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Abstract—QR Codes are widely used in the digital era for
storing and sharing information in various applications.
However, they are often susceptible to physical damage such as
scratches, tears, or fading, which can result in scanning failures
and limit their usability. To overcome this issue, this research
introduces a Generative Adversarial Network (GAN) model
integrated with Spectral Normalization to restore damaged QR
Code images. The model was trained and evaluated using a
dataset of QR Codes with simulated damage ranging from 1% to
60%. Experimental results demonstrate that the proposed
approach effectively reconstructs missing parts of QR Codes
while preserving structural details and module sharpness. The
model achieved an average PSNR of 28.5 dB, SSIM 0f 091, and a
scanning success rate of 88%, outperforming U-Net (68%) and a
baseline GAN (75%). Although the processing time is slightly
longer, the model offers superior accuracy and robustness,
particularly for severely damaged QR Codes (40% to 60%
damage). These findings confirm that GANs enhanced with
Spectral Normalization offer a promising solution for QR Code
restoration, with potential uses in digital marketing, payment
systems, and inventory management.

Keywords—QR Code restoration; Generative Adversarial
Networks; spectral normalization; image inpainting; deep learning;
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1. INTRODUCTION

QR Codes (Quick Response Codes) have become a widely
popular technology in the digital age due to their ability to
store diverse information and their user-friendly nature [1].
This has led to their application in various fields, such as
marketing, payment systems, product data verification, and
information access systems.

However, in real-world environments, QR Codes often face
problems of physical damage, such as missing parts or
scratches. These can be caused by various environmental
factors, leading to QR Code scanning failures and user
inconvenience.

This damage can arise from several factors, including poor
QR Code printing quality or contact and abrasion with various
surfaces [2]. When a QR Code is damaged, scanning to read
the data may fail or result in errors, which impacts operational
efficiency and the user experience.

Although deep leaming technology is highly potential and
widely used in general image restoration and inpainting tasks
[3], its specific application to address physically damaged QR

Codes, such as those with scratches or missing sections,
requires further study and development. For this reason, this
study utilized Generative Adversarial Networks (GANs)—a
deep learning technique with a remarkable ability to learn and
generate complex image data to reconstruct and regenerate the
missing parts of a QR Code. GANs have the potential to
produce sharp details, which is a critical feature for preserving
and inpainting the black-and-white module structure of a QR
Code, essential for scanning. This contrasts with some
conventional CNN architectures, which may tend to produce
blurrier results when filling in missing areas.

This research developed a specialized GAN model
incorporating Spectral Normalization to enhance the model's
stability and performance. The objective was to test the
effectiveness of GANs in improving the scanability and data
recovery from damaged QR Codes.

II. THEORY AND RELATED RESEARCH

A. OR Code and basic Structure

QR Code (Quick Response Code) is a two-dimensional
barcode technology developed by the company Denso Wave in
1994. QR Codes can store more data than traditional barcodes
[4] and can be read by scanning devices or smartphones. The
information is encoded in a pattern of black and white dots
arranged in a two-dimensional grid. The basic structure of a
QR Code consists of several key parts: For Finder Patterns,
these are square patterns located at the three comers of the QR
Code. They help scanning devices quickly detect and
determine the position of the QR Code. For Alignment
Patterns, these are smaller patterns that help adjust the position
and correct for distortion that may occur from image skewing.
For Timing Patterns, these are vertical and horizontal lines that
help define the size and position of the data modules. For Data
and Error Correction Codes, this section stores the data and
error correction codes. These codes allow the QR Code to be
read even if it is partially damaged, but it becomes unreadable
if the damage is too extensive.

B. OR Code Damage and Its Impact

As shown in Fig. 1, QR Codes often suffer from physical
damage in real-world environments, such as missing parts or
scratches caused by external factors. This damage can be
categorized into several main types: Physical Damage, caused
by physical wear and tear, such as scratching or tearing;
Environmental Damage, caused by unsuitable environmental
conditions; Printing Defects, caused by low-quality printing,
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which makes the QR Code unclear or flawed [5]. These types
of damage can lead to QR Code scanning failure or data
reading errors, causing inconvenience and reducing operational
efficiency.

Fig. 1. An example of a damaged QR Code on an EV charging station at a

gas station.

