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Abstract—Performance-based forecast combination
approaches determine the weights of the individual forecasts
based on the inverse average error for a past time interval.
However, although the performances are calculated for a time
span, the aim is mostly a one-step-ahead time-point forecast. In
these classical methods, a relatively higher prediction error of a
single past time-point spreads and decreases the performance
value of the model, even though the model is highly successful on
other time-points in the interval. In this study, a novel approach
is presented where performance of each past time-point
prediction is calculated separately. Instead of taking the inverse
average error for a pre-determined past time interval, prediction
performance is calculated for each past data point separately
using the normalized inverse absolute error, then the average
performances are calculated for past time interval to get the
combination weights. To be able to measure the performance of
the presented methodology, it is applied on three well-known
time series data. Seven different models of neural networks,
based on multi-layer perceptron and extreme learning machines
are used to model, forecast and form the combination forecasts.
Moreover, four different performance-based combination
techniques, two central tendency-based benchmark combination
methods and the naive model are employed for comparison. The
obtained results show that proposed methodology is a powerful
and robust technique and superior to all performance-based
combination techniques compared.

Keywords—Combination forecast; performance-based
combination; neural networks; multi-layer perceptron; extreme
learning machine

I INTRODUCTION

Time series forecasting has become a major research area
in academics. Researchers have developed various
methodologies to improve the accuracy of forecasting. From
classical statistical models to machine leamning [22] and
heuristic models, many models have been developed.
Moreover, researches showed that using more than one forecast
at the same time often gives better results than a single forecast
[1]. This development has led the researchers to hybridize or
combine different forecasts and resulted with hybrid and
combination forecasting models.

Combination forecast is done by combining multiple
forecasts from different models and is usually better than a
single forecast. The interested real world time series data is
probably cannot be explained by a specific model, because of
the consisting different processes like time-varying trends,
changing seasonality and structural breaks [1]. Moreover,

selecting the “best model” is somewhat problematic because of
the sample, parameter and model uncertainties. Sample
uncertainty is the problem that different sample sizes result
different models and various parameter estimates. Parameter
estimation uncertainty arises from different algorithms and
various model setups. Furthermore, different model structures
result with various parameter restrictions, which may cause for
example the estimation problem [2]. Under these
circumstances, combining multiple forecasts has been a highly
preferred methodology.

The main question of the forecast combination is that, “how
to combine the individual forecasts”. Different answers to this
question result various combination methods. An important
class of combination procedures is performance-based forecast
combination. That class of methods determine the weights of
individual forecasts according to corresponding models’ past
performances. Some models use inverse past accuracy
measures of the models like mean squared error (MSE), root
mean squared error (RMSE) or symmetric mean absolute
percentage error (SMAPE) to calculate the weights, such that
the forecast of the model with a low error measure has a high
weight in the forecasting pool. Another idea is, instead of using
inverse error measures directly, ranking the models according
to their past accuracy and employing the inverse of these rank
values as weights, which is called rank-based forecast
combination.

There are some characteristics of current performance-
based combination methodologies arise from the mean error
metrics they are based on. In inverse error based combination
methods, average of the errors for some past time span is used.
In these methods, the averaging procedure gives general
information about the time span performance, but not enough
information about the performances for past time-points
individually. For example, a possible high error value of only
one past prediction might cause a low performance; even other
past predictions are highly accurate. On the other hand, rank-
based model assigns the weights through the inverse sequence
of numbers. Regardless of how much the variation between the
models’ past accuracies, the weights are pre-determined and
constant. Therefore, rank-based combinations limit the weights
to only a set of possible values [3].

Forecasting  techniques are  (including  forecast
combinations) used mostly for one-step ahead forecasting.
Even when the forecast target consists of multi-steps ahead
time-points, usually, forecasting is done step by step. It means
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that, first the next step is forecasted, and then the subsequent
forecast is done using previous forecast as if it is the real value.
Therefore, pointwise performance values of the forecasting
models are highly important. Classical performance-based
combination techniques take an average error value of the
individual models for a past time-span (for the whole past
training data-span, or a more recent one) and use it to assign
the performance values. In this paper, a novel performance-
based combination methodology is proposed, which is different
from classical performance-based methods. First, the
performances of each past time-point prediction of individual
models are calculated separately by inverse absolute error
(IAE). Then, these point performance values are normalized by
min-max normalization within other models for each past time
point data; such that, the best performance value is one, the
worst is zero and the others are in between. The min-max
normalization among different models assigns a relative
performance value and holds equal performance scales ([0, 17).
Moreover, since recent data holds more information and is
more significant, the weights are calculated by averaging the
time-point performances of recent data by the rolling window
method which is often used in the literature [1].

