(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 10, 2025

A Technique for Automated Parallel Optimization of
Function Calls in C++ Code

Shuruq Abed Alsaedi', Fathy Elbouraey Eassa?, Amal Abdullah AlMansour?,
Lama Abdulaziz Al Khuzayem*, Rsha Talal Mirza’
Department of Computer Science-Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia!- 2343

Department of Computer Science-College of Computer Science and Engineering,
Taibah University, Yanbu 46421, Saudi Arabia!

Abstract—In modern software development, achieving high
performance increasingly relies on effective parallelization. While
much of the existing research has focused on loop-level
parallelism, function-level parallelization remains relatively
underutilized. Yet, in many real-world applications, function calls
serve as natural units of computation that could greatly benefit
from concurrent execution. To address this gap, we present an
automated tool that analyzes sequential C++ code, identifies
independent function calls, and evaluates their suitability for
parallel execution. The tool performs three key analyses:
dependency analysis to detect function calls, context analysis to
understand execution conditions, and workload assessment to
determine whether parallelization would result in significant
performance benefits. Based on the analysis results, the tool
transforms eligible function calls into parallel equivalents without
altering the original program logic. Additionally, the tool
generates detailed Control Flow Graphs (CFG) for each function
in three formats, facilitating further structural analysis. Three
benchmark programs were used in experimental testing. The
evaluation measured both sequential and parallel execution times,
along with the computed performance gain expressed as a
percentage reduction in runtime. Results demonstrated the tool’s
ability to improve execution efficiency and reduce processing time.
These outcomes emphasize the tool’s role in advancing function-
level automatic parallelization. The tool showed notable
performance improvements across the three benchmark
applications, with the Employee Performance System achieving
the highest improvement of 54.6%, followed by the Genomic
Sequence System at 48.3%, and the Book Reviews System
achieving an improvement of 36.1%. Demonstrating the tool’s
ability to improve efficiency via automated function-level
parallelization.

Keywords—Automatic parallelization; function-level
parallelization; C++ code optimization; parallel computing; control
flow graph; dependency analysis; performance optimization

1. INTRODUCTION

Improvements of multi-core processors have increased the
adoption of parallel programming among software developers.
However, developing parallel code remains a challenging and
error-prone task. As a result, automating code parallelization
has emerged as a hot topic in high-performance applications
research[1]. Available parallelization techniques usually target
specific sections of code that are suitable to concurrent
execution. Loops are the mostcommon candidates. Loops often
contain iterative operations that can be executed in parallel

without interdependencies, making them ideal for leveraging
multi-core and multi-threaded architectures.

However, there are other code constructs, such as function
calls, that can enhance performance and efficiency if they are
properly utilized.

By focusing on function calls, parallelization strategies can
effectively improve the software applications. However,
despite years of research, the automatic parallelization of
function calls remains an unresolved problem. Function calls
often still require manual parallelization [1].

The motivation for this work stems from several critical
challenges in modern software development:

1) Underutilization of parallelization opportunities : While
parallelization research has focused heavily on optimizing
loops, functioncalls have received comparatively less attention.
This highlights a significant gap in current parallelization
research, as function calls provide substantial opportunities for
enhancing performance. In many real-world applications,
computational workload is distributed across numerous
function calls rather than concentrated in loops. For instance,
data processing applications often involve multiple
independent operations such as data extraction, filtering,
aggregation, and statistical analysis, each implemented as
separate functions. These functions can potentially execute
concurrently without dependencies, yet they remain sequential
in most codebases due to the lack of automated transformation
tools. Addressing the parallelization of function calls helps
improve the efficiency and scalability of code. Nonetheless,
developing parallel code or converting certain sequential code
to run in parallel is a challenging task thatrequires significant
effort from programmers.

2) Complexity of manual parallelization: The complexities
of parallel programming start from the problem definition, as
not all problems are suited for parallelization. Programmers
must carefully consider different aspects of parallel processing,
such as how to distribute the current workload across parallel
threads and manage communication between these threads [2].
This manual effort is time-consuming, error-prone, and requires
deep expertise in both parallel programming paradigms and the
application domain. Developers must analyze data

589 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

dependencies, identify race conditions, manage
synchronization, and ensure thread safety tasks that
significantly increase development time and maintenance costs.

3) Performance demands of modern applications:
Contemporary software applications face increasing
computational demands. From big data analytics and scientific
computing to machine learning and real-time systems, the need
for efficient parallel execution has never been greater. C++
programming language is known for its performance and fine-
grained control and become an essential component in the
development of high-performance computing applications,
including those that leverage parallelism [8]. However, the gap
between available hardware capabilities and software
utilization remains substantial. Many existing sequential C++
applications could benefit significantly from parallelization but
lack the resources or expertise for manual transformation.

Our proposed tool was designed to analyze and transform
C++ code, which was selected due to its relevance in
performance-sensitive software and its rich set of
parallelization libraries. This gap is particularly significant
because:

e Natural Computation Units: Functions represent natural
units of computation with well-defined interfaces and
encapsulated logic, making them ideal candidates for
parallel execution.

e Coarse-Grained Parallelism: Function-level parallelism
offers coarse-grained task parallelism that can better
utilize modern multi-core architectures with lower
synchronization overhead compared to fine-grained loop
iterations.

e Code Maintainability: Parallelizing at the function level
preserves code structure and maintainability better than
aggressive loop transformations.

This study proposes a fully automated tool that offers an
advanced method for analyzing and selecting suitable function
calls for parallelization in C++ code, a language with unique
structural and concurrency characteristics. The proposed tool
integrates static analysis, control flow graph generation, and a
lightweight scoring mechanism to identify and transform
independent function calls into parallel equivalents using
std: :async. By applying this technique to C++, the tool bridges
a critical gap in existing research. This contribution offers
practical value for developers working with performance-
critical C++ applications, especially in cases where loop-level
parallelism is insufficient.

The main contributions of this work are:

1) Comprehensive static analysis framework: We introduce
a three-phase analysis approach combining:
e Dependency Analysis: Automatically detects function
calls and analyzes their data and control dependencies to
ensure correctness of parallel transformations.

e Context Analysis: Evaluates execution contexts to
determine parallelization safety and identify functions
that can be executed asynchronously without affecting
program semantics.

Vol. 16, No. 10, 2025

e Workload Assessment: Employs a work potential metric
that quantifies computational complexity, enabling
prioritization of parallelization candidates.

2) Automated code transformation pipeline: The tool
provides end-to-end automation from analysis to code
generation:

e Automatically transforms eligible sequential function
calls into parallel equivalents using C++ standard library
features (std::async, std::future), without requiring
manual intervention or code restructuring.

e Preserves original program logic and semantics while
introducing parallelism.

