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Abstract—QR Codes are widely used in the digital era for 

storing and sharing information in various applications. 

However, they are often susceptible to physical damage such as 

scratches, tears, or fading, which can result in scanning failures 

and limit their usability. To overcome this issue, this research 

introduces a Generative Adversarial Network (GAN) model 

integrated with Spectral Normalization to restore damaged QR 

Code images. The model was trained and evaluated using a 

dataset of QR Codes with simulated damage ranging from 1% to 

60%. Experimental results demonstrate that the proposed 

approach effectively reconstructs missing parts of QR Codes 

while preserving structural details and module sharpness. The 

model achieved an average PSNR of 28.5 dB, SSIM of 0.91, and a 

scanning success rate of 88%, outperforming U-Net (68%) and a 

baseline GAN (75%). Although the processing time is slightly 

longer, the model offers superior accuracy and robustness, 

particularly for severely damaged QR Codes (40% to 60% 

damage). These findings confirm that GANs enhanced with 

Spectral Normalization offer a promising solution for QR Code 

restoration, with potential uses in digital marketing, payment 

systems, and inventory management. 
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I. INTRODUCTION 

QR Codes (Quick Response Codes) have become a widely 
popular technology in the digital age due to their ability to 
store diverse information and their user-friendly nature [1]. 
This has led to their application in various fields, such as 
marketing, payment systems, product data verification, and 
information access systems. 

However, in real-world environments, QR Codes often face 
problems of physical damage, such as missing parts or 
scratches. These can be caused by various environmental 
factors, leading to QR Code scanning failures and user 
inconvenience. 

This damage can arise from several factors, including poor 
QR Code printing quality or contact and abrasion with various 
surfaces [2]. When a QR Code is damaged, scanning to read 
the data may fail or result in errors, which impacts operational 
efficiency and the user experience.  

Although deep learning technology is highly potential and 
widely used in general image restoration and inpainting tasks 
[3], its specific application to address physically damaged QR 

Codes, such as those with scratches or missing sections, 
requires further study and development. For this reason, this 
study utilized Generative Adversarial Networks (GANs)—a 
deep learning technique with a remarkable ability to learn and 
generate complex image data to reconstruct and regenerate the 
missing parts of a QR Code. GANs have the potential to 
produce sharp details, which is a critical feature for preserving 
and inpainting the black-and-white module structure of a QR 
Code, essential for scanning. This contrasts with some 
conventional CNN architectures, which may tend to produce 
blurrier results when filling in missing areas. 

This research developed a specialized GAN model 
incorporating Spectral Normalization to enhance the model's 
stability and performance. The objective was to test the 
effectiveness of GANs in improving the scanability and data 
recovery from damaged QR Codes. 

II. THEORY AND RELATED RESEARCH 

A. QR Code and basic Structure 

QR Code (Quick Response Code) is a two-dimensional 
barcode technology developed by the company Denso Wave in 
1994. QR Codes can store more data than traditional barcodes 
[4] and can be read by scanning devices or smartphones. The 
information is encoded in a pattern of black and white dots 
arranged in a two-dimensional grid. The basic structure of a 
QR Code consists of several key parts: For Finder Patterns, 
these are square patterns located at the three corners of the QR 
Code. They help scanning devices quickly detect and 
determine the position of the QR Code. For Alignment 
Patterns, these are smaller patterns that help adjust the position 
and correct for distortion that may occur from image skewing. 
For Timing Patterns, these are vertical and horizontal lines that 
help define the size and position of the data modules. For Data 
and Error Correction Codes, this section stores the data and 
error correction codes. These codes allow the QR Code to be 
read even if it is partially damaged, but it becomes unreadable 
if the damage is too extensive. 

B. QR Code Damage and Its Impact 

As shown in Fig. 1, QR Codes often suffer from physical 
damage in real-world environments, such as missing parts or 
scratches caused by external factors. This damage can be 
categorized into several main types: Physical Damage, caused 
by physical wear and tear, such as scratching or tearing; 
Environmental Damage, caused by unsuitable environmental 
conditions; Printing Defects, caused by low-quality printing, 
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which makes the QR Code unclear or flawed [5]. These types 
of damage can lead to QR Code scanning failure or data 
reading errors, causing inconvenience and reducing operational 
efficiency. 

