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Abstract—This study investigates the application of head pose 

estimation (HPE) to assess visual attention in children with special 

needs (CwSN) during robot-assisted therapy sessions, focusing on 

its effectiveness and the attention patterns exhibited by these 

children. CwSN often faces unique challenges, such as sensory 

processing difficulties or delayed cognitive processing. Age and 

therapy duration also influenced attention levels, with younger 

children generally exhibiting shorter attention spans than older 

participants. Additionally, familiarity with technology, such as 

prior screen time at home, positively impacted engagement during 

robot-assisted therapy. An experimental study was conducted with 

30 children aged 2 to 7 years, including those with autism 

spectrum disorder (ASD), speech delay (SD), and attention-

deficit/hyperactivity disorder (ADHD). Using an integrated 

camera, head movements were tracked to analyse forward-facing 

head direction as an indicator of attention. The system achieved 

an overall accuracy of 82% and an average attention percentage 

of 65%, highlighting that visual attention varies significantly 

based on the type of disability, age, and therapy duration. The 

integration of the robot enhanced visual engagement across all 

groups, fostering improved interaction and attention. These 

findings emphasise the importance of tailoring robot-assisted 

therapy (RAT) to the specific needs and attention patterns of 

children with different disabilities, ages, and therapy histories, 

underscoring the potential of assistive robotics to optimise 

therapeutic outcomes in special education settings. This research 

highlights the potential of personalised RAT to improve social, 

cognitive, and motor skills. It offers evidence-based strategies for 

integrating assistive robotics into special education and 

therapeutic settings for CwSN. 
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I. INTRODUCTION 

Visual attention assessment is critical for understanding and 
enhancing therapeutic outcomes for CwSN. These children 
often exhibit atypical visual attention patterns, which impact 
their social interactions, communication skills, and learning 
processes [1] [2]. Accurate assessment of visual attention 
provides valuable insights into cognitive and behavioural states, 
enabling therapists to tailor interventions that promote 
engagement and skill development. Nevertheless, traditional 
observation-based assessments predominantly remain 
subjective and demonstrate variability across different sessions, 

thereby limiting the accuracy and reliability of therapeutic 
evaluations. 

To address these limitations, there is an increasing need for 
an AI-driven methodology capable of objectively quantifying 
attention through head pose estimation (HPE). The 
understanding and supervision of visual attention using such 
computational techniques are essential for improving 
engagement in therapeutic and educational settings, in 
alignment with the global movement towards intelligent and 
inclusive educational technologies. The HPE, specifically 
analysing head direction patterns, is significant in assessing 
attention in CwSN [1]. Monitoring head movements helps 
therapists understand where a child is focusing their attention 
during therapy sessions [2], enabling real-time feedback and 
adaptive strategies that foster improved social and cognitive 
outcomes [3]. 

However, quantifying and accurately assessing head 
direction in CwSN presents significant challenges. These 
children may struggle to maintain a consistent gaze or display 
rapid and unpredictable head movements, adding complexity to 
understanding head direction patterns unique to this group[4]. 
Gaining more profound insights into these patterns is crucial for 
tailoring interventions to support their developmental needs [5]. 

Despite significant advancements in head pose estimation, 
few studies have utilised these methodologies to evaluate visual 
attention among children during real-world therapeutic 
sessions. Current models primarily focus on adult datasets or 
controlled laboratory environments, thus limiting their 
applicability in educational and clinical contexts. This research 
aims to address this limitation by developing and validating a 
real-time head pose estimation framework designed to assess 
visual attention within the scope of robot-assisted therapy. 

This study evaluates head direction patterns in CwSN 
during RAT sessions. Using an integrated camera system to 
track head movements toward a service robot, we aim to 
identify distinct attention patterns associated with CwSN. The 
novelty of this work lies in the integration of a hybrid HPE 
algorithm into real-world therapy sessions, as well as the multi-
factor analysis of attention patterns across disability type, age, 
and therapy duration. These contributions advance the field of 
RAT by providing real-time, evidence-based insights that can 
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guide the design of more personalised engagement strategies 
and improve therapeutic outcomes for CwSN. 

