executed in parallel 

without interdependencies, making them ideal for leveraging 
multi-core and multi-threaded architectures. 

However, there are other code constructs, such as function 
calls, that can enhance performance and efficiency if they are 
properly utilized. 

By focusing on function calls, parallelization strategies can 
effectively improve the software applications. However, 
despite years of research, the automatic parallelization of 
function calls remains an unresolved problem. Function calls 
often still require manual parallelization [1]. 

The motivation for this work stems from several critical 
challenges in modern software development: 

1) Underutilization of parallelization opportunities: While 

parallelization research has focused heavily on optimizing 

loops, function calls have received comparatively less attention. 

This highlights a significant gap in current parallelization 

research, as function calls provide substantial opportunities for 

enhancing performance. In many real-world applications, 

computational workload is distributed across numerous 

function calls rather than concentrated in loops. For instance, 

data processing applications often involve multiple 

independent operations such as data extraction, filtering, 

aggregation, and statistical analysis, each implemented as 

separate functions. These functions can potentially execute 

concurrently without dependencies, yet they remain sequential 

in most codebases due to the lack of automated transformation 

tools. Addressing the parallelization of function calls helps 

improve the efficiency and scalability of code. Nonetheless, 

developing parallel code or converting certain sequential code 

to run in parallel is a challenging task that requires significant 

effort from programmers. 

2) Complexity of manual parallelization: The complexities 

of parallel programming start from the problem definition, as 

not all problems are suited for parallelization. Programmers 

must carefully consider different aspects of parallel processing, 

such as how to distribute the current workload across parallel 

threads and manage communication between these threads [2]. 

This manual effort is time-consuming, error-prone, and requires 

deep expertise in both parallel programming paradigms and the 

application domain. Developers must analyze data 
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dependencies, identify race conditions, manage 

synchronization, and ensure thread safety tasks that 

significantly increase development time and maintenance costs. 

3) Performance demands of modern applications: 

Contemporary software applications face increasing 

computational demands. From big data analytics and scientific 

computing to machine learning and real-time systems, the need 

for efficient parallel execution has never been greater. C++ 

programming language is known for its performance and fine-

grained control and become an essential component in the 

development of high-performance computing applications, 

including those that leverage parallelism [8]. However, the gap 

between available hardware capabilities and software 

utilization remains substantial. Many existing sequential C++ 

applications could benefit significantly from parallelization but 

lack the resources or expertise for manual transformation. 
Our proposed tool was designed to analyze and transform 

C++ code, which was selected due to its relevance in 
performance-sensitive software and its rich set of 
parallelization libraries. This gap is particularly significant 
because: 

• Natural Computation Units: Functions represent natural 
units of computation with well-defined interfaces and 
encapsulated logic, making them ideal candidates for 
parallel execution. 

• Coarse-Grained Parallelism: Function-level parallelism 
offers coarse-grained task parallelism that can better 
utilize modern multi-core architectures with lower 
synchronization overhead compared to fine-grained loop 
iterations. 

• Code Maintainability: Parallelizing at the function level 
preserves code structure and maintainability better than 
aggressive loop transformations. 

This study proposes a fully automated tool that offers an 
advanced method for analyzing and selecting suitable function 
calls for parallelization in C++ code, a language with unique 
structural and concurrency characteristics. The proposed tool 
integrates static analysis, control flow graph generation, and a 
lightweight scoring mechanism to identify and transform 
independent function calls into parallel equivalents using 
std::async. By applying this technique to C++, the tool bridges 
a critical gap in existing research. This contribution offers 
practical value for developers working with performance-
critical C++ applications, especially in cases where loop-level 
parallelism is insufficient. 

The main contributions of this work are: 

1) Comprehensive static analysis framework: We introduce 

a three-phase analysis approach combining: 

• Dependency Analysis: Automatically detects function 
calls and analyzes their data and control dependencies to 
ensure correctness of parallel transformations. 

• Context Analysis: Evaluates execution contexts to 
determine parallelization safety and identify functions 
that can be executed asynchronously without affecting 
program semantics. 

• Workload Assessment: Employs a work potential metric 
that quantifies computational complexity, enabling 
prioritization of parallelization candidates. 

2) Automated code transformation pipeline: The tool 

provides end-to-end automation from analysis to code 

generation: 

• Automatically transforms eligible sequential function 
calls into parallel equivalents using C++ standard library 
features (std::async, std::future), without requiring 
manual intervention or code restructuring. 

• Preserves original program logic and semantics while 
introducing parallelism. 

3) Visual Analysis and Debugging Support: 

• Generates detailed Control Flow Graphs (CFGs) for each 
function in three formats (DOT, PDF, and TXT), 
facilitating structural analysis and verification. 

