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Abstract—Hyperparameter optimisation (HPO) remains a 

fundamental challenge in deep learning, especially for pre-trained 

convolutional neural networks (CNNs). While pre-trained models 

reduce the computational burden of training from scratch, their 

effectiveness depends heavily on tuning parameters such as 

learning rate, batch size, dropout, weight decay, and optimizer 

type. The search space of hyperparameters is large, nonlinear, and 

highly dataset-dependent, making traditional techniques like grid 

search, random search, and Bayesian optimisation insufficient. 

This paper introduces I-HAHO, an Integrative Hybrid 

Metaheuristic Algorithm that combines Artificial Bee Colony 

(ABC) for global exploration and Harris Hawks Optimisation 

(HHO) for local exploitation. A diversity-based phase-switching 

mechanism dynamically regulates exploration and exploitation, 

allowing the optimiser to adapt its search behaviour to varying 

landscape conditions. Experiments on CIFAR-10, CIFAR-100, 

SVHN, and TinyImageNet with three CNN architectures (VGG16, 

ResNet50, EfficientNet-B0) demonstrate up to 6.9% accuracy 

improvements. I-HAHO enhances adaptability, scalability, and 

robustness for hyperparameter tuning. 
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I. INTRODUCTION 

Convolutional Neural Networks (CNNs) have become 
indispensable in modern computer vision, enabling 
breakthroughs in tasks such as classification, object detection, 
and medical imaging. Pre-trained models like VGG16, 
ResNet50, and EfficientNet-B0, trained on large datasets such 
as ImageNet, provide transferable feature representations that 
accelerate training and improve performance, especially when 
target datasets are small [1], [2]. 

Despite their success, the performance of pre-trained CNNs 
is highly sensitive to hyperparameter settings such as learning 
rate, batch size, dropout rate, and optimizer type. Selecting these 
parameters is challenging because the search space is high-
dimensional, non-convex, and dataset-dependent, making 
manual tuning and traditional search strategies inefficient. 
Techniques such as grid search and random search require 
extensive computational effort, while Bayesian optimisation 
often struggles with scalability and mixed-variable types [3], [4]. 

To address these challenges, metaheuristic algorithms have 
been widely adopted for hyperparameter optimisation [5], [6]. 
Their ability to balance exploration (global search for promising 

regions) and exploitation (local refinement near good solutions) 
makes them well-suited for navigating complex search spaces 
[7],[8]. Among these, the Artificial Bee Colony (ABC) and 
Harris Hawks Optimisation (HHO) algorithms have shown 
promise in deep learning optimisation tasks [9], [10]. However, 
both algorithms have limitations: ABC often lacks strong 
exploitation, while HHO may converge prematurely in multi-
modal landscapes [11], [12]. 

This motivates the development of hybrid approaches that 
combine complementary strengths. In this study, we propose I-
HAHO (Integrative Hybrid ABC-HHO), which unifies ABC’s 
exploration capability with HHO’s exploitative refinement. A 
dynamic phase-switching mechanism guided by population 
diversity regulates the balance between exploration and 
exploitation, allowing the optimiser to adapt its search behaviour 
to varying landscape conditions, preventing premature 
convergence and preserving diversity [13], [14]. 

The main contributions of this paper can be summarized as 
follows. First, we propose a novel hybrid metaheuristic 
algorithm, I-HAHO, which integrates the global exploration 
strength of ABC with the local exploitation capability of HHO 
to achieve robust hyperparameter optimisation for pre-trained 
CNNs. Second, we introduce a diversity-driven dynamic phase-
switching strategy that adaptively balances exploration and 
exploitation during the optimisation process, preventing 
premature convergence and preserving solution diversity. Third, 
we provide an extensive evaluation of I-HAHO across multiple 
benchmark datasets, including CIFAR-10, CIFAR-100, SVHN, 
and Tiny ImageNet, applied to three widely used CNN 
architectures: VGG16, ResNet50, and EfficientNet-B0. Finally, 
we demonstrate that I-HAHO achieves substantial accuracy 
improvements of up to 6.9% compared with grid search, random 
search, Bayesian optimisation, and standalone metaheuristics, 
highlighting its effectiveness, scalability, and generalizability 
for deep learning optimisation tasks. 

