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Abstract—Performance-based forecast combination 

approaches determine the weights of the individual forecasts 

based on the inverse average error for a past time interval. 

However, although the performances are calculated for a time 

span, the aim is mostly a one-step-ahead time-point forecast. In 

these classical methods, a relatively higher prediction error of a 

single past time-point spreads and decreases the performance 

value of the model, even though the model is highly successful on 

other time-points in the interval. In this study, a novel approach 

is presented where performance of each past time-point 

prediction is calculated separately. Instead of taking the inverse 

average error for a pre-determined past time interval, prediction 

performance is calculated for each past data point separately 

using the normalized inverse absolute error, then the average 

performances are calculated for past time interval to get the 

combination weights. To be able to measure the performance of 

the presented methodology, it is applied on three well-known 

time series data. Seven different models of neural networks, 

based on multi-layer perceptron and extreme learning machines 

are used to model, forecast and form the combination forecasts. 

Moreover, four different performance-based combination 

techniques, two central tendency-based benchmark combination 

methods and the naïve model are employed for comparison. The 

obtained results show that proposed methodology is a powerful 

and robust technique and superior to all performance-based 

combination techniques compared. 
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I. INTRODUCTION 

Time series forecasting has become a major research area 
in academics. Researchers have developed various 
methodologies to improve the accuracy of forecasting. From 
classical statistical models to machine learning [22] and 
heuristic models, many models have been developed. 
Moreover, researches showed that using more than one forecast 
at the same time often gives better results than a single forecast 
[1]. This development has led the researchers to hybridize or 
combine different forecasts and resulted with hybrid and 
combination forecasting models. 

Combination forecast is done by combining multiple 
forecasts from different models and is usually better than a 
single forecast. The interested real world time series data is 
probably cannot be explained by a specific model, because of 
the consisting different processes like time-varying trends, 
changing seasonality and structural breaks [1]. Moreover, 

selecting the “best model” is somewhat problematic because of 
the sample, parameter and model uncertainties. Sample 
uncertainty is the problem that different sample sizes result 
different models and various parameter estimates. Parameter 
estimation uncertainty arises from different algorithms and 
various model setups. Furthermore, different model structures 
result with various parameter restrictions, which may cause for 
example the estimation problem [2]. Under these 
circumstances, combining multiple forecasts has been a highly 
preferred methodology. 

The main question of the forecast combination is that, “how 
to combine the individual forecasts”. Different answers to this 
question result various combination methods. An important 
class of combination procedures is performance-based forecast 
combination. That class of methods determine the weights of 
individual forecasts according to corresponding models’ past 
performances. Some models use inverse past accuracy 
measures of the models like mean squared error (MSE), root 
mean squared error (RMSE) or symmetric mean absolute 
percentage error (sMAPE) to calculate the weights, such that 
the forecast of the model with a low error measure has a high 
weight in the forecasting pool. Another idea is, instead of using 
inverse error measures directly, ranking the models according 
to their past accuracy and employing the inverse of these rank 
values as weights, which is called rank-based forecast 
combination. 

There are some characteristics of current performance-
based combination methodologies arise from the mean error 
metrics they are based on. In inverse error based combination 
methods, average of the errors for some past time span is used. 
In these methods, the averaging procedure gives general 
information about the time span performance, but not enough 
information about the performances for past time-points 
individually. For example, a possible high error value of only 
one past prediction might cause a low performance; even other 
past predictions are highly accurate. On the other hand, rank-
based model assigns the weights through the inverse sequence 
of numbers. Regardless of how much the variation between the 
models’ past accuracies, the weights are pre-determined and 
constant. Therefore, rank-based combinations limit the weights 
to only a set of possible values [3]. 

Forecasting techniques are (including forecast 
combinations) used mostly for one-step ahead forecasting. 
Even when the forecast target consists of multi-steps ahead 
time-points, usually, forecasting is done step by step. It means 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

621 | P a g e  
www.ijacsa.thesai.org 

that, first the next step is forecasted, and then the subsequent 
forecast is done using previous forecast as if it is the real value. 
Therefore, pointwise performance values of the forecasting 
models are highly important. Classical performance-based 
combination techniques take an average error value of the 
individual models for a past time-span (for the whole past 
training data-span, or a more recent one) and use it to assign 
the performance values. In this paper, a novel performance-
based combination methodology is proposed, which is different 
from classical performance-based methods. First, the 
performances of each past time-point prediction of individual 
models are calculated separately by inverse absolute error 
(IAE). Then, these point performance values are normalized by 
min-max normalization within other models for each past time 
point data; such that, the best performance value is one, the 
worst is zero and the others are in between. The min-max 
normalization among different models assigns a relative 
performance value and holds equal performance scales ([0, 1]). 
Moreover, since recent data holds more information and is 
more significant, the weights are calculated by averaging the 
time-point performances of recent data by the rolling window 
method which is often used in the literature [1]. 

