
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

589 | P a g e
www.ijacsa.thesai.org

 A Technique for Automated Parallel Optimization of

Function Calls in C++ Code

Shuruq Abed Alsaedi1 , Fathy Elbouraey Eassa2 , Amal Abdullah AlMansour3,

Lama Abdulaziz Al Khuzayem4 , Rsha Talal Mirza5

Department of Computer Science-Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia1, 2, 3, 4, 5

Department of Computer Science-College of Computer Science and Engineering,
 Taibah University, Yanbu 46421, Saudi Arabia1

Abstract—In modern software development, achieving high

performance increasingly relies on effective parallelization. While

much of the existing research has focused on loop-level

parallelism, function-level parallelization remains relatively

underutilized. Yet, in many real-world applications, function calls

serve as natural units of computation that could greatly benefit

from concurrent execution. To address this gap, we present an

automated tool that analyzes sequential C++ code, identifies

independent function calls, and evaluates their suitability for

parallel execution. The tool performs three key analyses:

dependency analysis to detect function calls, context analysis to

understand execution conditions, and workload assessment to

determine whether parallelization would result in significant

performance benefits. Based on the analysis results, the tool

transforms eligible function calls into parallel equivalents without

altering the original program logic. Additionally, the tool

generates detailed Control Flow Graphs (CFG) for each function

in three formats, facilitating further structural analysis. Three

benchmark programs were used in experimental testing. The

evaluation measured both sequential and parallel execution times,

along with the computed performance gain expressed as a

percentage reduction in runtime. Results demonstrated the tool’s

ability to improve execution efficiency and reduce processing time.

These outcomes emphasize the tool’s role in advancing function-

level automatic parallelization. The tool showed notable

performance improvements across the three benchmark

applications, with the Employee Performance System achieving

the highest improvement of 54.6%, followed by the Genomic

Sequence System at 48.3%, and the Book Reviews System

achieving an improvement of 36.1%. Demonstrating the tool’s

ability to improve efficiency via automated function-level

parallelization.

Keywords—Automatic parallelization; function-level

parallelization; C++ code optimization; parallel computing; control

flow graph; dependency analysis; performance optimization

I. INTRODUCTION

Improvements of multi-core processors have increased the
adoption of parallel programming among software developers.
However, developing parallel code remains a challenging and
error-prone task. As a result, automating code parallelization
has emerged as a hot topic in high-performance applications
research [1]. Available parallelization techniques usually target
specific sections of code that are suitable to concurrent
execution. Loops are the most common candidates. Loops often
contain iterative operations that can be executed in parallel

without interdependencies, making them ideal for leveraging
multi-core and multi-threaded architectures.

However, there are other code constructs, such as function
calls, that can enhance performance and efficiency if they are
properly utilized.

By focusing on function calls, parallelization strategies can
effectively improve the software applications. However,
despite years of research, the automatic parallelization of
function calls remains an unresolved problem. Function calls
often still require manual parallelization [1].

The motivation for this work stems from several critical
challenges in modern software development:

1) Underutilization of parallelization opportunities: While

parallelization research has focused heavily on optimizing

loops, function calls have received comparatively less attention.

This highlights a significant gap in current parallelization

research, as function calls provide substantial opportunities for

enhancing performance. In many real-world applications,

computational workload is distributed across numerous

function calls rather than concentrated in loops. For instance,

data processing applications often involve multiple

independent operations such as data extraction, filtering,

aggregation, and statistical analysis, each implemented as

separate functions. These functions can potentially execute

concurrently without dependencies, yet they remain sequential

in most codebases due to the lack of automated transformation

tools. Addressing the parallelization of function calls helps

improve the efficiency and scalability of code. Nonetheless,

developing parallel code or converting certain sequential code

to run in parallel is a challenging task that requires significant

effort from programmers.

2) Complexity of manual parallelization: The complexities

of parallel programming start from the problem definition, as

not all problems are suited for parallelization. Programmers

must carefully consider different aspects of parallel processing,

such as how to distribute the current workload across parallel

threads and manage communication between these threads [2].

This manual effort is time-consuming, error-prone, and requires

deep expertise in both parallel programming paradigms and the

application domain. Developers must analyze data

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

590 | P a g e
www.ijacsa.thesai.org

dependencies, identify race conditions, manage

synchronization, and ensure thread safety tasks that

significantly increase development time and maintenance costs.

3) Performance demands of modern applications:

Contemporary software applications face increasing

computational demands. From big data analytics and scientific

computing to machine learning and real-time systems, the need

for efficient parallel execution has never been greater. C++

programming language is known for its performance and fine-

grained control and become an essential component in the

development of high-performance computing applications,

including those that leverage parallelism [8]. However, the gap

between available hardware capabilities and software

utilization remains substantial. Many existing sequential C++

applications could benefit significantly from parallelization but

lack the resources or expertise for manual transformation.
Our proposed tool was designed to analyze and transform

C++ code, which was selected due to its relevance in
performance-sensitive software and its rich set of
parallelization libraries. This gap is particularly significant
because:

• Natural Computation Units: Functions represent natural
units of computation with well-defined interfaces and
encapsulated logic, making them ideal candidates for
parallel execution.