C. Image Inpainting: Convolutional Neural Networks (CNNs)
Technique

Convolutional Neural Networks (CNNs) are a deep
learning technique that has revolutionized image inpainting, or
image restoration. CNNs have a remarkable ability to
automatically learn features and spatial relationships within an
image, allowing them to understand the image context and
realistically generate missing parts. Typically, a CNN for
inpainting uses an encoder-decoder structure [6]. The encoder
extracts important information from the area surrounding the
damaged portion, and the decoder uses that information to
create new pixels to replace the missing ones. Training with a
large amount of image data helps the model leam to fill in
images accurately and seamlessly. CNNs can create complex
structures and natural-looking textures better than simply
estimating values from neighboring pixels. They can also
complete objects or even parts that require semantic
understanding, such as faces.

D. Image Inpainting: GANs Technique

Generative Adversarial Networks (GANs) are a type of
neural network architecture consisting of two main networks
that operate in an adversarial manner: the Generator network,
which is responsible for producing new data, and the
Discriminator network, which determines whether the
generated data is real or fake [7]. This adversarial leaming
mechanism enables GANs to achieve outstanding performance
in generating highly realistic data, making them particularly
effective for image inpainting or repairing missing parts of an
image. In this type of work, the Generator receives an image
with a damaged portion (often accompanied by a mask that
indicates the location of the damage) as input. It then learns to
"imagine" and create pixels to fill that area, attempting to
produce a result that looks as realistic and coherent with the
rest of the image as possible. Meanwhile, the Discriminator is
trained to distinguish between real images (undamaged original
images) and fake images (images completed by the Generator).
The Discriminator's goal is to catch the images created by the
Generator, while the Generator continuously improves itself to
create images that are so convincing that the Discriminator
cannot tell the difference. This competitive process continues,
making both networks more proficient. The Generator becomes
progressively better at creating completed images with
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complex details, natural-looking textures, and structures that
align with the image's context, while the Discriminator's ability
to distinguish between real and fake images becomes sharper.

E. Enhancing GAN Stability with Spectral Normalization

Spectral Normalization (SN) is a crucial technique for
improving the stability of GAN training by controlling the
Lipschitz constant of network weights [8]. While SN is
generally applied to the Discriminator to directly regulate
gradients and enhance training stability, in this study we extend
its application to the Convolutional layers of the Generator (as
illustrated in Algorithm 1: Build Generator). In the context of
QR Code inpainting, our initial hypothesis was that stabilizing
the Generator’s gradients with SN could improve the synthesis
of fine details and repetitive patterns that are critical to QR
Code structures (e.g., clear black-and-white modules). This
stabilization helps reduce artifacts and enables the Generator to
better capture the underlying distribution of complete QR
Codes. Preliminary experiments support this hypothesis,
demonstrating improved structural reconstruction when SN
was applied to the Generator compared with cases where SN
was applied only to the Discriminator or not used at all.
Consequently, this configuration was adopted for the main
experiments.

F. Applying Image Inpainting to QR Code Images
Although most research in QR Code image processing has
primarily focused on detection or error correction during
decoding, some studies have begun to explore the use of deep
learning techniques to improve QR Code image quality in
different contexts. For instance, study [9] demonstrated the
potential of deep learning in recovering invisible QR Codes
displayed on specialized screens, while study [10] employed
deep learning methods for rapid deblurring of QR Code
images. Although these works did not directly address physical
damage (e.g., scratches or missing parts) as this study does,
they highlight the capability of neural networks to learn and
adapt to the unique structural properties of QR Codes.
However, based on a review of the related literature, no prior
research has specifically applied Generative Adversarial
Networks (GANs) combined with Spectral Normalization (SN)
for inpainting physically damaged QR Codes. This represents
an innovative direction. While SN has been widely used to
stabilize the Discriminator in general image generation tasks,
this study is the first to apply SN to the Generator for
inpainting images with highly geometric structures, such as QR
Codes, which require sharpness and well-preserved edges. This
introduces a distinct challenge: the primary difficulty in QR
Code restoration lies in maintaining edge boundaries and the
sharpness of individual modules. In this regard, GANS,
particularly when combined with loss functions such as LI
Loss that promote sharpness, tend to outperform traditional
CNN encoder-decoder architectures, which often produce
blurry results in the inpainted regions. This research, therefore,
aims to develop and evaluate such an approach to fill this gap.