To test the performance of the proposed model, three well-
known time series data are used for modeling and forecasting 
purposes. These datasets are Canadian lynx, Wolf’s sunspot 
and GBP/USD foreign exchange series. Seven individual 
neural network models are constructed for combination. Three 
of the neural network models are based on multi-layer 
perceptron (MLP) and four of them are different sub-models of 
extreme learning machines (ELM). Obtained results from 
proposed combination technique are compared with the results 
of seven individual models, four other performance-based 
models, equally weighted simple mean/ median combinations 
and the naïve model. 

The rest of the paper is organized as follows: In Section II, 
a review of literature related to current is presented. Section III 
describes all methodologies used in the research. First, MLP 
and ELM models are explained, which are used for individual 
forecasts. Then, performance-based combination models are 
described, which are used for comparison purposes. After that, 
proposed forecast combination model is introduced and 
explained. Lastly, the details of the data, models and the 
software used for application purposes are presented. Section 
IV presents the application results and findings. Section V 
concludes with discussions of the study's implications, 
limitations, and future work. 

II. RELATED WORK 

Since the work of Bates and Granger [4], forecast 
combination literature has been grown substantially. From 
simple combination procedures to much more complex 
systems, researchers have developed many models and 
methods. However, forecast combination studies show that 
simpler combination methods are very successful and hard to 
beat [1]. The most popular one is taking the simple arithmetic 
mean of the individual forecasts, ignoring the past information 
of the models. This procedure is quite successful, robust and 
easy to perform [3]. Other simple and robust methodologies 
related to central tendency (CT) are taking the median or the 

mode of the forecasting pool. In contrast to the simplicity of 
the mean and median, mode combination needs numerous 
forecasts or some techniques like discretizing the data or kernel 
density estimation [5]. Therefore, the simple mean and the 
median combinations are the most referenced CT 
combinations, and there is still debate among the scholars 
whether the mean or the median is more successful [1]. Other 
than simple equally weighted average model, some researchers 
applied the trimmed or winsorized mean for combination 
forecasts. Results show that especially when there are high 
variations among the forecasts, trimmed and winsorized mean 
methods produce good results [5]. Simple combination rules 
are very successful and easy to implement. Therefore, among 
other and more sophisticated methods, simple combination 
methods are the choice of many researchers as a benchmark for 
testing new combination methodologies. There are other more 
complex methods than simple combinations, such as linear 
combinations, nonlinear combinations and combining by 
learning. A comprehensive classification of combination 
methods can be found in study [1]. 

Linear combination methods assign the weights of 
individual forecasts according to their accuracy in a linear 
combination. Optimal weights approach aims to minimize the 
variance by optimizing the weights [6], while in linear 
regression based methods this optimization is done by 
regression [7]. In criteria based techniques, weights of the 
individual forecasts are determined by using information 
criteria, such as Akaike’s (AIC) or Bayesian (BIC) information 
criteria [8, 9]. 

Performance-based forecast combinations are in the class of 
linear combination methods, where each individual forecast 
has a weight according to its performance on past data. 
Differences in performance measurement are resulted with 
different models in the literature. In study [10], IRMSE 
(inverse root mean squared error) model is used with different 
combination models to forecast day-ahead spot electricity 
prices. It is found that, while IRMSE method is one of the best 
performer models, there is no single model dominating the 
others for all datasets. In the work of [11] different forecasting 
models are combined with weights determined by their sMAPE 
values. It is determined that the selection of the forecasting 
models is crucial for the combination forecast to be successful. 
Another performance-based model is rank-based model used in 
[12]. Rank based models determine the weights of individual 
models according to inverse of their rankings. This model is 
also used by study [13] for tourism demand forecasting and 
compared with other combination methods. Performance-based 
combinations are used to forecast various time series, such as 
livestock prices [14], oil prices [15], ozone concentration, and 
airline passengers [16]. 

III. METHODOLOGY 

A. Multilayer Perceptron 

Artificial Neural Networks (ANN) are computational 
models inspired by the human brain's neural networks. An 
ANN is composed of interconnected nodes (neurons) organized 
in layers; including input, hidden, and output layers. They 
mimic the way real neurons communicate; and are particularly 
useful in pattern recognition, classification, optimization, and 
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time series prediction. ANNs can model complex nonlinear 
relationships and handle large datasets with numerous 
variables. 