• Provides comprehensive reporting of parallelization 
decisions, including work potential scores and context 
classifications. 

• Enables developers to understand, validate, and fine-tune 
the automated transformations. 

In this study, three benchmark programs were selected to 
conduct experiments. The experiments aimed at measuring 
parallel execution time, sequential execution time, and 
computed performance improvement, representing the 
percentage reduction in execution time. The results show that 
our proposed tool successfully enhances performance and 
reduces execution time. The findings highlight the tool’s 
capability as a step forward in bridging the current gap in 
automatic parallelization research, particularly at the function-
call level. 

The structure of this paper is as follows: Section II provides 
background information; Section III reviews related work; 
Section IV describes the system architecture and methodology; 
Section V presents the experimental results and discussion; 
Section VI evaluates performance improvements; and 
Section VII concludes the paper. 

II. BACKGROUND 

Historically, processor design has focused on combining 
more advanced features, achieving higher clock speeds and 
increasing thermal limits. However, the pursuit of enhanced 
performance remains a necessary demand. This has driven the 
adoption of integrated multi-processor (multi-core) 
architectures [3]. 

However, transistors can’t keep getting smaller indefinitely. 
Nowadays, as transistors become thinner, chip makers aim to 
manage heat generation and power usage; these are two major 
challenges. Additionally, performance enhancement techniques 
like running multiple instructions at the same time have reached 
their limits. 

Due to these problems, the rate of processor performance 
improvements has started to slow down. In the 1990s, chip 
performance increased by 60 percent each year, while from 
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2000 to 2004, this growth slowed to 40 percent annually, with 
performance only rising by 20 percent. 

In fact, improvements in computer performance have 
essentially resulted from making chips smaller and increasing 
their number of transistors. According to Moore's Law, this 
approach has led to faster chip speeds and reduced costs. 
Instead of making one super powerful core, companies are now 
creating chips with multiple cores that use less energy and run 
cooler. Even though these multicore chips might not be as fast 
as the top single-core ones, they improve overall performance 
by handling more tasks at the same time [4]. 

Many modern programs require more computing power 
than traditional single-threaded computers can offer. In order to 
achieve better performance, parallel processing is necessary to 
meet demand. Parallelism allows executing multiple tasks at the 
same time to solve complex problems in less time. Multicore 
processing requires running programs on more than one core 
within a single CPU chip, which is a type of parallel processing. 
Multicore utilization means using the CPU's multiple cores 
efficiently [5]. 

In parallel processing of programs, instructions are split 
across many processors to run the same program faster than 
with sequential processing. Some programs that require tasks 
such as sorting and searching are designed to use parallel 
processing. Such programs are often tested on large databases. 
Experimental results using bubble sort and linear search show 
that sharing the load and utilizing multicore parallel processing 
make tasks easier and quicker compared to sequential 
processing. Parallel processing and multicore processing both 
involve the ability to run code simultaneously on different 
CPUs, machines, or cores. Multicore processing is designed to 
perform tasks in parallel. A core can be considered as a small 
processor within a larger processor. Therefore, optimizing code 
for multicore processing is closely tied to parallelization [4] [5]. 

Finding opportunities to run code automatically in parallel 
is essential for developing efficient programs to run on many 
multithreaded applications. This area has been researched for 
many years. Even though hardware provides some fine-grained 
parallelism, compiler researchers have to develop techniques to 
automatically convert source code into suitable parallel 
applications. 

With the growing ubiquity of distributed computing, the 
software industry demands compiler technologies capable of 
automatically parallelizing software. However, the demand for 
automatic parallelization in compilers is growing as clusters 
and other kinds of distributed computing become widely 
adopted, and CPU technology moves toward higher levels and 
coarser granular parallelism [6]. 

Generally, automatic parallelization involves the following 
three procedures [7]: 

• Dependency analysis to identify potential parallelism 
regions: Carrying out a dependency analysis to identify 
regions in the code that are capable of parallelization.  

• Restructuring the program into blocks that can run in 
parallel: Organizing the code into number of blocks that 
can run simultaneously. In this phase, different 

transformations are applied to maximize the level of 
parallelism achievable within the code. 

• Generating parallel code suitable for specific 
architectures: Producing parallel code optimized for a 
particular architecture by assigning program blocks to 
available processing units and developing appropriate 
strategies to enable parallelism based on the targeted 
system. 

Building on these core steps, it is essential to consider how 
specific programming languages, such as C++, support 
parallelism through built-in features and libraries. C++ supports 
multithreaded execution through features such as std::async, 
which play a basic role in parallelism [15]. Other standard 
multithreading features in C++ that simplify parallel 
programming include [15]: 

• std::thread: To manually manage the creation and 
control of new threads of execution. 

• std::async: Enables asynchronous function execution, 
with thread management handled automatically by the 
system. 