• Coarse-Grained Parallelism: Function-level parallelism
offers coarse-grained task parallelism that can better
utilize modern multi-core architectures with lower
synchronization overhead compared to fine-grained loop
iterations.

• Code Maintainability: Parallelizing at the function level
preserves code structure and maintainability better than
aggressive loop transformations.

This study proposes a fully automated tool that offers an
advanced method for analyzing and selecting suitable function
calls for parallelization in C++ code, a language with unique
structural and concurrency characteristics. The proposed tool
integrates static analysis, control flow graph generation, and a
lightweight scoring mechanism to identify and transform
independent function calls into parallel equivalents using
std::async. By applying this technique to C++, the tool bridges
a critical gap in existing research. This contribution offers
practical value for developers working with performance-
critical C++ applications, especially in cases where loop-level
parallelism is insufficient.

The main contributions of this work are:

1) Comprehensive static analysis framework: We introduce

a three-phase analysis approach combining:

• Dependency Analysis: Automatically detects function
calls and analyzes their data and control dependencies to
ensure correctness of parallel transformations.

• Context Analysis: Evaluates execution contexts to
determine parallelization safety and identify functions
that can be executed asynchronously without affecting
program semantics.

• Workload Assessment: Employs a work potential metric
that quantifies computational complexity, enabling
prioritization of parallelization candidates.

2) Automated code transformation pipeline: The tool

provides end-to-end automation from analysis to code

generation:

• Automatically transforms eligible sequential function
calls into parallel equivalents using C++ standard library
features (std::async, std::future), without requiring
manual intervention or code restructuring.

• Preserves original program logic and semantics while
introducing parallelism.

3) Visual Analysis and Debugging Support:

• Generates detailed Control Flow Graphs (CFGs) for each
function in three formats (DOT, PDF, and TXT),
facilitating structural analysis and verification.

• Provides comprehensive reporting of parallelization
decisions, including work potential scores and context
classifications.

• Enables developers to understand, validate, and fine-tune
the automated transformations.

In this study, three benchmark programs were selected to
conduct experiments. The experiments aimed at measuring
parallel execution time, sequential execution time, and
computed performance improvement, representing the
percentage reduction in execution time. The results show that
our proposed tool successfully enhances performance and
reduces execution time. The findings highlight the tool’s
capability as a step forward in bridging the current gap in
automatic parallelization research, particularly at the function-
call level.

The structure of this paper is as follows: Section II provides
background information; Section III reviews related work;
Section IV describes the system architecture and methodology;
Section V presents the experimental results and discussion;
Section VI evaluates performance improvements; and
Section VII concludes the paper.

II. BACKGROUND

Historically, processor design has focused on combining
more advanced features, achieving higher clock speeds and
increasing thermal limits. However, the pursuit of enhanced
performance remains a necessary demand. This has driven the
adoption of integrated multi-processor (multi-core)
architectures [3].

However, transistors can’t keep getting smaller indefinitely.
Nowadays, as transistors become thinner, chip makers aim to
manage heat generation and power usage; these are two major
challenges. Additionally, performance enhancement techniques
like running multiple instructions at the same time have reached
their limits.

Due to these problems, the rate of processor performance
improvements has started to slow down. In the 1990s, chip
performance increased by 60 percent each year, while from

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

591 | P a g e
www.ijacsa.thesai.org

2000 to 2004, this growth slowed to 40 percent annually, with
performance only rising by 20 percent.

In fact, improvements in computer performance have
essentially resulted from making chips smaller and increasing
their number of transistors. According to Moore's Law, this
approach has led to faster chip speeds and reduced costs.
Instead of making one super powerful core, companies are now
creating chips with multiple cores that use less energy and run
cooler. Even though these multicore chips might not be as fast
as the top single-core ones, they improve overall performance
by handling more tasks at the same time [4].

Many modern programs require more computing power
than traditional single-threaded computers can offer. In order to
achieve better performance, parallel processing is necessary to
meet demand. Parallelism allows executing multiple tasks at the
same time to solve complex problems in less time. Multicore
processing requires running programs on more than one core
within a single CPU chip, which is a type of parallel processing.
Multicore utilization means using the CPU's multiple cores
efficiently [5].

In parallel processing of programs, instructions are split
across many processors to run the same program faster than
with sequential processing. Some programs that require tasks
such as sorting and searching are designed to use parallel
processing. Such programs are often tested on large databases.
Experimental results using bubble sort and linear search show
that sharing the load and utilizing multicore parallel processing
make tasks easier and quicker compared to sequential
processing. Parallel processing and multicore processing both
involve the ability to run code simultaneously on different
CPUs, machines, or cores. Multicore processing is designed to
perform tasks in parallel. A core can be considered as a small
processor within a larger processor. Therefore, optimizing code
for multicore processing is closely tied to parallelization [4] [5].

Finding opportunities to run code automatically in parallel
is essential for developing efficient programs to run on many
multithreaded applications. This area has been researched for
many years. Even though hardware provides some fine-grained
parallelism, compiler researchers have to develop techniques to
automatically convert source code into suitable parallel
applications.

With the growing ubiquity of distributed computing, the
software industry demands compiler technologies capable of
automatically parallelizing software. However, the demand for
automatic parallelization in compilers is growing as clusters
and other kinds of distributed computing become widely
adopted, and CPU technology moves toward higher levels and
coarser granular parallelism [6].