 

Fig. 1. An example of a damaged QR Code on an EV charging station at a  

gas station. 

C. Image Inpainting: Convolutional Neural Networks (CNNs) 

Technique 

Convolutional Neural Networks (CNNs) are a deep 
learning technique that has revolutionized image inpainting, or 
image restoration. CNNs have a remarkable ability to 
automatically learn features and spatial relationships within an 
image, allowing them to understand the image context and 
realistically generate missing parts. Typically, a CNN for 
inpainting uses an encoder-decoder structure [6]. The encoder 
extracts important information from the area surrounding the 
damaged portion, and the decoder uses that information to 
create new pixels to replace the missing ones. Training with a 
large amount of image data helps the model learn to fill in 
images accurately and seamlessly. CNNs can create complex 
structures and natural-looking textures better than simply 
estimating values from neighboring pixels. They can also 
complete objects or even parts that require semantic 
understanding, such as faces. 

D. Image Inpainting: GANs Technique 

Generative Adversarial Networks (GANs) are a type of 
neural network architecture consisting of two main networks 
that operate in an adversarial manner: the Generator network, 
which is responsible for producing new data, and the 
Discriminator network, which determines whether the 
generated data is real or fake [7]. This adversarial learning 
mechanism enables GANs to achieve outstanding performance 
in generating highly realistic data, making them particularly 
effective for image inpainting or repairing missing parts of an 
image. In this type of work, the Generator receives an image 
with a damaged portion (often accompanied by a mask that 
indicates the location of the damage) as input. It then learns to 
"imagine" and create pixels to fill that area, attempting to 
produce a result that looks as realistic and coherent with the 
rest of the image as possible. Meanwhile, the Discriminator is 
trained to distinguish between real images (undamaged original 
images) and fake images (images completed by the Generator). 
The Discriminator's goal is to catch the images created by the 
Generator, while the Generator continuously improves itself to 
create images that are so convincing that the Discriminator 
cannot tell the difference. This competitive process continues, 
making both networks more proficient. The Generator becomes 
progressively better at creating completed images with 

complex details, natural-looking textures, and structures that 
align with the image's context, while the Discriminator's ability 
to distinguish between real and fake images becomes sharper. 

E. Enhancing GAN Stability with Spectral Normalization 

Spectral Normalization (SN) is a crucial technique for 
improving the stability of GAN training by controlling the 
Lipschitz constant of network weights [8]. While SN is 
generally applied to the Discriminator to directly regulate 
gradients and enhance training stability, in this study we extend 
its application to the Convolutional layers of the Generator (as 
illustrated in Algorithm 1: Build_Generator). In the context of 
QR Code inpainting, our initial hypothesis was that stabilizing 
the Generator’s gradients with SN could improve the synthesis 
of fine details and repetitive patterns that are critical to QR 
Code structures (e.g., clear black-and-white modules). This 
stabilization helps reduce artifacts and enables the Generator to 
better capture the underlying distribution of complete QR 
Codes. Preliminary experiments support this hypothesis, 
demonstrating improved structural reconstruction when SN 
was applied to the Generator compared with cases where SN 
was applied only to the Discriminator or not used at all. 
Consequently, this configuration was adopted for the main 
experiments. 