• std::future: Used with std::async or std::promise to 
obtain results from asynchronous executions. 

• std::promise: For sending a value from one thread to 
another, typically used with std::future. 

• std::mutex: Prevents race conditions by ensuring that 
only one thread can access shared data at a time. 

Several prior studies have extensively discussed the 
evolution of multicore architectures, the challenges in 
optimizing code for parallel execution, and the importance of 
automatic parallelization to utilize modern hardware 
efficiently. These works collectively emphasize the necessity of 
transitioning from sequential to concurrent execution, while 
highlighting fundamental techniques such as dependency 
analysis, control flow restructuring, and task distribution across 
cores. They also explore compiler-assisted approaches, parallel 
programming models, and language-specific solutions that aim 
to simplify or automate this transition. 

While these contributions have laid important groundwork 
for parallel computing, particularly in loop and object-oriented 
contexts, there remains a noticeable gap in the automation of 
function-level parallelization, especially for statically analyzed, 
general-purpose C++ applications. This study builds on those 
foundational insights by introducing a tool that automates the 
detection, analysis, and transformation of independent function 
calls into parallel equivalents using C++’s native concurrency 
libraries. The proposed solution requires no manual 
intervention or external annotations, offering a fully automated 
pipeline that strengthens the practical adoption of parallelism in 
real-world C++ systems. 

III. RELATED WORKS 

Parallel computing has recently become more in demand 
due to the increasing growth of multi-threaded architecture. 
There are some papers that discuss certain techniques that aim 
to efficiently transfer a sequential program into a parallel one. 
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In [9], the authors introduce an approach that uses the 
concept of futures synthesis for pure method call 
parallelization. Their approach employs three strategies to 
achieve automatic parallelization through future synthesis: 
parallelism analysis, future synthesis, and threshold synthesis. 
In the future synthesis phase, the proposed system identifies 
pure method calls and labels them as async expressions. After 
that, the system conducts a parallelism analysis to determine 
which async expressions should be executed sequentially to 
avoid overhead. Finally, threshold synthesis utilizes the results 
of the parallelism analysis to synthesize predicate expressions 
for deciding whether a specific pure method call should be 
executed in parallel or sequentially. 

Our tool focuses on C++ and operates at the static level, 
targeting functions that are independent and computationally 
intensive. It does not rely on runtime profiling but instead uses 
a scoring system to identify which functions should be 
parallelized. While in study [9] the tool is adaptive and runtime-
aware, ours offers a lightweight and deterministic 
transformation pipeline that produces a ready-to-compile 
parallel version of the original program, making it ideal for 
users seeking fast and fully automatic optimization. 

In [16], authors introduced Lazy-Parallel Function Calls, a 
compiler-level approach that enables automatic parallelization 
in imperative languages by combining lazy evaluation 
semantics with nano-thread scheduling. Their method ensures 
correctness by leveraging immutability and deferring function 
execution until results are required, enabling parallelism 
without altering program behavior. In contrast, our tool targets 
eager, function-level parallelization in C++ using std::async, 
automatically identifying independent function calls and 
transforming them for concurrent execution. While their work 
emphasizes semantic safety, our approach focuses on 
performance gains in compiled C++ applications. 

In [10], the authors present an automatic technique that 
analyzes code written in the Java programming language to 
detect method calls that can be parallelized and transform them 
accordingly. The proposed technique is based on control 
dependence and data dependence analysis to construct the 
execution flow and determine accessed data. 

APAC [11] is a compiler that converts sequential source 
code written in the C++ language into task-based parallelized 
code by inserting special directives. This compiler utilizes the 
LibTooling library and clang-tools from the LLVM framework. 
It encapsulates each function body with an OpenMP directive, 
and each function or method call with an OpenMP statement. 

As authors stated in study [12], there are many recursive 
functions that contain a significant amount of built-in 
parallelism, but it is not always clearly visible. Thus, a number 
of studies have been conducted to detect parallelism and utilize 
it. Mainly by targeting calls that can be executed concurrently. 
However, some recursive algorithms do not permit the 
concurrent execution of function calls. According to the authors 
[12], they examined ways to extract concurrency from specific 
recursive function calls that are not typically parallelizable by 
common parallelization methods. Their primary approach 
involves parallelizing them at a finer level, relying on multi-
threaded architecture and a multi-core as the infrastructure. The 

authors stated that, compared to conventional parallel systems, 
multi-core systems support a greater degree of fine-grained 
parallelism by providing thread parallelism and reducing 
overhead in thread communication. 