Generally, automatic parallelization involves the following
three procedures [7]:

• Dependency analysis to identify potential parallelism
regions: Carrying out a dependency analysis to identify
regions in the code that are capable of parallelization.

• Restructuring the program into blocks that can run in
parallel: Organizing the code into number of blocks that
can run simultaneously. In this phase, different

transformations are applied to maximize the level of
parallelism achievable within the code.

• Generating parallel code suitable for specific
architectures: Producing parallel code optimized for a
particular architecture by assigning program blocks to
available processing units and developing appropriate
strategies to enable parallelism based on the targeted
system.

Building on these core steps, it is essential to consider how
specific programming languages, such as C++, support
parallelism through built-in features and libraries. C++ supports
multithreaded execution through features such as std::async,
which play a basic role in parallelism [15]. Other standard
multithreading features in C++ that simplify parallel
programming include [15]:

• std::thread: To manually manage the creation and
control of new threads of execution.

• std::async: Enables asynchronous function execution,
with thread management handled automatically by the
system.

• std::future: Used with std::async or std::promise to
obtain results from asynchronous executions.

• std::promise: For sending a value from one thread to
another, typically used with std::future.

• std::mutex: Prevents race conditions by ensuring that
only one thread can access shared data at a time.

Several prior studies have extensively discussed the
evolution of multicore architectures, the challenges in
optimizing code for parallel execution, and the importance of
automatic parallelization to utilize modern hardware
efficiently. These works collectively emphasize the necessity of
transitioning from sequential to concurrent execution, while
highlighting fundamental techniques such as dependency
analysis, control flow restructuring, and task distribution across
cores. They also explore compiler-assisted approaches, parallel
programming models, and language-specific solutions that aim
to simplify or automate this transition.

While these contributions have laid important groundwork
for parallel computing, particularly in loop and object-oriented
contexts, there remains a noticeable gap in the automation of
function-level parallelization, especially for statically analyzed,
general-purpose C++ applications. This study builds on those
foundational insights by introducing a tool that automates the
detection, analysis, and transformation of independent function
calls into parallel equivalents using C++’s native concurrency
libraries. The proposed solution requires no manual
intervention or external annotations, offering a fully automated
pipeline that strengthens the practical adoption of parallelism in
real-world C++ systems.

III. RELATED WORKS

Parallel computing has recently become more in demand
due to the increasing growth of multi-threaded architecture.
There are some papers that discuss certain techniques that aim
to efficiently transfer a sequential program into a parallel one.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

592 | P a g e
www.ijacsa.thesai.org

In [9], the authors introduce an approach that uses the
concept of futures synthesis for pure method call
parallelization. Their approach employs three strategies to
achieve automatic parallelization through future synthesis:
parallelism analysis, future synthesis, and threshold synthesis.
In the future synthesis phase, the proposed system identifies
pure method calls and labels them as async expressions. After
that, the system conducts a parallelism analysis to determine
which async expressions should be executed sequentially to
avoid overhead. Finally, threshold synthesis utilizes the results
of the parallelism analysis to synthesize predicate expressions
for deciding whether a specific pure method call should be
executed in parallel or sequentially.

Our tool focuses on C++ and operates at the static level,
targeting functions that are independent and computationally
intensive. It does not rely on runtime profiling but instead uses
a scoring system to identify which functions should be
parallelized. While in study [9] the tool is adaptive and runtime-
aware, ours offers a lightweight and deterministic
transformation pipeline that produces a ready-to-compile
parallel version of the original program, making it ideal for
users seeking fast and fully automatic optimization.

In [16], authors introduced Lazy-Parallel Function Calls, a
compiler-level approach that enables automatic parallelization
in imperative languages by combining lazy evaluation
semantics with nano-thread scheduling. Their method ensures
correctness by leveraging immutability and deferring function
execution until results are required, enabling parallelism
without altering program behavior. In contrast, our tool targets
eager, function-level parallelization in C++ using std::async,
automatically identifying independent function calls and
transforming them for concurrent execution. While their work
emphasizes semantic safety, our approach focuses on
performance gains in compiled C++ applications.

In [10], the authors present an automatic technique that
analyzes code written in the Java programming language to
detect method calls that can be parallelized and transform them
accordingly. The proposed technique is based on control
dependence and data dependence analysis to construct the
execution flow and determine accessed data.

APAC [11] is a compiler that converts sequential source
code written in the C++ language into task-based parallelized
code by inserting special directives. This compiler utilizes the
LibTooling library and clang-tools from the LLVM framework.
It encapsulates each function body with an OpenMP directive,
and each function or method call with an OpenMP statement.

As authors stated in study [12], there are many recursive
functions that contain a significant amount of built-in
parallelism, but it is not always clearly visible. Thus, a number
of studies have been conducted to detect parallelism and utilize
it. Mainly by targeting calls that can be executed concurrently.
However, some recursive algorithms do not permit the
concurrent execution of function calls. According to the authors
[12], they examined ways to extract concurrency from specific
recursive function calls that are not typically parallelizable by
common parallelization methods. Their primary approach
involves parallelizing them at a finer level, relying on multi-
threaded architecture and a multi-core as the infrastructure. The

authors stated that, compared to conventional parallel systems,
multi-core systems support a greater degree of fine-grained
parallelism by providing thread parallelism and reducing
overhead in thread communication.