A multi-layer perceptron (MLP) is the most commonly 
used type of artificial neural network that consists of multiple 
layers of nodes; including an input layer, one or more hidden 
layers, and an output layer. The network uses a feedforward 
path for data processing and backpropagation for training and 
optimization. Training MLPs involves challenges such as 
entrapment in local minima, convergence speed, and sensitivity 
to initialization. MLPs have strong generalization capabilities 
but are prone to overfitting, where the network becomes too 
dependent on the training data. Techniques such as 
regularization and cross-validation are often employed to 
mitigate overfitting. MLPs are widely used for time series 
modeling. As a mathematical expression for time series yt, the 
one-step ahead forecast ŷ(t+1) of the real data yt+1 can be 
calculated as [5]: 

𝑦𝑡+1 = 𝛽0 + ∑ 𝛽𝑙𝑔
𝐿
𝑙=1 (𝑏𝑖 + ∑ 𝑤𝑙𝑖𝑥𝑖

𝐼
𝑖=1 )             (1) 

In Eq. (1), I is the number of the inputs xi, and L is the 
number of hidden nodes. β and w are the weights of the output 
and hidden layers respectively, where β=[ β1, β2,…, βL] and w 
=[ w1, w2,…, wL]. β0 and bi are the biases acting like intercept 
in the regression process. Lastly, g(.) is the transfer function 
and is usually hyperbolic tangent or logistics function. 

The backpropagation algorithm is a widely used method for 
training MLPs by adjusting the weights of the connections to 
minimize the error in predictions. There are three stages of 
backpropagation, in the first stage the calculations are done 
forward through the final output by using activation function. 
Then, obtained error is propagated backwards, starting from 
the output layer. Finally, the weights are changed in order to 
minimize errors. These stages continue until certain conditions 
are reached. Backpropagation is effective but can be slow and 
may be stuck in local minima [17]. Another training algorithm 
is resilient backpropagation (RPROP), which is an advanced 
training algorithm designed to improve the efficiency and 
performance of MLPs by addressing some of the limitations of 
traditional backpropagation methods. RPROP is an advanced 
version of backpropagation that adjusts the weight updates 
based on the sign of the gradient rather than its magnitude, 
leading to faster convergence and improved performance [17, 
18]. As an improvement of RPROP, a weight backtracking 
mechanism can be added. Weight backtracking retracts a 
previous update for some or all weights, while whether taking 
back a step or not is decided by heuristics [19]. 

B. Extreme Learning Machine 

Extreme learning machine (ELM) is a single layer 
feedforward network (SLFN). Different from other neural 
networks, the weights of connections between input and hidden 
layers are selected randomly and not trained further. Therefore, 
instead of training all the weights in the network, only the 
output weights (connecting hidden and output layer) are 
calculated. The output weights can be optimized with the 
approaches like least squares or equivalents. ELM has fast 
learning rate with strong generalization performance. Moreover 
it shows high efficiency in training, particularly when data is 

limited [20, 21]. A representation of ELM architecture is in 
Fig. 1. 

 
Fig. 1. Architecture of an extreme learning machine network with n input, M 

hidden, and 1 output nodes. 

Suppose we have N arbitrary distinct training samples (xj, 
tj), each containing of n inputs and m outputs where j = 1, 2,…, 
N. Therefore, xj = [xj1, xj2,…, xjn]T ∈ Rn is the input vector and 

tj = [tj1, tj2,…, tjm]T ∈ Rm is the output vector. The output (oj) 

of the standard SLFN model with M hidden nodes and the 
activation function of g(.) can be modeled as [20]: 

𝑜𝑗 = ∑ 𝛽𝑖𝑔
𝑀
𝑖=1 (𝑤𝑖𝑥𝑗 + 𝑏𝑖)                           (2) 

In Eq. (2), wi = [wi1, wi2, …, win]T is the weight vector 
connecting inputs to the ith hidden node. βi = [βi1, βi2, …, βin]T 
the weight vector connecting ith hidden node to outputs, and bi 
is the bias (threshold) of ith hidden node. The standard SLFN 
with M hidden nodes with activation function g(.) can 
approximate these N samples with zero error means that: 

∑ 𝛽𝑖𝑔
𝑀
𝑖=1 (𝑤𝑖𝑥𝑗 + 𝑏𝑖) = 𝑡𝑗                   (3) 

where j = 1, 2,…, N. These N equations can be written in a 
more compact form as: 

𝑯𝛽 = 𝑻                                 (4) 

where, 

𝑯 = [

𝑔(𝑤1𝑥1 + 𝑏1) … 𝑔(𝑤𝑀𝑥1 + 𝑏𝑀)