The remainder of this study is organised as follows: 
Section II reviews related work on head pose estimation and 
visual attention assessment. Section III describes the 
methodology, including the proposed framework, data 
collection, and analysis procedures. Sections IV and V presents 
the results and discussion, while Section VI concludes the study 
with implications, limitations, and directions for future 
research. 

II. LITERATURE REVIEW 

A. Head Pose Estimation Techniques 

Head pose estimation (HPE) is pivotal in interpreting visual 
attention and social interactions, especially among CwSN. 
Various methods have been developed to estimate head pose, 
broadly categorised into feature-based, appearance-based, and 
hybrid approaches. Feature-based methods rely on detecting 
facial landmarks such as the eyes, nose, and mouth to infer head 
orientation [6]. The algorithms and techniques associated with 
these methods can be categorised into classical approaches, 
machine learning-based models, deep learning algorithms [16], 
and hybrid techniques. Classical algorithms, such as Active 
Shape Models (ASM) and Active Appearance Models (AAM), 
focus on statistical shape modelling and texture analysis [7][8]. 

At the same time, machine learning-based approaches 
utilise classifiers like Support Vector Machines (SVM) and 
Random Forests for head pose prediction [9][10][11]. Deep 
learning algorithms, including Convolutional Neural Networks 
(CNNs) and heatmap regression methods, leverage advanced 
architectures to enhance accuracy and robustness in landmark 
detection and pose estimation [12]. Appearance-based methods 
employ machine learning techniques to analyse pixel intensity 
patterns across the face without explicitly detecting facial 
features. CNNs have been widely adopted in this category due 
to their robustness in handling variations in lighting and facial 
expressions. These methods have advanced with the 
development of deep learning, enabling more accurate and 
efficient head pose estimation. 

Significant advancements in HPE techniques for assessing 
visual attention in CwSN have been achieved. Deep learning 
approaches, including CNNs and transformer-based models, 
have gained prominence due to their ability to handle the 
complex and variable head movement characteristic of CwSN 
populations. These models have been optimised for real-time 
performance, enabling seamless integration into interactive 
therapy sessions without causing delays or disruptions [13][14]. 

Hybrid techniques, such as the Perspective-n-Point (PnP) 
algorithm, integrate 2D facial landmarks with 3D head models 
for precise orientation estimation [6][10]. These advancements 
contribute significantly to the field of HPE, with applications 
spanning robotics, healthcare, and human-computer 
interaction. While effective, these methods can face challenges 
with occlusions and variations in facial expressions, which are 
common in real-world settings. 

Researchers have developed non-intrusive methods using 
robot cameras and AI-based frameworks such as dlib and 

MediaPipe to capture head movements without requiring 
children to wear any devices. Techniques that leverage facial 
landmark detection and 3D modelling have improved the 
accuracy of HPE, even in uncontrolled environments with 
varying lighting conditions and occlusions. These 
advancements are essential for creating responsive therapeutic 
tools that can adapt to the unique behaviours of CwSN. 

In the context of CwSN, real-time and adaptive HPE 
techniques are crucial. CwSN may exhibit rapid or atypical 
movements, making robust and flexible estimation methods 
essential. Recent developments have focused on enhancing 
these methods to increase accessibility and practicality for use 
in therapeutic settings, ensuring minimal intrusion while 
maintaining maximum accuracy. 