Autopar [13] is a tool that targets to automatically 
parallelize certain recursive function calls using analysis of 
static programs. It detects the recursive functions inside a 
certain program. After that, it moves to the analysis phase by 
gathering related information about such functions without the 
need for rewriting the program or requiring developer 
involvement. Finally, Autopar introduces the parallel 
constructs necessary to achieve automatic parallelization. In 
fact, their tool applies to a specific class of recursive functions 
that use a divide-and-conquer approach. They tested four 
benchmarks—bionic, fractal, heat, and knapsack—using their 
recursive function parallelization tool. 

In [14], the proposed tool applies a coarse-grained approach 
to task parallelism. It utilizes OpenMP directives and inserts 
them into the input C code. The output program is a 
multithreaded C code that can use different cores in a shared 
memory system. The system operates between the compiler and 
the application. The generated output is compiled just like any 
ordinary C code. Both the input and output of their proposed 
tool are source code, making it a source-to-source 
transformation tool. 

In [17], authors propose two optimizations—Last Parallel 
Call Optimization (LPCO) and its generalization, Nested 
Parallel Call Optimization (NPCO) which is designed to 
improve the efficiency of and-parallel logic programming. 
Their methods restructure parallel goal execution in logic 
programs to minimize redundant parallel tasks and enable fast 
backtracking. These techniques are tailored for the control-
parallel execution model, where correctness depends on 
preserving goal dependencies. 

Table I presents a comprehensive comparison of the 
limitations identified in existing approaches and how our 
proposed tool addresses these gaps. 

TABLE I.   LIMITATIONS OF EXISTING APPROACHES AND OUR PROPOSED 

SOLUTION 

Aspect 
Existing Approaches 

Limitations 

Our Proposed Tool 

Solution 

Language Support 

Limited to specific 

languages: Java 

[9][10], C [14], logic 

programming [17] 

Comprehensive C++ 

support with standard 

library integration 

(std::async, std::future) 

Function Coverage 

Restricted to recursive 

[12][13] or pure 

methods [9]; ignores 

general function calls 

Analyzes all function 

types: recursive, non-

recursive, member 

functions, and 

standalone functions 

Analysis Type 

Runtime profiling 

required [9]; limited 

static analysis 

[13][14] 

Comprehensive static 

analysis combining 

dependency, context, 

and workload 

assessment 

Automation Level 

Semi-automated 

requiring manual 

refinement [11]; 

domain-specific [17] 

Fully automated end-

to-end pipeline from 

analysis to code 

generation 
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IV. METHODOLOGY 

This study introduces a tool that addresses an important 
parallelization technique: unlike loop parallelization, research 
on parallelizing function calls is limited. This tool offers an 
improved method for analyzing and selecting the applicable 
functions for parallelization in C++ code. This tool includes 
AST traversal and work potential metrics to evaluate 
computational effort and identify functions with high 
parallelization possibility. Moreover, it generates detailed 
control flow graphs as well as an analysis context in order to 
give valuable insights to programmers who look to optimize 
program efficiency through parallel execution. As Fig. 1 shows, 
the tool has five main functionalities, which we will discuss in 
detail. These main functionalities are: Function Analysis, 
Context Analysis for Parallelization, Control Flow Graph 
(CFG) Generation, Work Potential Calculation, and CFG 
Visualization. 

 
Fig. 1. Five key functionalities of the tool. 

Main key functionalities of the proposed tool: 

A. Function Analysis 

• Parses the C++ source code using Clang's libclang to 
generate an abstract syntax tree (AST). 

• Extracts functions and analyzes each line for function 
calls to understand dependencies and execution flow. 

B. Context Analysis for Parallelization 

• Determines whether each function call can be 
parallelized based on its context (e.g., whether it’s inside 
loops or conditionals). 

C.   Control Flow Graph (CFG) Generation 

• Generates a CFG for each function, including nodes for 
statements and edges representing control flow. 

• Annotates each function call with contextual information 
(e.g., if part of a loop) to highlight non-parallelizable 
code. 

D. Work Potential Calculation 

• Each function is assigned a "work potential" score based 
on the complexity of its control flow and nested calls. 

• Higher work potential indicates a candidate for 
parallelization, while certain functions (like main) are 
excluded due to its structural importance. 

E. Control Flow Graph (CFG) Visualization 

• Uses Graphviz to create a DOT file for each function's 
CFG, saving it as a DOT, a PDF, and TXT file. 

• The CFG graphically represents the control flow, 
showing how different statements and function calls are 
interconnected. 