𝑔(𝑤1𝑥2 + 𝑏1) … 𝑔(𝑤𝑀𝑥2 + 𝑏𝑀)
⋮ ⋱ ⋮

𝑔(𝑤1𝑥𝑁 + 𝑏1) … 𝑔(𝑤𝑀𝑥𝑁 + 𝑏𝑀)

]

𝑁𝑋𝑀

      (5) 

𝛽 = [

𝛽1
𝑇

𝛽2
𝑇

⋮
𝛽𝑛

𝑇

]

𝑀𝑥𝑚

                                (6) 

𝑻 =

[
 
 
 
𝑡1
𝑇

𝑡2
𝑇

⋮
𝑡𝑁
𝑇]
 
 
 

𝑁𝑥𝑚

                                (7) 

After setting the input weights and biases of the hidden 
layer, the output weight vector β can be obtained by a series of 
linear equations transformations. If the number M of hidden 
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nodes is equal to the number N of distinct training samples, M 
= N, matrix H is square and invertible. Because the input 
weight vectors wi and the hidden biases bi are randomly 
chosen, the SLFN can approximate these training samples with 
zero error. However, in most cases the number of hidden nodes 
is much less than the number of distinct training samples, such 
that M << N. Then, H is a not a square matrix and there may 
not exist wi, bi, βi (i = 1, 2, …,M) such that Hβ = T. Then, the 
smallest norm least squares solution of the above linear system 
is [20]: 

𝛽̂ = 𝑯†𝑻                                           (8) 

where, 𝑯†  represents the generalized (Moore-Penrose) 
inverse matrix of the output. 

Different from traditional neural networks, parameters 
between hidden and output layer in the ELM structure can be 
obtained by minimizing least squares solutions with the 
provided training data [23, 24, 25]. Therefore, using ELM to 
obtain the output weights is consisted of three steps. First, 
randomly selecting numerical values between zero and one to 
set input weights and the bias of the hidden layer. Second, 
calculation of the output matrix H. Finally, calculation of the 
output weights β. On the other hand, there are some possible 
problems with ELM networks. First, ELM can effectively 
approximate to any complex systems with huge numbers of 
hidden nodes, but in this case, the generalization might 
decrease. Another is that, the least square method cannot 
provide good estimates for weights when there exist many 
outliers in data. To overcome these deficiencies, researchers 
presents some developments like regularization techniques. 
Some main methods for this purpose are lasso, ridge and 
stepwise regression models. 

Generally, in regression models a common target is 
keeping the model as simple as possible. Regularization 
models like LASSO (Least absolute shrinkage and selection 
operator) and Ridge regressions punish the complex model by 
adding a penalty term to the cost function. Ridge regression 
adds squared magnitude of the coefficients as penalty term, 
while LASSO adds absolute value of the coefficients as penalty 
term to the cost function. LASSO shrinks the less important 
variable coefficients to zero and causes a less complex 
structure [21]. Moreover, stepwise regression uses forward 
adding and backward deleting method to the variables to find 
the best fitting combination of independent variables for 
prediction [26]. 

C. Performance-Based Forecast Combinations 

Performance-based forecast combination is a method used 
to improve the accuracy of predictions by linearly combining 
multiple individual forecasts by assigning weights to each 
forecast based on their past performances. This combination 
procedure ignores the correlations among individual forecasts. 
Moreover, the success of these models reconfirms that models 
ignoring correlations are more successful than other models, 
because correlations are poorly estimated in practice and 
should be ignored in weight calculations [1, 3]. 

One common branch of performance-based methodologies 
is inverse error technique, which uses inverse error values of 
the models directly as weights. Commonly used error metrics 

are mean squared error (MSE), root mean squared error 
(RMSE) and symmetrical mean absolute percentage error 
(sMAPE). In inverse error model, the weight of the ith model 
among N models with j=[1,2,…N] is: 

𝑤𝑖 =
𝜀𝑖
−1

∑ 𝜀𝑖
−1𝑁

𝑗=1

                                 (9) 

where, ε is the error value of the model and might be MSE, 
RMSE or sMAPE according to which error metrics the 
combination is based on. Then the combined forecast for time  t 
with N individual model and individual forecasts ŷ𝑡𝑗 is: 

𝑦𝑡 = ∑ 𝑦𝑡𝑗𝑤𝑗
𝑁
𝑗=1                            (10) 

Note that, Eq. (9) is valid under the assumption of 
independence of errors. In the case of error-dependence (i.e. 
nested models), one of the models encompasses the other and 
the optimal combining weights are trivially either zero or one 
[27].  