III. RESEARCH METHODOLOGY

A. Data Preparation

For the data preparation of QR Code restoration, we created
a large dataset of QR Codes using the QR Code Python library
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and then simulated damage on them. We used OpenCV to add
various types of damage to the QR Codes, simulating missing
parts by creating a mask to define the missing areas and filling
them with white. This was done in both random patches and
scratches with varying directions and thicknesses, as shown in
Fig. 2.

Original QR Cote Masked QR Code

Fig.2. Example of a simulated damaged QR Code.

1) OR Code dataset creation: In the data preparation
phase, the researchers created a dataset of 1,000 QR Code
images, as shown in Fig. 3, using the qrcode Python library.
As shown in Table I, the images were then divided into three
groups based on their damage level: minor damage (1 to 20%)
with 333 images, moderate damage (20 to 40%) with 333
images, and severe damage (40 to 60%) with 334 images.
Each group was then randomly and equally split into a
Training Set (70%), a Validation Set (15%), and a Test Set
(15%) to ensure a balanced representation of various damage
characteristics across all datasets. Each QR Code contained a
unique URL.

TABLE . DATA SPLITTING
Dataset Number of Images Proportion (%)
Training Set 700 70%
Validation Set 150 15%
Test Set 150 15%
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Fig.3. Simulation of creating 1,000 QR Code images.

2) Creating damage in OR Codes: The researchers used
OpenCV to add various types of damage to the QR Codes.
Missing parts were created by generating a mask to define the
missing areas and filling them with white. This was done in
both random patch shapes and linear shapes (simulating
scratches) with random thickness and direction across the QR
Code. The damage was randomly assigned a severity level
between 1% and 60%, as shown in Fig. 4. The purpose of
setting the damage level from 1% to 60% was to cover a wide
range of real-world scenarios: Minor damage (1 to 20%)
reflects common issues like color fading, light scratches, or
dust. Moderate damage (20 to 40%) simulates a QR Code that
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has been in use for some time or has multiple scratches.
Severe damage (40 to 60%) is used to test the system's
performance when the QR Code has lost critical data. The
reason for limiting the damage level to a maximum of 60% is
that it represents a realistic boundary for data recovery in a
general use context. QR Codes are embedded with an Error
Correction Code that can withstand a certain level of damage.
Even the highest level of error correction (level H) can only
handle approximately 30% damage. Therefore, creating
damage higher than this, such as 40 to 60%, simulates a more
severe situation than the standard threshold, testing the
model's capacity to repair data in cases where the QR Code is
damaged beyond what the original system can correct on its
own. Conversely, if the damage exceeds 60%, the core
structure of the QR Code may be destroyed to a point where it
is not reasonably recoverable, even with deep learning
techniques. Thus, the damage level was limited to a maximum
of 60% to maintain a balance between the model's capability
and the practical possibility of image recovery.
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Fig. 4. An image showing the simulation of missing parts of a QR code.
Code (a) original image, (b) damaged 1-20%, (c) damaged 20-40%,

@ (b) (©) (d)
(d) damaged 40-60%.

B. Model Design

For the design of the model in QR Code Restoration, we
developed a Generative Adversarial Network (GAN)
architecture implemented using TensorFlow and Keras,
consisting of two main components: the Generator and the
Discriminator. As illustrated in Pseudo-code 5, the Generator is
responsible for reconstructing the missing regions of the QR
Code. It adopts an Encoder—Decoder structure with Spectral
Normalization applied to every Convolutional layer to control
the gradient distribution and enhance training stability. This
architecture enables the Generator to produce realistic outputs,
particularly in the critical regions of QR Codes such as Finder
Patterns and Alignment Patterns.

The Discriminator, on the other hand, is designed to
distinguish between real images and those generated by the
Generator, thereby forcing the Generator to create outputs with
higher realism.

e The Generator is the model responsible for
reconstructing the missing regions of the QR Code. It is
based on a Convolutional Neural Network (CNN) with
an Encoder—Decoder architecture. The Encoder
compresses the image while extracting meaningful
features, whereas the Decoder reconstructs the image
from these extracted features. The model employs
LeakyReLU and ReLU as activation functions. Avoid
combining SI and CGS units, such as current in
amperes and magnetic field in oersteds. This often leads
to confusion because equations do not balance
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dimensionally. If you must use mixed units, clearly
state the units for each quantity that you use in an
equation.

e The Discriminator is a model designed to distinguish
between real images and those generated by the
Generator. It employs a CNN architecture to extract
features from the images. The activation functions used
are LeakyReLU and Sigmoid (see Algorithm 2).