F. Applying Image Inpainting to QR Code Images 

Although most research in QR Code image processing has 
primarily focused on detection or error correction during 
decoding, some studies have begun to explore the use of deep 
learning techniques to improve QR Code image quality in 
different contexts. For instance, study [9] demonstrated the 
potential of deep learning in recovering invisible QR Codes 
displayed on specialized screens, while study [10] employed 
deep learning methods for rapid deblurring of QR Code 
images. Although these works did not directly address physical 
damage (e.g., scratches or missing parts) as this study does, 
they highlight the capability of neural networks to learn and 
adapt to the unique structural properties of QR Codes. 
However, based on a review of the related literature, no prior 
research has specifically applied Generative Adversarial 
Networks (GANs) combined with Spectral Normalization (SN) 
for inpainting physically damaged QR Codes. This represents 
an innovative direction.  While SN has been widely used to 
stabilize the Discriminator in general image generation tasks, 
this study is the first to apply SN to the Generator for 
inpainting images with highly geometric structures, such as QR 
Codes, which require sharpness and well-preserved edges. This 
introduces a distinct challenge: the primary difficulty in QR 
Code restoration lies in maintaining edge boundaries and the 
sharpness of individual modules. In this regard, GANs, 
particularly when combined with loss functions such as L1 
Loss that promote sharpness, tend to outperform traditional 
CNN encoder-decoder architectures, which often produce 
blurry results in the inpainted regions. This research, therefore, 
aims to develop and evaluate such an approach to fill this gap. 

III. RESEARCH METHODOLOGY 

A. Data Preparation 

For the data preparation of QR Code restoration, we created 
a large dataset of QR Codes using the QR Code Python library 
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and then simulated damage on them. We used OpenCV to add 
various types of damage to the QR Codes, simulating missing 
parts by creating a mask to define the missing areas and filling 
them with white. This was done in both random patches and 
scratches with varying directions and thicknesses, as shown in 
Fig. 2. 

 

Fig. 2. Example of a simulated damaged QR Code. 

1) QR Code dataset creation: In the data preparation 

phase, the researchers created a dataset of 1,000 QR Code 

images, as shown in Fig. 3, using the qrcode Python library. 

As shown in Table I, the images were then divided into three 

groups based on their damage level: minor damage (1 to 20%) 

with 333 images, moderate damage (20 to 40%) with 333 

images, and severe damage (40 to 60%) with 334 images. 

Each group was then randomly and equally split into a 

Training Set (70%), a Validation Set (15%), and a Test Set 

(15%) to ensure a balanced representation of various damage 

characteristics across all datasets. Each QR Code contained a 

unique URL. 

TABLE I.  DATA SPLITTING 

Dataset Number of Images Proportion (%) 

Training Set 700 70% 

Validation Set 150 15% 

Test Set 150 15% 

 

Fig. 3. Simulation of creating 1,000 QR Code images. 

2) Creating damage in QR Codes: The researchers used 

OpenCV to add various types of damage to the QR Codes. 

Missing parts were created by generating a mask to define the 

missing areas and filling them with white. This was done in 

both random patch shapes and linear shapes (simulating 

scratches) with random thickness and direction across the QR 

Code. The damage was randomly assigned a severity level 

between 1% and 60%, as shown in Fig. 4. The purpose of 

setting the damage level from 1% to 60% was to cover a wide 

range of real-world scenarios: Minor damage (1 to 20%) 

reflects common issues like color fading, light scratches, or 

dust. Moderate damage (20 to 40%) simulates a QR Code that 

has been in use for some time or has multiple scratches. 

Severe damage (40 to 60%) is used to test the system's 

performance when the QR Code has lost critical data. The 

reason for limiting the damage level to a maximum of 60% is 

that it represents a realistic boundary for data recovery in a 

general use context. QR Codes are embedded with an Error 

Correction Code that can withstand a certain level of damage. 

Even the highest level of error correction (level H) can only 

handle approximately 30% damage. Therefore, creating 

damage higher than this, such as 40 to 60%, simulates a more 

severe situation than the standard threshold, testing the 

model's capacity to repair data in cases where the QR Code is 

damaged beyond what the original system can correct on its 

own. Conversely, if the damage exceeds 60%, the core 

structure of the QR Code may be destroyed to a point where it 

is not reasonably recoverable, even with deep learning 

techniques. Thus, the damage level was limited to a maximum 

of 60% to maintain a balance between the model's capability 

and the practical possibility of image recovery. 

 

Fig. 4. An image showing the simulation of missing parts of a QR code. 

Code (a) original image, (b) damaged 1-20%, (c) damaged 20-40%, 

(d) damaged 40-60%. 