The remainder of this manuscript is organized as follows. 
Section II presents the theoretical background of pre-trained 
CNN architectures and the hyperparameter optimisation 
problem, followed by a review of recent metaheuristic and 
hybrid approaches in the Section III. Section IV introduces the 
proposed I-HAHO algorithm, detailing its design, modifications 
to ABC and HHO, and the diversity-driven phase-switching 
mechanism. Section V describes the experimental setup, 
including datasets, CNN models, hyperparameter search spaces, 
and preprocessing strategies. It also presents and analyses the 
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results, comparing I-HAHO with conventional and 
metaheuristic baselines in terms of accuracy and convergence. It 
discusses the implications, strengths, limitations, and potential 
extensions of the proposed approach. Finally, Section VI 
concludes the paper by highlighting key findings and suggesting 
directions for future research. 

II. BACKGROUND OF STUDY 

This section provides a discussion of relevant theoretical 
foundations and an introduction to the hyperparameter 
optimization problem. 

A. Pre-Trained Models 

Deep learning has revolutionized computer vision, with 
Convolutional Neural Networks (CNNs) emerging as the 
foundation of state-of-the-art models across a wide range of 
applications, including medical imaging, object recognition, and 
autonomous driving [15]. CNNs learn hierarchical feature 
representations directly from raw data, eliminating the need for 
handcrafted feature extraction and enabling scalable solutions 
for high-dimensional inputs such as images. 

However, training CNNs from scratch is computationally 
expensive and requires large labelled datasets. To address these 
limitations, pre-trained CNNs such as VGG16, ResNet50, and 
EfficientNet-B0 are commonly adopted in transfer learning. 
These models, initially trained on large datasets like ImageNet, 
serve as general-purpose feature extractors and can be fine-
tuned for domain-specific tasks. 

1) VGG16: Introduced by [16], is characterized by its 

simplicity, uniform 3×3 convolution filters, and deep sequential 

layers. While powerful in feature extraction, its large parameter 

size (~138M) makes it computationally demanding. Fig. 1 

depicts the VGG16 architecture. 

 
Fig. 1. VGG16 architecture [16]. 

2) ResNet50: Developed by [17], incorporates residual 

connections that enable the effective training of deeper 

architectures by mitigating vanishing gradient problems. This 

design has significantly improved CNN scalability and 

accuracy in challenging tasks [18]. Fig. 2 depicts the ResNet50 

architecture. 

3) EfficientNet-BO: Proposed by [20], introduces a 

compound scaling strategy that jointly scales depth, width, and 

resolution. It achieves high accuracy with a lightweight 

parameter count (~5.3M), making it suitable for mobile and 

embedded applications [21] (Şafak & Barışçı, 2024). Fig. 3 

depicts the EfficientNet-B0 architecture. 

 
Fig. 2. ResNet50 architecture [19]. 

 
Fig. 3. EfficientNet-B0 architecture [20]. 

4) Comparison among pre-trained CNN models or 

architectures: To validate the proposed HPO strategies and 

algorithms in real-world scenarios, three pre-trained CNN 

architectures (VGG16, ResNet50, and EfficientNet-B0) are 

selected for experimental evaluation. These models represent a 

range of design philosophies and computational complexities, 

allowing for comprehensive testing against the three core 

performance objectives: accuracy, adaptability, and 

computational efficiency. Table I summarises the 

characteristics of the chosen pre-trained CNN models. 