Our tool utilizes the use of libclang for parsing C++ code 
(AST) and graphviz for visualizing CFGs. Libclang is a library 
that offers tools for parsing and analyzing C++ code. It is part 
of the LLVM project and enables the generation of an Abstract 
Syntax Tree (AST). Graphviz, on the other hand, is a 
visualization software used for creating graphs and diagrams. It 
is specifically utilized to generate Control Flow Graphs 
(CFGs), which visually represent the flow of execution within 
a program, helping programmers understand how different 
parts of the code are connected and identify potential 
bottlenecks or parallelization opportunities. Moreover, it 
usesC++ Parallelization and Synchronization Library 
(std::async: allows asynchronous function execution and 
enabling tasks to run concurrently in separate threads). As 
Fig. 2 illustrates, the tool's architecture starts with C++ source 
code input, which undergoes scanning to detect functions. This 
is followed by C++ code analysis, which performs dependency 
and context analysis generate Control Flow Graphs (CFGs) and 
calculate work potential. Finally, the tool moves to C++ code 
generation, completing the process [10].  

 

Fig. 2. The proposed tool archeticure. 

A detailed description of the tool architecture: 

1) Context analysis: This analyzes the context in which 

function calls occur, meaning it analyzes C++ source code to 

identify functions that can be parallelized to improve 

performance. 

Tables II and III provide a detailed clarification of the 
situations under which functions are considered parallelizable 
and when they are not suitable for parallelization. 

2) CFG building: CFG builder drives the analysis of a 

specified C++ code, generates control flow graphs (CFGs), 

saves them in a designated output directory, and classifies 

functions by their work potential (which will be discus1§sed) 

for advanced parallelization identification. 
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TABLE II.   CONDITIONS FP;OR CONSIDERING A FUNCTION CALL AS 

POTENTIALLY PARALLELIZABLE 

Condition Reason 

Not Part of Control Structure: 

The function call is not used within the 

condition of control structures such as if, 

while, for, or switch statements. 

Function calls within 

conditions are critical for the 

control flow and may need to 

be executed sequentially to 

maintain program correctness 

Not Inside Loops: 

The function call is not located within the 

body of for or while loops. 

Parallelizing function calls 

inside loops can lead to 

synchronization issues and 

may not provide performance 

benefits due to overhead. 

Not Part of Return Statements: 

The function call is not used directly 

within a return statement. 

The result of the function is 

immediately required for the 

return value, so parallelizing 

it would necessitate waiting 

for its completion. Attempting 

to execute such a function 

asynchronously (in parallel) 

does not provide any 

performance improvement 

and may introduce 

unnecessary overhead. This 

essentially cancels out any 

potential advantages of 

parallelization in that context. 

Not Part of Throw or Assert Statements: 

The function call is not used within throw 

or assert statements. 

Throw: is used to signal an exception or 

error condition. 

Assert: The assert function checks / 

validates a condition at runtime. 

These statements are critical 

for error handling and 

program correctness, 

requiring immediate 

execution. 

Standalone Function Calls: 

The function call is a standalone statement 

or assigned to a variable outside the 

contexts mentioned above. 

Such calls can be executed 

asynchronously without 

affecting the program’s 

control flow. 

TABLE III.  CONTEXTS WHERE A FUNCTION CALL IS NOT SUITABLE FOR 

PARALLELIZATION 

Number Condition 

1 Control Structure Conditions 

2 Inside Loops 

3 Return Statements 

4 Part of Throw or Assert Statements 

3) Work potential metric: work potential metric is used for 

prioritizing parallelization by suggesting specific functions to 

parallelize. This process is based on calculating the 

computational load or complexity of each function and 

assigning it a score. Functions with a high work potential score 

are likely to benefit from parallelization, so the tool identifies 

and lists these functions at the end of the analysis, see Fig. 3. 

 
Fig. 3. Steps of the work potential metric. 

4) Work potential purposes: The main purposes of the work 

potential metric are to quantify computational effort because 

functions with more statements and function calls need more 

computational processing, and to identify chances for 

parallelization, as high work potential indicates that a function 

may benefit from being executed in parallel which enhance 

performance. However, there are some excluded functions. 

Certain functions, like main, are excluded from parallelization 

even if their work potential score is high, because parallelizing 

the main function does not make sense. It organizes all other 

functions and controls the entire program's execution, so it is 

avoided from parallelization. 

5) Work potential calculation: Calculation Method for 

finding Work Potential is a systematic method that requires 

analyzing C++ functions and utilizing Clang's libclang library 

to evaluate computational complexity. It uses Clang's libclang 

library to parse the C++ source code and generate an AST, and 

traverses each function's AST to analyze its structure. The Work 

Potential Counter (work_potential) counts statements and 

function calls. First, it is initialized to zero for each function. 

Then, it gets incremented for each statement encountered 

during traversal, as well as for each function call within the 

function. 

