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Abstract—Hyperparameter optimisation (HPO) remains a
fundamental challenge in deep learning, especially for pre-trained
convolutional neural networks (CNNs). While pre-trained models
reduce the computational burden of training from scratch, their
effectiveness depends heavily on tuning parameters such as
learning rate, batch size, dropout, weight decay, and optimizer
type. The searchspace of hyperparametersislarge, nonlinear, and
highly dataset-dependent, making traditional techniques like grid
search, random search, and Bayesian optimisation insufficient.
This paper introduces I-HAHO, an Integrative Hybrid
Metaheuristic Algorithm that combines Artificial Bee Colony
(ABC) for global exploration and Harris Hawks Optimisation
(HHO) for local exploitation. A diversity-based phase-switching
mechanism dynamically regulates exploration and exploitation,
allowing the optimiser to adapt its search behaviour to varying
landscape conditions. Experiments on CIFAR-10, CIFAR-100,
SVHN, and TinyImageNet with three CNN architectures (VGG16,
ResNet50, EfficientNet-B0) demonstrate up to 6.9% accuracy
improvements. -HAHO enhances adaptability, scalability, and
robustness for hyperparameter tuning.
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Convolutional Neural Networks (CNNs); Artificial Bee Colony
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I INTRODUCTION

Convolutional Neural Networks (CNNs) have become
indispensable in modern computer vision, enabling
breakthroughs in tasks such as classification, object detection,
and medical imaging. Pre-trained models like VGGI16,
ResNet50, and EfficientNet-B0, trained on large datasets such
as ImageNet, provide transferable feature representations that
accelerate training and improve performance, especially when
target datasets are small [1], [2].

Despite their success, the performance of pre-trained CNNs
is highly sensitive to hyperparameter settings such as learning
rate,batchsize, dropoutrate, and optimizer type. Selecting these
parameters is challenging because the search space is high-
dimensional, non-convex, and dataset-dependent, making
manual tuning and traditional search strategies inefficient.
Techniques such as grid search and random search require
extensive computational effort, while Bayesian optimisation
often struggles with scalability and mixed-variabletypes [3], [4].

To address these challenges, metaheuristic algorithms have
been widely adopted for hyperparameter optimisation [5], [6].
Their ability to balance exploration (global search for promising

regions) and exploitation (local refinement near good solutions)
makes them well-suited for navigating complex search spaces
[7],[8]. Among these, the Artificial Bee Colony (ABC) and
Harris Hawks Optimisation (HHO) algorithms have shown
promise in deep learning optimisation tasks [9], [10]. However,
both algorithms have limitations: ABC often lacks strong
exploitation, while HHO may converge prematurely in multi-
modal landscapes [11], [12].

This motivates the development of hybrid approaches that
combine complementary strengths. In this study, we propose I-
HAHO (Integrative Hybrid ABC-HHO), which unifies ABC’s
exploration capability with HHO’s exploitative refinement. A
dynamic phase-switching mechanism guided by population
diversity regulates the balance between exploration and
exploitation, allowing the optimiser to adapt its search behaviour
to varying landscape conditions, preventing premature
convergence and preserving diversity [13], [14].

The main contributions of this paper can be summarized as
follows. First, we propose a novel hybrid metaheuristic
algorithm, I-HAHO, which integrates the global exploration
strength of ABC with the local exploitation capability of HHO
to achieve robust hyperparameter optimisation for pre-trained
CNNs. Second, we introduce a diversity-driven dynamic phase-
switching strategy that adaptively balances exploration and
exploitation during the optimisation process, preventing
premature convergence and preserving solution diversity. Third,
we provide an extensive evaluation of -HAHO across multiple
benchmark datasets, including CIFAR-10, CIFAR-100, SVHN,
and Tiny ImageNet, applied to three widely used CNN
architectures: VGG16, ResNet50, and EfficientNet-B0. Finally,
we demonstrate that -HAHO achieves substantial accuracy
improvements of up to 6.9% compared with grid search, random
search, Bayesian optimisation, and standalone metaheuristics,
highlighting its effectiveness, scalability, and generalizability
for deep learning optimisation tasks.