Another performance-based technique is combination 
forecasting with inverse rank based weights, which involves 
integrating multiple individual forecasts into a single forecast 
by assigning weights to each forecast based on their past 
performance with a ranking system. Proposed by [12], in the 
rank-based methodology, the weights of the individual 
forecasts are determined by the inverse of the ranks of the 
models, which are identified according to their past 
performance (usually MSE). The weight of the ith model 
among N models with j=[1,2,…N] is: 

𝑤𝑖 =
𝑅𝑎𝑛𝑘𝑖

−1

∑ 𝑅𝑎𝑛𝑘𝑖
−1𝑁

𝑗=1

                               (11) 

where, Ranki=[1,2,…,N] is the rank of the ith model’s 
forecast according to model’s past performance (MSE). 

D. Proposed Combination Methodology 

Performance determination with inverse error metrics uses 
an average value of performance for a pre-determined past time 
period. It is impossible to determine a point by point 
performance from these mean (average) error values. For 
example, a very bad performance with a high error value of a 
model in a past single point effects the whole performance no 
matter how successful the model in other past data points. On 
the other hand, rank-based methods not just use the mean error 
values, but also assign the performances of the models with a 
pre-determined values; which ignores the real performance 
differences between the competitive models. Furthermore, 
most of the forecasting researches are interested in one-step 
ahead forecasting for a multi-step period, including this study. 
Therefore, measuring the performance of each past time point 
separately can give more reliable values if forecasting 
procedure is one-step ahead. 

Presented methodology takes past prediction performances 
into account separately for each time-point. First, inverse of 
absolute error (IAE) values for each past point predictions are 
calculated. Then, for each past data point, competitive models’ 
IAE values are normalized within. A min-max normalization is 
applied such that the best prediction takes the value of one, the 
worst prediction is zero and the others are in between. The 
min-max normalization provides an equal performance scale 
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([0, 1]) for each past prediction. Obtained values are the 
performances of the models on past data points. Finally, the 
weights of the models are calculated by averaging the past 
performances. Proposed methodology takes neither the whole 
training set values nor just the values of test set into account. A 
rolling window method is used to take into account of the 
recent values whether they are training or test data. In this 
paper, a rolling window of 10 past predictions is used. 
Mathematical notation of the presented weight procedure is 
presented in Eq. (12). 

𝑝𝑖,𝑡 = 𝑁𝑂𝑅𝑀(𝐴𝐸𝑖,𝑡
−1) =

𝐴𝐸𝑖,𝑡
−1−min(𝐴𝐸𝑡

−1)

max(𝐴𝐸𝑡
−1)−min(𝐴𝐸𝑡

−1)
       (12) 

In Eq. (12), pi,t represents the performance value of the ith 
candidate model for time t. NORM(.) is the min-max 
normalization function, where AE-1 is the inverse absolute 
error. Then, the weights and final combination forecast for time 
t is: 

𝑤𝑖 =
∑ 𝑝𝑖,𝑗

𝑡−𝑍
𝑗=𝑡−1

𝑍
                               (13) 

𝑦𝑡 = ∑ 𝑦𝑡𝑗𝑤𝑗
𝑁
𝑗=1                               (14) 

where, Z is the number of past data to be used for weight 
wi of the ith model forecast, N is the number of the candidate 
models with individual forecasts of 𝑦𝑡𝑗, and j=[1,2,…N]. 

The usage of the proposed combination method can be 
summarized in three steps: 

• The absolute error values for each past predictions of an 
individual model are calculated separately. The inverse 
of the AEs are normalized (min-max normalization) 
within other models for the same time points to get the 
time point performances of the models. 

• For each model, time-point performances for Z past 
prediction are averaged for pre-determined time period 
to find the weights of the individual models. 

• Combination forecast is found using individual 
forecasts and related weights. 

The workflow of the proposed combination model used in 
this study is presented in Fig. 2. 

 
Fig. 2. The workflow of the proposed forecast combination model used in 

this study. 

Proposed methodology has same characteristics with other 
performance-based models. It ignores the correlations among 
individual models like other performance-based models. It is a 
linear combination method using weights of the individual 
models, which are calculated by models’ past performances. 
Proposed model’s difference from other performance-based 
models is the calculation procedure of the past performances. 

E. Data and Application 

In this study, three well-known data sets in time series 
literature are used for the application purposes. They are 
Canadian lynx, Wolf’s sunspot and British Pound/United 
States Dollar (GBP/USD) exchange rate data sets. All three 
datasets have various characteristics, and are used often in time 
series literature as benchmark datasets [28]. 