B. Hyperparameter Optimisation (HPO) 

The primary goal of HPO is to automate the hyperparameter 
tuning process to ensure optimal performance of ML models on 
specific tasks. The motivation for employing HPO lies in its 
ability to address challenges posed by manual tuning, such as 
non-linear hyperparameter interactions and the computational 
burden of evaluating large search spaces. 
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TABLE I.  CHARACTERISTICS OF CHOSEN PRE-TRAINED CNN MODELS 

Criteria VGG16 ResNet50 
EfficientNet-

B0 

Architecture 

Depth 

16 layers (13 

convolutional + 3 

fully connected) 

50 layers with 

residual 

connections 

82 layers 

(scalable depth, 

width, and 

resolution) 

Key 

Innovation 

Sequential 

architecture with  

uniform 3×3 

convolutions 

Residual 

connections to 

solve vanishing 

gradient 

problem 

Compound 

scaling method 

to balance 

network 

dimensions 

Model Size ~138 million  

parameters 
~25.5 million  

parameters 
~5.3 million  

parameters 

Computational 

Complexity 

High due to depth 

and fully 

connected layers 

(~15.4 GFLOPs) 

Moderate (~3.9 

GFLOPs) 
Low (~0.39 

GFLOPs) 

Real-World 

Applications 

Medical imaging, 

video 

classification, and 

object detection 

Autonomous 

vehicles, 

semantic 

segmentation, 

and face 

recognition 

Mobile vision, 

IoT devices, 

and scalable 

vision 

applications 

In the context of convolutional neural networks (CNNs), 
hyperparameters play a pivotal role in shaping the architecture, 
learning dynamics, and generalization ability. These settings, 
determined prior to training, influence feature extraction, 
overfitting prevention, and convergence behaviour. CNN 
hyperparameters can generally be categorized into three main 
groups [22], [23]. 

• Hyperparameters of convolutional layers (i.e., number 
of convolutional layers, number of kernels, size of 
kernels, stride, padding, dilation rate, activation 
functions, and filter initialization methods). 

• Hyperparameters of fully connected layers (i.e., dropout 
rate, connectivity pattern, number of neurons, activation 
functions, weight regularization, and initialization 
methods). 

• General Hyperparameters (i.e., batch size, learning rate, 
learning rate decay, optimizer type, number of epochs, 
momentum, and gradient clipping). 

1) HPO problem formulation: HPO is the process of 

identifying the optimal hyperparameters for a machine learning 

model to maximize its performance on a given task. This is 

formulated as an optimisation problem where the objective is to 

find the hyperparameter configuration that minimizes a loss 

function or maximizes an evaluation [24], [25]. 

a) General formulation 

Let, 

𝜆 = 𝜆1, 𝜆2 ,… , 𝜆𝑛 : The hyperparameter vector, where each 
𝜆𝑖 represents a specific hyperparameter. 

𝑀(𝜆) : The machine learning model trained with 
hyperparameter configuration Ⅎvλ. 

𝐿(𝑀(𝜆), 𝐷) :    The loss function of the model on dataset 

║1𝒟  =  {(𝒟}𝑡𝑟𝑎𝑖𝑛 ,  𝐷𝑣𝑎𝑙)  where 𝐷 train and 𝐷 val are the 

training and validation datasets, respectively. 

The goal of HPO is to find the optimal hyperparameter 
configuration Ⅎvλ such that: 

𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆∈𝛬𝐿(𝑀(𝜆), 𝐷𝑣𝑎𝑙) 

where 𝛬 is the search space of hyperparameters. 

2) Search space: In the context of HPO for pre-trained 

CNNs, the search space defines the range and type of 

hyperparameters that are optimized to improve model 

performance. This space encompasses various types of 

parameters that differ in structure and optimization complexity. 

The hyperparameter search space 𝛬 is typically composed of 

categorical, discrete and continuous parameters. 

Each category introduces different challenges for 
optimisation algorithms. Categorical parameters often require 
non-gradient-based search techniques, discrete parameters 
increase combinatorial complexity, and continuous parameters 
demand fine-grained exploration. 