B. Visual Attention in Children with Special Needs 

Children with special needs (CwSN) often face challenges 
in maintaining attention, particularly in social contexts, where 
they may focus less on facial features and eye regions than 
typically developing peers, instead directing their attention 
toward objects or patterns. This atypical visual attention can 
hinder the development of social and communication skills, 
making it a critical area of interest for researchers. Studies 
employing eye-tracking technology have revealed that these 
children spend significantly [15] less time engaging with social 
stimuli, such as people, and more time attending to non-social 
elements within their environment. These findings suggest that 
interventions to redirect their visual attention toward socially 
relevant stimuli could enhance social skill acquisition [17]. 
Additionally, difficulties with joint attention and the ability to 
share a focus on an object or activity with another person are 
common and significantly impact language development. 
Targeted strategies to improve joint attention could, therefore, 
play a vital role in supporting the developmental needs of these 
children [18]. 

Recent advancements in research and technology have 
paved the way for innovative interventions tailored to the 
unique requirements of CwSN. Visual dysfunction, prevalent in 
this population, necessitates diagnostic approaches that extend 
beyond traditional visual acuity assessments. [19]. For 
example, integrating Augmented Reality (AR) in learning 
environments has demonstrated the potential to improve visual 
attention by providing multi-sensory experiences that actively 
engage children [20]. Additionally, tools such as 3D-printed 
toys have been shown to improve attention spans and fine motor 
skills in children with autism [21]. Environmental factors also 
play a critical role, with studies indicating that exposure to 
greenery, such as classroom windows overlooking natural 
landscapes, can positively impact sustained attention levels. 
Such findings highlight the importance of creating enriched 
environments and using adaptive tools to foster visual and 
cognitive engagement in CwSN [22] [23]. 

Educational strategies and structured interventions further 
enhance visual attention and related skills. Visual media, such 
as flashcards, have been shown to improve memory and 
recognition in autistic children [24]. Art provides an effective 
medium for visual expression among CwSN [25]. These 
strategies align with cognitive load theory, which emphasises 
tailoring instructional methods to manage cognitive demands 
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and optimise learning outcomes. By understanding how CwSN 
allocate their visual attention, therapists and educators can 
design targeted interventions that enhance engagement with 
social stimuli and promote meaningful improvements in 
communication, social interaction, and overall learning. 

C. Robot-Assisted Therapy 

Robot-assisted therapy (RAT) has emerged as a promising 
tool for supporting CwSN, particularly enhancing their social, 
emotional, and cognitive skills. Recent advancements have 
focused on designing robots to address specific challenges 
faced by children with autism. For instance, robot 
functionalities tailored for Applied Behaviour Analysis (ABA) 
therapy demonstrate the ability to stimulate cognitive skills 
while adapting to individual limitations [26]. A dual-cycle 
therapy model emphasising the integration of therapists as 
teleoperators, which enhances the effectiveness of robot-
mediated interactions with neurodivergent children [27]. 

Social assistive robots have also been shown to facilitate 
emotional expression and secure social interactions in therapy 
sessions. These robots provide a judgment-free environment, 
significantly improving engagement and therapeutic outcomes 
in children with autism spectrum disorders (ASD) [28]. 
Furthermore, the use of social humanoid robots as mediators in 
interventions emphasises their potential to promote 
communication skills and interaction between children, 
teachers, and therapists [29]. The importance of advancing 
robot design lies in better accommodating the needs of CwSN. 

In addition to fostering social and emotional growth, robot-
assisted therapy is being explored in broader contexts, such as 
mental health interventions and physical skill development. The 
potential of robots to engage adolescents in therapeutic settings, 
with implications for similar applications in CwSN [30]. 
Integrating interactive elements in robot-mediated therapy has 
proven effective in enhancing engagement, indicating that these 
tools hold significant promise for complementing traditional 
therapy methods across diverse therapeutic contexts. 

In summary, previous research has demonstrated promising 
methodologies for head pose estimation and attention tracking; 
however, most are confined to controlled environments or adult 
populations. Furthermore, the integration of these techniques 
into robot-assisted therapy remains insufficiently explored. To 
address these limitations, this study presents a hybrid 
framework combining Dlib and MediaPipe for robust head pose 
estimation and employs it to assess visual attention among 
children with special needs. 