B. Model Design 

For the design of the model in QR Code Restoration, we 
developed a Generative Adversarial Network (GAN) 
architecture implemented using TensorFlow and Keras, 
consisting of two main components: the Generator and the 
Discriminator. As illustrated in Pseudo-code 5, the Generator is 
responsible for reconstructing the missing regions of the QR 
Code. It adopts an Encoder–Decoder structure with Spectral 
Normalization applied to every Convolutional layer to control 
the gradient distribution and enhance training stability. This 
architecture enables the Generator to produce realistic outputs, 
particularly in the critical regions of QR Codes such as Finder 
Patterns and Alignment Patterns. 

The Discriminator, on the other hand, is designed to 
distinguish between real images and those generated by the 
Generator, thereby forcing the Generator to create outputs with 
higher realism. 

• The Generator is the model responsible for 
reconstructing the missing regions of the QR Code. It is 
based on a Convolutional Neural Network (CNN) with 
an Encoder–Decoder architecture. The Encoder 
compresses the image while extracting meaningful 
features, whereas the Decoder reconstructs the image 
from these extracted features. The model employs 
LeakyReLU and ReLU as activation functions. Avoid 
combining SI and CGS units, such as current in 
amperes and magnetic field in oersteds. This often leads 
to confusion because equations do not balance 
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dimensionally. If you must use mixed units, clearly 
state the units for each quantity that you use in an 
equation. 

• The Discriminator is a model designed to distinguish 
between real images and those generated by the 
Generator. It employs a CNN architecture to extract 
features from the images. The activation functions used 
are LeakyReLU and Sigmoid (see Algorithm 2). 

• The GAN Model integrates the Generator and 
Discriminator into a complete Generative Adversarial 
Network (GAN). The Discriminator is compiled with 
the binary cross-entropy loss function and the Adam 
optimizer. The GAN is compiled with a combination of 
binary cross-entropy loss and L1 Loss (pixel-wise 
difference loss), along with the Adam optimizer (see 
Algorithm 3). 

Algorithm 1: Build_Generator 

Input: input_shape 

Output: Generator model 

1. Apply spectral normalized Conv2D (64 filters, kernel=4, 

stride=2) on input_shape 

2. Apply LeakyReLU activation (α = 0.2) 

3. Apply spectral normalized Conv2D (128 filters, kernel=4, 

stride=2) 

4. Apply Batch Normalization 

5. Apply LeakyReLU activation (α = 0.2) 

6. Apply spectral normalized Conv2DTranspose (128 filters, 

kernel=4, stride=2) 

7. Apply Batch Normalization 

8. Apply ReLU activation 

9. Apply spectral normalized Conv2DTranspose (64 filters, 

kernel=4, stride=2) 

10. Apply Batch Normalization 

11. Apply ReLU activation 

12. Apply Conv2D (1 filter, kernel=4, activation = sigmoid) 

13. Return Generator Model 

 

Algorithm 2: Build_Discriminator 

Input: input_shape 

Output: Discriminator model 

1. Apply Conv2D (64 filters, kernel=4, stride=2) on 

input_shape 

2. Apply LeakyReLU activation (α = 0.2) 

3. Apply Conv2D (128 filters, kernel=4, stride=2) 

4. Apply Batch Normalization 

5. Apply LeakyReLU activation (α = 0.2) 

6. Apply Flatten operation 

7. Apply Dense layer (1 unit, activation = sigmoid) 

8. Return Discriminator Model 
 

Algorithm 3: Build_GAN 

Output: GAN model 

1. Build Generator using Algorithm 1 

2. Build Discriminator using Algorithm 2 

3. Set Discriminator as non-trainable 

4. Connect Generator output → Discriminator input 

5. Compile the GAN model using the Adam optimizer and 

binary cross-entropy loss 

6. Return GAN Model 

C. Model Training 

The model training process utilized the concept of 
Generative Adversarial Networks (GANs), which consists of 
two main parts: a Generator and a Discriminator. They were 
trained in an adversarial manner, starting with loading the 
complete and damaged QR Code images prepared in the 
previous step. The pixel values were then normalized to a 
range of [0, 1] to enhance computational efficiency.  During 
training, the data was divided into mini-batches of 32 images 
for each epoch. The Generator received the damaged image as 
input and attempted to reconstruct a complete image. 
Simultaneously, the Discriminator received images from both 
the Generator (generated images) and the real images 
(complete images), and learned to distinguish between the two. 
The learning of these two components was driven by different 
loss functions: 

• The Discriminator used Binary Cross-Entropy Loss to 
measure the difference between its predictions and the 
ground truth. This loss function effectively helped the 
model learn to distinguish between real and generated 
QR Code images. 