e The GAN Model integrates the Generator and
Discriminator into a complete Generative Adversarial
Network (GAN). The Discriminator is compiled with
the binary cross-entropy loss function and the Adam
optimizer. The GAN is compiled with a combination of
binary cross-entropy loss and L1 Loss (pixel-wise
difference loss), along with the Adam optimizer (see
Algorithm 3).
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3. Set Discriminator as non-trainable

4. Connect Generator output — Discriminator input

5. Compile the GAN model using the Adam optimizer and
binary cross-entropy loss

6. Return GAN Model

Algorithm 1: Build_Generator

Input: input_shape
Output: Generator model
1. Apply spectral normalized Conv2D (64 filters, kernel=4,
stride=2) on input_shape
2. Apply LeakyReLU activation (o =0.2)
3. Apply spectral normalized Conv2D (128 filters, kernel=4,
stride=2)
4. Apply Batch Normalization
5. Apply LeakyReLU activation (a0 =0.2)
6. Apply spectral normalized Conv2DTranspose (128 filters,
kernel=4, stride=2)
7.  Apply Batch Normalization
8.  Apply ReLU activation
9. Apply spectral normalized Conv2DTranspose (64 filters,
kernel=4, stride=2)
10. Apply Batch Normalization
11. Apply ReLU activation
12. Apply Conv2D (1 filter, kernel=4, activation = sigmoid)
13. Return Generator Model

Algorithm 2: Build_Discriminator

Input: input_shape
Output: Discriminator model
1. Apply Conv2D (64 filters, kernel=4, stride=2) on
input_shape
Apply LeakyReLU activation (a =0.2)
Apply Conv2D (128 filters, kernel=4, stride=2)
Apply Batch Normalization
Apply LeakyReLU activation (a = 0.2)
Apply Flatten operation
Apply Dense layer (1 unit, activation = sigmoid)
Return Discriminator Model

X NN RN

Algorithm 3: Build_GAN

Output: GAN model
1. Build Generator using Algorithm 1
2. Build Discriminator using Algorithm 2

C. Model Training

The model training process utilized the concept of
Generative Adversarial Networks (GANs), which consists of
two main parts: a Generator and a Discriminator. They were
trained in an adversarial manner, starting with loading the
complete and damaged QR Code images prepared in the
previous step. The pixel values were then normalized to a
range of [0, 1] to enhance computational efficiency. During
training, the data was divided into mini-batches of 32 images
for each epoch. The Generator received the damaged image as
input and attempted to reconstruct a complete image.
Simultaneously, the Discriminator received images from both
the Generator (generated images) and the real images
(complete images), and learned to distinguish between the two.
The learning of these two components was driven by different
loss functions:

e The Discriminator used Binary Cross-Entropy Loss to
measure the difference between its predictions and the
ground truth. This loss function effectively helped the
model learn to distinguish between real and generated
QR Code images.

e The goal of the Generator is to produce images that are
both visually realistic (capable of fooling the
Discriminator) and structurally close to the original
ground truth. Therefore, its loss function is defined as a
combination of:

e Adversarial Loss, computed from the output of the
Discriminator (commonly using Binary Cross-Entropy),
this loss encourages the Generator to synthesize more
realistic images.

e L1 Loss (Mean Absolute Error). This measures the
average pixel-wise difference between the generated
image and the ground truth. Incorporating L1 Loss is
critical, as it has been shown to preserve details and
edge sharpness better than L2 Loss—an essential factor
for maintaining the distinct black-and-white modules of
QR Codes. Furthermore, L1 Loss provides pixel-level
constraints that complement the Adversarial Loss,
promoting sharper reconstructions and preserving the
fine-grained structural integrity required for QR Code
restoration.

The key hyperparameters were optimized through
preliminary validation experiments, with the learning rate set to
0.0002 and the optimizer chosen as Adam, following best
practices in GAN training.

Training was conducted for approximately 100 epochs,
during which both Generator and Discriminator losses were
computed and weights updated via backpropagation. This
iterative process enables the Generator to learn to produce
increasingly realistic and accurate reconstructions, while
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simultaneously enhancing the Discriminator’s ability to
distinguish between real and generated images.

During training, Spectral Normalization was applied to all
convolutional layers of the Generator in order to regulate the
Lipschitz constant of its weight matrices. This improves
gradient stability, prevents imbalance with the Discriminator,
and mitigates mode collapse, a common challenge in GAN
training without introducing additional computational
overhead. In addition, a Model Checkpoint callback was
employed to save the best-performing model weights
throughout the training process.