The remainder of this manuscript is organized as follows.
Section II presents the theoretical background of pre-trained
CNN architectures and the hyperparameter optimisation
problem, followed by a review of recent metaheuristic and
hybrid approaches in the Section III. Section IV introduces the
proposed I-HAHO algorithm, detailingits design, modifications
to ABC and HHO, and the diversity-driven phase-switching
mechanism. Section V describes the experimental setup,
including datasets, CNN models, hyperparameter search spaces,
and preprocessing strategies. It also presents and analyses the
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results, comparing [-HAHO with conventional and
metaheuristic baselines in terms ofaccuracy and convergence. It
discusses the implications, strengths, limitations, and potential
extensions of the proposed approach. Finally, Section VI
concludes the paper by highlightingkey findings and suggesting
directions for future research.

II. BACKGROUND OF STUDY

This section provides a discussion of relevant theoretical
foundations and an introduction to the hyperparameter
optimization problem.

A. Pre-Trained Models

Deep learning has revolutionized computer vision, with
Convolutional Neural Networks (CNNs) emerging as the
foundation of state-of-the-art models across a wide range of
applications, including medical imaging, object recognition, and
autonomous driving [15]. CNNs learn hierarchical feature
representations directly from raw data, eliminating the need for
handcrafted feature extraction and enabling scalable solutions
for high-dimensional inputs such as images.

However, training CNNs from scratch is computationally
expensive and requires large labelled datasets. To address these
limitations, pre-trained CNNs such as VGG16, ResNet50, and
EfficientNet-B0 are commonly adopted in transfer learning.
These models, initially trained on large datasets like ImageNet,
serve as general-purpose feature extractors and can be fine-
tuned for domain-specific tasks.

1) VGGI16: Introduced by [16], is characterized by its
simplicity,uniform 33 convolution filters,and deep sequential
layers. While powerful in feature extraction, its large parameter
size (~138M) makes it computationally demanding. Fig. 1
depicts the VGG16 architecture.
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Fig. 1. VGGI6 architecture [16].

2) ResNet50: Developed by [17], incorporates residual
connections that enable the effective training of deeper
architectures by mitigating vanishing gradient problems. This
design has significantly improved CNN scalability and
accuracy in challenging tasks [18]. Fig. 2 depicts the ResNet50
architecture.

3) EfficientNet-BO: Proposed by [20], introduces a
compound scaling strategy that jointly scales depth, width, and
resolution. It achieves high accuracy with a lightweight
parameter count (~5.3M), making it suitable for mobile and
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embedded applications [21] (Safak & Barisc¢i, 2024). Fig. 3

depicts the EfficientNet-BO architecture.
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Fig. 3. EfficientNet-B0 architecture [20].

4) Comparison among pre-trained CNN models or
architectures: To validate the proposed HPO strategies and
algorithms in real-world scenarios, three pre-trained CNN
architectures (VGG16, ResNet50, and EfficientNet-B0) are
selected for experimental evaluation. These models represent a
range of design philosophies and computational complexities,
allowing for comprehensive testing against the three core
performance objectives: accuracy, adaptability, and
computational efficiency. Table 1 summarises the
characteristics of the chosen pre-trained CNN models.

B. Hyperparameter Optimisation (HPO)

The primary goal of HPO is to automate the hyperparameter
tuning process to ensure optimal performance of ML models on
specific tasks. The motivation for employing HPO lies in its
ability to address challenges posed by manual tuning, such as
non-linear hyperparameter interactions and the computational
burden of evaluating large search spaces.
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TABLEI. CHARACTERISTICS OF CHOSEN PRE-TRAINED CNN MODELS
Criteria VGG16 ResNet50 BlficlenNet
. 82 layers
Architecture 16 lay§rs as 50. layers with (scalable depth,
convolutional + 3 | residual .
Depth . width, and
fully connected) connections .
resolution)
. Residual Compound
Sequential . .
. . connections to | scaling method
Key architecture with L
. . solve vanishing | to balance
Innovation uniform 3x3 :
. gradient network
convolutions . .
problem dimensions
. ~138 million | ~25.5 million | ~5.3 million
Model Size
parameters parameters parameters
High due to depth
Computational | and fully | Moderate (~3.9 | Low (~0.39
Complexity connected layers | GFLOPs) GFLOPs)
(~15.4 GFLOPs)
| Autonomous yobhe vision,
Medical imaging, | vehicles, .
. . IoT devices,
Real-World video semantic
L e . and  scalablke
Applications classification, and | segmentation, .
. ; vision
object detection and face L
.. applications
recognition