Canadian lynx dataset shows the number of yearly trapped 
lynx around North Canada Mackenzie River between 1821 and 
1938. It has total 114 data points and is an important dataset in 
time series literature with nonlinear characteristics [29]. Wolf’s 
sunspot data, known with nonlinear behavior, contains yearly 
sunspot numbers in the period of 1700-1987 and has 288 data 
points. Sunspot data is identified as nonlinear and non-
Gaussian and used to test nonlinear models for their 
performances [28]. Lastly, GBP/USD dataset includes weekly 
values between 1821 and 1934, and is composed of 731 data 
points. Exchange rate, and in general, financial time series 
forecasting is a very difficult task. Various models are 
developed but few are successful to beat a random walk (naïve) 
model [29]. 

For the sake of consistency with the related literature [28-
31] the logarithmic transformation with base 10 (log10) of 
Canadian lynx, and natural logarithmic transformation (ln) of 
GBP/USD exchange rate data sets are used in the application 
stage. Sunspot and transformed lynx datasets are stationary, 
while transformed exchange rate time series is nonstationary. 
As can be seen from the related literature [28-31], if a 
conventional time series model like ARIMA (Autoregressive 
integrated moving averages) to be used, this dataset should be 
integrated (differenced) with order 1 to be stationary. However, 
as neural networks can model nonstationary data directly, 
natural logarithmic transformation of the exchange rate data is 
used directly to be consistent with the aforementioned 
literature. On the other hand, successful modeling of 
nonstationary data is very difficult with respect to stationary 
data for all conventional and advanced time series models . 

In Fig. 3 to 5, graphical representation of the Canadian 
lynx, Wolf’s sunspot and GBP/USD datasets are presented 
respectively. In Fig. 3 and Fig. 5 the real data and log 
transformed data used could be seen separately. In Table I, 
descriptive statistics of the datasets are presented. 

Seven different neural network models are used for 
modelling and forecasting purposes. These models are used for 
proposed combination forecast methodology and for 
comparison. Three of the models are in MLP class: MLP with 
classical backpropagation (MLP-BP), MLP with resilient 
backpropagation (MLP-RP) and MLP with resilient 
backpropagation and weight backtracking (MLP-RPB). Other 
four models are various ELM models: ELM with LASSO 
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regression (ELM-L), ELM with ridge regression (ELM-R), 
ELM with stepwise regression (ELM-S) and ELM with 
classical linear regression (ELM-LN). Other than these seven 
models, six different combination models are used for 
comparison purposes. Two of them are benchmark 
combination models: Classical equally weighted simple mean 
(C-MEAN), and median (C-MEDIAN) models. Last four 
models are other performance-based combination models: 
Combination models with inverse MSE (C-MSE), RMSE (C-
RMSE) and sMAPE (C-SMAPE) based weights, and rank-
based combination model (C-RANK). In addition, the naïve 
model (N) is added to the pool of the models for comparison. 

 
Fig. 3. Canadian lynx dataset. Real values (blue, right axis) and logarithmic 

transformed (log10) values (black, left axis). 

 
Fig. 4. Wolf’s sunspot dataset. 

 
Fig. 5. GBP/USD exchange rate dataset. Real values (blue, right axis) and 

natural logarithmic transformed (ln) values (black, left axis). 

TABLE I.  DESCRIPTIVE STATISTICS OF THE DATASETS 

 Canadian lynx (Log 

10) 

Wolf's 

sunspot 

GBP/USD 

(Ln) 

Data Number 114 288 731 

Min 1.59 0.00 0.0628 

Max 3.84 190.20 0.8909 

Median 2.89 39.00 0.5043 

Mean 2.90 48.43 0.5089 

Std. Dev. 0.56 39.36 0.1616 

Software used for this study is R Statistical Software 
version 4.4.1 [32]. Package nnfor [33] is used mainly with 
neuralnet [34] package. nnfor package is used for time series 
modeling and forecasting with neural networks. All seven 
neural networks are three layered with a single hidden layer 
and all activation functions are hyperbolic tangent (tanh). Since 
the datasets are well known and employed many times by other 
researchers, network architectures and training-test data 
compositions are determined to be compatible with the 
literature. MLP model architecture is 7-5-1 for lynx dataset, 4-
4-1 for sunspot dataset, and 7-6-1 for GBP/USD data [28, 29, 
31, 35, 36]. An exception is the number of hidden nodes in 
ELM networks. The nnfor package assigns the number of 
hidden neurons for ELM models automatically. ELMs start 
with a very large hidden layer (100 nodes), and then prune it as 
much as needed [33]. Therefore, number of the input nodes are 
7, 4 and 7 for lynx, sunspot and exchange rate data sets 
respectively. Number of the hidden nodes are assigned by the 
nnfor package. Each individual neural network model is 
retrained 20 times and combined with mean values for a more 
robust forecast. Moreover, all forecasting procedures are one 
step forecasting. Forecast performances of the models are 
compared using MSE, MAD (Mean absolute deviation) and 
MAPE (Mean absolute percentage error) error metrics. 