Autopar [13] is a tool that targets to automatically
parallelize certain recursive function calls using analysis of
static programs. It detects the recursive functions inside a
certain program. After that, it moves to the analysis phase by
gathering related information about such functions without the
need for rewriting the program or requiring developer
involvement. Finally, Autopar introduces the parallel
constructs necessary to achieve automatic parallelization. In
fact, their tool applies to a specific class of recursive functions
that use a divide-and-conquer approach. They tested four
benchmarks—bionic, fractal, heat, and knapsack—using their
recursive function parallelization tool.

In [14], the proposed tool applies a coarse-grained approach
to task parallelism. It utilizes OpenMP directives and inserts
them into the input C code. The output program is a
multithreaded C code that can use different cores in a shared
memory system. The system operates between the compiler and
the application. The generated output is compiled just like any
ordinary C code. Both the input and output of their proposed
tool are source code, making it a source-to-source
transformation tool.

In [17], authors propose two optimizations—Last Parallel
Call Optimization (LPCO) and its generalization, Nested
Parallel Call Optimization (NPCO) which is designed to
improve the efficiency of and-parallel logic programming.
Their methods restructure parallel goal execution in logic
programs to minimize redundant parallel tasks and enable fast
backtracking. These techniques are tailored for the control-
parallel execution model, where correctness depends on
preserving goal dependencies.

Table I presents a comprehensive comparison of the
limitations identified in existing approaches and how our
proposed tool addresses these gaps.

TABLE I. LIMITATIONS OF EXISTING APPROACHES AND OUR PROPOSED

SOLUTION

Aspect
Existing Approaches

Limitations

Our Proposed Tool

Solution

Language Support

Limited to specific

languages: Java

[9][10], C [14], logic

programming [17]

Comprehensive C++

support with standard

library integration

(std::async, std::future)

Function Coverage

Restricted to recursive

[12][13] or pure

methods [9]; ignores

general function calls

Analyzes all function

types: recursive, non-

recursive, member

functions, and

standalone functions

Analysis Type

Runtime profiling

required [9]; limited

static analysis

[13][14]

Comprehensive static

analysis combining

dependency, context,

and workload

assessment

Automation Level

Semi-automated

requiring manual

refinement [11];

domain-specific [17]

Fully automated end-

to-end pipeline from

analysis to code

generation

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

593 | P a g e
www.ijacsa.thesai.org

IV. METHODOLOGY

This study introduces a tool that addresses an important
parallelization technique: unlike loop parallelization, research
on parallelizing function calls is limited. This tool offers an
improved method for analyzing and selecting the applicable
functions for parallelization in C++ code. This tool includes
AST traversal and work potential metrics to evaluate
computational effort and identify functions with high
parallelization possibility. Moreover, it generates detailed
control flow graphs as well as an analysis context in order to
give valuable insights to programmers who look to optimize
program efficiency through parallel execution. As Fig. 1 shows,
the tool has five main functionalities, which we will discuss in
detail. These main functionalities are: Function Analysis,
Context Analysis for Parallelization, Control Flow Graph
(CFG) Generation, Work Potential Calculation, and CFG
Visualization.

Fig. 1. Five key functionalities of the tool.

Main key functionalities of the proposed tool:

A. Function Analysis

• Parses the C++ source code using Clang's libclang to
generate an abstract syntax tree (AST).

• Extracts functions and analyzes each line for function
calls to understand dependencies and execution flow.

B. Context Analysis for Parallelization

• Determines whether each function call can be
parallelized based on its context (e.g., whether it’s inside
loops or conditionals).

C. Control Flow Graph (CFG) Generation

• Generates a CFG for each function, including nodes for
statements and edges representing control flow.

• Annotates each function call with contextual information
(e.g., if part of a loop) to highlight non-parallelizable
code.

D. Work Potential Calculation

• Each function is assigned a "work potential" score based
on the complexity of its control flow and nested calls.

• Higher work potential indicates a candidate for
parallelization, while certain functions (like main) are
excluded due to its structural importance.

E. Control Flow Graph (CFG) Visualization

• Uses Graphviz to create a DOT file for each function's
CFG, saving it as a DOT, a PDF, and TXT file.

• The CFG graphically represents the control flow,
showing how different statements and function calls are
interconnected.

Our tool utilizes the use of libclang for parsing C++ code
(AST) and graphviz for visualizing CFGs. Libclang is a library
that offers tools for parsing and analyzing C++ code. It is part
of the LLVM project and enables the generation of an Abstract
Syntax Tree (AST). Graphviz, on the other hand, is a
visualization software used for creating graphs and diagrams. It
is specifically utilized to generate Control Flow Graphs
(CFGs), which visually represent the flow of execution within
a program, helping programmers understand how different
parts of the code are connected and identify potential
bottlenecks or parallelization opportunities. Moreover, it
usesC++ Parallelization and Synchronization Library
(std::async: allows asynchronous function execution and
enabling tasks to run concurrently in separate threads). As
Fig. 2 illustrates, the tool's architecture starts with C++ source
code input, which undergoes scanning to detect functions. This
is followed by C++ code analysis, which performs dependency
and context analysis generate Control Flow Graphs (CFGs) and
calculate work potential. Finally, the tool moves to C++ code
generation, completing the process [10].