In the context of convolutional neural networks (CNNs),
hyperparameters play a pivotal role in shaping the architecture,
learning dynamics, and generalization ability. These settings,
determined prior to training, influence feature extraction,
overfitting prevention, and convergence behaviour. CNN
hyperparameters can generally be categorized into three main
groups [22],[23].

e Hyperparameters of convolutional layers (i.e., number
of convolutional layers, number of kernels, size of
kernels, stride, padding, dilation rate, activation
functions, and filter initialization methods).

e Hyperparameters of fully connected layers (i.e., dropout
rate, connectivity pattern, number of neurons, activation
functions, weight regularization, and initialization
methods).

e General Hyperparameters (i.e., batch size, learning rate,
learning rate decay, optimizer type, number of epochs,
momentum, and gradient clipping).

1) HPO problem formulation: HPO is the process of
identifying the optimal hyperparameters for a machine learning
model to maximize its performance on a given task. This is
formulated as an optimisation problem where the objectiveis to
find the hyperparameter configuration that minimizes a loss
function or maximizes an evaluation [24], [25].

a) General formulation

Let,

A =24,4,,..., 4, : The hyperparameter vector, where each
A; represents a specific hyperparameter.

M(A) : The machine learning model trained with
hyperparameter configuration dvA
L(M(A),D): The loss function of the model on dataset

1D = {(D}irain, Dya) Where D train and D val are the
training and validation datasets, respectively.
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The goal of HPO is to find the optimal hyperparameter
configuration dvA such that:

A= argminy,L(M(A), D,;)
where A is the search space of hyperparameters.

2) Search space: In the context of HPO for pre-trained
CNNs, the search space defines the range and type of
hyperparameters that are optimized to improve model
performance. This space encompasses various types of
parameters that differ in structure and optimization complexity.
The hyperparameter search space A is typically composed of
categorical, discrete and continuous parameters.

Each category introduces different challenges for
optimisation algorithms. Categorical parameters often require
non-gradient-based search techniques, discrete parameters
increase combinatorial complexity, and continuous parameters
demand fine-grained exploration.

C. Metaheuristic Algorithms

Metaheuristics are population-based or single-solution
optimisation methods that incorporate stochastic search
strategies to efficiently explore large, complex landscapes. They
are particularly suited to HPO, as they do not rely on gradient
information and can handle mixed-variable and non-
differentiable objective functions [26], [27].

Metaheuristics achieve success by balancing:

e Exploration: discovering new regions of the search
space.

e Exploitation: refining promising candidate solutions [7],

[8].
e Several algorithms have been applied to CNN HPO:

e Genetic Algorithms(GA): Inspired by natural evolution,
used for optimising filter sizes and learning rates [28].

e Particle Swarm Optimisation (PSO): Mimics social
behaviour of birds, effective in refining CNN
configurations [29].

e Whale Optimisation Algorithm (WOA): Employs
simulated huntingbehaviour for global exploration [30].

e Harmony Search and Variants: Used for fine-tuning
CNNs through adaptive exploration-exploitation trade-
offs [31].

Among these, two algorithms stand out for their
complementary strengths:

e Artificial Bee Colony (ABC): A swarm-based algorithm
inspired by bee foraging behaviour [9]. ABC excels at
explorationby maintainingpopulation diversity through
scouts and onlookers but suffers from weak local
refinement in later iterations [11].

e Harris Hawks Optimisation (HHO): A predator-prey
inspired method with dynamic exploration and
exploitation phases [10]. HHO is effective in local
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search but is prone to premature convergence in highly
multimodal spaces [12].

Individual metaheuristic algorithms often underperform in
the complex hyperparameter landscape of pre-trained CNNs,
leading to stagnation, poor convergence, or lack of diversity
[13]. To address these challenges, hybrid metaheuristics have
emerged, aiming to combine complementary strengths while
mitigating weaknesses [ 14]. Recent studies, such as PSO-GWO
[32] and HHOS [33] highlight the effectiveness of hybridisation
for deep learning optimisation.