III. METHODOLOGY 

The study involved an in-situ experiment at the Kizzu Kids 
Rehabilitation and Enrichment Centre, focusing on CwSN. 
Service robots were integrated into the participants' standard 
therapy routines in these sessions. Data was collected during 
these sessions, capturing video recordings, images, and tabular 
data in CSV files. These multimodal data sources were utilised 
to investigate visual attention patterns, particularly analysing 
how the children directed their gaze and engaged with their 
surroundings during therapy. 

The collected data were used to evaluate a real-time system 
for measuring visual attention. Section III A describes the 
experimental procedure, outlining the data acquisition process 
and the specific formats for the captured data. In Section III B, 
the study introduces system architecture, detailing its 
components and incorporating a widely adopted HPE 
algorithm. This algorithm enables the assessment of gaze 
direction and engagement levels, thereby facilitating an 
analysis of the children's visual attention during RAT sessions. 

A. Data Gathering from the In-situ Experiment 

This section describes an experiment in which therapy 
sessions were recorded to create a database for machine 
learning research. These sessions involved the use of service 
robots to support CwSN, including those diagnosed with ASD, 
ADHD, and SD. The robot facilitated app-based activities that 
complemented therapy sessions by providing structured tasks 
across multiple domains, including communication 
(AutiSpark), social-emotional (LogicLike), cognitive (Khan 
Academy Kids), and motor domains (ABC Kids). These apps 
functioned primarily as mediators, ensuring the children remain 
engaged with the robot interface. At the same time, the core 
focus of the study was the integration of the hybrid head pose 
estimation (HPE) system. During these sessions, the robot’s 
integrated camera and HPE workflow (dlib, MediaPipe, and 
PnP) simultaneously recorded and analysed head movements to 
quantify visual attention in real-time. 

Thirty CwSN underwent the RAT to train skills across 
multiple domains, highlighting the potential of integrating 
technology and robotics into therapeutic intervention. 

1) Participants: Thirty children diagnosed with ASD, 

ADHD, and SD were selected who are currently receiving 

treatment at the Kizzu Kids Rehabilitation and Enrichment 

Centre (Malaysia), a specialised institution for the rehabilitation 

of CwSN. 

Ethical approval was obtained from the ethics committees 
of Universiti Teknologi MARA and Kizzu Kids Rehabilitation 
and Enrichment Centre. All the parents signed consent forms 
before their children were included in the study. Children were 
free to leave the experiment at any time and were always 
supported by a professional educator, other than the researcher. 

2) The robot therapist: Temi 3 service robot: The robot that 

led the RAT was the Temi 3 service robot (see Fig. 1), a 

telepresence robot and a trustworthy autonomous personal 

assistant focused on high-quality video. By combining artificial 

intelligence and autonomous navigation, it can recognise and 

follow people on demand, memorise predefined locations, and 

navigate effortlessly in various settings, including hotels, 

restaurants, shops, businesses, educational institutions, 

healthcare facilities, and more. 

This study utilised the default settings and standard 
equipment of the Temi 3 robot unless otherwise specified. The 
Temi 3 has multiple advanced cameras designed to enhance its 
functionalities. It features a 13-megapixel high-resolution 
camera with autofocus, capable of recording 1080p video at 30 
frames per second (FPS), a 120-degree field of view (FOV), a 
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5-element lens, and a hybrid infrared (IR) filter. Additionally, 
it includes a wide-angle 13-megapixel camera for remote 
navigation, offering a 95-degree FOV and 1080p video 
recording at 30 FPS. Complementing these is a Time-of-Flight 
(TOF) depth camera, which operates at 30 FPS with a 90-
degree FOV and an effective range of up to 5 meters, enabling 
depth perception essential for navigation and object detection. 
Among its software features, Temi 3 includes face detection 
and tracking capabilities, which are employed in in-situ 
experiments to guide the robot toward the child during 
interactions. 