Fig. 2. The proposed tool archeticure.

A detailed description of the tool architecture:

1) Context analysis: This analyzes the context in which

function calls occur, meaning it analyzes C++ source code to

identify functions that can be parallelized to improve

performance.

Tables II and III provide a detailed clarification of the
situations under which functions are considered parallelizable
and when they are not suitable for parallelization.

2) CFG building: CFG builder drives the analysis of a

specified C++ code, generates control flow graphs (CFGs),

saves them in a designated output directory, and classifies

functions by their work potential (which will be discus1§sed)

for advanced parallelization identification.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

594 | P a g e
www.ijacsa.thesai.org

TABLE II. CONDITIONS FP;OR CONSIDERING A FUNCTION CALL AS

POTENTIALLY PARALLELIZABLE

Condition Reason

Not Part of Control Structure:

The function call is not used within the

condition of control structures such as if,

while, for, or switch statements.

Function calls within

conditions are critical for the

control flow and may need to

be executed sequentially to

maintain program correctness

Not Inside Loops:

The function call is not located within the

body of for or while loops.

Parallelizing function calls

inside loops can lead to

synchronization issues and

may not provide performance

benefits due to overhead.

Not Part of Return Statements:

The function call is not used directly

within a return statement.

The result of the function is

immediately required for the

return value, so parallelizing

it would necessitate waiting

for its completion. Attempting

to execute such a function

asynchronously (in parallel)

does not provide any

performance improvement

and may introduce

unnecessary overhead. This

essentially cancels out any

potential advantages of

parallelization in that context.

Not Part of Throw or Assert Statements:

The function call is not used within throw

or assert statements.

Throw: is used to signal an exception or

error condition.

Assert: The assert function checks /

validates a condition at runtime.

These statements are critical

for error handling and

program correctness,

requiring immediate

execution.

Standalone Function Calls:

The function call is a standalone statement

or assigned to a variable outside the

contexts mentioned above.

Such calls can be executed

asynchronously without

affecting the program’s

control flow.

TABLE III. CONTEXTS WHERE A FUNCTION CALL IS NOT SUITABLE FOR

PARALLELIZATION

Number Condition

1 Control Structure Conditions

2 Inside Loops

3 Return Statements

4 Part of Throw or Assert Statements

3) Work potential metric: work potential metric is used for

prioritizing parallelization by suggesting specific functions to

parallelize. This process is based on calculating the

computational load or complexity of each function and

assigning it a score. Functions with a high work potential score

are likely to benefit from parallelization, so the tool identifies

and lists these functions at the end of the analysis, see Fig. 3.

Fig. 3. Steps of the work potential metric.

4) Work potential purposes: The main purposes of the work

potential metric are to quantify computational effort because

functions with more statements and function calls need more

computational processing, and to identify chances for

parallelization, as high work potential indicates that a function

may benefit from being executed in parallel which enhance

performance. However, there are some excluded functions.

Certain functions, like main, are excluded from parallelization

even if their work potential score is high, because parallelizing

the main function does not make sense. It organizes all other

functions and controls the entire program's execution, so it is

avoided from parallelization.

5) Work potential calculation: Calculation Method for

finding Work Potential is a systematic method that requires

analyzing C++ functions and utilizing Clang's libclang library

to evaluate computational complexity. It uses Clang's libclang

library to parse the C++ source code and generate an AST, and

traverses each function's AST to analyze its structure. The Work

Potential Counter (work_potential) counts statements and

function calls. First, it is initialized to zero for each function.

Then, it gets incremented for each statement encountered

during traversal, as well as for each function call within the

function.

V. RESULT AND DISCUSSION

We evaluated the parallelization tool on the BookLibrary
benchmark program. BookLibrary, a C++ program, is
considered a tool for data processing and analytics of book
review data. It includes classes like Review, Book, Author,
User, ExtractData, and ExtractDataset in order to organize and
analyze information related to books, authors, users, and
reviews. Our approach targets programs where function calls
account for a significant portion of the workload. Therefore, we
chose BookLibrary program because a substantial amount of its
sequential work is executed through function calls.
BookLibrary.cpp helps users load, analyze, and summarize
book review data, with a particular focus on author and user
review statistics, enabling insights into authors’ popularity and
reader engagement. Table IV shows the main components of
the C++ code. In addition to those listed in Table IV, there are
other functions that calculate and return the most, least, and
average-reviewed books, as well as retrieve the most and least-
reviewed authors based on their books' reviews.

TABLE IV. OVERVIEW OF MAIN COMPONENTS IN THE C++ CODE

Classification Description

Data

Representation

Review: Represents a review of a book with attributes

like book ID and title.

Book: Represents a book, including its title and list of

reviews.

Author: Represents an author with related books and

users.

User: Represents a user, with a user ID and related

reviews.

Data

Extraction and

Aggregation

ExtractDatase: Reads book and review from CSV files,

then stores them .

ExtractData: create mappings between books and

authors, reviews and users, then updates book review

data.

A total of 53 functions were automatically extracted from
the analyzed source file.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

595 | P a g e
www.ijacsa.thesai.org

The detected functions range from getBookId, located at
line 25, to the main function at the end of the code.