3) Visual Analysis and Debugging Support:

e Generates detailed Control Flow Graphs (CFGs) for each
function in three formats (DOT, PDF, and TXT),
facilitating structural analysis and verification.

e Provides comprehensive reporting of parallelization
decisions, including work potential scores and context
classifications.

e Enablesdevelopers to understand, validate, and fine-tune
the automated transformations.

In this study, three benchmark programs were selected to
conduct experiments. The experiments aimed at measuring
parallel execution time, sequential execution time, and
computed performance improvement, representing the
percentage reduction in execution time. The results show that
our proposed tool successfully enhances performance and
reduces execution time. The findings highlight the tool’s
capability as a step forward in bridging the current gap in
automatic parallelization research, particularly at the function-
call level.

The structure of this paperis as follows: Section Il provides
background information; Section Il reviews related work;
Section IV describes the system architecture and methodology;
Section V presents the experimental results and discussion;
Section VI evaluates performance improvements; and
Section VII concludes the paper.

II. BACKGROUND

Historically, processor design has focused on combining
more advanced features, achieving higher clock speeds and
increasing thermal limits. However, the pursuit of enhanced
performance remains a necessary demand. This has driven the
adoption of integrated multi-processor (multi-core)
architectures [3].

However, transistors can’t keep getting smaller indefinitely.
Nowadays, as transistors become thinner, chip makers aim to
manage heat generation and power usage; these are two major
challenges. Additionally, performance enhancement techniques
like runningmultipleinstructionsat the same time havereached
their limits.

Due to these problems, the rate of processor performance
improvements has started to slow down. In the 1990s, chip
performance increased by 60 percent each year, while from

590 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

2000 to 2004, this growth slowed to 40 percent annually, with
performance only rising by 20 percent.

In fact, improvements in computer performance have
essentially resulted from making chips smaller and increasing
their number of transistors. According to Moore's Law, this
approach has led to faster chip speeds and reduced costs.
Instead of making one super powerful core, companies are now
creating chips with multiple cores that use less energy and run
cooler. Even though these multicore chips might not be as fast
as the top single-core ones, they improve overall performance
by handling more tasks at the same time [4].

Many modern programs require more computing power
than traditional single-threaded computers can offer. In order to
achieve better performance, parallel processing is necessary to
meet demand. Parallelismallowsexecutingmultiple tasks at the
same time to solve complex problems in less time. Multicore
processing requires running programs on more than one core
within a single CPU chip, which is a type of parallel processing,
Multicore utilization means using the CPU's multiple cores
efficiently [5].

In parallel processing of programs, instructions are split
across many processors to run the same program faster than
with sequential processing. Some programs that require tasks
such as sorting and searching are designed to use parallel
processing. Such programs are often tested on large databases.
Experimental results using bubble sort and linear search show
that sharing the load and utilizing multicore parallel processing
make tasks easier and quicker compared to sequential
processing. Parallel processing and multicore processing both
involve the ability to run code simultaneously on different
CPUs, machines, or cores. Multicore processing is designed to
perform tasksin parallel. A core can be considered as a small
processor within a larger processor. Therefore, optimizing code
formulticore processing s closely tied to parallelization [4][5].

Finding opportunities to run code automatically in parallel
is essential for developing efficient programs to run on many
multithreaded applications. This area has been researched for
many years. Even though hardware provides some fine-grained
parallelism, compiler researchers have to develop techniques to
automatically convert source code into suitable parallel
applications.

With the growing ubiquity of distributed computing, the
software industry demands compiler technologies capable of
automatically parallelizing software. However, the demand for
automatic parallelization in compilers is growing as clusters
and other kinds of distributed computing become widely
adopted, and CPU technology moves toward higher levels and
coarser granular parallelism [6].

Generally, automatic parallelization involves the following
three procedures [7]:

e Dependency analysis to identify potential parallelism
regions: Carrying out a dependency analysis to identify
regions in the code that are capable of parallelization.

e Restructuring the program into blocks that can run in
parallel: Organizing the code into number of blocks that
can run simultaneously. In this phase, different

Vol. 16, No. 10, 2025

transformations are applied to maximize the level of
parallelism achievable within the code.

e Generating parallel code suitable for specific
architectures: Producing parallel code optimized for a
particular architecture by assigning program blocks to
available processing units and developing appropriate
strategies to enable parallelism based on the targeted
system.

Building on these core steps, it is essential to consider how
specific programming languages, such as C++, support
parallelism through built-in featuresand libraries. C++ supports
multithreaded execution through features such as std::async,
which play a basic role in parallelism [15]. Other standard
multithreading features in C++ that simplify parallel
programming include [15]:

e std::thread: To manually manage the creation and
control of new threads of execution.

e std::async: Enables asynchronous function execution,
with thread management handled automatically by the
system.

o std::future: Used with std::async or std::promise to
obtain results from asynchronous executions.

e std::promise: For sending a value from one thread to
another, typically used with std::future.

e std::mutex: Prevents race conditions by ensuring that
only one thread can access shared data at a time.

Several prior studies have extensively discussed the
evolution of multicore architectures, the challenges in
optimizing code for parallel execution, and the importance of
automatic parallelization to utilize modern hardware
efficiently. These works collectively emphasize the necessity of
transitioning from sequential to concurrent execution, while
highlighting fundamental techniques such as dependency
analysis, control flow restructuring, and task distribution across
cores. They also explore compiler-assisted approaches, parallel
programming models, and language-specific solutions that aim
to simplify or automate this transition.

While these contributions have laid important groundwork
for parallel computing, particularly in loop and object-oriented
contexts, there remains a noticeable gap in the automation of
function-level parallelization, especially for statically analyzed,
general-purpose C++ applications. This study builds on those
foundational insights by introducing a tool that automates the
detection, analysis, and transformation of independent function
calls into parallel equivalents using C++’s native concurrency
libraries. The proposed solution requires no manual
intervention or external annotations, offering a fully automated
pipeline that strengthens the practical adoption of parallelism in
real-world C++ systems.

III. RELATED WORKS

Parallel computing has recently become more in demand
due to the increasing growth of multi-threaded architecture.
There are some papers that discuss certain techniques that aim
to efficiently transfer a sequential program into a parallel one.

591 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

In [9], the authors introduce an approach that uses the
concept of futures synthesis for pure method call
parallelization. Their approach employs three strategies to
achieve automatic parallelization through future synthesis:
parallelism analysis, future synthesis, and threshold synthesis.
In the future synthesis phase, the proposed system identifies
pure method calls and labels them as async expressions. After
that, the system conducts a parallelism analysis to determine
which async expressions should be executed sequentially to
avoid overhead. Finally, threshold synthesis utilizes the results
of the parallelism analysis to synthesize predicate expressions
for deciding whether a specific pure method call should be
executed in parallel or sequentially.