Nevertheless, the integration of ABC and HHO for CNN
hyperparameter tuning remains underexplored. This motivates
the present study, which introduces I-HAHO, an integrative
hybrid approach that leverages ABC’s exploratory power and
HHO’s exploitative refinement under a diversity-based
switching strategy.

III.  RELATED WORKS

This section presents reviews on recent studies that apply
hybrid metaheuristic algorithms to HPO in pre-trained CNN
models. Recent studies have explored hybrid metaheuristic
algorithms for HPO in pre-trained CNN models, yet consistent
challenges remain across adaptability, accuracy, and
computational efficiency dimensions.

Ulutasetal.[34] proposed a hybrid PSO-GWO approach for
tuning hyperparameters within ensemble models for diabetes
detection, achieving a peak accuracy of 98.10% using Random
Forest classifiers. Their findings indicate that the hybrid method
outperforms standalone Particle Swarm Optimization (PSO) and
Grey Wolf Optimization (GWO), offering improved robustness
and generalisation across classifiers.

Yan et al. [35] addressed key challenges in CNN
hyperparameter tuning, including mixed-variable encoding,
high computational cost, and convergence stability. They
introduced GPPSO, a hybrid algorithm combining Gaussian

Vol. 16, No. 10, 2025

Processes with PSO. The method incorporates a novel encoding
scheme for mixed-variable hyperparameters and a surrogate
model to reduce evaluation overhead. Experiments on CIFAR-
10 and CIFAR-100 confirmed GPPSO’s superior efficiency and
accuracy, with practical relevance for applications such as metal
fracture diagnosis.

Kumar and Kondaveeti [33] applied transfer learning with a
Hybrid Hyperparameter Optimization Scheme (HHOS),
integrating manual domain knowledge and random search
strategies. Using pre-trained ImageNet models with additional
trainable layers, they demonstrated that fine-tuning
EfficientNetBO achieved 99.12% accuracy, outperforming
ResNet18(93.24%). These results highlight the value of hybrid
HPO in ecological classification tasks.

Akkus et al. [36] explored HPO for CNN-based image
classification, specifically diabetic retinopathy detection. Their
study compared the Adolescent Identity Search Algorithm
(AISA) with Bayesian Optimization (BO) across pre-trained
models including AlexNet, MobileNetV2, ResNetl8, and
GoogleNet. AISA-based tuning yielded higher accuracy with
fewer iterations, demonstratingits efficiency in medicalimaging
contexts.

Kiligarslan [32] investigated hybrid optimisation for
cardiovascular disease prediction using 1D and 2D VGG-16
architectures. The study compared PSO, Cat Swarm
Optimization (CSO), and hybrid PSO-GWO, showing that the
hybrid consistently achieved the highest classification accuracy
across medical and MNIST datasets.

Atteia et al. [37] further emphasised the importance of HPO
in CNN-based diagnostic systems, applying optimisation
techniques to diabetic maculopathy detection using optical
coherence tomography and fundus retinography. Their work
reinforces the critical role of HPO in enhancing model
performance for clinical applications.

The summary of the related works is presented in Table II.

TABLE II. SUMMARY OF RELATED WORKS
Authors Hybrid Method Domain Models / Datasets Key Findings
. . Achieved 98.10% accuracy; hybrid PSO-GWO
Ulutas et al. [34] PSO + GWO Diabetes d.etecmn Randqm Forest,  other outperformed standalone PSO and GWO,
(Ensemble Learming) classifiers . .
improving robustness and model performance.
Proposed mixed-variable encoding + surrogate
CNN HPO. Metal | CNNs  on  CIFAR-10 . -
+ , > .
Yan etal. [35] GP + PSO (GPPSO) fracture diagnosis CIFAR-100 model; improved efficiency, convergence, and

accuracy compared to traditional methods.