C. Metaheuristic Algorithms 

Metaheuristics are population-based or single-solution 
optimisation methods that incorporate stochastic search 
strategies to efficiently explore large, complex landscapes. They 
are particularly suited to HPO, as they do not rely on gradient 
information and can handle mixed-variable and non-
differentiable objective functions [26], [27]. 

Metaheuristics achieve success by balancing: 

• Exploration: discovering new regions of the search 
space. 

• Exploitation: refining promising candidate solutions [7], 
[8]. 

• Several algorithms have been applied to CNN HPO: 

• Genetic Algorithms (GA): Inspired by natural evolution, 
used for optimising filter sizes and learning rates [28]. 

• Particle Swarm Optimisation (PSO): Mimics social 
behaviour of birds, effective in refining CNN 
configurations [29]. 

• Whale Optimisation Algorithm (WOA): Employs 
simulated hunting behaviour for global exploration [30]. 

• Harmony Search and Variants: Used for fine-tuning 
CNNs through adaptive exploration-exploitation trade-
offs [31]. 

Among these, two algorithms stand out for their 
complementary strengths: 

• Artificial Bee Colony (ABC): A swarm-based algorithm 
inspired by bee foraging behaviour [9]. ABC excels at 
exploration by maintaining population diversity through 
scouts and onlookers but suffers from weak local 
refinement in later iterations [11]. 

• Harris Hawks Optimisation (HHO): A predator-prey 
inspired method with dynamic exploration and 
exploitation phases [10]. HHO is effective in local 
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search but is prone to premature convergence in highly 
multimodal spaces [12]. 

Individual metaheuristic algorithms often underperform in 
the complex hyperparameter landscape of pre-trained CNNs, 
leading to stagnation, poor convergence, or lack of diversity 
[13]. To address these challenges, hybrid metaheuristics have 
emerged, aiming to combine complementary strengths while 
mitigating weaknesses [14]. Recent studies, such as PSO-GWO 
[32] and HHOS [33] highlight the effectiveness of hybridisation 
for deep learning optimisation. 

Nevertheless, the integration of ABC and HHO for CNN 
hyperparameter tuning remains underexplored. This motivates 
the present study, which introduces I-HAHO, an integrative 
hybrid approach that leverages ABC’s exploratory power and 
HHO’s exploitative refinement under a diversity-based 
switching strategy. 

III. RELATED WORKS 

This section presents reviews on recent studies that apply 
hybrid metaheuristic algorithms to HPO in pre-trained CNN 
models. Recent studies have explored hybrid metaheuristic 
algorithms for HPO in pre-trained CNN models, yet consistent 
challenges remain across adaptability, accuracy, and 
computational efficiency dimensions. 

Ulutas et al. [34] proposed a hybrid PSO-GWO approach for 
tuning hyperparameters within ensemble models for diabetes 
detection, achieving a peak accuracy of 98.10% using Random 
Forest classifiers. Their findings indicate that the hybrid method 
outperforms standalone Particle Swarm Optimization (PSO) and 
Grey Wolf Optimization (GWO), offering improved robustness 
and generalisation across classifiers. 

Yan et al. [35] addressed key challenges in CNN 
hyperparameter tuning, including mixed-variable encoding, 
high computational cost, and convergence stability. They 
introduced GPPSO, a hybrid algorithm combining Gaussian 

Processes with PSO. The method incorporates a novel encoding 
scheme for mixed-variable hyperparameters and a surrogate 
model to reduce evaluation overhead. Experiments on CIFAR-
10 and CIFAR-100 confirmed GPPSO’s superior efficiency and 
accuracy, with practical relevance for applications such as metal 
fracture diagnosis. 

Kumar and Kondaveeti [33] applied transfer learning with a 
Hybrid Hyperparameter Optimization Scheme (HHOS), 
integrating manual domain knowledge and random search 
strategies. Using pre-trained ImageNet models with additional 
trainable layers, they demonstrated that fine-tuning 
EfficientNetB0 achieved 99.12% accuracy, outperforming 
ResNet18 (93.24%). These results highlight the value of hybrid 
HPO in ecological classification tasks. 