Our tool focuses on C++ and operates at the static level,
targeting functions that are independent and computationally
intensive. It does not rely on runtime profiling but instead uses
a scoring system to identify which functions should be
parallelized. While in study [9] the tool is adaptive and runtime-
aware, ours offers a lightweight and deterministic
transformation pipeline that produces a ready-to-compile
parallel version of the original program, making it ideal for
users seeking fast and fully automatic optimization.

In [16], authors introduced Lazy-Parallel Function Calls, a
compiler-level approach that enables automatic parallelization
in imperative languages by combining lazy evaluation
semantics with nano-thread scheduling. Their method ensures
correctness by leveraging immutability and deferring function
execution until results are required, enabling parallelism
without altering program behavior. In contrast, our tool targets
eager, function-level parallelization in C++ using std::async,
automatically identifying independent function calls and
transforming them for concurrent execution. While their work
emphasizes semantic safety, our approach focuses on
performance gains in compiled C++ applications.

In [10], the authors present an automatic technique that
analyzes code written in the Java programming language to
detect method calls that can be parallelized and transform them
accordingly. The proposed technique is based on control
dependence and data dependence analysis to construct the
execution flow and determine accessed data.

APAC [11]is a compiler that converts sequential source
code written in the C++ language into task-based parallelized
code by inserting special directives. This compiler utilizes the
LibToolinglibrary and clang-tools from the LLVM framework.
It encapsulates each function body with an OpenMP directive,
and each function or method call with an OpenMP statement.

As authors stated in study [12], there are many recursive
functions that contain a significant amount of built-in
parallelism, but it is not always clearly visible. Thus, a number
of studies have been conducted to detect parallelism and utilize
it. Mainly by targeting calls that can be executed concurrently.
However, some recursive algorithms do not permit the
concurrent execution of function calls. Accordingto the authors
[12], they examined ways to extract concurrency from specific
recursive function calls that are not typically parallelizable by
common parallelization methods. Their primary approach
involves parallelizing them at a finer level, relying on multi-
threaded architecture and a multi-core as the infrastructure. The

Vol. 16, No. 10, 2025

authors stated that, compared to conventional parallel systems,
multi-core systems support a greater degree of fine-grained
parallelism by providing thread parallelism and reducing
overhead in thread communication.

Autopar [13] is a tool that targets to automatically
parallelize certain recursive function calls using analysis of
static programs. It detects the recursive functions inside a
certain program. After that, it moves to the analysis phase by
gathering related information about such functions without the
need for rewriting the program or requiring developer
involvement. Finally, Autopar introduces the parallel
constructs necessary to achieve automatic parallelization. In
fact, their tool applies to a specific class of recursive functions
that use a divide-and-conquer approach. They tested four
benchmarks—bionic, fractal, heat, and knapsack—using their
recursive function parallelization tool.

In [14],the proposedtool applies a coarse-grained approach
to task parallelism. It utilizes OpenMP directives and inserts
them into the input C code. The output program is a
multithreaded C code that can use different cores in a shared
memory system. The system operates between the compiler and
the application. The generated output is compiled just like any
ordinary C code. Both the input and output of their proposed
tool are source code, making it a source-to-source
transformation tool.

In [17], authors propose two optimizations—Last Parallel
Call Optimization (LPCO) and its generalization, Nested
Parallel Call Optimization (NPCO) which is designed to
improve the efficiency of and-parallel logic programming,
Their methods restructure parallel goal execution in logic
programs to minimize redundant parallel tasks and enable fast
backtracking. These techniques are tailored for the control-
parallel execution model, where correctness depends on
preserving goal dependencies.

Table 1 presents a comprehensive comparison of the
limitations identified in existing approaches and how our
proposed tool addresses these gaps.

TABLEI. LIMITATIONS OF EXISTING APPROACHES AND OUR PROPOSED
SOLUTION
Aspect Existil}g f&pgroaches Our Propo§ed Tool
Limitations Solution
Limited to specific | Comprehensive C++
languages: Java | support with standard

Language Support

[9][10], C [14], logic
programming [17]

library integration
(std::async, std::future)

Restricted to recursive
[12][13] or pure

Analyzes all function
types: recursive, non-

Function Coverage . recursive, member
methods [9]; ignores .
. functions, and
general function calls .
standalone functions
Runtime profiling Compr‘ehenswe s.ta.t1c
. . analysis combining
. required [9]; limited
Analysis Type . . dependency, context,
static analysis
and workload
[13][14]
assessment

Automation Level

Semi-automated
requiring manual
refinement [117;
domain-specific [17]

Fully automated end-
to-end pipeline from
analysis to code
generation

www.ijacsa.thesai.org

592 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

IV. METHODOLOGY

This study introduces a tool that addresses an important
parallelization technique: unlike loop parallelization, research
on parallelizing function calls is limited. This tool offers an
improved method for analyzing and selecting the applicable
functions for parallelization in C++ code. This tool includes
AST traversal and work potential metrics to evaluate
computational effort and identify functions with high
parallelization possibility. Moreover, it generates detailed
control flow graphs as well as an analysis context in order to
give valuable insights to programmers who look to optimize
programefficiency through parallel execution. As Fig. 1 shows,
the tool has five main functionalities, which we will discuss in
detail. These main functionalities are: Function Analysis,
Context Analysis for Parallelization, Control Flow Graph
(CFG) Generation, Work Potential Calculation, and CFG
Visualization.

Main Key Functionalities of the Proposed Tool

Y S S B

Fuscton Context Control Flow Work Control Flow
Ay Analysis for Graph Potential Graph
Paralelization Generation Calculation Visualization
Fig. 1. Five key functionalities of the tool.

Main key functionalities of the proposed tool:

A. Function Analysis
e Parses the C++ source code using Clang's libclang to
generate an abstract syntax tree (AST).

e Extracts functions and analyzes each line for function
calls to understand dependencies and execution flow.

B. Context Analysis for Parallelization

e Determines whether each function call can be
parallelized based on its context (e.g., whetherit’s inside
loops or conditionals).

C. Control Flow Graph (CFG) Generation
e Generates a CFG for each function, including nodes for
statements and edges representing control flow.

e Annotates each function call with contextual information
(e.g., if part of a loop) to highlight non-parallelizable
code.