• The goal of the Generator is to produce images that are 
both visually realistic (capable of fooling the 
Discriminator) and structurally close to the original 
ground truth. Therefore, its loss function is defined as a 
combination of: 

• Adversarial Loss, computed from the output of the 
Discriminator (commonly using Binary Cross-Entropy), 
this loss encourages the Generator to synthesize more 
realistic images. 

• L1 Loss (Mean Absolute Error). This measures the 
average pixel-wise difference between the generated 
image and the ground truth. Incorporating L1 Loss is 
critical, as it has been shown to preserve details and 
edge sharpness better than L2 Loss—an essential factor 
for maintaining the distinct black-and-white modules of 
QR Codes. Furthermore, L1 Loss provides pixel-level 
constraints that complement the Adversarial Loss, 
promoting sharper reconstructions and preserving the 
fine-grained structural integrity required for QR Code 
restoration. 

The key hyperparameters were optimized through 
preliminary validation experiments, with the learning rate set to 
0.0002 and the optimizer chosen as Adam, following best 
practices in GAN training. 

Training was conducted for approximately 100 epochs, 
during which both Generator and Discriminator losses were 
computed and weights updated via backpropagation. This 
iterative process enables the Generator to learn to produce 
increasingly realistic and accurate reconstructions, while 
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simultaneously enhancing the Discriminator’s ability to 
distinguish between real and generated images. 

During training, Spectral Normalization was applied to all 
convolutional layers of the Generator in order to regulate the 
Lipschitz constant of its weight matrices. This improves 
gradient stability, prevents imbalance with the Discriminator, 
and mitigates mode collapse, a common challenge in GAN 
training without introducing additional computational 
overhead. In addition, a Model Checkpoint callback was 
employed to save the best-performing model weights 
throughout the training process. 

D. Model Evaluation 

The evaluation focuses on assessing the model’s ability to 
restore/inpaint corrupted QR Code images back to a complete 
and functional state. To achieve this, standard image 
restoration metrics and task-specific measures (such as the 
scanning success rate) relevant to QR Code usability were 
employed: 

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural 
Similarity Index): Both are standard metrics in image 
restoration tasks. PSNR, measured in decibels (dB), quantifies 
the pixel-level difference between the generated image and the 
ground truth, with higher values indicating better 
reconstruction quality. SSIM evaluates structural similarity 
between the two images, ranging from 0 to 1, where values 
closer to 1 indicate higher structural fidelity. 

Scanning Success Rate is the metric directly evaluating 
whether the restored QR Codes (from the test set inputs) can be 
successfully decoded. Each output image was tested using the 
widely adopted QR Code decoding library pyzbar. The number 
of successfully decoded images was counted and expressed as 
a percentage relative to the total number of test images (150). 
This measure reflects the model’s effectiveness in restoring the 
core functional property of QR Codes. 

Average Inference Time per Image measures the 
processing speed of trained models (GAN+SN, baseline GAN, 
and U-Net) when applied to real QR Code restoration tasks. 
Evaluations were conducted using an NVIDIA GeForce RTX 
3080 GPU. Before measurement, the GPU was warmed up to 
ensure stable maximum performance. Then, the forward-pass 
time of each image in the test set (150 images) was recorded, 
excluding file loading and preprocessing. The results were 
averaged to obtain the model’s mean inference time per image. 

IV. RESULTS 

After completing the model training process, the evaluation 
phase was conducted to verify the model’s performance. The 
test set, consisting of 150 QR Code images not previously seen 
during training, was used for this assessment. In this process, 
the corrupted QR Code images were fed into the trained model, 
and the reconstructed outputs were compared against the 
corresponding ground truth images. 