This demonstrates the tool’s capability to comprehensively
identify and list all functional components for further analysis
(see Fig. 4).

Fig. 4. Extracted function from book_library.cpp.

Fig. 5 below presents the tool’s output that demonstrates the
automated generation of Control Flow Graphs (CFGs) for
several detected functions such as getBookId, getTitle,
getScore, getText, getReview, and getPrice. For each function,
the tool produces three distinct representations: DOT, PDF, and
an extended TXT format to support both visual inspection and
structural analysis. This comprehensive output enables the
examination of the internal logic and control dependencies
within each function. Additionally, it allows tracing execution
paths, detecting redundant operations, and better understanding
of the relationships among function calls. Overall, this
automated CFG generation provides a valuable foundation for
program comprehension, debugging, and performance
optimization.

Fig. 5. Control Flow Graph (CFG) files generated for multiple functions.

Fig. 6. Sample tool output showing identified function calls and their

parallelization context.

Fig. 6 illustrates the tool’s intermediate output during
function call analysis. It captures many functions such as
resetReviews, addReview, and updateMediumScore, and
precise source code line numbers. Each function is reported
along with its name, classification context, and source code line
number.

Fig. 7. Selected functions for parallelization.

Fig. 7 shows the final summary and highlights the four
functions identified as suitable for parallelization based on their
work potential score. The functions
extractMostReviewedAuthor, extractLeastReviewedAuthor,
and extractAverageReviewedAuthor were selected due to their
significant contribution to the overall processing load. Control
Flow Graph (CFG) generation was completed for all, and the
results were saved in the cfg_output directory.

Fig. 8. Work potential scores for selected functions identified for

parallelization.

Fig. 8 presents a bar chart showing the work potential scores
of selected functions identified by the tool. The x-axis displays
four functions: extractMostReviewedAuthor,
extractLeastReviewedAuthor,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

596 | P a g e
www.ijacsa.thesai.org

extractAverageReviewedAuthor, and getUserforAuthor, while
the y-axis quantifies their corresponding scores. The first three
functions each achieved a high potential score of 11, indicating
strong suitability for parallelization due to their computational
intensity. In contrast, getUserforAuthor received a lower score
of 5, suggesting a relatively smaller parallel workload.

Fig. 9 shows the completion stage of the tool's
transformation process, where selected functions have been
successfully parallelized. The tool logs the transformed
functions: extractMostReviewedAuthor,
extractLeastReviewedAuthor,
extractAverageReviewedAuthor, and getUserforAuthor and
saves the modified source code as
books_library_parallelized.cpp.

Fig. 9. Generation of the parallelized output file.

Fig. 10. Snapshot of Generated Control Flow Graph (CFG) files.

Fig. 10 presents a visual overview of the directory structure
containing the Control Flow Graph (CFG) outputs generated by
the tool. For each analyzed function, such as addUser,
extractBooks, and extractMostReviewedAuthor, there are
many output formats created:

• .dot: the raw DOT graph description format

• .pdf: a visual representation of the control flow

• .txt: a textual report of the CFG

• _extended_ versions: enriched CFGs that include
additional semantic or contextual data

These files are organized systematically within the
cfg_output directory, enabling developers to inspect the control
flow structure of each function in both graphical and textual
forms.

Fig. 11. PDF format Generated Control Flow Graph (CFG) for the Function

addBlockFunction.

Fig. 11 presents a sample Control Flow Graph (CFG)
generated in PDF format for the selected function addBlock.
The graph begins at the Entry node and transitions to a
Compound Statement at line 102, indicating a block of grouped
instructions. It then leads to a conditional IF node, representing
a branching decision in the function's logic.

Fig. 12 represents another format which is DOT format,
while Fig. 13 represents TXT format.

Fig. 12. DOT format generated Control Flow Graph (CFG) for the function.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

597 | P a g e
www.ijacsa.thesai.org

Fig. 13. TXT format Generated Control Flow Graph (CFG) for the function

addBlock() function.

Fig. 14. Original sequential implementation of extractMostReviewedAuthor

function.

Fig. 14 shows the original sequential version of the
extractMostReviewedAuthor function, where operations are
executed in order. Fig. 15 presents the parallelized version
automatically generated by the tool, using std::async to execute
getAuthors and getMostReviewedBook concurrently. Our
proposed tool identifies these opportunities without user
intervention, which enhance the optimization process and
facilitate it.

Fig. 15. Parallelized Version of extractMostReviewedAuthor Using

std::async.

VI. EVALUATION METRICS

This section presents a performance analysis and evaluation
through comparing serial and parallel implementations, with a
focus on improvements achieved via function-level
parallelization. The evaluation measures the impact of
parallelization across three distinct data processing
applications:

A. Book Reviews Analysis System

Processes large datasets of book reviews to extract insights
such as the most and least reviewed authors, average review
counts, and user-specific data. Ideal for evaluating function-
level parallelism in data filtering and aggregation tasks.

B. Employee Performance Analysis System

Analyzes performance metrics of employees to compute
scores, rankings, and performance categories. Suitable for
testing parallel function execution in systems with structured,
repetitive computations.

C. Genomic Sequence Analysis System

Performs operations such as sequence matching, frequency
analysis, and data summarization on long character sequences.
This benchmark represents workloads with high computational
demand and pattern processing.