To test the performance of the proposed model, three well-
known time series data are used for modeling and forecasting
purposes. These datasets are Canadian lynx, Wolf’s sunspot
and GBP/USD foreign exchange series. Seven individual
neural network models are constructed for combination. Three
of the neural network models are based on multi-layer
perceptron (MLP) and four of them are different sub-models of
extreme learning machines (ELM). Obtained results from
proposed combination technique are compared with the results
of seven individual models, four other performance-based
models, equally weighted simple mean/ median combinations
and the naive model.

The rest of the paper is organized as follows: In Section I,
a review of literature related to current is presented. Section III
describes all methodologies used in the research. First, MLP
and ELM models are explained, which are used for individual
forecasts. Then, performance-based combination models are
described, which are used for comparison purposes. After that,
proposed forecast combination model is introduced and
explained. Lastly, the details of the data, models and the
software used for application purposes are presented. Section
IV presents the application results and findings. Section V
concludes with discussions of the study's implications,
limitations, and future work.

II. RELATED WORK

Since the work of Bates and Granger [4], forecast
combination literature has been grown substantially. From
simple combination procedures to much more complex
systems, researchers have developed many models and
methods. However, forecast combination studies show that
simpler combination methods are very successful and hard to
beat [1]. The most popular one is taking the simple arithmetic
mean of the individual forecasts, ignoring the past information
of the models. This procedure is quite successful, robust and
easy to perform [3]. Other simple and robust methodologies
related to central tendency (CT) are taking the median or the

Vol. 16, No. 10, 2025

mode of the forecasting pool. In contrast to the simplicity of
the mean and median, mode combination needs numerous
forecasts or some techniques like discretizing the data or kernel
density estimation [5]. Therefore, the simple mean and the
median combinations are the most referenced CT
combinations, and there is still debate among the scholars
whether the mean or the median is more successful [1]. Other
than simple equally weighted average model, some researchers
applied the trimmed or winsorized mean for combination
forecasts. Results show that especially when there are high
variations among the forecasts, trimmed and winsorized mean
methods produce good results [5]. Simple combination rules
are very successful and easy to implement. Therefore, among
other and more sophisticated methods, simple combination
methods are the choice of many researchers as a benchmark for
testing new combination methodologies. There are other more
complex methods than simple combinations, such as linear
combinations, nonlinear combinations and combining by
learning. A comprehensive classification of combination
methods can be found in study [1].

Linear combination methods assign the weights of
individual forecasts according to their accuracy in a linear
combination. Optimal weights approach aims to minimize the
variance by optimizing the weights [6], while in linear
regression based methods this optimization is done by
regression [7]. In criteria based techniques, weights of the
individual forecasts are determined by using information
criteria, such as Akaike’s (AIC) or Bayesian (BIC) information
criteria [8, 9].

Performance-based forecast combinations are in the class of
linear combination methods, where each individual forecast
has a weight according to its performance on past data.
Differences in performance measurement are resulted with
different models in the literature. In study [10], IRMSE
(inverse root mean squared error) model is used with different
combination models to forecast day-ahead spot electricity
prices. It is found that, while IRMSE method is one of the best
performer models, there is no single model dominating the
others for all datasets. In the work of [11] different forecasting
models are combined with weights determined by their sMAPE
values. It is determined that the selection of the forecasting
models is crucial for the combination forecast to be successful.
Another performance-based model is rank-based model used in
[12]. Rank based models determine the weights of individual
models according to inverse of their rankings. This model is
also used by study [13] for tourism demand forecasting and
compared with other combination methods. Performance-based
combinations are used to forecast various time series, such as
livestock prices [14], oil prices [15], ozone concentration, and
airline passengers [16].