Akkuş et al. [36] explored HPO for CNN-based image 
classification, specifically diabetic retinopathy detection. Their 
study compared the Adolescent Identity Search Algorithm 
(AISA) with Bayesian Optimization (BO) across pre-trained 
models including AlexNet, MobileNetV2, ResNet18, and 
GoogLeNet. AISA-based tuning yielded higher accuracy with 
fewer iterations, demonstrating its efficiency in medical imaging 
contexts. 

Kiliçarslan [32] investigated hybrid optimisation for 
cardiovascular disease prediction using 1D and 2D VGG-16 
architectures. The study compared PSO, Cat Swarm 
Optimization (CSO), and hybrid PSO-GWO, showing that the 
hybrid consistently achieved the highest classification accuracy 
across medical and MNIST datasets. 

Atteia et al. [37] further emphasised the importance of HPO 
in CNN-based diagnostic systems, applying optimisation 
techniques to diabetic maculopathy detection using optical 
coherence tomography and fundus retinography. Their work 
reinforces the critical role of HPO in enhancing model 
performance for clinical applications. 

The summary of the related works is presented in Table II. 

TABLE II.  SUMMARY OF RELATED WORKS 

Authors Hybrid Method Domain Models / Datasets Key Findings 

Ulutaş et al. [34] PSO + GWO 
Diabetes detection 

(Ensemble Learning) 

Random Forest, other 

classifiers 

Achieved 98.10% accuracy; hybrid PSO-GWO 

outperformed standalone PSO and GWO, 

improving robustness and model performance. 

Yan et al. [35] GP + PSO (GPPSO) 
CNN HPO, Metal 

fracture diagnosis 

CNNs on CIFAR-10, 

CIFAR-100 

Proposed mixed-variable encoding + surrogate 

model; improved efficiency, convergence, and 

accuracy compared to traditional methods. 

Kumar & Kondaveeti 

[33] 

Hybrid 

Hyperparameter 

Optimisation Scheme 

(HHOS) (manual + 

random search) 

Ecological 

application(transfer 

learning) 

EfficientNetB0, ResNet18 

(pre-trained on ImageNet) 

Fine-tuned EfficientNetB0 achieved 99.12%, 

ResNet18 achieved 93.24%; hybrid scheme 

improved accuracy and adaptability. 

Akkuş et al. [36] 
AISA + Bayesian 

Optimisation 

Medical imaging 

(Diabetic Retinopathy 

detection) 

AlexNet, MobileNetV2, 

ResNet18, GoogLeNet;  

Kaggle DR dataset 

Hybrid AISA-based optimisation achieved 

higher accuracy with fewer iterations than BO; 

more efficient for CNN HPO in medical 

imaging. 
 

IV. MATERIALS AND METHODS 

In this section, I-HAHO is introduced as our approach to 
improve the accuracy of the HPO for pre-trained CNN models. 

A. Dataset 

This study utilizes four benchmark datasets: CIFAR-10, 
CIFAR-100, SVHN, and TinyImageNet to evaluate the 
performance of the proposed hybrid metaheuristic HPO 
algorithms. These datasets were selected due to their widespread 
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adoption in deep learning literature and their varying levels of 
complexity, class granularity, and domain diversity, which 
support robust validation of adaptability and generalisation. 

CIFAR-10 and CIFAR-100 were obtained from the official 
dataset repository maintained by the Canadian Institute for 
Advanced Research (CIFAR). Each dataset comprises 60,000 
32×32 colour images. CIFAR-10 consists of 10 mutually 
exclusive classes, whereas CIFAR-100 is structured with 100 
fine-grained categories across 20 superclasses. Both datasets 
were split into 50,000 training and 10,000 testing images. 
During preprocessing, images were normalized using dataset-
specific mean and standard deviation values, converted to float 
tensors, and standardized to improve gradient stability during 
model training. No class rebalancing was performed, preserving 
original distribution characteristics for realism. 