V. RESULT AND DISCUSSION 

We evaluated the parallelization tool on the BookLibrary 
benchmark program. BookLibrary, a C++ program, is 
considered a tool for data processing and analytics of book 
review data. It includes classes like Review, Book, Author, 
User, ExtractData, and ExtractDataset in order to organize and 
analyze information related to books, authors, users, and 
reviews. Our approach targets programs where function calls 
account for a significant portion of the workload. Therefore, we 
chose BookLibrary program because a substantial amount of its 
sequential work is executed through function calls. 
BookLibrary.cpp helps users load, analyze, and summarize 
book review data, with a particular focus on author and user 
review statistics, enabling insights into authors’ popularity and 
reader engagement. Table IV shows the main components of 
the C++ code. In addition to those listed in Table IV, there are 
other functions that calculate and return the most, least, and 
average-reviewed books, as well as retrieve the most and least-
reviewed authors based on their books' reviews. 

TABLE IV.  OVERVIEW OF MAIN COMPONENTS IN THE C++ CODE 

Classification Description 

Data 

Representation 

Review: Represents a review of a book with attributes 

like book ID and title. 

Book: Represents a book, including its title and list of 

reviews. 

Author: Represents an author with related books and 

users. 

User: Represents a user, with a user ID and related 

reviews. 

Data 

Extraction and 

Aggregation 

ExtractDatase: Reads book and review from CSV files, 

then stores them . 

ExtractData: create mappings between books and 

authors, reviews and users, then updates book review 

data. 

A total of 53 functions were automatically extracted from 
the analyzed source file. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

595 | P a g e  
www.ijacsa.thesai.org 

The detected functions range from getBookId, located at 
line 25, to the main function at the end of the code. 

This demonstrates the tool’s capability to comprehensively 
identify and list all functional components for further analysis 
(see Fig. 4). 

 
Fig. 4. Extracted function from book_library.cpp. 

Fig. 5 below presents the tool’s output that demonstrates the 
automated generation of Control Flow Graphs (CFGs) for 
several detected functions such as getBookId, getTitle, 
getScore, getText, getReview, and getPrice. For each function, 
the tool produces three distinct representations: DOT, PDF, and 
an extended TXT format to support both visual inspection and 
structural analysis. This comprehensive output enables the 
examination of the internal logic and control dependencies 
within each function. Additionally, it allows tracing execution 
paths, detecting redundant operations, and better understanding 
of the relationships among function calls. Overall, this 
automated CFG generation provides a valuable foundation for 
program comprehension, debugging, and performance 
optimization. 

 
Fig. 5. Control Flow Graph (CFG) files generated for multiple functions. 

 
Fig. 6. Sample tool output showing identified function calls and their 

parallelization context. 

Fig. 6 illustrates the tool’s intermediate output during 
function call analysis. It captures many functions such as 
resetReviews, addReview, and updateMediumScore, and 
precise source code line numbers. Each function is reported 
along with its name, classification context, and source code line 
number. 

 
Fig. 7. Selected functions for parallelization. 

Fig. 7 shows the final summary and highlights the four 
functions identified as suitable for parallelization based on their 
work potential score. The functions 
extractMostReviewedAuthor, extractLeastReviewedAuthor, 
and extractAverageReviewedAuthor were selected due to their 
significant contribution to the overall processing load. Control 
Flow Graph (CFG) generation was completed for all, and the 
results were saved in the cfg_output directory. 

 
 

Fig. 8. Work potential scores for selected functions identified for 

parallelization. 

Fig. 8 presents a bar chart showing the work potential scores 
of selected functions identified by the tool. The x-axis displays 
four functions: extractMostReviewedAuthor, 
extractLeastReviewedAuthor, 
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extractAverageReviewedAuthor, and getUserforAuthor, while 
the y-axis quantifies their corresponding scores. The first three 
functions each achieved a high potential score of 11, indicating 
strong suitability for parallelization due to their computational 
intensity. In contrast, getUserforAuthor received a lower score 
of 5, suggesting a relatively smaller parallel workload. 

Fig. 9 shows the completion stage of the tool's 
transformation process, where selected functions have been 
successfully parallelized. The tool logs the transformed 
functions: extractMostReviewedAuthor, 
extractLeastReviewedAuthor, 
extractAverageReviewedAuthor, and getUserforAuthor and 
saves the modified source code as 
books_library_parallelized.cpp. 

 
Fig. 9. Generation of the parallelized output file. 

 

 
Fig. 10. Snapshot of Generated Control Flow Graph (CFG) files. 

Fig. 10 presents a visual overview of the directory structure 
containing the Control Flow Graph (CFG) outputs generated by 
the tool. For each analyzed function, such as addUser, 
extractBooks, and extractMostReviewedAuthor, there are 
many output formats created: 

• .dot: the raw DOT graph description format 

• .pdf: a visual representation of the control flow 

• .txt: a textual report of the CFG 

• _extended_ versions: enriched CFGs that include 
additional semantic or contextual data 

These files are organized systematically within the 
cfg_output directory, enabling developers to inspect the control 
flow structure of each function in both graphical and textual 
forms. 