III. METHODOLOGY

A. Multilayer Perceptron

Artificial Neural Networks (ANN) are computational
models inspired by the human brain's neural networks. An
ANN is composed of interconnected nodes (neurons) organized
in layers; including input, hidden, and output layers. They
mimic the way real neurons communicate; and are particularly
useful in pattern recognition, classification, optimization, and
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time series prediction. ANNs can model complex nonlinear
relationships and handle large datasets with numerous
variables.

A multi-layer perceptron (MLP) is the most commonly
used type of artificial neural network that consists of multiple
layers of nodes; including an input layer, one or more hidden
layers, and an output layer. The network uses a feedforward
path for data processing and backpropagation for training and
optimization. Training MLPs involves challenges such as
entrapment in local minima, convergence speed, and sensitivity
to initialization. MLPs have strong generalization capabilities
but are prone to overfitting, where the network becomes too
dependent on the training data. Techniques such as
regularization and cross-validation are often employed to
mitigate overfitting. MLPs are widely used for time series
modeling. As a mathematical expression for time series y, the
one-step ahead forecast y;+;) of the real data y+; can be
calculated as [5]:

Vev1 = Bo + Xiz1 Big (b; + Xl wyxy) (D

In Eq. (1), [ is the number of the inputs x;, and L is the
number of hidden nodes. § and w are the weights of the output
and hidden layers respectively, where =/ i, p,..., ] and w
=[ wi, wa,..., wiJ. Bo and b; are the biases acting like intercept
in the regression process. Lastly, g(,) is the transfer function
and is usually hyperbolic tangent or logistics function.

The backpropagation algorithm is a widely used method for
training MLPs by adjusting the weights of the connections to
minimize the error in predictions. There are three stages of
backpropagation, in the first stage the calculations are done
forward through the final output by using activation function.
Then, obtained error is propagated backwards, starting from
the output layer. Finally, the weights are changed in order to
minimize errors. These stages continue until certain conditions
are reached. Backpropagation is effective but can be slow and
may be stuck in local minima [17]. Another training algorithm
is resilient backpropagation (RPROP), which is an advanced
training algorithm designed to improve the efficiency and
performance of MLPs by addressing some of the limitations of
traditional backpropagation methods. RPROP is an advanced
version of backpropagation that adjusts the weight updates
based on the sign of the gradient rather than its magnitude,
leading to faster convergence and improved performance [17,
18]. As an improvement of RPROP, a weight backtracking
mechanism can be added. Weight backtracking retracts a
previous update for some or all weights, while whether taking
back a step or not is decided by heuristics [19].

B. Extreme Learning Machine

Extreme leaming machine (ELM) is a single layer
feedforward network (SLFN). Different from other neural
networks, the weights of connections between input and hidden
layers are selected randomly and not trained further. Therefore,
instead of training all the weights in the network, only the
output weights (connecting hidden and output layer) are
calculated. The output weights can be optimized with the
approaches like least squares or equivalents. ELM has fast
learning rate with strong generalization performance. Moreover
it shows high efficiency in training, particularly when data is
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limited [20, 21]. A representation of ELM architecture is in
Fig. 1.

Fig. 1. Architecture of an extreme learning machine network with » input, M
hidden, and 1 output nodes.

Suppose we have N arbitrary distinct training samples (x;,
tj), each containing of » inputs and m outputs where j = 1, 2, ...,
N. Therefore, x; = [xj1, xj2, ..., Xin] T € Rn is the input vector and
ti=[41, 42,..., tm/T € Rmis the output vector. The output (o))
of the standard SLFN model with M hidden nodes and the
activation function of g(.) can be modeled as [20]:

0;=Y11B:9 (Wixj +b;) (2)

In Eq. (2), wi = [wis, waz, ..., winJT is the weight vector
connecting inputs to the ith hidden node. Bi = [Bu, Bo, ..., Bi] "
the weight vector connecting ith hidden node to outputs, and bi
is the bias (threshold) of ith hidden node. The standard SLFN
with M hidden nodes with activation function g(.) can
approximate these N samples with zero error means that:

LiBig (Wixj +b;) = t; (3)

where j = 1, 2,..., N. These N equations can be written in a
more compact form as:

HB =T (4)
where,
gwyx; +by) gwyx; + by)
H= gwyx, +by) gwyx, + byy) )

gwyxy+by) 9wyxy + byl s,

Bi
=P ©6)
B e
e
[T 7

=17
lt,T,J

After setting the input weights and biases of the hidden
layer, the output weight vector f can be obtained by a series of
linear equations transformations. If the number M of hidden
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nodes is equal to the number N of distinct training samples, M
= N, matrix H is square and invertible. Because the input
weight vectors wi and the hidden biases b; are randomly
chosen, the SLFN can approximate these training samples with
zero error. However, in most cases the number of hidden nodes
is much less than the number of distinct training samples, such
that M << N. Then, H is a not a square matrix and there may
not exist w;, bi, fi (i = 1, 2, ...,M) such that HB = T. Then, the
smallest norm least squares solution of the above linear system
is [20]:

p=H'T (8)

where, HT represents the generalized (Moore-Penrose)
inverse matrix of the output.

Different from traditional neural networks, parameters
between hidden and output layer in the ELM structure can be
obtained by minimizing least squares solutions with the
provided training data [23, 24, 25]. Therefore, using ELM to
obtain the output weights is consisted of three steps. First,
randomly selecting numerical values between zero and one to
set input weights and the bias of the hidden layer. Second,
calculation of the output matrix H. Finally, calculation of the
output weights . On the other hand, there are some possible
problems with ELM networks. First, ELM can effectively
approximate to any complex systems with huge numbers of
hidden nodes, but in this case, the generalization might
decrease. Another is that, the least square method cannot
provide good estimates for weights when there exist many
outliers in data. To overcome these deficiencies, researchers
presents some developments like regularization techniques.
Some main methods for this purpose are lasso, ridge and
stepwise regression models.

Generally, in regression models a common target is
keeping the model as simple as possible. Regularization
models like LASSO (Least absolute shrinkage and selection
operator) and Ridge regressions punish the complex model by
adding a penalty term to the cost function. Ridge regression
adds squared magnitude of the coefficients as penalty term,
while LASSO adds absolute value of the coefficients as penalty
term to the cost function. LASSO shrinks the less important
variable coefficients to zero and causes a less complex
structure [21]. Moreover, stepwise regression uses forward
adding and backward deleting method to the variables to find
the best fitting combination of independent variables for
prediction [26].

C. Performance-Based Forecast Combinations

Performance-based forecast combination is a method used
to improve the accuracy of predictions by linearly combining
multiple individual forecasts by assigning weights to each
forecast based on their past performances. This combination
procedure ignores the correlations among individual forecasts.
Moreover, the success of these models reconfirms that models
ignoring correlations are more successful than other models,
because correlations are poorly estimated in practice and
should be ignored in weight calculations [1, 3].

One common branch of performance-based methodologies
is inverse error technique, which uses inverse error values of
the models directly as weights. Commonly used error metrics
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are mean squared error (MSE), root mean squared error
(RMSE) and symmetrical mean absolute percentage error
(SMAPE). In inverse error model, the weight of the ith model
among N models with j=/1,2,...N] is:
ei_l
Wi =gy o €)
where, ¢ is the error value of the model and might be MSE,
RMSE or sMAPE according to which error metrics the
combination is based on. Then the combined forecast for time ¢
with N individual model and individual forecasts p, is:

Ve =Z§”=137tjwj (10)

Note that, Eq. (9) is valid under the assumption of
independence of errors. In the case of error-dependence (i.e.
nested models), one of the models encompasses the other and
the optimal combining weights are trivially either zero or one
[27].