The result shows the impact of parallel execution in
enhancing computational efficiency across different workloads
and domains.

In this study, the Improvement metric was selected to
quantitatively assess the performance gains achieved through
function-level parallelization. The metric calculates the
percentage reduction in execution time between the original
serial implementation and the parallelized version, using the
following formula:

Improvement (%)= [(Tserial −Tparallel)/ Tserial] ×100 (1)

Where Tserial denotes the execution time of the serial
version, and Tparallel represents the time taken by the parallel
implementation.

D. Book Reviews System Performance Metrics

Table V and Fig. 16 compare the execution times of serial
and parallel implementations across various functional
components. The results demonstrate that all operations
benefited from parallelization, with notable reductions in
execution time. The most significant improvement was
observed in the Data Extraction function, which executed
43.7% faster compared to the serial version. In contrast, the
Least Reviewed Author function showed the smallest
improvement at 7.9%. Overall, the total execution time was
reduced by 36.1%, confirming that the tool effectively
enhanced computational performance.

Fig. 17 presents the performance data in a different format,
emphasizing the percentage improvement for each function.
Represented as a line graph, this view highlights the relative
efficiency gains from parallelization.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

598 | P a g e
www.ijacsa.thesai.org

TABLE V. BOOK REVIEWS SYSTEM PERFORMANCE METRICS

(MILLISECONDS)

FUNCTION

SERIAL

EXECUTION

TIME

PARALLEL

EXECUTION

TIME

IMPROVEMENT (%)

DATA

EXTRACTION
144.615 81.354 43.7

MOST

REVIEWED

AUTHOR

21.551 14.312 33.6

LEAST

REVIEWED

AUTHOR

20.847 19.196 7.9

AVERAGE

REVIEWED

AUTHOR

24.492 17.826 27.2

USER-AUTHOR

ANALYSIS
33.697 23.941 29.0

TOTAL

EXECUTION
245.205 156.629 36.1

Fig. 16. Serial vs. Parallel execution time (book reviews analysis system).

Fig. 17. Improvement percentage across functions (book reviews analysis

system).

E. Employee Performance Analysis System

As Table VI, Fig. 18 and Fig. 19 show, most functions show
significant performance improvements with parallelization,
especially Top Performer Analysis (68.6%) and Data
Extraction (64.1%). Skills Analysis also benefited notably
(65.8%). However, Department Performance slightly worsened
(-3.8%), due to the overhead and the low parallel potential.
Overall, total execution time was reduced by 54.6%.

TABLE VI. EMPLOYEES’ PERFORMANCE SYSTEM PERFORMANCE

METRICS (MILLISECONDS)

Function

Serial

Execuion

Time

Parallel

Execution

Time

Improvement (%)

Data Extraction 107.516 38.627 64.1

Top Performer

Analysis
34.632 10.873 68.6

Department

Performance
17.922 18.611 -3.8

Skills Analysis 485 166 65.8

Department

Statistics
15.850 11.766 25.8

Total Execution 176.405 80.049 54.6

Fig. 18. Serial vs. Parallel execution time (employee performance analysis

system).

Fig. 19. Improvement percentage across functions (employee performance

analysis system).

F. Genomic Sequence Analysis System

As Table VII, Fig. 20 and Fig. 21 show, Data Extraction
achieved the highest gain at 54.6%, followed by GC Content
Analysis (37%) and Coverage Analysis (30.6%). Overall, total
execution time was reduced by 48.3%.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

599 | P a g e
www.ijacsa.thesai.org

TABLE VII. GENOMIC SEQUENCE SYSTEM PERFORMANCE METRICS

(MILLISECONDS)

Function
Serial

Execuion Time

Parallel

Exection Time
Improvement (%)

Data

Extraction
118.149 53.670 54.6

GC Content

Analysis
63.252 39.827 37.0

Coverage

Analysis
1.902 1.320 30.6

Total

Execution
183.303 94.820 48.3

Fig. 20. Serial vs. Parallel execution time (genomic sequence analysis

system).

Fig. 21. Improvement percentage across functions (genomic sequence

analysis system).

Fig. 22. System improvement comparison.

Fig. 22 presents a bar chart that shows a final comparison
of overall system performance improvements achieved through
parallelization. The Employee Performance System showed the
highest gain at 54.6%, followed by the Genomic Sequence
System at 48.3%, while the Book Reviews System achieved a
more modest improvement of 36.1%. This confirms the tool’s
effectiveness across varied application domains. Table VIII
provides a comparative overview of our tool and several related
tools. The comparison is based on key attributes like
parallelization method, analysis type (static or runtime), and
language support. [9][12][13].

TABLE VIII. COMPARISON OF OUR TOOL WITH RELATED TOOLS ACROSS

VARIOUS ATTRIBUTES

Work

Lazy-

Parallel

Function

Calls

Automat

ic

Paralleli-

zation of

Pure

Method

Calls

Fine-

Grained

Recursi

ve

Parallel-

im

Autopar OurTool

Languag

Focus
Java, C# Java C

ANSI C

Codes
C++

Optimizati

on Target

Lazy

evaluatio

n,

closures,

nano-

threads

Pure

method

calls

Special

Recursi

ve

Functio

n Calls

Special

Recursi

ve

Functio

n Calls

C++

source

code,

Function

calls

based

on

three

fundamen

t-al

analyses

Automatio

n Level

Partial;

compiler

-assisted

automati

c,

compiler

-based

automat

ic

automat

ic

Fully

automated

pipeline:

detects,

classifies,

and

transform

s

suitable

function

calls to

parallel

equivalent

s.