D. Work Potential Calculation
e Each function is assigned a "work potential" score based
on the complexity of its control flow and nested calls.

e Higher work potential indicates a candidate for
parallelization, while certain functions (like main) are
excluded due to its structural importance.

Vol. 16, No. 10, 2025

E. Control Flow Graph (CFG) Visualization

e Uses Graphvizto create a DOT file for each function's
CFG, saving it as a DOT, a PDF, and TXT file.

e The CFG graphically represents the control flow,
showing how different statements and function calls are
interconnected.

Our tool utilizes the use of libclang for parsing C++ code
(AST) and graphviz for visualizing CFGs. Libclang is a library
that offers tools for parsing and analyzing C++ code. It is part
of'the LLVM project and enables the generation of an Abstract
Syntax Tree (AST). Graphviz, on the other hand, is a
visualization software used for creatinggraphs and diagrams. It
is specifically utilized to generate Control Flow Graphs
(CFGs), which visually represent the flow of execution within
a program, helping programmers understand how different
parts of the code are connected and identify potential
bottlenecks or parallelization opportunities. Moreover, it
usesC++ Parallelization and Synchronization Library
(std::async: allows asynchronous function execution and
enabling tasks to run concurrently in separate threads). As
Fig. 2 illustrates, the tool's architecture starts with C++ source
code input, which undergoes scanning to detect functions. This
is followed by C++ code analysis, which performs dependency
and contextanalysis generate Control Flow Graphs (CFGs) and
calculate work potential. Finally, the tool moves to C++ code
generation, completing the process [10].

Tool . -
Archecture) Coneron (885

Fig. 2.

The proposed tool archeticure.

A detailed description of the tool architecture:

1) Context analysis: This analyzes the context in which
function calls occur, meaning it analyzes C++ source code to
identify functions that can be parallelized to improve
performance.

Tables II and III provide a detailed clarification of the
situations under which functions are considered parallelizable
and when they are not suitable for parallelization.

2) CFG building: CFG builder drives the analysis of a
specified C++ code, generates control flow graphs (CFGs),
saves them in a designated output directory, and classifies
functions by their work potential (which will be discus1§sed)
for advanced parallelization identification.

593 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE II. CONDITIONS FP;OR CONSIDERING A FUNCTION CALL AS
POTENTIALLY PARALLELIZABLE
Condition Reason
Function calls within

Not Part of Control Structure:

The function call is not used within the
condition of control structures such as if,
while, for, or switch statements.

conditions are critical for the
control flow and may need to
be executed sequentially to
maintain program correctness

Not Inside Loops:
The function call is not located within the
body of for or while loops.

Parallelizing function calls
inside loops can lead to
synchronization issues and
may not provide performance
benefits due to overhead.

Not Part of Return Statements:
The function call is not used directly
within a return statement.

The result of the function is
immediately required for the
return value, so parallelizing
it would necessitate waiting
for its completion. Attempting
to execute such a function
asynchronously (in parallel)

does not provide any
performance improvement
and may introduce

unnecessary overhead. This
essentially cancels out any
potential advantages of
parallelization in that context.

Not Part of Throw or Assert Statements:
The function call is not used within throw
or assert statements.

Throw: is used to signal an exception or
error condition.

Assert: The assert function checks /
validates a condition at runtime.

These statements are critical

for error handling and
program correctness,
requiring immediate
execution.

Standalone Function Calls:
The function call is a standalone statement
or assigned to a variable outside the
contexts mentioned above.

Such calls can be executed
asynchronously without
affecting the program’s
control flow.

TABLE III. CONTEXTS WHERE A FUNCTION CALL IS NOT SUITABLE FOR
PARALLELIZATION
Number Condition
1 Control Structure Conditions
2 Inside Loops
3 Return Statements
4 Part of Throw or Assert Statements

3) Work potential metric: work potential metric is used for
prioritizing parallelization by suggesting specific functions to
parallelize. This process is based on calculating the
computational load or complexity of each function and
assigningit a score. Functions with a high work potential score
are likely to benefit from parallelization, so the tool identifies
and lists these functions at the end of the analysis, see Fig. 3.

Input Computational Ssore
2 Load s
Function Calculating Assigring

Functions
Sorting

Fig.3. Steps of the work potential metric.

4) Workpotential purposes: The main purposes ofthe work
potential metric are to quantify computational effort because

Vol. 16, No. 10, 2025

functions with more statements and function calls need more
computational processing, and to identify chances for
parallelization, as high work potential indicates that a function
may benefit from being executed in parallel which enhance
performance. However, there are some excluded functions.
Certain functions, like main, are excluded from parallelization
even if their work potential score is high, because parallelizing
the main function does not make sense. It organizes all other
functions and controls the entire program's execution, so it is
avoided from parallelization.

5) Work potential calculation: Calculation Method for
finding Work Potential is a systematic method that requires
analyzing C++ functions and utilizing Clang's libclang library
to evaluate computational complexity. It uses Clang's libclang
library to parse the C++ source code and generate an AST, and
traverses each function's AST to analyze its structure. The Work
Potential Counter (work potential) counts statements and
function calls. First, it is initialized to zero for each function.
Then, it gets incremented for each statement encountered
during traversal, as well as for each function call within the
function.

V. RESULT AND DISCUSSION

We evaluated the parallelization tool on the BookLibrary
benchmark program. BookLibrary, a C++ program, is
considered a tool for data processing and analytics of book
review data. It includes classes like Review, Book, Author,
User, ExtractData, and ExtractDataset in order to organize and
analyze information related to books, authors, users, and
reviews. Our approach targets programs where function calls
account for a significant portion of the workload. Therefore, we
chose BookLibrary programbecause a substantial amount of its
sequential work is executed through function calls.
BookLibrary.cpp helps users load, analyze, and summarize
book review data, with a particular focus on author and user
review statistics, enabling insights into authors’ popularity and
reader engagement. Table IV shows the main components of
the C++ code. In addition to those listed in Table IV, there are
other functions that calculate and return the most, least, and
average-reviewed books, as well as retrieve the most and least-
reviewed authors based on their books' reviews.

TABLEIV. OVERVIEW OF MAIN COMPONENTS IN THE C++ CODE
Classification | Description
Review: Represents a review of a book with attributes
like book ID and title.
Book: Represents a book, including its title and list of
Data reviews.
Representation | Author: Represents an author with related books and
users.

User: Represents a user, with a user ID and related
reviews.
ExtractDatase: Reads book and review from CSV files,

Data then stores them .
Extraction and | ExtractData: create mappings between books and
Aggregation authors, reviews and users, then updates book review

data.

A total of 53 functions were automatically extracted from
the analyzed source file.

594 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

The detected functions range from getBooklId, located at
line 25, to the main function at the end of the code.