Another performance-based technique is combination
forecasting with inverse rank based weights, which involves
integrating multiple individual forecasts into a single forecast
by assigning weights to each forecast based on their past
performance with a ranking system. Proposed by [12], in the
rank-based methodology, the weights of the individual
forecasts are determined by the inverse of the ranks of the
models, which are identified according to their past
performance (usually MSE). The weight of the ith model
among N models with j=/1,2,...N] is:

Rank;!
T —— 11
Z?LlRanki_l ( )

where, Ranki=[1,2,...,N] is the rank of the ith model’s
forecast according to model’s past performance (MSE).

w; =

D. Proposed Combination Methodology

Performance determination with inverse error metrics uses
an average value of performance for a pre-determined past time
period. It is impossible to determine a point by point
performance from these mean (average) error values. For
example, a very bad performance with a high error value of a
model in a past single point effects the whole performance no
matter how successful the model in other past data points. On
the other hand, rank-based methods not just use the mean error
values, but also assign the performances of the models with a
pre-determined values; which ignores the real performance
differences between the competitive models. Furthermore,
most of the forecasting researches are interested in one-step
ahead forecasting for a multi-step period, including this study.
Therefore, measuring the performance of each past time point
separately can give more reliable values if forecasting
procedure is one-step ahead.

Presented methodology takes past prediction performances
into account separately for each time-point. First, inverse of
absolute error (IAE) values for each past point predictions are
calculated. Then, for each past data point, competitive models’
IAE values are normalized within. A min-max normalization is
applied such that the best prediction takes the value of one, the
worst prediction is zero and the others are in between. The
min-max normalization provides an equal performance scale
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([0, 1]) for each past prediction. Obtained values are the
performances of the models on past data points. Finally, the
weights of the models are calculated by averaging the past
performances. Proposed methodology takes neither the whole
training set values nor just the values of test set into account. A
rolling window method is used to take into account of the
recent values whether they are training or test data. In this
paper, a rolling window of 10 past predictions is used.
Mathematical notation of the presented weight procedure is
presented in Eq. (12).

AE;,'-min(AE; ")
max(4E; *)-min(AE; )

(12)

In Eq. (12), pisrepresents the performance value of the ith
candidate model for time ¢ NORM() is the min-max
normalization function, where AE” is the inverse absolute
error. Then, the weights and final combination forecast for time
tis:

p;: = NORM(AE;!) =

=z
w; = 2 (13)
Ve = Z?’:ﬂ”\tjwj (14)

where, Z is the number of past data to be used for weight
wi of the ith model forecast, N is the number of the candidate
models with individual forecasts of ytj, and j=[1,2,...N].

The usage of the proposed combination method can be
summarized in three steps:

e The absolute error values for each past predictions of an
individual model are calculated separately. The inverse
of the AEs are normalized (min-max normalization)
within other models for the same time points to get the
time point performances of the models.

e For each model, time-point performances for Z past
prediction are averaged for pre-determined time period
to find the weights of the individual models.

e Combination forecast is found wusing individual
forecasts and related weights.

The workflow of the proposed combination model used in
this study is presented in Fig. 2.

Model data with individual Neural
Network models —_—

Find Inverse Absolute Error (IAE)
values for past predictions

l

Normalize IAE values of individual

Combination weights are the average

of normalized IAE values of each B — models for each past time-point
individual model for pre-determined within [0, 1]
past time-span

l

Linearly combine the individual
forecasts by using combination ——
weights

Obtain combination forecasts of the
proposed model

Fig.2. The workflow of the proposed forecast combination model used in
this study.
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Proposed methodology has same characteristics with other
performance-based models. It ignores the correlations among
individual models like other performance-based models. It is a
linear combination method using weights of the individual
models, which are calculated by models’ past performances.
Proposed model’s difference from other performance-based
models is the calculation procedure of the past performances.

E. Data and Application

In this study, three well-known data sets in time series
literature are used for the application purposes. They are
Canadian lynx, Wolf’s sunspot and British Pound/United
States Dollar (GBP/USD) exchange rate data sets. All three
datasets have various characteristics, and are used often in time
series literature as benchmark datasets [28].

Canadian lynx dataset shows the number of yearly trapped
lynx around North Canada Mackenzie River between 1821 and
1938. It has total 114 data points and is an important dataset in
time series literature with nonlinear characteristics [29]. Wolf’s
sunspot data, known with nonlinear behavior, contains yearly
sunspot numbers in the period of 1700-1987 and has 288 data
points. Sunspot data is identified as nonlinear and non-
Gaussian and used to test nonlinear models for their
performances [28]. Lastly, GBP/USD dataset includes weekly
values between 1821 and 1934, and is composed of 731 data
points. Exchange rate, and in general, financial time series
forecasting is a very difficult task. Various models are
developed but few are successful to beat a random walk (naive)
model [29].