Street View House Numbers (SVHN), sourced from the 
official Stanford University repository, was employed in its 
cropped digits format, ensuring consistent spatial resolution 
with other datasets. Comprising 73,257 training and 26,032 test 
images, SVHN represents a real-world digit classification task 
under non-ideal lighting and alignment conditions. Raw .mat 
files were parsed and converted to tensor format. Images were 
resized to 32×32 pixels and normalized to zero mean and unit 
variance. Dataset labels were integer-encoded and subsequently 
transformed to one-hot format for compatibility with CNN 
classifiers. It has a real-world and noisy data characteristic 
which makes it a challenging test case. 

TinyImageNet, a scaled-down variant of the ILSVRC 
ImageNet dataset, was downloaded from the official ImageNet 
challenge portal. It includes 200 object categories, with 100,000 
training samples (500 images per class), 10,000 validation 
samples (50 per class), and 10,000 test samples. Unlike CIFAR 
and SVHN, the input resolution for TinyImageNet was 
preserved at 64×64 pixels to maintain semantic richness. Due to 
its relatively small sample size per class and high inter-class 
similarity, extensive preprocessing was applied, including data 
augmentation techniques such as random horizontal flipping, 
random cropping with padding, and brightness/contrast jittering 
to prevent overfitting and improve generalization under low-
data regimes. It represents real-world scenarios and tests the 
scalability and efficiency of optimisation algorithms in complex 
tasks. 

A summary of the datasets is provided in Table III, 
highlighting their complexity based on factors such as image 
resolution, number of classes, and dataset size. 

TABLE III.  SUMMARY OF DATASETS 

Dataset 
Number 

of Classes 

Total 

Images 

Image 

Resolution 
Complexity 

CIFAR-10 10 60,000 32x32 Moderate 

CIFAR-100 100 60,000 32x32 High 

TinyImageNet 1,000 1.2 million Varies Very High 

SVHN 10 600,000+ 32x32 

High 

(Real-

world) 

B. Proposed I-HAHO Algorithm 

The pseudocode for the I-HAHO is presented in the 
Algorithm 1. 

Algorithm 1: I-HAHO 

Input: 

Population Size N, Maximum iterations T, Initial diversity threshold 
𝐷0,  

Hyperparameters for ABC and HHO, Objective function  𝐹(𝑥) 

Output: 

Best solution 𝑥𝑏𝑒𝑠𝑡with optimized hyperparameters. 

Initialise the population X using Latin Hypercube Sampling  

Set iteration counter 𝑡 =  0  

Calculate the initial diversity threshold 𝐷thresh(𝑡) = 𝐷0   

Evaluate the fitness 𝐹(𝑥)for each solution 𝑥𝑖 𝜖 X 

While 𝑡 < T: 

            Calculate population diversity 𝐷(𝑡)  

            Update the diversity threshold 𝐷thresh(𝑡)  

  Dynamic Phase-Switching Strategy: 

   𝑖𝑓𝐷(𝑡) > 𝐷thresh (High Diversity): 

    Perform Modified ABC Exploration 

   else   𝐷(𝑡) < 𝐷thresh 

    Perform Modified HHO Exploitation 
 

             Evaluate the 𝐹(𝑥)of the updated solutions 

             Update the global best solution 𝑥𝑏𝑒𝑠𝑡   

based on the fitness 

             Calculate the change in fitness ΔF = 
|F_best(t) - F_best(t-1) |. 