As shown in Table II, during the initial training stage 
(Epoch 1), the Generator Loss started at 1.452 and the 
Discriminator Loss at 0.693, values typically observed when 
training begins for GAN models. The initial image quality was 
relatively low, with PSNR at 18.21 dB and SSIM at 0.72. By 

Epoch 10, the Generator Loss had decreased to 0.985, while 
the Discriminator Loss slightly increased to 0.752, suggesting 
that the Generator was beginning to produce more realistic 
images. This improvement was reflected in the image quality 
metrics (PSNR: 22.45 dB, SSIM: 0.83). At Epoch 25, the 
Generator Loss continued to decrease to 0.712, while the 
Discriminator Loss increased to 1.103. This behavior is 
expected, as the Discriminator becomes less effective at 
distinguishing images once the Generator improves 
significantly. The image quality improved considerably 
(PSNR: 25.67 dB, SSIM: 0.89), and the scanning success rate 
on the validation set reached 82.1%, indicating increasing 
model stability. By Epochs 50 and 100, the Generator and 
Discriminator Loss values stabilized at approximately 0.5 and 
1.45, respectively, suggesting convergence. The reconstructed 
image quality also reached consistently high levels (PSNR ~29 
dB, SSIM ~0.93), and the validation set scanning success rate 
exceeded 90%. These results confirm the model’s effectiveness 
in restoring corrupted QR Code images to complete and 
scanable forms. This reveals the system's enhanced 
performance. The Scan Success Rate on the test set was lower 
than on the validation set, which may be attributed to the 
diverse damage in critical areas like Finder Patterns or the 
irregular scratches present in the test set, as shown in Table III 
and Fig. 5. 

TABLE II.  GAN+SN MODEL TRAINING RESULTS 

Epoch G Loss D Loss 
PSNR 

(dB) 
SSIM 

Validation Set 

(%) 

1 1.452 0.693 18.21 0.72 55.3% 

10 0.985 0.752 22.45 0.83 68.7% 

25 0.712 1.103 25.67 0.89 82.1% 

50 0.501 1.452 28.92 0.92 90.5% 

100 0.493 1.487 29.15 0.93 91.2% 

TABLE III.  EVALUATION RESULTS ON TEST SET (150 IMAGES) 

Metric Average Range Interpretation 

PSNR (dB) 28.5 25.2 - 32.1 
Values > 25 dB are considered 

acceptable 

SSIM 0.91 0.85 - 0.95 
Values close to 1 indicate high 

structural similarity 

Scan 

Success 

Rate 

88% 81 - 95% 
Percentage of successful QR 

code scans 

According to standard benchmarks, a PSNR greater than 25 
dB is generally considered acceptable for image restoration 
tasks. 

 

Fig. 5. Image showing the reconstruction of missing parts in a QR code 

using the GANs + SN technique: (a) Damaged QR code, not scannable; 

(b) GANs + SN reconstruction, scannable. 
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TABLE IV.  COMPARISON OF INPAINTING METHODS WITH OTHER 

TECHNIQUES 

Comparison 

Item 

CNNs (U-

Net) 
GANs (Baseline) 

GANs + Spectral 

Normalization 

Algorithm 

Type 

Learning-

Based 

(CNN) 

Learning-Based 

(GAN) 

Learning-Based 

(GAN + 

Stabilization) 

Architecture 
U-Net (5 

layers) 
Encoder-Decoder 

Encoder-Decoder + 

Spectral Norm 

Loss Function 

MSE + 

Perceptual 

Loss 

Adversarial Loss 

+ L1 Loss 

Adversarial Loss + 

L1 Loss 

Working 

Principle 

Learns to 

restore 

images 

directly 

Constructs new 

images through 

Generator–

Discriminator 

Similar to baseline 

GAN with 

stabilization (using 

Spectral Norm) 