For the sake of consistency with the related literature [28-
31] the logarithmic transformation with base 10 (logl0) of
Canadian lynx, and natural logarithmic transformation (In) of
GBP/USD exchange rate data sets are used in the application
stage. Sunspot and transformed lynx datasets are stationary,
while transformed exchange rate time series is nonstationary.
As can be seen from the related literature [28-31], if a
conventional time series model like ARIMA (Autoregressive
integrated moving averages) to be used, this dataset should be
integrated (differenced) with order 1 to be stationary. However,
as neural networks can model nonstationary data directly,
natural logarithmic transformation of the exchange rate data is
used directly to be consistent with the aforementioned
literature. On the other hand, successful modeling of
nonstationary data is very difficult with respect to stationary
data for all conventional and advanced time series models.

In Fig. 3 to 5, graphical representation of the Canadian
lynx, Wolf’s sunspot and GBP/USD datasets are presented
respectively. In Fig. 3 and Fig. 5 the real data and log
transformed data used could be seen separately. In Table I,
descriptive statistics of the datasets are presented.

Seven different neural network models are used for
modelling and forecasting purposes. These models are used for
proposed combination forecast methodology and for
comparison. Three of the models are in MLP class: MLP with
classical backpropagation (MLP-BP), MLP with resilient
backpropagation (MLP-RP) and MLP with resilient
backpropagation and weight backtracking (MLP-RPB). Other
four models are various ELM models: ELM with LASSO
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regression (ELM-L), ELM with ridge regression (ELM-R),
ELM with stepwise regression (ELM-S) and ELM with
classical linear regression (ELM-LN). Other than these seven
models, six different combination models are used for
comparison purposes. Two of them are benchmark
combination models: Classical equally weighted simple mean
(C-MEAN), and median (C-MEDIAN) models. Last four
models are other performance-based combination models:
Combination models with inverse MSE (C-MSE), RMSE (C-
RMSE) and sSMAPE (C-SMAPE) based weights, and rank-
based combination model (C-RANK). In addition, the naive
model (N) is added to the pool of the models for comparison.

4.00 8000
0.00 0
1821 1841 1861 1881 1901 1921

Fig.3. Canadian lynx dataset. Real values (blue, right axis) and logarithmic
transformed (logl0) values (black, left axis).

200.00
: W\I\A[\I\/\Ml\
0.00
1700 1750 1800 1850 1900 1950
Fig. 4. Wolf’s sunspot dataset.
1.0000 3.0000
2.0000
0.5000
1.0000
0.0000 0.0000
1 201 401 601

Fig.5. GBP/USD exchange rate dataset. Real values (blue, right axis) and
natural logarithmic transformed (In) values (black, left axis).
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TABLEI. DESCRIPTIVE STATISTICS OF THE DATASETS
Canadian lynx (Log Wolf's GBP/USD
10) sunspot (Ln)

Data Number 114 288 731
Min 1.59 0.00 0.0628
Max 3.84 190.20 0.8909
Median 2.89 39.00 0.5043
Mean 2.90 48.43 0.5089
Std. Dev. 0.56 39.36 0.1616

Software used for this study is R Statistical Software
version 44.1 [32]. Package nnfor [33] is used mainly with
neuralnet [34] package. nnfor package is used for time series
modeling and forecasting with neural networks. All seven
neural networks are three layered with a single hidden layer
and all activation functions are hyperbolic tangent (tanh). Since
the datasets are well known and employed many times by other
researchers, network architectures and training-test data
compositions are determined to be compatible with the
literature. MLP model architecture is 7-5-1 for lynx dataset, 4-
4-1 for sunspot dataset, and 7-6-1 for GBP/USD data [28, 29,
31, 35, 36]. An exception is the number of hidden nodes in
ELM networks. The nnfor package assigns the number of
hidden neurons for ELM models automatically. ELMs start
with a very large hidden layer (100 nodes), and then prune it as
much as needed [33]. Therefore, number of the input nodes are
7, 4 and 7 for lynx, sunspot and exchange rate data sets
respectively. Number of the hidden nodes are assigned by the
nnfor package. Each individual neural network model is
retrained 20 times and combined with mean values for a more
robust forecast. Moreover, all forecasting procedures are one
step forecasting. Forecast performances of the models are
compared using MSE, MAD (Mean absolute deviation) and
MAPE (Mean absolute percentage error) error metrics.