IV. RESULTS 

Canadian lynx data is composed of 114 data points. First 
100 data points are used as training set, while last 14 data 
points are test set to be forecasted. The architecture of all MLP 
models are 7-5-1. On the other hand, ELM-L/ELM-R models 
are both 7-91-1 and ELM-S/ELM-LN model architectures are 
7-40-1. Obtained results are tabulated in Table II. 

Results show that proposed model and C-RMSE model are 
superior to all other performance-based models. In terms of 
MAD and MAPE, presented model has the best results among 
other performance-based models. However, equally weighted 
mean and median combinations are more successful than 
proposed and other performance-based combinations. Among 
the individual models, ELM with LASSO regression model 
gives the best results. But still, in terms of MSE, C-MEAN 
combination model is superior to all individual neural network 
models. An important finding is that, all individual and 
combination models are better than the naïve model. 

Wolf’s sunspot dataset includes 288 data points with 221 of 
the data is allocated as training set, while last 67 data is formed 
as test set. MLP model architectures are 4-4-1, ELM-L/ELM-R 

0

4000

8000

0.00

2.00

4.00

1821 1841 1861 1881 1901 1921

0.00

100.00

200.00

1700 1750 1800 1850 1900 1950

0.0000

1.0000

2.0000

3.0000

0.0000

0.5000

1.0000

1 201 401 601



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

626 | P a g e  
www.ijacsa.thesai.org 

models are 4-100-1 and ELM-S/ELM-LN models are 4-40-1. 
Performance results of the models are in Table III. 

TABLE II.  FORECASTING RESULTS OF CANADIAN LYNX DATASET 

Forecasting Model MSE (x10-2) MAD (x10-1) MAPE 

Individual 

Models 

MLP-BP 2.5993 1.2961 4.48% 

MLP-RP 2.5859 1.2501 4.31% 

MLP-RPB 2.5366 1.2963 4.49% 

ELM-L 2.3318 1.2739 4.27% 

ELM-R 4.5764 1.9828 6.44% 

ELM-S 2.5889 1.4073 4.81% 

ELM-LN 2.9211 1.4732 5.06% 

CT Based 

Combinations 

C-MEAN 2.2895 1.2918 4.37% 

C-MEDIAN 2.3900 1.2892 4.42% 

Performance 

Based 

Combinations 

C-MSE 2.4439 1.3430 4.59% 

C-RMSE 2.3740 1.3250 4.51% 

C-RANK 2.4741 1.4131 4.63% 

C-SMAPE 2.3921 1.3266 4.53% 

Proposed Model 2.3907 1.3214 4.51% 

 Naïve 6.8734 2.3088 7.77% 

TABLE III.  FORECASTING RESULTS OF WOLF’S SUNSPOT DATASET 

Forecasting Model MSE (x102) MAD (x101) MAPE 

Individual 

Models 

MLP-BP 2.9186 1.3089 35.44% 

MLP-RP 2.8160 1.2843 33.60% 

MLP-RPB 2.8085 1.2909 34.59% 

ELM-L 3.2518 1.4155 40.03% 

ELM-R 3.5500 1.4817 42.90% 

ELM-S 2.7776 1.2724 34.55% 

ELM-LN 2.7846 1.2925 35.45% 

CT Based 

Combinations 

C-MEAN 2.7681 1.2935 35.57% 

C-MEDIAN 2.8138 1.2958 35.28% 

Performance 

Based 

Combinations  

C-MSE 2.7594 1.2888 35.35% 

C-RMSE 2.7629 1.2910 35.46% 

C-RANK 2.7832 1.2903 35.22% 

C-SMAPE 2.7689 1.2933 35.52% 

Proposed Model 2.7353 1.2836 35.22% 

 Naïve 9.2073 2.2964 54.84% 

Results presented in Table II shows that proposed 
combination model is the best model among all other 
combination models. On the other hand, in terms of MAD and 
MAPE error metrics, two different individual models show 
best performances. MLP-RP and ELM-S models seems to be 
the best models among individual models. Also, it can be seen 
that, performance-based combination methods have slightly 
better performances than central tendency based combinations. 
Naïve model has the worst performance among all competent 
models with significantly high error metrics. 