             Convergence Check: 

   If ΔF < threshold or if 𝐷(𝑡) > 𝐷min 

  Increment t = t +1 

 End While 

 Return the best solution 𝑥𝑏𝑒𝑠𝑡 

 

 
Fig. 4 illustrates the detailed operational flow of the 

proposed Integrative Hybrid Metaheuristic Algorithm (I-
HAHO), which unifies exploration and exploitation through a 
diversity-based phase-switching mechanism. At each iteration, 
the population diversity 𝐷(𝑡)is computed and compared with a 
dynamic threshold 𝐷thresh(𝑡). When 𝐷(𝑡) > 𝐷thresh, indicating 
sufficient population diversity, the algorithm prioritises 
Modified ABC exploration to expand the search space. This 
phase adaptively updates candidate positions, reinitialises 
stagnated solutions using Distance-Aware Novelty 
Reinitialisation (DANR), and invokes Chaos-Guided Candidate 
Recovery (CGCR) when diversity falls below acceptable limits, 
ensuring sustained global exploration. Conversely, when 
𝐷(𝑡) < 𝐷thresh , the process transitions to Modified HHO 
exploitation, which refines promising regions through Refined 
Surround Prey, Escaping Energy, and Success-History-Based 
Adaptation (SHEA) to intensify local search and accelerate 
convergence. 
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Fig. 4. Detailed algorithmic flowchart for I-HAHO with key strategies. 

Unlike previous hybrid metaheuristics that rely on static 
schedules, random alternation, or fixed probability-based phase 
switching, the proposed diversity-driven framework 
continuously adapts based on the evolutionary state of the 
population. This allows I-HAHO to intelligently balance 
exploration and exploitation according to real-time feedback 
from the search dynamics, rather than predetermined iteration 
counts. The integration of DANR, CGCR, and SHEA further 
enhances the system’s self-adaptive behaviour. DANR 
promotes novelty and prevents stagnation by introducing 
diversity-sensitive perturbations, CGCR leverages chaotic 
patterns to recover lost diversity while preserving promising 
regions, and SHEA enables adaptive parameter fine-tuning 
guided by historical success rates. Collectively, these 
mechanisms fill the gap left by earlier hybrid strategies that 
lacked dynamic responsiveness, allowing I-HAHO to navigate 
complex, multimodal hyperparameter landscapes more 
effectively and maintain balanced convergence performance 
across datasets and CNN architectures. 

C. Performance Evaluation Measures 

The evaluation measures employed in this research were 
selected to comprehensively assess the performance of the 
proposed I-HAHO algorithm. 

1) Classification accuracy: Classification accuracy is the 

primary metric to evaluate the performance of HPO in pre-

trained CNN models. It measures the proportion of correctly 

classified instances relative to the total instances. 

Accuracy(θ) =
Correctly Classified Instances(θ)

Total Instances
 

(1) 

 

A higher classification accuracy indicates better 
optimisation of hyperparameters and superior adaptibility 
performance of the model. 

V. RESULTS AND DISCUSSION 

A. Overall Comparative Performance 

The experiment results for I-HAHO comparison with 
baseline HPO algorithms and canonical metaheuristic 
algorithms are presented in Table IV. The results demonstrate 
the highest accuracy achieved by different HPO algorithms 
across four pre-trained CNN models on various benchmark 
datasets. The accuracy results are presented in Table IV. 

The proposed I-HAHO algorithm consistently outperformed 
all benchmarked HPO algorithms across the evaluated pre-
trained CNN models and datasets. On the CIFAR-10 dataset, I-
HAHO achieved superior validation accuracies of 93.194% 
(VGG16), 94.503% (ResNet50), and 93.008% (EfficientNet-
B0), outperforming traditional and baseline search-based 
algorithms (GS, RS and BO). This consistent improvement 
illustrates I-HAHO’s ability to effectively navigate the 
hyperparameter space through adaptive hybridization of global 
and local search strategies. 
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TABLE IV.  ACCURACY RESULTS FOR ALL HPO ALGORITHMS AND I-HAHO 

Model Dataset GS (%) RS (%) BO (%) Vanilla ABC (%) Vanilla HHO (%) I-HAHO (%) 