Average SSIM 0.82 0.87 0.91 

Success Rate 68% 75% 88% 

Processing 

Time 
0.15 s 0.30 s 0.35 s 

Strengths 

- Faster 

than GANs 

- Suitable 

for less 

severe 

image 

Damage 

- Generates more 

natural details 

- Produces sharper 

and more realistic 

structures 

- High structural 

similarity 

- Reduces mode 

collapse problem 

- Achieves highest 

SSIM and success 

rate 

Weaknesses 

- Results 

may appear 

blurred 

- Ineffective 

with severe 

Damage 

- Requires 

adversarial 

training 

- May encounter 

instability 

- Slower processing 

time 

- Computational cost 

increases due to SN 

Suitable for 
Damage1–

20% 

Damage 

20–40% 

Damage 

40–60% (Highest 

Efficiency) 

TABLE V.  PERFORMANCE COMPARISON ACROSS DIFFERENT LEVELS OF 

DAMAGE 

Damage Level GAN+SN GAN (Baseline) 
CNN (U-

Net) 

1–20% 95% 85% 80% 

20–40% 88% 75% 70% 

40–60% 81% 65% 54% 

Average 88% 75% 68% 

From Table IV and Table V, the performance comparison 
of the proposed GAN+SN model with other baseline methods 
is presented as follows: CNNs (U-Net): Utilizes a standard 5-
layer U-Net architecture commonly applied in image-to-image 
translation tasks, trained with a combined loss function of 
Mean Squared Error (MSE) and Perceptual Loss. GANs 
(Baseline): Employs the same Generator and Discriminator 
architectures as the proposed model but without Spectral 
Normalization, trained with Adversarial Loss combined with 
L1 Loss to enhance image sharpness. GANs + Spectral 
Normalization (Proposed Model): Trained with Adversarial 
Loss, L1 Loss, and applies Spectral Normalization to the 
Generator. All models were trained and evaluated under the 
same conditions and dataset to ensure fairness in comparison. 

The high scanning success rate (88%) demonstrates our 
model's effectiveness in reconstructing not just visual 

appearance but the functional data structure of QR codes, 
analogous to how shadow tomography reconstructs 3D 
information from limited 2D projections in microscopic 
imaging [13]. 

V. DISCUSSION 

The comparison of the three main techniques for QR Code 
restoration showed that each method had different strengths 
and limitations. CNN (U-Net) was the fastest method, taking 
only 0.15 seconds per image. It achieved an SSIM of 0.82 and 
a scanning success rate of 68%, making it suitable for 
applications requiring high speed. However, it had limitations 
when the damage exceeded 20%, because although Perceptual 
Loss helped preserve the overall structure, the pixel-level 
accuracy enforced by Adversarial Loss and L1 Loss (especially 
when stabilized by SN in the GAN model) appeared to be more 
effective in reconstructing the fixed geometric patterns of QR 
Codes, which are essential for successful scanning. The 
baseline GAN provided a good balance between quality and 
speed, achieving an SSIM of 0.87 and a scanning success rate 
of 75%, taking 0.30 seconds per image. However, it sometimes 
faced training stability issues. The GAN + Spectral 
Normalization (GAN+SN), which was developed in this study, 
achieved the highest performance with an SSIM of 0.91 and a 
scanning success rate of 88%. It was able to handle damage up 
to 40–60%, although it required the longest processing time of 
0.35 seconds per image. This illustrated the trade-off between 
speed and robustness to damage. GAN+SN was a more 
suitable choice when restoring heavily damaged QR Codes, 
providing better stability and reducing mode collapse. The 
choice of technique should depend on specific requirements: if 
high speed is prioritized, CNN (U-Net) is recommended for 
minor damage; for a good balance between quality and speed, 
the baseline GAN is appropriate; and if maximum performance 
is desired without much concern for processing time, GAN + 
Spectral Normalization provides the best results in terms of 
both accuracy and robustness to severe damage. 