Hybrid
. . - . o
Kumar & Kondavecti Hyperpare_lmeter Ecolgglc.al EfficientNetB0, ResNetl8 Fine-tuned EfflClentNetBOOahchlevehd 99.12%,
(33] Optimisation Scheme | application(transfer (pre-trained on ImageNet) ResNet18 achieved 93.24%; hybrid scheme
(HHOS) (manual + | learning) P & improved accuracy and adaptability.
random search)
. Medical imaging | AlexNet, MobileNetV2, Hybnd AISA—based optu.msat?on achieved
AISA + Bayesian . . . 7| higher accuracy with fewer iterations than BO;
Akkus et al. [36] L (Diabetic  Retinopathy | ResNetlS8, GoogLeNet; L. . .
Optimisation . more efficient for CNN HPO in medical
detection) Kaggle DR dataset

imaging.

IV. MATERIALS AND METHODS

In this section, -HAHO is introduced as our approach to
improve the accuracy of the HPO for pre-trained CNN models.

A. Dataset

This study utilizes four benchmark datasets: CIFAR-10,
CIFAR-100, SVHN, and TinylmageNet to evaluate the
performance of the proposed hybrid metaheuristic HPO
algorithms. These datasets were selected due to theirwidespread
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adoption in deep learning literature and their varying levels of
complexity, class granularity, and domain diversity, which
supportrobust validation of adaptability and generalisation.

CIFAR-10 and CIFAR-100 were obtained from the official
dataset repository maintained by the Canadian Institute for
Advanced Research (CIFAR). Each dataset comprises 60,000
32x32 colour images. CIFAR-10 consists of 10 mutually
exclusive classes, whereas CIFAR-100 is structured with 100
fine-grained categories across 20 superclasses. Both datasets
were split into 50,000 training and 10,000 testing images.
During preprocessing, images were normalized using dataset-
specific mean and standard deviation values, converted to float
tensors, and standardized to improve gradient stability during
model training. No class rebalancing was performed, preserving
original distribution characteristics for realism.

Street View House Numbers (SVHN), sourced from the
official Stanford University repository, was employed in its
cropped digits format, ensuring consistent spatial resolution
with other datasets. Comprising 73,257 training and 26,032 test
images, SVHN represents a real-world digit classification task
under non-ideal lighting and alignment conditions. Raw .mat
files were parsed and converted to tensor format. Images were
resized to 32%32 pixels and normalized to zero mean and unit
variance. Dataset labels were integer-encoded and subsequently
transformed to one-hot format for compatibility with CNN
classifiers. It has a real-world and noisy data characteristic
which makes it a challenging test case.

TinylmageNet, a scaled-down variant of the ILSVRC
ImageNet dataset, was downloaded from the official ImageNet
challenge portal. It includes 200 object categories, with 100,000
training samples (500 images per class), 10,000 validation
samples (50 per class), and 10,000 test samples. Unlike CIFAR
and SVHN, the input resolution for TinylmageNet was
preserved at 64x64 pixels to maintain semantic richness. Due to
its relatively small sample size per class and high inter-class
similarity, extensive preprocessing was applied, including data
augmentation techniques such as random horizontal flipping,
random cropping with padding, and brightness/contrast jittering
to prevent overfitting and improve generalization under low-
data regimes. It represents real-world scenarios and tests the
scalability and efficiency of optimisation algorithms in complex
tasks.

A summary of the datasets is provided in Table III,
highlighting their complexity based on factors such as image
resolution, number of classes, and dataset size.

TABLE III. SUMMARY OF DATASETS
Number Total Image .
Dataset of Classes Images Resolution Complexity
CIFAR-10 10 60,000 32x32 Moderate
CIFAR-100 100 60,000 32x32 High
TinyImageNet | 1,000 1.2 million | Varies Very High
High
SVHN 10 600,000+ 32x32 (Real-
world)
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B. Proposed I-HAHO Algorithm

The pseudocode for the I-HAHO 1is presented in the
Algorithm 1.

Algorithm 1: Il HAHO

Input:

Population Size N, Maximum iterations T, Initial diversity threshold
D,

Hyperparameters for ABC and HHO, Objective function F(x)
Output:

Best solution xj.¢with optimized hyperparameters.