This demonstrates the tool’s capability to comprehensively
identify and list all functional components for further analysis
(see Fig. 4).

Enhanced CFG Builder with Function Call Context Analysis

Analyzing file: books_library.cpp

Found function: getBookId at line 25
Found function: getTitle at line 26

Found function: getUserID at line 27
Found function: getScore at line 29

Found function: getPrice at line 37

Found function: getProfileName at line 38
Found function: getHelpfulness at line 39
Found function: getTime at line 40

Found function: getSummary at line 41
Found function: getText at line 42

Found function: getTitle at line 58

Found function: getAuthors at line 59
Found function: getReviews at line 6@
Found function: addReview at line 61
Found function: updateMediumScore at line 62
Found function: getMediumScore at line 76
Found function: resetReviews at line 77
Found function: operator== at line 78
Found function: getDescription at line 81
Found function: getImage at line 82

Found function: getPreviewLink at line 83
Found function: getPublisher at line 84
Found function: getPublishedDate at line 85
Found function: getInfolLink at line 86
Found function: getCategories at line 87
Found function: getRatingCount at line 88
Found function: getFullName at line 100

Fig. 4. Extracted function from book_library.cpp.

Fig. 5 belowpresents the tool’s output that demonstrates the
automated generation of Control Flow Graphs (CFGs) for
several detected functions such as getBookld, getTitle,
getScore, getText, getReview, and getPrice. For each function,
the tool produces three distinct representations: DOT, PDF, and
an extended TXT format to support both visual inspection and
structural analysis. This comprehensive output enables the
examination of the internal logic and control dependencies
within each function. Additionally, it allows tracing execution
paths, detecting redundant operations, and better understanding
of the relationships among function calls. Overall, this
automated CFG generation provides a valuable foundation for
program comprehension, debugging, and performance
optimization.

DOT file for function 'getBookId' saved to cfg_output/getBookId_cfg.dot

[PDF file for function 'getBookId' saved to cfg_output/getBookId_cfq.pdf

TXT file for function ‘getBookId' saved to cfg_output/getBookId_cfg.txt

Extended CFG for function 'getBookId' saved to cfg_output/getBookId_extended_cfg.pdf

DOT script for extended CFG saved to cfg_output/getBookId_extended_cfg.dot

Extended CFG details for function 'getBookId' saved to cfg_output/getBookId_extended_cfg.txt
DOT file for function ‘getTitle' saved to cfg_output/getTitle_cfg.dot

PDF file for function 'getTitle' saved to cfg_output/getTitle_cfg.pdf

TXT file for function 'getTitle' saved to cfg_output/getTitle_cfg.txt

Extended CFG for function 'getTitle' saved to cfg_output/getTitle_extended_cfg.pdf

DOT script for extended CFG saved to cfg_output/getTitle_extended_cfg.dot

Extended CFG details for function 'getTitle' saved to cfq_output/getTitle_extended_cfg.txt
DOT file for function 'getUserID' saved to cfg_output/getUserID_cfg.dot

POF file for function 'getUserID' saved to cfg_output/getUserID_cfg.pdf

TXT file for function 'getUserID' saved to cfg_output/getUserID_cfg.txt

Extended CFG for function 'getUserID' saved to cfg_output/getUserID_extended_cfg.pdf

DOT script for extended CFG saved to cfg_output/getUserID_extended_cfg.dot

Extended CFG details for function 'getUserID' saved to cfg_output/getUserID_extended_cfg.txt
DOT file for function 'getScore' saved to cfg_output/getScore_cfg.dot

PDF file for function 'getScore' saved to cfg_output/getScore_cfg.pdf

TXT file for function 'getScore' saved to cfg_output/getScore_cfg.txt

Extended CFG for function 'getScore' saved to cfg_output/getScore_extended_cfg.pdf

DOT script for extended CFG saved to cfg_output/getScore_extended_cfg.dot

Extended CFG details for function 'getScore' saved to cfg_output/getScore_extended_cfg.txt
DOT file for function 'getPrice’ saved to cfg_output/getPrice_cfg.dot

PDF file for function 'getPrice' saved to cfg_output/getPrice_cfg.pdf
‘TXT file for function 'getPrice' saved to cfg_output/getPrice_cfg.txt

Fig.5. Control Flow Graph (CFQ) files generated for multiple functions.

Vol. 16, No. 10, 2025

Processing call: {'name': 'resetReviews', 'context': 'Potentially Parallelizable', 'line': 172}

Found call 'resetReviews' at line 172

Processing call: {'name': 'addReview', 'context': 'Potentially Parallelizable', 'line': 177}

Found call 'addReview' at line 177

Processing call: {'name': 'updateMediumScore', 'context': 'Potentially Parallelizable', 'line': 181}

Found call 'updateMediunScore' at line 181

Processing call: {'name': 'updateBooksReviews', 'context': 'Potentially Parallelizable', 'line': 186}

Found call 'updateBooksReviews' at line 186

Processing call: {'name': 'getReviews', 'context': 'Not Parallelizable: Part of return statement', 'line': 189}
Found call 'getReviews' at line 189

Fig. 6. Sample tool output showing identified function calls and their

parallelization context.

Fig. 6 illustrates the tool’s intermediate output during
function call analysis. It captures many functions such as
resetReviews, addReview, and updateMediumScore, and
precise source code line numbers. Each function is reported
alongwith its name, classification context,and source code line
number.

Parallelizing top 4 functions:
extractMostReviewedAuthor: 11
extractLeastReviewedAuthor: 11
extractAverageReviewedAuthor: 11
getUserForAuthor: 5

CFG generation with function calls completed.

Analysis Complete

All CFGs have been generated and saved in the 'cfg_output' directory.

Fig. 7. Selected functions for parallelization.

Fig. 7 shows the final summary and highlights the four
functionsidentified as suitable for parallelization based on their
work potential score. The functions
extractMostReviewedAuthor, extractLeastReviewedAuthor,
and extractAverageReviewed Author were selected due to their
significant contribution to the overall processing load. Control
Flow Graph (CFG) generation was completed for all, and the
results were saved in the cfg_output directory.

Work Potential of Parallelized Functions

10
v 8
]
wn
=
2 6
g
£
*
S 4
2
0 ’ $ - S] $] &
§D \§-‘\0 \$5\0 Q{(\Q
K e & &
& o o &
g g 3¢ &
Q_Q' Q_?, Q_@ 2&
0{.}' 'DL} @@ &
L < &
& & ©
s & 4
¢ 2 &
&
Functions
Fig. 8. Work potential scores for selected functions identified for

parallelization.