VGG16 

CIFAR-10 88.2 88.6 89.2 87.5 87.7 93.1 

SVHN 95.3 95.6 96.2 94.7 95.0 96.9 

CIFAR-100 67.1 68.04 68.5 66.0 66.5 78.5 

Tiny ImageNet 57.8 58.3 58.9 57.0 57.4 65.4 

ResNet50 

CIFAR-10 90.5 90.9 91.3 89.0 89.3 94.5 

SVHN 93.0 93.7 94.1 92.5 92.9 95.8 

CIFAR-100 68.9 69.7 70.4 67.6 68.3 76.0 

Tiny ImageNet 61.2 61.9 62.5 60.2 60.9 69.5 

EfficientNet-B0 

CIFAR-10 89.0 89.7 90.1 87.5 87.9 93.0 

SVHN 87.3 87.9 88.4 86.0 86.5 91.0 

CIFAR-100 68.0 68.9 69.5 66.6 67.3 75.5 

Tiny ImageNet 61.8 62.4 62.9 59.6 60.3 68.0 
 

On the more complex CIFAR-100 dataset, which includes 
100 classes with fewer samples per class, I-HAHO achieved 
78.507% (VGG16), 76.011% (ResNet50), and 75.512% 
(EfficientNet-B0), confirming its adaptability in high-
dimensional, class-imbalanced learning tasks. For the SVHN 
dataset, characterized by large-scale digit recognition with 
significant intra-class variance and noise, I-HAHO achieved 
96.903% (VGG16), 95.803% (ResNet50), and 91.007% 
(EfficientNet-B0). These results demonstrate I-HAHO’s ability 
to maintain high accuracy and generalization performance even 
under challenging, real-world-like scenarios with substantial 
class overlap and varying input conditions. 

On TinyImageNet, a particularly challenging dataset with 
200 categories and lower resolution images, I-HAHO again 
demonstrated superior adaptability, achieving 65.497% 
(VGG16), 69.502% (ResNet50), and 68.013% (EfficientNet-
B0). Notably, the EfficientNet-B0 model exhibited strong 
performance due to its compound scaling, which supports 
effective feature extraction even in low-resolution, high-
category contexts. These outcomes suggest that I-HAHO not 
only improves training outcomes for well-known benchmarks 
but also scales effectively to more complex domains with less 
structured data distributions. 

Collectively, these results are aligned with recent studies 
highlighting the limitations of single-strategy optimizers in deep 
learning [3], [37], [38] and emphasize the benefit of hybrid 
metaheuristics for pre-trained CNN models HPO tasks. 

VI. CONCLUSION 

In conclusion, the proposed Integrative Hybrid Artificial Bee 
Colony–Harris Hawks Optimization (I-HAHO) algorithm 
improves hyperparameter optimization (HPO) for pre-trained 
convolutional neural networks (CNNs) through an adaptive 
hybrid structure. The framework integrates a modified Artificial 
Bee Colony (ABC) algorithm for global exploration with a 
modified Harris Hawks Optimization (HHO) algorithm for local 
exploitation. This integration provides a balanced search process 
that minimizes premature convergence and sustains population 
diversity, which conventional approaches such as grid search, 
random search, and Bayesian optimization fail to achieve. The 

adaptive phase-switching mechanism regulates exploration and 
exploitation dynamically according to population diversity and 
fitness variance, allowing the optimiser to adjust its search 
intensity based on the topological characteristics of the loss 
landscape. This adaptivity enables I-HAHO to sustain 
population diversity during early iterations and progressively 
intensify local refinement as convergence nears, resulting in 
consistent and efficient optimisation in high-dimensional, non-
convex search spaces. Experimental results on CIFAR10, 
CIFAR100, SVHN, and TinyImageNet datasets across VGG16, 
ResNet50, and EfficientNetB0 architectures demonstrate up to 
6.9% improvement in classification accuracy compared to 
baseline optimizers. These results validate IHAHO as a scalable 
and generalizable hyperparameter optimization framework that 
improves search efficiency, convergence stability, and model 
adaptability across diverse deep learning tasks. The diversity-
based phase-switching mechanism enables dynamic control 
over exploration and exploitation, supporting robust 
performance in high-dimensional, nonconvex spaces. 
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