 
Fig. 1. The Temi 3 Robot. The camera used for recording the child's head 

pose is the one on top. 

3) Protocol for the In-situ experiments: To evaluate the 

children’s attention, this study focused on participants who 

were already enrolled in therapy sessions of varying durations 

and had been diagnosed by specialists before commencing the 

program. In this research, pre-existing app-based learning 

modules were downloaded and integrated into a robot interface 

to facilitate interaction between the children and the robot 

during therapy sessions. These modules were carefully selected 

to align with the therapeutic needs of the children, incorporating 

tasks adapted to their developmental levels. These tasks are 

designed to observe how children visually engage with the 

robot and respond to visual stimuli presented through the 

robot's interface. 

The robot served as a mediator during the therapy sessions, 
integrating pre-existing apps and a camera system to facilitate 
interaction and observation. It was included in the children’s 
daily activities and identified through a specific “visual 
schedule”. A visual schedule communicates the sequence of 
upcoming activities or events using objects, photographs, icons, 
words, or a combination of these supports. During each session, 
the children engaged in tasks presented through the robot, with 
the apps delivering visual stimuli and the camera capturing data 
to observe and analyse the children’s visual attention. 

To facilitate interaction, the robot-led sessions were 
conducted in the same room where the children typically 

received their therapy, ensuring a familiar and comfortable 
environment. The robot was positioned in front of the child and 
initially placed at a distance of at least 0.5 meters. Children 
were allowed to adjust their seating position to enhance 
comfort. Each session focused on a single activity to evaluate 
visual attention, with tasks presented in a randomised sequence 
to minimise repetitive or predictable patterns. The robot 
introduced each activity using clear and straightforward verbal 
instructions and visual prompts to engage the children in the 
tasks effectively (see Fig. 2). 

 
Fig. 2. An example of a child–robot interaction during the therapeutic 

session. A therapist was always present nearby to support the child. 

A therapist familiar with the children’s daily treatment 
routines was present during the sessions to provide security and 
support. The therapist offered positive reinforcement through 
verbal cues, such as "good" or "right", and, in some instances, 
physical reinforcement, such as a gentle touch or pat. These 
reinforcement strategies were individualised to meet each 
child’s needs and address their unique behaviours. 

Before the main sessions, an introductory session was 
conducted to familiarise the children with the robot and 
minimise potential novelty effects. During this preliminary 
session, the robot was introduced in a non-therapeutic context 
for approximately ten minutes, allowing the children to 
acclimate to its presence in a relaxed and informal manner. 

4) Video recording and annotation 

 
Fig. 3. The frame is extracted from four videos recorded by the robot’s 

camera (the child interacts with the robot, while the system records and 

annotates the head position in real-time). 
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Fig. 3 above showcases a series of frames extracted from 
videos recorded by the Temi 3 robot’s camera, capturing 
various head poses of a child during the interaction. Each frame 
represents a different head position, annotated in real-time by 
the system. The poses include: a) Forward, where the child 
looks directly at the camera; b) Looking Down, where the child 
tilts their head downward; c) Looking Up, with the child tilting 
their head upward; d) Looking Right, with the head turned to 
the right; e) Looking Left, where the child turns their head to 
the left; and f) Face Not Detected, where the face is obscured 
or not visible to the system. These annotated frames 
demonstrate the system's capability to record and categorise 
head positions during live interactions, essential for analysing 
visual attention and engagement. 

B. Head Direction Detection Algorithm 

 
Fig. 4. Comprehensive workflow of the head pose estimation. 

Fig. 4 illustrates a comprehensive workflow for HPE, 
integrating dlib's face detector and MediaPipe Face Mesh as 
complementary modules for robust facial landmark detection 
and analysis. The hybrid approach, which combines Dlib’s 68-
point landmark predictor with MediaPipe Face Mesh, was 
selected to leverage Dlib's geometric precision alongside the 
real-time tracking stability provided by MediaPipe. This 
integration enhances accuracy across diverse lighting 
conditions and head movements, which are commonly 
encountered during therapeutic sessions involving children. 