D. Model Evaluation

The evaluation focuses on assessing the model’s ability to
restore/inpaint corrupted QR Code images back to a complete
and functional state. To achieve this, standard image
restoration metrics and task-specific measures (such as the
scanning success rate) relevant to QR Code usability were
employed:

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural
Similarity Index): Both are standard metrics in image
restoration tasks. PSNR, measured in decibels (dB), quantifies
the pixel-level difference between the generated image and the
ground truth, with higher values indicating better
reconstruction quality. SSIM evaluates structural similarity
between the two images, ranging from 0 to 1, where values
closer to 1 indicate higher structural fidelity.

Scanning Success Rate is the metric directly evaluating
whether the restored QR Codes (from the test set inputs) can be
successfully decoded. Each output image was tested using the
widely adopted QR Code decoding library pyzbar. The number
of successfully decoded images was counted and expressed as
a percentage relative to the total number of test images (150).
This measure reflects the model’s effectiveness in restoring the
core functional property of QR Codes.

Average Inference Time per Image measures the
processing speed of trained models (GAN+SN, baseline GAN,
and U-Net) when applied to real QR Code restoration tasks.
Evaluations were conducted using an NVIDIA GeForce RTX
3080 GPU. Before measurement, the GPU was warmed up to
ensure stable maximum performance. Then, the forward-pass
time of each image in the test set (150 images) was recorded,
excluding file loading and preprocessing. The results were
averaged to obtain the model’s mean inference time per image.

IV. RESULTS

After completing the model training process, the evaluation
phase was conducted to verify the model’s performance. The
test set, consisting of 150 QR Code images not previously seen
during training, was used for this assessment. In this process,
the corrupted QR Code images were fed into the trained model,
and the reconstructed outputs were compared against the
corresponding ground truth images.

As shown in Table II, during the initial training stage
(Epoch 1), the Generator Loss started at 1.452 and the
Discriminator Loss at 0.693, values typically observed when
training begins for GAN models. The initial image quality was
relatively low, with PSNR at 1821 dB and SSIM at 0.72. By
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Epoch 10, the Generator Loss had decreased to 0.985, while
the Discriminator Loss slightly increased to 0.752, suggesting
that the Generator was beginning to produce more realistic
images. This improvement was reflected in the image quality
metrics (PSNR: 2245 dB, SSIM: 0.83). At Epoch 25, the
Generator Loss continued to decrease to 0.712, while the
Discriminator Loss increased to 1.103. This behavior is
expected, as the Discriminator becomes less effective at
distinguishing images once the Generator improves
significantly. The image quality improved considerably
(PSNR: 25.67 dB, SSIM: 0.89), and the scanning success rate
on the validation set reached 82.1%, indicating increasing
model stability. By Epochs 50 and 100, the Generator and
Discriminator Loss values stabilized at approximately 0.5 and
1.45, respectively, suggesting convergence. The reconstructed
image quality also reached consistently high levels (PSNR ~29
dB, SSIM ~0.93), and the validation set scanning success rate
exceeded 90%. These results confirm the model’s effectiveness
in restoring corrupted QR Code images to complete and
scanable forms. This reveals the system's enhanced
performance. The Scan Success Rate on the test set was lower
than on the validation set, which may be attributed to the
diverse damage in critical areas like Finder Patterns or the
irregular scratches present in the test set, as shown in Table III
and Fig. 5.

TABLEII. GAN+SN MODEL TRAINING RESULTS
PSNR Validation Set
Epoch G Loss D Loss (dB) SSIM %)
1 1.452 0.693 18.21 0.72 55.3%
10 0.985 0.752 2245 0.83 68.7%
25 0.712 1.103 25.67 0.89 82.1%
50 0.501 1.452 28.92 0.92 90.5%
100 0.493 1.487 29.15 0.93 91.2%
TABLE III. EVALUATION RESULTS ON TEST SET (150 IMAGES)
Metric Average Range Interpretation
PSNR (dB) | 28.5 252321 Values > 25 dB are considered
acceptable
SSIM 091 0.85-0095 Values clos-e t-() 1‘ indicate high
structural similarity
Scan
Success 8% 31-95% Pe(ricentage of successful QR
Rate code scans

According to standard benchmarks, a PSNR greater than 25
dB is generally considered acceptable for image restoration
tasks.