731 data points of GBP/USD exchange is divided to two as 
training and test sets, such that 679 data points are training and 
52 data points are test data. MLP models are in 7-6-1 
architecture, whereas, ELM-L/ELM-R models are 7-100-1, and 
ELM-S/ELM-LN models are 7-40-1. Obtained results are in 
Table IV. 

TABLE IV.  FORECASTING RESULTS OF GBP/USD DATASET 

Forecasting Model MSE (x10-4) MAD (x10-2) MAPE 

Individual 

Models 

MLP-BP 1.9434 1.1342 2.82% 

MLP-RP 1.9025 1.1216 2.79% 

MLP-RPB 1.8855 1.1028 2.74% 

ELM-L 1.8297 1.0972 2.72% 

ELM-R 1.8300 1.0973 2.72% 

ELM-S 1.8563 1.1144 2.77% 

ELM-LN 1.9003 1.1261 2.79% 

CT Based 

Combinations 

C-MEAN 1.8341 1.1020 2.74% 

C-MEDIAN 1.8391 1.1029 2.74% 

Performance 

Based 

Combinations  

C-MSE 1.8315 1.0995 2.73% 

C-RMSE 1.8329 1.1008 2.73% 

C-RANK 1.8436 1.0998 2.73% 

C-SMAPE 1.8321 1.1004 2.73% 

Proposed Model 1.8301 1.0990 2.73% 

 Naïve 1.8298 1.1010 2.73% 

Results show that almost all individual models and 
combinations show high performances. All combination 
models and the naïve model show very close performance 
values in all error metrics. Best individual models are ELM-L 
and ELM-R models, and they are slightly better than the 
forecast combinations. On the other hand, among all 
combination models, proposed combination methodology 
shows the best performance. Another important result drawing 
attention is the successful performance of the naïve model with 
respect to its less accurate results on sunspot and lynx datasets. 

In Fig. 6, the percentage improvement by using the 
proposed model instead of other performance-based models in 
terms of error metrics is presented. 
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(b) 

 
(c) 

Fig. 6. Percentage improvement of the proposed model in terms of Mean 

Squared Error (a), Mean Absolute Deviation (b) and Mean Absolute 

Percentage Error (c) from other performance-based models (C-MSE (blue), C-

RMSE (red), C-RANK (green) and C-SMAPE (brown). 

V. CONCLUSION 

In this study, a novel performance-based forecast 
combination methodology is presented. The novelty of the 
method is originated from the calculation of the individual 
models’ past performances. Classical performance-based 
combination methods use a mean error value (MSE, MAD, 
sMAPE etc.) for a pre-determined past time-period. 
Conversely, proposed methodology measures the performance 
of each past time point separately, and then takes the average 
of these time point performances for the interested past time 
period. Furthermore, after computation of inverse absolute 
error values for each time point, a min-max normalization is 
applied within other individual models. That procedure causes 
all models’ time-point performance values to be between zero 
and one, while the best model’s is one and the worst model’s 
becomes zero. After that, each model’s performances are 
calculated by averaging the time point performances along the 
pre-determined time-period. To evaluate the performance of 
the proposed model, three well-known time series are used. 
Seven different neural network models based on MLP and 
ELM are trained. Moreover, simple mean and median 
combinations, four main performance-based combinations, and 
naïve model are formed for comparison purposes. Comparisons 
are done with MSE, MAD and MAPE error metrics. 

Obtained forecasting results show that proposed 
combination methodology is superior to other performance-
based combination methods in almost all occasions. 
Additionally, proposed technique is superior to central 
tendency based benchmark models of equally weighted mean 
and median combinations in sunspot and exchange rate 

datasets. In lynx dataset, mean and median combinations 
mostly show better performances. Proposed technique 
increases the forecasting accuracy more than other compared 
performance-based combination models. It beats the naïve 
model in lynx and sunspot dataset, whereas the naïve model is 
slightly better in GBP/USD time series in terms of MSE. 

Considering the obtained results, it can be stated that the 
proposed forecast combination methodology is a very 
successful and robust performance-based technique. Moreover, 
findings show that calculating the performance value of an 
individual model for each past data point separately causes 
more accurate combination weights than computing directly 
from an average error value for that past time-span. This 
contribution to the forecast model performance metrics can be 
tested and used in further researches. Application to different 
time series data on various subjects and using different 
individual time series models can help the generalization of the 
model. Furthermore, studying with various past time periods 
for performance evaluation and comparing with different 
combination models are some other possible research extents. 
On the other hand, proposed model’s performance evaluation is 
necessarily more time consuming than conventional 
performance-based methods. However, especially under the 
circumstances where recent data is used as presented study is, 
it is tolerable. 
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