TABLE VI.  COMPARISON OF PERFORMANCE WITH OTHER STUDIES BY 

CRITERIA 

Criteria GAN+SN EHFP-GAN SRGAN 

Main 

Objective 

Reconstruct 

missing regions 

Reconstruct 

missing regions 

Enhance image 

details 

Performance 

(Success 

Rate) 

Minor Damage 

(1–20%): 95% 

Moderate 

Damage 

Mild Damage 

95.35% [11] 

Not directly 

evaluated [12] 

Key 

Advantage 

Resistant to 

severe Damage 

Performs best 

with mild 

Damage 

Most suitable for 

distorted QR Code 

Main 

Limitation 

Longer 

processing time 

compared to other 

methods 

Performance 

significantly 

decreases with 

heavy Damage 

Cannot recover 

information that is 

completely 

missing 

From Table VI, when compared with the study by Zheng et 
al. (2023), which proposed the Edge-Enhanced Hierarchical 
Feature Pyramid GAN (EHFP-GAN), a two-stage architecture 
that focused on repairing edges first and then reconstructing the 
QR Code, it was observed that the EHFP-GAN approach was 
more complex [11]. In contrast, our study used a single-stage 
GAN architecture, but emphasized stabilizing the training 
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process by applying Spectral Normalization (SN) directly to 
the Generator layers. Our approach focused on improving the 
overall image reconstruction quality and the sharpness of the 
black-and-white structure, which is crucial for QR Codes, 
rather than separating the edge repair process. 

In terms of performance, our GAN+SN model achieved an 
average scanning success rate of 88% for up to 60% damage, 
whereas the EHFP-GAN model reported a recognition rate of 
95.35% for minor damage and dropped to 31.94% for severe 
damage [11]. Although EHFP-GAN achieved higher success 
rates on minor damage, our model demonstrated better 
robustness when facing high levels of damage (40 to 60%), 
which represented a particularly challenging scenario. 
Furthermore, compared with studies using Super-Resolution 
techniques such as SRGAN [12], which achieved a PSNR of 
30.06 and SSIM of 0.936 for QR Code upscaling, our model, 
focusing on inpainting missing parts, still provided competitive 
results (PSNR 28.5, SSIM 0.91) and, importantly, verified 
effectiveness through the scanning success rate, the primary 
practical metric. 

A key strength of our study was the use of Spectral 
Normalization, which reduced unstable training and mitigated 
Mode Collapse commonly encountered in GAN training. This 
allowed the model to better learn the distribution of complete 
QR Code data, resulting in improved reconstruction of fine 
details and sharp black-and-white modules. In contrast, more 
complex approaches like EHFP-GAN may require additional 
data and fine-tuning to achieve maximum performance. 
However, a limitation of our study was that processing time 
could be slightly longer than the CNN (U-Net) method (0.35 
seconds compared to 0.15 seconds per image), although the 
improved accuracy was more significant for practical 
applications. 

Although the model performed well on synthetic data, its 
effectiveness on real-world damage, such as stains, sun fading, 
or perspective distortions, remained a challenge that required 
further investigation. 

VI. CONCLUSION 

This study presented an approach for restoring damaged 
QR Codes using Generative Adversarial Networks (GANs) 
combined with Spectral Normalization (SN) to enhance 
training stability. Experiments on a dataset with simulated 
damage showed that the developed model could generate 
restored QR Codes with high sharpness and strong similarity to 
the original QR Codes, achieving an average PSNR of 28.5 dB 
and SSIM of 0.91. Moreover, the model significantly improved 
the scanning success rate of damaged QR Codes, reaching 
88%, which outperformed the CNNs (U-Net) and basic GANs 
methods under the same experimental conditions. 

The use of Spectral Normalization in the Generator enabled 
the model to effectively reconstruct complex details in the 
restored regions, reduce artifacts, and allowed the model to 
better learn the distribution of complete QR Code data. 
Although the proposed model required slightly longer 
processing time than other methods, the improved accuracy 

was highly significant for practical applications, particularly in 
scenarios where QR Codes were severely damaged. 

For limitations and future work, this study had certain 
limitations that should be considered. The dataset used for 
training consisted of synthetic data, which may not cover the 
full variety of real-world damage. The model was also unable 
to handle complex damage, such as QR Code distortions or 
damage caused by reflections. 

Overall, this study proved a promising approach for 
restoring damaged QR Codes using GANs combined with 
Spectral Normalization, which could be applied across various 
industries and scenarios where QR Codes play a critical role. 
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