Fig. 5. Image showing the reconstruction of missing parts in a QR code
using the GANs + SN technique: (a) Damaged QR code, not scannable;
(b) GANs + SN reconstruction, scannable.
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appearance but the functional data structure of QR codes,
analogous to how shadow tomography reconstructs 3D
information from limited 2D projections in microscopic
imaging [13].

V. DISCUSSION

The comparison of the three main techniques for QR Code
restoration showed that each method had different strengths
and limitations. CNN (U-Net) was the fastest method, taking
only 0.15 seconds per image. It achieved an SSIM of 0.82 and
a scanning success rate of 68%, making it suitable for
applications requiring high speed. However, it had limitations
when the damage exceeded 20%, because although Perceptual
Loss helped preserve the overall structure, the pixel-level
accuracy enforced by Adversarial Loss and L1 Loss (especially
when stabilized by SN in the GAN model) appeared to be more
effective in reconstructing the fixed geometric patterns of QR
Codes, which are essential for successful scanning. The
baseline GAN provided a good balance between quality and
speed, achieving an SSIM of 0.87 and a scanning success rate
of 75%, taking 0.30 seconds per image. However, it sometimes
faced training stability issues. The GAN + Spectral
Normalization (GAN+SN), which was developed in this study,
achieved the highest performance with an SSIM of 091 and a
scanning success rate of 88%. It was able to handle damage up
to 40—60%, although it required the longest processing time of
0.35 seconds per image. This illustrated the trade-off between
speed and robustness to damage. GAN+SN was a more
suitable choice when restoring heavily damaged QR Codes,
providing better stability and reducing mode collapse. The
choice of technique should depend on specific requirements: if
high speed is prioritized, CNN (U-Net) is recommended for
minor damage; for a good balance between quality and speed,
the baseline GAN is appropriate; and if maximum performance
is desired without much concem for processing time, GAN +
Spectral Normalization provides the best results in terms of
both accuracy and robustness to severe damage.

TABLEIV. COMPARISON OF INPAINTING METHODS WITH OTHER
TECHNIQUES
Comparison CNNs (U- . GANs + Spectral
Item Net) GANs (Baseline) Normalization
Algorithm Leaming- Learning-Based Leaming-Based
Tyne Based (GAN) (GAN +
yp (CNN) Stabilization)
Architecture U-Net (5 Encoder-Decoder Encoder-Decoder +
layers) Spectral Norm
Loss Functio ﬁsit al Adversarial Loss Adversarial Loss +
088 Funetion reeptu +L1 Loss L1 Loss
Loss
Leams to Constructs new Similar to baseline
Working restore images through GAN with
Principle images Generator— stabilization (using
directly Discriminator Spectral Norm)
Average SSIM 0.82 0.87 091
Success Rate 68% 75% 88%
Processing 0.15s 030s 035
Time
- Faster - High structural
than GANs - Generates more similarity
- Suitable natural details - Reduces mode
Strengths for less - Produces sharper | collapse problem
severe and more realistic | - Achieves highest
image structures SSIM and success
Damage rate
- Results .

- Requires .
may appear | oo ol - Slower processing
blurred .. time

Weaknesses . training .
- Ineffective - Computational cost
. - May encounter .
with severe . . increases due to SN
instability
Damage
Damage
Suitable for Damagel- | Damage 40-60% (Highest
20% 20-40% .
Efficiency)
TABLE V. PERFORMANCE COMPARISON ACROSS DIFFERENT LEVELS OF

DAMAGE

Damage Level GAN+SN GAN (Baseline) Cl\ll\llitgu-
1-20% 95% 85% 80%
20-40% 88% 75% 70%
40-60% 81% 65% 54%
Average 88% 75% 68%

From Table IV and Table V, the performance comparison
of the proposed GAN+SN model with other baseline methods
is presented as follows: CNNs (U-Net): Utilizes a standard 5-
layer U-Net architecture commonly applied in image-to-image
translation tasks, trained with a combined loss function of
Mean Squared Error (MSE) and Perceptual Loss. GANs
(Baseline): Employs the same Generator and Discriminator
architectures as the proposed model but without Spectral
Normalization, trained with Adversarial Loss combined with
L1 Loss to enhance image sharpness. GANs + Spectral
Normalization (Proposed Model): Trained with Adversarial
Loss, L1 Loss, and applies Spectral Normalization to the
Generator. All models were trained and evaluated under the
same conditions and dataset to ensure fairness in comparison.