Initialise the population X using Latin Hypercube Sampling

Set iteration counter t = 0
Calculate the initial diversity threshold Dyyeqn(t) = Do

Evaluate the fitness F(x)for each solution x; € X
While ¢t <T:
Calculate population diversity D (t)
Update the diversity threshold Dy, ()
Dynamic Phase-Switching Strategy:
ifD(t) > Dthresh (High Diversity):
Perform Modified ABC Exploration
else D(t) < Dthresh
Perform Modified HHO Exploitation
Evaluate the F (x) of the updated solutions

Update the global best solution xpeg
based on the fitness

Calculate the change in fitness AF =
|[F_best(t) - F_best(t-1) |.

Convergence Check:

If AF < threshold or if D(t) > Dmin

Increment t =t +1
End While

Return the best solution xpeg

Fig. 4 illustrates the detailed operational flow of the
proposed Integrative Hybrid Metaheuristic Algorithm (I-
HAHO), which unifies exploration and exploitation through a
diversity-based phase-switching mechanism. At each iteration,
the population diversity D(t)is computed and compared with a
dynamic threshold Dy,.q, (£). When D(t) > Dy, indicating
sufficient population diversity, the algorithm prioritises
Modified ABC exploration to expand the search space. This
phase adaptively updates candidate positions, reinitialises
stagnated  solutions using Distance-Aware Novelty
Reinitialisation (DANR), and invokes Chaos-Guided Candidate
Recovery (CGCR) when diversity falls below acceptable limits,
ensuring sustained global exploration. Conversely, when
D(t) < Dyyesn » the process transitions to Modified HHO
exploitation, which refines promising regions through Refined
Surround Prey, Escaping Energy, and Success-History-Based
Adaptation (SHEA) to intensify local search and accelerate
convergence.
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Fig. 4. Detailed algorithmic flowchart for I-HAHO with key strategies.

Unlike previous hybrid metaheuristics that rely on static
schedules, random alternation, or fixed probability-based phase
switching, the proposed diversity-driven framework
continuously adapts based on the evolutionary state of the
population. This allows I-HAHO to intelligently balance
exploration and exploitation according to real-time feedback
from the search dynamics, rather than predetermined iteration
counts. The integration of DANR, CGCR, and SHEA further
enhances the system’s self-adaptive behaviour. DANR
promotes novelty and prevents stagnation by introducing
diversity-sensitive perturbations, CGCR leverages chaotic
patterns to recover lost diversity while preserving promising
regions, and SHEA enables adaptive parameter fine-tuning
guided by historical success rates. Collectively, these
mechanisms fill the gap left by earlier hybrid strategies that
lacked dynamic responsiveness, allowing -HAHO to navigate
complex, multimodal hyperparameter landscapes more
effectively and maintain balanced convergence performance
across datasets and CNN architectures.

C. Performance Evaluation Measures

The evaluation measures employed in this research were
selected to comprehensively assess the performance of the
proposed I-HAHO algorithm.

1) Classification accuracy: Classification accuracy is the
primary metric to evaluate the performance of HPO in pre-

trained CNN models. It measures the proportion of correctly
classified instances relative to the total instances.
Correctly Classified Instances(0) (1)

Total Instances

Accuracy(0) =

A higher classification accuracy indicates better
optimisation of hyperparameters and superior adaptibility
performance of the model.

V. RESULTS AND DISCUSSION

A. Overall Comparative Performance

The experiment results for -HAHO comparison with
baseline HPO algorithms and canonical metaheuristic
algorithms are presented in Table IV. The results demonstrate
the highest accuracy achieved by different HPO algorithms
across four pre-trained CNN models on various benchmark
datasets. The accuracy results are presented in Table IV.