 

Fig. 11.  PDF format Generated Control Flow Graph (CFG) for the Function 

addBlockFunction. 

Fig. 11 presents a sample Control Flow Graph (CFG) 
generated in PDF format for the selected function addBlock. 
The graph begins at the Entry node and transitions to a 
Compound Statement at line 102, indicating a block of grouped 
instructions. It then leads to a conditional IF node, representing 
a branching decision in the function's logic. 

Fig. 12 represents another format which is DOT format, 
while Fig. 13 represents TXT format. 

 
Fig. 12. DOT format generated Control Flow Graph (CFG) for the function. 
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Fig. 13. TXT format Generated Control Flow Graph (CFG) for the function 

addBlock( ) function. 

 
Fig. 14. Original sequential implementation of extractMostReviewedAuthor 

function. 

Fig. 14 shows the original sequential version of the 
extractMostReviewedAuthor function, where operations are 
executed in order. Fig. 15 presents the parallelized version 
automatically generated by the tool, using std::async to execute 
getAuthors and getMostReviewedBook concurrently. Our 
proposed tool identifies these opportunities without user 
intervention, which enhance the optimization process and 
facilitate it. 

 

Fig. 15. Parallelized Version of extractMostReviewedAuthor Using 

std::async. 

VI. EVALUATION METRICS 

This section presents a performance analysis and evaluation 
through comparing serial and parallel implementations, with a 
focus on improvements achieved via function-level 
parallelization. The evaluation measures the impact of 
parallelization across three distinct data processing 
applications: 

A. Book Reviews Analysis System 

Processes large datasets of book reviews to extract insights 
such as the most and least reviewed authors, average review 
counts, and user-specific data. Ideal for evaluating function-
level parallelism in data filtering and aggregation tasks. 

B. Employee Performance Analysis System 

Analyzes performance metrics of employees to compute 
scores, rankings, and performance categories. Suitable for 
testing parallel function execution in systems with structured, 
repetitive computations. 

C. Genomic Sequence Analysis System 

Performs operations such as sequence matching, frequency 
analysis, and data summarization on long character sequences. 
This benchmark represents workloads with high computational 
demand and pattern processing. 

The result shows the impact of parallel execution in 
enhancing computational efficiency across different workloads 
and domains. 

In this study, the Improvement metric was selected to 
quantitatively assess the performance gains achieved through 
function-level parallelization. The metric calculates the 
percentage reduction in execution time between the original 
serial implementation and the parallelized version, using the 
following formula: 

Improvement (%)= [(Tserial −Tparallel)/ Tserial] ×100      (1) 

Where Tserial denotes the execution time of the serial 
version, and Tparallel represents the time taken by the parallel 
implementation.  

D. Book Reviews System Performance Metrics 

Table V and Fig. 16 compare the execution times of serial 
and parallel implementations across various functional 
components. The results demonstrate that all operations 
benefited from parallelization, with notable reductions in 
execution time. The most significant improvement was 
observed in the Data Extraction function, which executed 
43.7% faster compared to the serial version. In contrast, the 
Least Reviewed Author function showed the smallest 
improvement at 7.9%. Overall, the total execution time was 
reduced by 36.1%, confirming that the tool effectively 
enhanced computational performance. 

Fig. 17 presents the performance data in a different format, 
emphasizing the percentage improvement for each function. 
Represented as a line graph, this view highlights the relative 
efficiency gains from parallelization. 
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TABLE V.  BOOK REVIEWS SYSTEM PERFORMANCE METRICS 

(MILLISECONDS) 

FUNCTION 

SERIAL 

EXECUTION 

TIME 

PARALLEL 

EXECUTION 

TIME 

IMPROVEMENT (%) 

DATA 

EXTRACTION 
144.615 81.354 43.7 

MOST 

REVIEWED 

AUTHOR 

21.551 14.312 33.6 

LEAST 

REVIEWED 

AUTHOR 

20.847 19.196 7.9 

AVERAGE 

REVIEWED 

AUTHOR 

24.492 17.826 27.2 

USER-AUTHOR 

ANALYSIS 
33.697 23.941 29.0 

TOTAL 

EXECUTION 
245.205 156.629 36.1 

 
Fig. 16. Serial vs. Parallel execution time (book reviews analysis system). 

 
Fig. 17. Improvement percentage across functions (book reviews analysis 

system). 

E. Employee Performance Analysis System 

As Table VI, Fig. 18 and Fig. 19 show, most functions show 
significant performance improvements with parallelization, 
especially Top Performer Analysis (68.6%) and Data 
Extraction (64.1%). Skills Analysis also benefited notably 
(65.8%). However, Department Performance slightly worsened 
(-3.8%), due to the overhead and the low parallel potential. 
Overall, total execution time was reduced by 54.6%. 