IV. RESULTS

Canadian lynx data is composed of 114 data points. First
100 data points are used as training set, while last 14 data
points are test set to be forecasted. The architecture of all MLP
models are 7-5-1. On the other hand, ELM-L/ELM-R models
are both 7-91-1 and ELM-SELM-LN model architectures are
7-40-1. Obtained results are tabulated in Table IL.

Results show that proposed model and C-RMSE model are
superior to all other performance-based models. In terms of
MAD and MAPE, presented model has the best results among
other performance-based models. However, equally weighted
mean and median combinations are more successful than
proposed and other performance-based combinations. Among
the individual models, ELM with LASSO regression model
gives the best results. But still, in terms of MSE, C-MEAN
combination model is superior to all individual neural network
models. An important finding is that, all individual and
combination models are better than the naive model.

Wolf’s sunspot dataset includes 288 data points with 221 of
the data is allocated as training set, while last 67 data is formed
as test set. MLP model architectures are 4-4-1, ELM-L/ELM-R
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models are 4-100-1 and ELM-S/ELM-LN models are 4-40-1.
Performance results of the models are in Table III.
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731 data points of GBP/USD exchange is divided to two as
training and test sets, such that 679 data points are training and
52 data points are test data. MLP models are in 7-6-1

TABLEIl.  FORECASTING RESULTS OF CANADIAN LYNX DATASET architecture, whereas, ELM-L/ELM-R models are 7-100-1, and
ELM-S/ELM-LN models are 7-40-1. Obtained results are in
Forecasting Model MSE (x10-%) | MAD (x10-)| MAPE
Table IV.
MLP-BP 2.5993 12961 4.48%
MLP-RP 2.5859 1.2501 431% TABLEIV. FORECASTING RESULTS OF GBP/USD DATASET
MLP-RPB 2.5366 12963 4.49% Forecasting Model MSE (x10-%) | MAD (x10-?) | MAPE
I’ﬁ‘(‘)’(‘l‘i‘l‘fl ELM-L 23318 12739 427% MLP-BP 1.9434 1.1342 2.82%
ELM-R 45764 1.9828 6.44% MLP-RP 1.9025 1.1216 2.79%
ELM-S 2.5889 1.4073 4.81% MLP-RPB 1.8855 1.1028 2.74%
Individual
ELM-LN 2.9211 1.4732 5.06% navion ELM-L 1.8297 1.0972 2.72%
Models
CTBased | C-MEAN 2.2895 12918 437% ELM-R 1.8300 1.0973 2.712%
Combinations | c.\MEDIAN 2.3900 12892 4.42% ELM-S 1.8563 1.1144 2.77%
C-MSE 2.4439 1.3430 4.59% ELM-LN 1.9003 1.1261 2.79%
C-RMSE 2.3740 13250 451% CT  Based | C-MEAN 1.8341 1.1020 2.74%
Performance S
Based C-RANK 2.4741 14131 4.63% Combinations | C-MEDIAN 1.8391 1.1029 2.74%
Combinati
OmbIMAONS o SMAPE 23921 13266 453% C-MSE 18315 1.0995 273%
Proposed Model | 2.3907 1.3214 4.51% Performance | CRMSE 1.8329 1.1008 2.73%
Naive 6.8734 2.3088 7.77% Based C-RANK 1.8436 1.0998 2.73%
Combinations | o gpjApE 1.8321 1.1004 2.73%
TABLE III. FORECASTING RESULTS OF WOLF’S SUNSPOT DATASET
Proposed Model | 1.8301 1.0990 2.73%
Forecasting Model MSE (x10%) | MAD (x10") MAPE Naive 1.8298 1.1010 2.73%
MLP-BP 29186 1.3089 35.44% o
Results show that almost all individual models and
0, . . . . .
MLP-RP 28160 1.2843 33.60% combinations show high performances. All combination
MLP-RPB 2.8085 1.2909 34.59% models and the naive model show very close performance
Individual i 1 indivi -
ndividua ELM.L 32518 14155 40.03% values in all error metrics. Best 1nd1v1dga1 models are ELM-L
Models - and ELM-R models, and they are slightly better than the
ELM-R 3.5500 14817 42.90% forecast combinations. On the other hand, among all
ELM-S 27776 12724 34.55% combination models, proposed combination methodology
ELM-LN 27846 12925 35.45% shows thq best performance. Another 1mportant"resu1t drawmg
- attention is the successful performance of the naive model with
CT  Based | C-MEAN 27681 12935 35.57% | respectto its less accurate results on sunspot and lynx datasets.
Combinations | c.MEDIAN 2.8138 1.2958 35.28% . . .
° In Fig. 6, the percentage improvement by using the
C-MSE 2.7594 12888 35.35% proposed model instead of other performance-based models in
; terms of error metrics is presented.
Performance C-RMSE 2.7629 1.2910 35.46% p
Based C-RANK 2.7832 1.2903 35.22% 400 -
Combinations | ¢ g\MAPE 27689 1.2933 35.52%
Proposed Model | 2.7353 1.2836 3522% 3001
Naive 9.2073 2.2964 54.84% 2.00 -
Results presented in Table II shows that proposed 1.00 -
combination model is the best model among all other
combination models. On the other hand, in terms of MAD and 0.00
MAPE error metrics, two different individual models show Cal n Lynx Sunspot GBP/USD
best performances. MLP-RP and ELM-S models seems to be -1.00 -
the best models among individual models. Also, it can be seen
that, performance-based combination methods have slightly @
better performances than central tendency based combinations.
Naive model has the worst performance among all competent
models with significantly high error metrics.
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Fig. 6. Percentage improvement of the proposed model in terms of Mean
Squared Error (a), Mean Absolute Deviation (b) and Mean Absolute
Percentage Error (c) from otherperformance-based models (C-MSE (blue), C-
RMSE (red), C-RANK (green) and C-SMAPE (brown).