The high scanning success rate (88%) demonstrates our
model's effectiveness in reconstructing not just visual

TABLE VI. COMPARISON OF PERFORMANCE WITH OTHER STUDIES BY
CRITERIA
Criteria GAN+SN EHFP-GAN SRGAN
Main Reconstruct Reconstruct Enhance image
Objective missing regions missing regions details
Perf Minor Damage
(Seuc‘;re‘?:““ (1-20%): 95% Mild Damage Not directly
Moderate 95.35% [11] evaluated [12]
Rate)
Damage
Key Resistant to fv?tr}f():lll(sj best Most suitable for
Advantage severe Damage D distorted QR Code
ama ge
Longer Performance Cannot recover
Main processing time significantly information that is
Limitation compared to other | decreases with completely
methods heavy Damage missing

From Table VI, when compared with the study by Zheng et
al. (2023), which proposed the Edge-Enhanced Hierarchical
Feature Pyramid GAN (EHFP-GAN), a two-stage architecture
that focused on repairing edges first and then reconstructing the
QR Code, it was observed that the EHFP-GAN approach was
more complex [11]. In contrast, our study used a single-stage
GAN architecture, but emphasized stabilizing the training
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process by applying Spectral Normalization (SN) directly to
the Generator layers. Our approach focused on improving the
overall image reconstruction quality and the sharpness of the
black-and-white structure, which is crucial for QR Codes,
rather than separating the edge repair process.

In terms of performance, our GAN+SN model achieved an
average scanning success rate of 88% for up to 60% damage,
whereas the EHFP-GAN model reported a recognition rate of
95.35% for minor damage and dropped to 31.94% for severe
damage [11]. Although EHFP-GAN achieved higher success
rates on minor damage, our model demonstrated better
robustness when facing high levels of damage (40 to 60%),
which represented a particularly challenging scenario.
Furthermore, compared with studies using Super-Resolution
techniques such as SRGAN [12], which achieved a PSNR of
30.06 and SSIM of 0.936 for QR Code upscaling, our model,
focusing on inpainting missing parts, still provided competitive
results (PSNR 28.5, SSIM 0.91) and, importantly, verified
effectiveness through the scanning success rate, the primary
practical metric.

A key strength of our study was the use of Spectral
Normalization, which reduced unstable training and mitigated
Mode Collapse commonly encountered in GAN training. This
allowed the model to better learn the distribution of complete
QR Code data, resulting in improved reconstruction of fine
details and sharp black-and-white modules. In contrast, more
complex approaches like EHFP-GAN may require additional
data and fine-tuning to achieve maximum performance.
However, a limitation of our study was that processing time
could be slightly longer than the CNN (U-Net) method (0.35
seconds compared to 0.15 seconds per image), although the
improved accuracy was more significant for practical
applications.

Although the model performed well on synthetic data, its
effectiveness on real-world damage, such as stains, sun fading,
or perspective distortions, remained a challenge that required
further investigation.

VI. CONCLUSION

This study presented an approach for restoring damaged
QR Codes using Generative Adversarial Networks (GANs)
combined with Spectral Normalization (SN) to enhance
training stability. Experiments on a dataset with simulated
damage showed that the developed model could generate
restored QR Codes with high sharpness and strong similarity to
the original QR Codes, achieving an average PSNR of 28.5 dB
and SSIM of 0.91. Moreover, the model significantly improved
the scanning success rate of damaged QR Codes, reaching
88%, which outperformed the CNNs (U-Net) and basic GANs
methods under the same experimental conditions.

The use of Spectral Normalization in the Generator enabled
the model to effectively reconstruct complex details in the
restored regions, reduce artifacts, and allowed the model to
better learn the distribution of complete QR Code data.
Although the proposed model required slightly longer
processing time than other methods, the improved accuracy
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was highly significant for practical applications, particularly in
scenarios where QR Codes were severely damaged.

For limitations and future work, this study had certain
limitations that should be considered. The dataset used for
training consisted of synthetic data, which may not cover the
full variety of real-world damage. The model was also unable
to handle complex damage, such as QR Code distortions or
damage caused by reflections.

Overall, this study proved a promising approach for
restoring damaged QR Codes using GANs combined with
Spectral Normalization, which could be applied across various
industries and scenarios where QR Codes play a critical role.
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