Fig. 8 presents a bar chart showingthe work potential scores
of selected functions identified by the tool. The x-axis displays
four functions: extractMostReviewedAuthor,
extractLeastReviewedAuthor,

595|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

extractAverageReviewedAuthor, and getUserforAuthor, while
the y-axis quantifies their corresponding scores. The first three
functions each achieved a high potential score of 11, indicating
strong suitability for parallelization due to their computational
intensity. In contrast, getUserforAuthor received a lower score
of 5, suggesting a relatively smaller parallel workload.

Fig. 9 shows the completion stage of the tool's
transformation process, where selected functions have been
successfully parallelized. The tool logs the transformed
functions: extractMostReviewedAuthor,
extractLeastReviewedAuthor,
extractAverageReviewedAuthor, and getUserforAuthor and
saves the modified source code as
books_library parallelized.cpp.

Bl cig_owtput
Bl sample_data
BB tocks_ library.cpp
e n books_library_parallelized cpp

Fig. 9. Generation of the parallelized output file.

Code Snapshots

=]

[l getScore_extended cfgpdf i —
[setscore_extended clg it [e et B setusenn_cfdot
‘ getSummary_cfg.dot n S—— . getUserlD_cfg pdf
i getUserlD_cfg txt

‘ getSummany_cig pof n qetTime_extended_cfg tat

B cetuser_extended cfy.dot

B cetsumman cigta et cigder

‘ getUserlD_extended_cfg.pdf
‘ getSummary_extended_cfg. igmme_cfgmr . I
getlserlD_extended_cfg.bt
‘ getSummary_extended_cfg. i gl cig bt ‘ s oo
getUsers_cfg.dot
‘ getSummry_extended cfg i gelTile_extended_cfg.dot [st iyt

B cetmertcigdot
[cetment clgpef

[cetmertcgia
[§ cetTert extended clg ot

B gemie exented clgpit B oetvsers el

n Gl edenfed it . getUsers_extended_cfg dot

B oetsefututr cigan B oetsers_extended _cfgpof

[oetserochatorcigpe [B setusers extended cfga

‘ getText_extended_cfg pdf n getUserForAuthar_cfgbxt [main_cig.dot
[§ cetTert extended clgtt | setsefortutor etenced. B main.cigpdt
B etmime_cf dot | cetiserortuthorevended. [mainclga

‘ getTime_cfy.pdf i qetUserForAuthor_extended.. ‘ main_extended_cfg.dot

Fig. 10. Snapshot of Generated Control Flow Graph (CFG) files.

Fig. 10 presents a visual overview of the directory structure
containingthe Control Flow Graph (CFG) outputs generated by
the tool. For each analyzed function, such as addUser,
extractBooks, and extractMostReviewedAuthor, there are
many output formats created:

e _dot: the raw DOT graph description format
e pdf: a visual representation of the control flow

e txt: a textual report of the CFG

Vol. 16, No. 10, 2025

e cxtended versions: enriched CFGs that include
additional semantic or contextual data

These files are organized systematically within the
cfg_outputdirectory,enablingdevelopers to inspect the control
flow structure of each function in both graphical and textual
forms.

- ow + @6

(Y

COMPOUND STMT
(Lie 12

Fig. 11. PDF format Generated Control Flow Graph (CFG) for the Function
addBlockFunction.

Fig. 11 presents a sample Control Flow Graph (CFG)
generated in PDF format for the selected function addBlock.
The graph begins at the Entry node and transitions to a
Compound Statementatline 102, indicatinga block of grouped
instructions. It then leads to a conditional IF node, representing
a branching decision in the function's logic.

Fig. 12 represents another format which is DOT format,
while Fig. 13 represents TXT format.

i s 8 (g0,
1 Lt (P000 SN
e,

19 viftheL YIGT);

1B gntry > oo stot [pse"e, .08, 70 LB, TL 604471 048,70 614071
10 ook it (colarered,

10 height,

13 lahel:fuit,
1 S0,
5 shpestial,
3 syleefilled,

7 viftih]y

2 bk stut -» adBook exit [pose"e, ST TR0 29,00, 90,133 20061, 87,056 300,20, 83,96 75,00, E5 46448597 84,52, 60.1 50375, 80 58"}

25 ook st -» adtBook stut § - [ose"e, 60,74, 98,037 1145, 90,087 1482, 00550 154,510 167,09, 180 04,70, 106 10,71, 204,86 160, 100 5');

3 ok gecisim 9 [eolorsyelloy,

31 height=1 0536,

1 el

Beml’,

3 L0 3°,

1 shapectianend,

3 syleefilled,

11 vidtheL 156];

36 buok stat 4 -» aBouk fecision § [Lael=Conitio,

B B985,

1 gosee, .64, 46,170 6,031,320 2653 5.99 005,598 050 0,600

£ B gecsim § -» aflonk it sose"e 3.4, 96,5000 80,535,265 467,95, 5.9 B2, 1.6

2Bk gecsim - afBot 3int) (os=", 9,959,102 33,5644 1008, 4,699 0,53, 0,512 54.00,52 51,58 5.6 0804 5,000 6.7 SDI60

Fig. 12. DOT format generated Control Flow Graph (CFG) for the function.

596 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

addBook_cfg.dot addBook_cfg.txt X ver

1 Control Flow Graph for Function: addBook
2 ——
3

4 Nodes:
5 addBook_entry

6 addBook_exit

7 addBook_stmt_@

8 addBook_stmt_@

9 addBook_decision_@
10 addBook_stmt_@

11

12 Edges:

13 addBook_entry —> addBook_stmt_@

14 addBook_stmt_@ ——> addBook_stmt_@

15 addBook_stmt_® -—> addBook_decision_@
16 addBook_decision_@ —-—> addBook_stmt_@
17 addBook_stmt_@ ——> addBook_exit

18 addBook_decision_@ -—> addBook_exit
19

Fig. 13. TXT format Generated Control Flow Graph (CFG) for the function
addBlock() function.

std::optional<Author> extractMostReviewedAuthor(
const std::map<std::string, Book>& books,
const std::multimap<std::string, Review=& reviews) {

ExtractData extractor(books, reviews);
std::map<std::string, Author> authors = extractor.getAuthors();
std::optional<Book> book = extractor.getMostReviewedBook();

Fig. 14. Original sequential implementation of extractMostReviewed Author
function.