V. CONCLUSION

In this study, a novel performance-based forecast
combination methodology is presented. The novelty of the
method is originated from the calculation of the individual
models’ past performances. Classical performance-based
combination methods use a mean error value (MSE, MAD,
SMAPE etc) for a pre-determined past time-period.
Conversely, proposed methodology measures the performance
of each past time point separately, and then takes the average
of these time point performances for the interested past time
period. Furthermore, after computation of inverse absolute
error values for each time point, a min-max normalization is
applied within other individual models. That procedure causes
all models’ time-point performance values to be between zero
and one, while the best model’s is one and the worst model’s
becomes zero. After that, each model’s performances are
calculated by averaging the time point performances along the
pre-determined time-period. To evaluate the performance of
the proposed model, three well-known time series are used.
Seven different neural network models based on MLP and
ELM are trained. Moreover, simple mean and median
combinations, four main performance-based combinations, and
naive model are formed for comparison purposes. Comparisons
are done with MSE, MAD and MAPE error metrics.

Obtained forecasting results show that proposed
combination methodology is superior to other performance-
based combination methods in almost all occasions.
Additionally, proposed technique is superior to central
tendency based benchmark models of equally weighted mean
and median combinations in sunspot and exchange rate

Vol. 16, No. 10, 2025

datasets. In lynx dataset, mean and median combinations
mostly show better performances. Proposed technique
increases the forecasting accuracy more than other compared
performance-based combination models. It beats the naive
model in lynx and sunspot dataset, whereas the naive model is
slightly better in GBP/USD time series in terms of MSE.

Considering the obtained results, it can be stated that the
proposed forecast combination methodology is a very
successful and robust performance-based technique. Moreover,
findings show that calculating the performance value of an
individual model for each past data point separately causes
more accurate combination weights than computing directly
from an average error value for that past time-span. This
contribution to the forecast model performance metrics can be
tested and used in further researches. Application to different
time series data on various subjects and using different
individual time series models can help the generalization of the
model. Furthermore, studying with various past time periods
for performance evaluation and comparing with different
combination models are some other possible research extents.
On the other hand, proposed model’s performance evaluation is
necessarily more time consuming than conventional
performance-based methods. However, especially under the
circumstances where recent data is used as presented study is,
it is tolerable.
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