To estimate the three-dimensional head orientation, the 
Perspective-n-Point (PnP) algorithm was employed to assess 
the three-dimensional head pose due to its efficiency and 
appropriateness for monocular camera input, thereby ensuring 
compatibility with standard RGB webcams integrated into the 
robotic platform. 

Input video frames from a camera are preprocessed through 
two distinct pathways. The first pathway utilises dlib, where 
frames are converted to grayscale, facial regions are detected, 
and 68-point facial landmarks are extracted. This pathway 
ensures accurate detection and tracking of facial features under 
various lighting and environmental conditions. In the second 
pathway, MediaPipe’s Face Mesh processes the input frames 
by converting them to RGB format and, if necessary, flipping 
them for consistency. The frames are then set to a non-writable 
state to optimise computational performance before detecting 
facial landmarks. These landmarks undergo iterative 
refinement to extract key points, which are further processed to 
generate 2D and 3D coordinate mappings. This dual-pathway 
approach enhances the system's robustness, enabling it to 

accommodate diverse input formats while maintaining 
precision across various scenarios. 

The extracted key points from both pathways are input into 
the HPE module, which employs the Perspective-n-Point (PnP) 
algorithm for pose computation. This algorithm calculates head 
orientation by solving for rotation and translation vectors, 
which are then decomposed to derive X, Y, and Z rotation 
angles. These angles represent the real-time spatial orientation 
of the head, enabling precise monitoring and tracking of head 
movements. The integration of the dlib and MediaPipe modules 
ensures that the system achieves a balance between 
computational efficiency and detection accuracy. 

Finally, the outputs from the workflow are presented in 
multiple formats to support diverse analytical needs. Annotated 
videos are generated in MP4 format, individual frame images 
are saved as JPG files, and a CSV file is produced to log 
timestamps, rotation angles, and head directions data. These 
multimodal outputs provide a comprehensive dataset for 
analysing head pose dynamics, thereby supporting applications 
in visual attention assessment and behavioural research. The 
modular design of this workflow ensures adaptability and 
effectiveness for real-time analysis in therapeutic 
environments. 

C. Performance Measures 

The forward-facing head pose measure was calculated to 
evaluate engagement and focus of the participants during 
therapy sessions, providing a quantitative metric for assessing 
visual attention. This was achieved by determining the total 
number of instances where the forward head pose was detected 
in real-time using head pose estimation algorithms. The 
forward-facing pose, which indicates that the child is looking 
directly at the task or stimuli, was analysed explicitly as a key 
performance measure of attention. 

To calculate the frequency of forward-facing head poses as 
a measure of attention, the following formula was used: 

Frequency of Forward Head Pose (%) = 
𝑇

(𝑇+𝐹)
 x 100  (1) 

In this formula, T represents the total number of instances 
where the system correctly detected the forward head pose and 
verified its accuracy based on video frame analysis, indicating 
the participant's direct focus on the task or stimulus. F 
represents the total number of instances where the system 
detected a non-forward head pose (left, right, up, or down). 
Still, upon reviewing the video frames, these instances were 
verified to be correct forward head poses. This formula 
provides a normalised percentage of forward-facing head poses, 
enabling a consistent evaluation of visual attention during the 
therapy session. This formula provided a normalised percentage 
of forward-facing poses, enabling a consistent and comparable 
assessment across participants and sessions. 

The forward-facing head pose was considered a reliable 
indicator of attention, reflecting how participants maintained 
their focus on the task or robotic intervention during therapy. 
Higher frequencies of forward-facing poses were interpreted as 
higher levels of engagement and attention, highlighting the 
ability of the participant to stay visually connected to the 
activity. 
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This analysis offered valuable insights into engagement 
patterns, emphasising forward-facing head poses as a direct 
measure of visual attention. Using this metric, the study 
demonstrated the importance of monitoring forward-facing 
head poses as a performance measure, particularly for children 
with special needs. This approach provides an objective and 
real-time method for evaluating engagement, offering 
actionable data to optimise therapy strategies and improve 
outcomes. 