Fig. 14 shows the original sequential version of the
extractMostReviewedAuthor function, where operations are
executed in order. Fig. 15 presents the parallelized version
automatically generated by the tool, using std::async to execute
getAuthors and getMostReviewedBook concurrently. Our
proposed tool identifies these opportunities without user
intervention, which enhance the optimization process and
facilitate it.
std::optional<Author> extractMostReviewedAuthor(

const std::map<std::string, Book>& books,
const std::multimap<std::string, Review=& reviews) {

ExtractData extractor(books, reviews);
auto authersTask = std::async(std::launch::async, &ExtractData::getAuthors, &e:
std: :map<std::string, Author> authors = authorsTask.get();

auto bookTask = std::async(std::launch::async, &ExtractData::getMostReviewedBot
std: :optional<Book> book = bookTask.get();

Fig. 15. Parallelized Version of extractMostReviewed Author Using
std::async.

Vol. 16, No. 10, 2025

VI. EVALUATION METRICS

This section presents a performance analysis and evaluation
through comparing serial and parallel implementations, with a
focus on improvements achieved via function-level
parallelization. The evaluation measures the impact of
parallelization across three distinct data processing
applications:

A. Book Reviews Analysis System

Processes large datasets of book reviews to extract insights
such as the most and least reviewed authors, average review
counts, and user-specific data. Ideal for evaluating function-
level parallelism in data filtering and aggregation tasks.

B. Employee Performance Analysis System

Analyzes performance metrics of employees to compute
scores, rankings, and performance categories. Suitable for
testing parallel function execution in systems with structured,
repetitive computations.

C. Genomic Sequence Analysis System

Performs operations such as sequence matching, frequency
analysis, and data summarization on long character sequences.
This benchmark represents workloads with high computational
demand and pattern processing.

The result shows the impact of parallel execution in
enhancing computational efficiency across different workloads
and domains.

In this study, the Improvement metric was selected to
quantitatively assess the performance gains achieved through
function-level parallelization. The metric calculates the
percentage reduction in execution time between the original
serial implementation and the parallelized version, using the
following formula:

Improvement (%)=[(Tserial —Tparallel)/ Tserial] x100 (1)

Where Tserial denotes the execution time of the serial
version, and Tparallel represents the time taken by the parallel
implementation.

D. Book Reviews System Performance Metrics

Table V and Fig. 16 compare the execution times of serial
and parallel implementations across various functional
components. The results demonstrate that all operations
benefited from parallelization, with notable reductions in
execution time. The most significant improvement was
observed in the Data Extraction function, which executed
43.7% faster compared to the serial version. In contrast, the
Least Reviewed Author function showed the smallest
improvement at 7.9%. Overall, the total execution time was
reduced by 36.1%, confirming that the tool effectively
enhanced computational performance.

Fig. 17 presents the performance data in a different format,
emphasizing the percentage improvement for each function.
Represented as a line graph, this view highlights the relative
efficiency gains from parallelization.

597 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 10, 2025

TABLE V. BOOK REVIEWS SYSTEM PERFORMANCE METRICS TABLE VI. EMPLOYEES’ PERFORMANCE SYSTEM PERFORMANCE
(MILLISECONDS) METRICS (MILLISECONDS)
SERIAL PARALLEL Serial Parallel
FUNCTION EXECUTION | EXECUTION IMPROVEMENT (%) Function Execuion Execution Improvement (%)
TIME TIME Time Time
DAtA 144.615 81.354 437 Data Extraction 107.516 38.627 64.1
EXTRACTION : : :
MoST Top — Performer | 3, ¢35 10.873 68.6
REVIEWED 21.551 14312 336 Analysis
AUTHOR Department 17.922 18.611 338
LEAST Performance
REVIEWED 20.847 19.196 7.9 Skills Analysis 485 166 65.8
AUTHOR TSy ——
AVERAGE Stelz.“t.me“ 15.850 11.766 25.8
REVIEWED 24.492 17.826 272 AUSHCS
AUTHOR Total Execution 176.405 80.049 54.6
ER-AUTHOR
USER-AUTHO 33.697 23.941 29.0
ANALYSIS "
TOTAL Serial vs Parallel Execution Times e
245.205 156.629 36.1 175000 M Seril Execution
EXECUTION B Parallel Execution
150000
Serial vs Parallel Execution Times E 125000
250000 Serial Becut v
Pa £ 100000
_ 200000 § 75000
g 150000 = 50000
% 25000
S 100000
50000
0 & $ 4 &
& & & 5 & &
@‘?@ eﬁp‘& 3“5‘0 eﬁ’?" \v\\n‘}(\ &\‘f} Functions
& J"é \““li J‘*ﬂﬂ u.\"o “
%\0"' \E,,‘DL' E“.DQ 7

Functions

Fig. 16. Serial vs. Parallel execution time (book reviews analysis system).

Improvement Percentage for Each Function

Improvement (%)

Functions

Fig. 17. Improvement percentage across functions (book reviews analysis
system).

E. Employee Performance Analysis System

As Table VI, Fig. 18 and Fig. 19 show, most functions show
significant performance improvements with parallelization,
especially Top Performer Analysis (68.6%) and Data
Extraction (64.1%). Skills Analysis also benefited notably
(65.8%). However, Department Performance slightly worsened
(-3.8%), due to the overhead and the low parallel potential.
Overall, total execution time was reduced by 54.6%.

Fig. 18. Serial vs. Parallel execution time (employee performance analysis

system).

Improvement (%)
w &
g 3

n
S

70} 68,6%

Improvement Percentage Across Functions

65.8% —a— Improvement (%)

54.6%

Functions

Fig. 19. Improvement percentage across functions (employee performance

analysis system).

F. Genomic Sequence Analysis System

As Table VII,

Fig. 20 and Fig. 21 show, Data Extraction

achieved the highest gain at 54.6%, followed by GC Content
Analysis (37%) and Coverage Analysis (30.6%). Overall, total
execution time was reduced by 48.3%.

www.ijacsa.thesai.org

598 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE VII. GENOMIC SEQUENCE SYSTEM PERFORMANCE METRICS
(MILLISECONDS)
. Serial Parallel o
Function Execuion Time Exection Time Improvement (%)

Data 118.149 53.670 54.6
Extraction
GC Content
Analysis 63.252 39.827 37.0
Coverage
Analysis 1.902 1.320 30.6
Total 183.303 94.820 483
Execution

Vol. 16, No. 10, 2025

Fig. 22 presents a bar chart that shows a final comparison
of overall system performance improvements achieved through
parallelization. The Employee Performance System showed the
highest gain at 54.6%, followed by the Genomic Sequence
System at 48.3%, while the Book Reviews System achieved a
more modest improvement of 36.1%. This confirms the tool’s
effectiveness across varied application domains. Table VIII
provides a comparative overview of ourtool and several related
tools. The comparison is based on key attributes like
parallelization method, analysis type (static or runtime), and
language support. [9][12][13].