The proposed I-HAHO algorithm consistently outperformed
all benchmarked HPO algorithms across the evaluated pre-
trained CNN models and datasets. On the CIFAR-10 dataset, I-
HAHO achieved superior validation accuracies of 93.194%
(VGG16), 94.503% (ResNet50), and 93.008% (EfficientNet-
B0), outperforming traditional and baseline search-based
algorithms (GS, RS and BO). This consistent improvement
illustrates I-HAHO’s ability to effectively navigate the
hyperparameter space through adaptive hybridization of global
and local search strategies.
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TABLEIV. ACCURACY RESULTS FOR ALL HPO ALGORITHMS AND I-HAHO
Model Dataset GS (%) RS (%) BO (%) Vanilla ABC (%) Vanilla HHO (%) I-HAHO (%)
CIFAR-10 88.2 88.6 89.2 87.5 87.7 93.1
SVHN 95.3 95.6 96.2 94.7 95.0 96.9
VGG16
CIFAR-100 67.1 68.04 68.5 66.0 66.5 78.5
Tiny ImageNet 57.8 583 58.9 57.0 574 654
CIFAR-10 90.5 90.9 91.3 89.0 89.3 94.5
SVHN 93.0 93.7 94.1 92.5 92.9 95.8
ResNet50
CIFAR-100 68.9 69.7 70.4 67.6 68.3 76.0
Tiny ImageNet 61.2 61.9 62.5 60.2 60.9 69.5
CIFAR-10 89.0 89.7 90.1 87.5 87.9 93.0
SVHN 87.3 87.9 88.4 86.0 86.5 91.0
EfficientNet-BO
CIFAR-100 68.0 68.9 69.5 66.6 67.3 75.5
Tiny ImageNet 61.8 62.4 62.9 59.6 60.3 68.0

On the more complex CIFAR-100 dataset, which includes
100 classes with fewer samples per class, -HAHO achieved
78.507% (VGG16), 76.011% (ResNet50), and 75.512%
(EfficientNet-B0), confirming its adaptability in high-
dimensional, class-imbalanced learning tasks. For the SVHN
dataset, characterized by large-scale digit recognition with
significant intra-class variance and noise, -HAHO achieved
96.903% (VGG16), 95.803% (ResNet50), and 91.007%
(EfficientNet-B0). These results demonstrate -HAHOs ability
to maintain high accuracy and generalization performance even
under challenging, real-world-like scenarios with substantial
class overlap and varying input conditions.

On TinylmageNet, a particularly challenging dataset with
200 categories and lower resolution images, [-HAHO again
demonstrated superior adaptability, achieving 65.497%
(VGG16), 69.502% (ResNet50), and 68.013% (EfficientNet-
B0). Notably, the EfficientNet-BO model exhibited strong
performance due to its compound scaling, which supports
effective feature extraction even in low-resolution, high-
category contexts. These outcomes suggest that -HAHO not
only improves training outcomes for well-known benchmarks
but also scales effectively to more complex domains with less
structured data distributions.

Collectively, these results are aligned with recent studies
highlightingthe limitations of single-strategy optimizers in deep
learning [3], [37], [38] and emphasize the benefit of hybrid
metaheuristics for pre-trained CNN models HPO tasks.

VI.  CONCLUSION

In conclusion, the proposed Integrative Hybrid Artificial Bee
Colony-Harris Hawks Optimization (I-HAHO) algorithm
improves hyperparameter optimization (HPO) for pre-trained
convolutional neural networks (CNNs) through an adaptive
hybrid structure. The framework integrates a modified Artificial
Bee Colony (ABC) algorithm for global exploration with a
modified Harris Hawks Optimization (HHO) algorithm for local
exploitation. Thisintegration provides a balanced search process
that minimizes premature convergence and sustains population
diversity, which conventional approaches such as grid search,
randomsearch, and Bayesian optimization fail to achieve. The

adaptive phase-switching mechanism regulates exploration and
exploitation dynamically according to population diversity and
fitness variance, allowing the optimiser to adjust its search
intensity based on the topological characteristics of the loss
landscape. This adaptivity enables I-HAHO to sustain
population diversity during early iterations and progressively
intensify local refinement as convergence nears, resulting in
consistent and efficient optimisation in high-dimensional, non-
convex search spaces. Experimental results on CIFARI10,
CIFAR100, SVHN, and TinyImageNet datasets across VGGI16,
ResNet50, and EfficientNetB0 architectures demonstrate up to
6.9% improvement in classification accuracy compared to
baseline optimizers. These results validate IHAHO as a scalable
and generalizable hyperparameter optimization framework that
improves search efficiency, convergence stability, and model
adaptability across diverse deep learning tasks. The diversity-
based phase-switching mechanism enables dynamic control
over exploration and exploitation, supporting robust
performance in high-dimensional, nonconvex spaces.
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