IV. RESULTS 

This section presents the experimental outcomes obtained 
from the head pose estimation framework, including detection 
accuracy, frame rate performance, and attention classification 
metrics across participant groups. 

A. Accuracy of Head Direction Detections 

The head direction detection algorithm accurately identified 
and categorised the five predefined head orientations: forward, 
left, right, up, and down. Validation against the automated 
annotated dataset showed an overall accuracy of 82% across all 
participants and sessions. Fig. 5 shows the accuracy percentage 
for each participant. 

 
Fig. 5. The overall accuracy percentage for each participant. 

Among the 30 participants, a clear contrast in accuracy rates 
was observed, with S4 and S19 recording the lowest rates and 
S1 and S16 achieving the highest. S4 achieved 57% accuracy, 
while S19 recorded 60%. Both participants are relatively 
inexperienced in therapy, with S4 having attended only a single 
session and S19 completing four sessions. This limited 
exposure may have contributed to their lower performance, as 
they are likely still developing familiarity and engagement with 
the tasks. Additionally, their young ages, 2 years for S4 and 4 
years for S19, may reflect less developed cognitive and 
attentional abilities than older participants, further influencing 
their accuracy levels. 

In contrast, S1 and S16 demonstrated the highest accuracy 
rates, with S1 attaining 97% and S16 achieving 93%. Their 
superior performance can be attributed to their extensive 
therapeutic exposure and structured intervention programs. S1, 
a 4-year-old female, has undergone eight one-to-one therapy 
sessions for personalised guidance and consistent engagement. 
Similarly, S16, a 6-year-old male, has participated in an 
intensive Early Intervention Program (EIP), attending sessions 
five days per week for 24 months. This rigorous and targeted 

approach likely enhanced their cognitive and attentional 
abilities, as well as their familiarity with therapeutic tasks, 
enabling them to outperform their peers. 

B. Percentages of Attention Among Children with Special 

Needs 

The attention percentages of CwSN were analysed to 
understand their engagement levels during interactions. 
Focusing on the proportion of time they maintained a forward 
head pose, a key indicator of attention, the analysis aimed to 
provide insights into their focus patterns. This measure is 
particularly significant in assessing how children with special 
needs respond to stimuli in structured settings, highlighting 
their ability to stay engaged and attentive over time. 

 
Fig. 6. The overall visual attention percentage for each participant. 

Fig. 6 illustrates the attention percentage for each 
participant during the study, showcasing a wide range of 
engagement levels. The average attention percentage is 65%, 
with notable variations at both extremes. These differences 
highlight individual factors that influence the participant's 
ability to remain attentive during therapy sessions, including 
therapy duration, the severity of autism, age, and home 
environment. 

The participant with the highest percentage of attention is 
S9, achieving an impressive 92%. S9 is a 5-year-old child with 
mild autism who has undergone 10 months of therapy and 
regularly experiences screen time at home. These factors may 
contribute to their higher attention level, as mild autism and 
longer therapy duration will likely enhance their ability to focus 
and engage with the task. Additionally, familiarity with screen-
based interactions at home could make the experimental setup 
more engaging and comfortable for them. 