TABLE VI.  EMPLOYEES’ PERFORMANCE SYSTEM PERFORMANCE 

METRICS (MILLISECONDS ) 

Function 

Serial 

Execuion 

Time 

Parallel 

Execution 

Time 

Improvement (%) 

Data Extraction 107.516 38.627 64.1 

Top Performer 

Analysis 
34.632 10.873 68.6 

Department 

Performance 
17.922 18.611 -3.8 

Skills Analysis 485 166 65.8 

Department 

Statistics 
15.850 11.766 25.8 

Total Execution 176.405 80.049 54.6 

 
Fig. 18. Serial vs. Parallel execution time (employee performance analysis 

system). 

 
Fig. 19. Improvement percentage across functions (employee performance 

analysis system). 

F. Genomic Sequence Analysis System 

As Table VII, Fig. 20 and Fig. 21 show, Data Extraction 
achieved the highest gain at 54.6%, followed by GC Content 
Analysis (37%) and Coverage Analysis (30.6%). Overall, total 
execution time was reduced by 48.3%. 
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TABLE VII.  GENOMIC SEQUENCE SYSTEM PERFORMANCE METRICS 

(MILLISECONDS ) 

Function 
Serial 

Execuion Time 

Parallel 

Exection Time 
Improvement (%) 

Data 

Extraction 
118.149 53.670 54.6 

GC Content 

Analysis 
63.252 39.827 37.0 

Coverage 

Analysis 
1.902 1.320 30.6 

Total 

Execution 
183.303 94.820 48.3 

 
Fig. 20. Serial vs. Parallel execution time (genomic sequence analysis 

system). 

 
Fig. 21. Improvement percentage across functions (genomic sequence 

analysis system). 

 
Fig. 22. System improvement comparison. 

Fig. 22 presents a bar chart that shows a final comparison 
of overall system performance improvements achieved through 
parallelization. The Employee Performance System showed the 
highest gain at 54.6%, followed by the Genomic Sequence 
System at 48.3%, while the Book Reviews System achieved a 
more modest improvement of 36.1%. This confirms the tool’s 
effectiveness across varied application domains. Table VIII 
provides a comparative overview of our tool and several related 
tools. The comparison is based on key attributes like 
parallelization method, analysis type (static or runtime), and 
language support.  [9][12][13]. 

TABLE VIII.  COMPARISON OF OUR TOOL WITH RELATED TOOLS ACROSS 

VARIOUS ATTRIBUTES 

Work 

Lazy-

Parallel 

Function 

Calls 

Automat

ic 

Paralleli-

zation of 

Pure 

Method 

Calls 

Fine-

Grained 

Recursi

ve 

Parallel-

im 

Autopar OurTool 

Languag 

Focus 
Java, C# Java C 

ANSI C 

Codes 
C++ 

Optimizati

on Target 

Lazy 

evaluatio

n, 

closures, 

nano-

threads 

Pure 

method 

calls 

Special 

Recursi

ve 

Functio

n Calls 

Special 

Recursi

ve 

Functio

n Calls 

C++ 

source 

code, 

Function 

calls 

based 

on 

three 

fundamen

t-al 

analyses 

Automatio

n Level 

Partial; 

compiler

-assisted 

automati

c, 

compiler

-based 

automat

ic 

automat

ic 

Fully 

automated 

pipeline: 

detects, 

classifies, 

and 

transform

s 

suitable 

function 

calls to 

parallel 

equivalent

s. 

VII. CONCLUSION 

This paper presents a tool that successfully automates 
function-level parallelization in C++ through a pipeline that 
includes dependency analysis, context analysis, and workload 
assessment. These analyses enable the identification of 
independent, high-workload function calls that can be safely 
parallelized without modifying the original program logic. The 
tool also generates detailed Control Flow Graphs (CFGs) for 
each function in DOT, PDF, and TXT formats, offering 
valuable insights into code structure and parallelization 
opportunities. 

Experimental evaluations on three benchmark programs 
demonstrated consistent improvements in execution efficiency. 
Performance gains were particularly notable in compute-
intensive functions such as data extraction and analysis. The 
Employee Performance System achieved the highest 
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improvement at 54.6%, followed by the Genomic Sequence 
System at 48.3%, and the Book Reviews System at 36.1%. 
These results confirm the effectiveness of the tool’s analysis 
and transformation strategies and underscore its contribution to 
advancing practical, automated parallelization in performance-
critical C++ applications. 

Future work may focus on extending the tool’s capabilities 
to support parallelization of additional code constructs and the 
use of MPI, enabling distributed-memory execution and 
scalability across multiple nodes. Such an extension would 
broaden the tool’s applicability beyond shared-memory 
systems. 
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