Serial vs Parallel Execution Times - Genomic Sequence System
183303

175000 =

150000
125000 118149

100000

75000

Execution Time (ms)

50000

25000

0

94820

63252

19827

Functions

Fig. 20. Serial vs. Parallel execution time (genomic sequence analysis

system).

Improvement Percentage Across Functions - Genomic Sequence System
4%

Fig. 21. Improvement percentage across functions (genomic sequence

analysis system).

0 System Improvement Comparison
54.6

50 48.3
£ 40
£ 30
H
2
E20

10

0 o o
& &
GV ¥
&
,;o({fl ¢z‘:“‘

{\0@ {_)2,‘3
o &
& 0«‘

g <
Q\O (}z
&

Fig. 22. System improvement comparison.

TABLE VIII. COMPARISON OF OUR TOOL WITH RELATED TOOLS ACROSS
VARIOUS ATTRIBUTES
Aut t .
u ?Cma Fine-
PLaZﬁ'l Paralleli- ?{amed.
Work ara’ie zation of eeurst Autopar OurTool
Function Pure ve
11 Parallel-
Calls Method ari:n ¢
Calls
Languag Java,C# | Java C ANSL C C++
Focus Codes
C++
source
Lazy code,
. Special Special Function
evaluatio . .
L Pure Recursi Recursi calls
Optimizati | n,
on Target closures method ve ve based
’ calls Functio Functio on
nano- n Calls n Calls three
threads
fundamen
t-al
analyses
Fully
automated
pipeline:
detects,
classifies,
. automati and
Automatio Pama}, c, automat | automat | transform
compiler . . .
n Level isted compiler | ic ic s
-assiste -based suitable
function
calls to
parallel
equivalent
S.

VII. CONCLUSION

This paper presents a tool that successfully automates
function-level parallelization in C++ through a pipeline that
includes dependency analysis, context analysis, and workload
assessment. These analyses enable the identification of
independent, high-workload function calls that can be safely
parallelized without modifying the original program logic. The
tool also generates detailed Control Flow Graphs (CFGs) for
each function in DOT, PDF, and TXT formats, offering
valuable insights into code structure and parallelization
opportunities.

Experimental evaluations on three benchmark programs
demonstrated consistent improvements in execution efficiency.
Performance gains were particularly notable in compute-
intensive functions such as data extraction and analysis. The
Employee Performance System achieved the highest

599 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

improvement at 54.6%, followed by the Genomic Sequence
System at 48.3%, and the Book Reviews System at 36.1%.
These results confirm the effectiveness of the tool’s analysis
and transformation strategies and underscore its contribution to
advancing practical, automated parallelization in performance-
critical C++ applications.

Future work may focus on extending the tool’s capabilities
to support parallelization of additional code constructs and the
use of MPIL, enabling distributed-memory execution and
scalability across multiple nodes. Such an extension would
broaden the tool’s applicability beyond shared-memory
systems.

REFERENCES

[1T] R. C. O. Rocha, L. F. W. Goées, and F. M. Q. Pereira, “Automatic
parallelization of recursive functions with rewriting rules,” Sci. Comput.
Program., vol. 173, pp. 128-152,2019.

[2] C.Navarro,N. Hitschfeld, and L. Mateu, “A survey on parallel computing
and its applications in data-parallel problems using GPU architectures,”
Commun. Comput. Phys., vol. 15, pp.285-329,2013.

[3]1 J.Parkhurst, J. Darringer, and B. Grundmann, “From single core to multi-
core: Preparing fora new exponential,” in Proc. Int. Conf. Comput.-Aided
Design (ICCAD), 2006, pp. 67-72.

[4] D. Geer, “Industry trends: Chip makers turn to multicore processors,”
Computer,vol. 38,n0.5, pp. 11-13,2005.

[5] K. Sujatha,P.V.N.Rao,A. A. Rao, V. G. Sastry, V. Praneeta,and R. K.
Bharat, “Multicore parallel processing concepts for effective sorting and
searching,” in Proc. PACES-2015, Dept. of ECE, KL Univ., 2015.

[6] M. Sohal and R. Kaur, “Automatic parallelization: A review,” Int. J.
Comput. Sci. Mobile Comput. (IJCSMC), vol. 5,no. 5, pp. 17-21,2016.

Vol. 16, No. 10, 2025

[71 J. Kwiatkowski and R. Iwaszyn, “Automatic program parallelization for
multicore processors,” in Lecture Notes in Computer Science, vol. 6081,
pp.236-245,2010.

[8] A. Barve, S. Khomane, B. Kulkarni, S. Ghadage, and S. Katare,
“Parallelism in C++ programs targeting objects,” in Proc. Int. Conf. Adv.
Comput., Commun. Control (ICAC3),2017, pp. 1-6.

[9] R. Surendran and V. Sarkar, “Automatic parallelization of pure method
calls via conditional future synthesis,” Rice Univ., Houston, TX, USA,
2011.

[10] A. Midolo and E. Tramontana, “An automatic transformer from
sequential to parallel Java code,” Univ. of Catania, Italy, 2023.

[11] G. Kusoglu, B. Bramas, and S. Genaud, “Automatic task-based
parallelization of C++ applications by source-to-source transformations,”
in Compas 2020: Parallélisme/Architecture/Systéeme/Temps Réel, Lyon,
France, 2020.

[12] D. Saougkos, A. Mastoras, and G. Manis, “Fine-grained parallelism in
recursive function calls,” Univ. of loannina, Greece, 2012.

[13] M. E. Kalender, C. Mergenci, and O. Ozturk, “AutopaR: An automatic
parallelization tool for recursive calls,” Dept. Comput. Eng., Bilkent
Univ., Turkey, 2014.

[14] M. Mathews and J. P. Abraham, “Implementing coarse-grained task
parallelism using OpenMP,” Dept. Comput. Sci. Eng., Mar Athanasius
Coll. of Eng., India, 2015.

[15] P. Mehta, S. Singh, D. Roy, and M. M. Sarma, “Comparative study of
multi-threading libraries to fully utilize multi-processor/multi-core
systems,” Int. J. Current Eng. Technol.,2014.

[16] S. S. Chatterjee and R. Gururaj, “Lazy-parallel function calls for
automatic parallelization,” in Proc. Int. Conf. Comput. Intell. Inf. Technol.
(CIIT), vol. CCIS 250, pp. 811816, Springer, 2011.

[17] E. Pontelli and G. Gupta, “Last parallel call optimization and its
generalization,” J. Logic Program.,vol. 27,no. 1, pp. 1-43,1996.

600 |Page

www.ijacsa.thesai.org