VII. CONCLUSION

This paper presents a tool that successfully automates
function-level parallelization in C++ through a pipeline that
includes dependency analysis, context analysis, and workload
assessment. These analyses enable the identification of
independent, high-workload function calls that can be safely
parallelized without modifying the original program logic. The
tool also generates detailed Control Flow Graphs (CFGs) for
each function in DOT, PDF, and TXT formats, offering
valuable insights into code structure and parallelization
opportunities.

Experimental evaluations on three benchmark programs
demonstrated consistent improvements in execution efficiency.
Performance gains were particularly notable in compute-
intensive functions such as data extraction and analysis. The
Employee Performance System achieved the highest

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

600 | P a g e
www.ijacsa.thesai.org

improvement at 54.6%, followed by the Genomic Sequence
System at 48.3%, and the Book Reviews System at 36.1%.
These results confirm the effectiveness of the tool’s analysis
and transformation strategies and underscore its contribution to
advancing practical, automated parallelization in performance-
critical C++ applications.

Future work may focus on extending the tool’s capabilities
to support parallelization of additional code constructs and the
use of MPI, enabling distributed-memory execution and
scalability across multiple nodes. Such an extension would
broaden the tool’s applicability beyond shared-memory
systems.

REFERENCES

[1] R. C. O. Rocha, L. F. W. Góes, and F. M. Q. Pereira, “Automatic

parallelization of recursive functions with rewriting rules,” Sci. Comput.

Program., vol. 173, pp. 128–152, 2019.

[2] C. Navarro, N. Hitschfeld, and L. Mateu, “A survey on parallel computing

and its applications in data -parallel problems using GPU architectures,”

Commun. Comput. Phys., vol. 15, pp. 285–329, 2013.

[3] J. Parkhurst, J. Darringer, and B. Grundmann, “From single core to multi-

core: Preparing for a new exponential,” in Proc. Int. Conf. Comput.-Aided

Design (ICCAD), 2006, pp. 67–72.

[4] D. Geer, “Industry trends: Chip makers turn to multicore processors,”

Computer, vol. 38, no. 5, pp. 11–13, 2005.

[5] K. Sujatha, P. V. N. Rao, A. A. Rao, V. G. Sastry, V. Praneeta, and R. K.

Bharat, “Multicore parallel processing concepts for effective sorting and

searching,” in Proc. PACES-2015, Dept. of ECE, KL Univ., 2015.

[6] M. Sohal and R. Kaur, “Automatic parallelization: A review,” Int. J.

Comput. Sci. Mobile Comput. (IJCSMC), vol. 5, no. 5, pp. 17–21, 2016.

[7] J. Kwiatkowski and R. Iwaszyn, “Automatic program parallelization for

multicore processors,” in Lecture Notes in Computer Science, vol. 6081,

pp. 236–245, 2010.

[8] A. Barve, S. Khomane, B. Kulkarni, S. Ghadage, and S. Katare,

“Parallelism in C++ programs targeting objects,” in Proc. Int. Conf. Adv.

Comput., Commun. Control (ICAC3), 2017, pp. 1–6.

[9] R. Surendran and V. Sarkar, “Automatic parallelization of pure method

calls via conditional future synthesis,” Rice Univ., Houston, TX, USA,

2011.

[10] A. Midolo and E. Tramontana, “An automatic transformer from

sequential to parallel Java code,” Univ. of Catania, Italy , 2023.

[11] G. Kusoglu, B. Bramas, and S. Genaud, “Automatic task -based

parallelization of C++ applications by source-to-source transformations,”

in Compas 2020: Parallélisme/Architecture/Système/Temps Réel , Lyon,

France, 2020.

[12] D. Saougkos, A. Mastoras, and G. Manis, “Fine-grained parallelism in

recursive function calls,” Univ. of Ioannina, Greece, 2012.

[13] M. E. Kalender, C. Mergenci, and O. Ozturk, “AutopaR: An automatic

parallelization tool for recursive calls,” Dept. Comput. Eng., Bilkent

Univ., Turkey, 2014.

[14] M. Mathews and J. P. Abraham, “Implementing coarse-grained task

parallelism using OpenMP,” Dept. Comput. Sci. Eng., Mar Athanasius

Coll. of Eng., India, 2015.

[15] P. Mehta, S. Singh, D. Roy, and M. M. Sarma, “Comparative study of

multi-threading libraries to fully utilize multi-processor/multi-core

systems,” Int. J. Current Eng. Technol., 2014.

[16] S. S. Chatterjee and R. Gururaj, “Lazy-parallel function calls for

automatic parallelization,” in Proc. Int. Conf. Comput. Intell. Inf. Technol.

(CIIT), vol. CCIS 250, pp. 811–816, Springer, 2011.

[17] E. Pontelli and G. Gupta, “Last parallel call optimization and its

generalization,” J. Logic Program., vol. 27, no. 1, pp. 1–43, 1996.