In contrast, the participant with the lowest attention 
percentage is S5, recording just 47%. S5 is a 2-year-old child 
with ASD who has only undergone 9 months of therapy and 
does not have screen time at home. These factors might explain 
their lower attention level, as young ages and limited therapy 
duration can pose more significant challenges in maintaining 
focus. Furthermore, the lack of exposure to screens may make 
the experimental setup unfamiliar or less engaging for S5. 
These findings emphasise the importance of tailoring 
interventions to individual needs and considering factors such 
as therapy duration, different disabilities, and home 
environment when analysing engagement levels. 
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The differences in attention percentages highlight the 
importance of accounting for individual variability when 
interpreting these results. Participants with higher attention 
percentages, such as S9, may reflect the effectiveness of the 
experimental design in fostering engagement, particularly for 
children who benefit from longer therapy and familiar 
environments. Conversely, participants with lower attention 
levels, like S4, point to areas for improvement, such as 
minimising distractions or adapting activities better to suit the 
needs of children with more severe challenges. Understanding 
these patterns provides valuable insights for designing more 
inclusive and effective interventions, ensuring all participants 
can maximise their engagement during similar studies or 
therapeutic settings. 

C. Type of Disability and Attention Pattern Analysis 

The analysis of head direction among thirty children with 
special needs revealed distinct patterns among the three 
diagnostic groups: Autism Spectrum Disorder (ASD), Sensory 
Disorder (SD), and Attention Deficit Hyperactivity Disorder 
(ADHD). 

  
Fig. 7. The average of visual attention for different types of disability . 

Fig. 7 illustrates the average percentages of visual attention 
across three categories of disabilities. The results indicate that 
children with ADHD (S20, S21, and S27) exhibit the highest 
average attention percentage at 81%, followed by those with SD 
at 63% and ASD at 63%. This suggests that the type of 
disability significantly influences attention levels, with children 
with ADHD demonstrating comparatively higher focus during 
activities. 

From observations and discussions with a therapist during 
the therapy sessions, it was noted that children with ADHD tend 
to exhibit hyperfocus on tasks that are highly stimulating or 
engaging. These behaviours align with their preference for 
dynamic and interactive activities that effectively capture their 
attention. Additionally, shorter, highly interactive sessions are 
efficient in maintaining focus. These structured and engaging 
therapy strategies likely contribute to the higher average 
attention percentages observed in children with ADHD 
compared to other disability groups. Children with ASD and SD 
might face different challenges that affect attention, such as 
sensory processing difficulties or delayed cognitive processing, 
which could contribute to slightly lower average attention 
levels compared to children with ADHD. These findings may 
highlight a strength within the ADHD population with an 

ability to hyperfocus under the right conditions, which could be 
leveraged to improve therapeutic and educational outcomes. 

D. Age-Based Variations in Attention Percentages Analysis 

Visual attention plays a critical role in understanding the 
engagement and focus levels of CwSN during therapy sessions. 
By analysing attention percentages across different age groups, 
developmental patterns influencing their ability to concentrate 
on tasks can be identified. Below is a graph (see Fig. 8) 
illustrating the average attention percentages for children aged 
2 to 7, which highlights the relationship between age and visual 
attention capabilities. 

 
Fig. 8. The average visual attention for different ages. 

The results reveal a noticeable trend where attention 
percentages increase with age, peaking at 76% for 6-year-olds 
before slightly declining to 67% for 7-year-olds. Younger 
children, particularly 2-year-olds (S4 and S5), exhibit the 
lowest attention levels at 48%, indicating developmental 
differences in focus and engagement during therapy sessions. 
This pattern suggests that as children grow older, their ability 
to maintain attention improves, likely due to increased 
cognitive development and maturity. However, the slight 
decrease in the oldest age group (7 years) may reflect varying 
individual differences or a plateau in attention development. 
These findings demonstrate that attention levels tend to align 
with developmental maturity as children grow older, 
highlighting the natural progression of focus and engagement 
with increasing age. 

E. Impact of Therapy Duration on Attention 

Therapy duration plays a significant role in influencing the 
attention levels of CwSN. Analysing attention percentages 
across different therapy durations provides valuable insights 
into how the length of therapy impacts focus and engagement 
over time. It is important to note that the children in this study 
were interacting with a robot for the first time, and their 
unfamiliarity with the robotic environment may have 
influenced their attention levels. The novelty of the robot could 
have initially captured their curiosity and engagement. 

Fig. 9 illustrates the average percentages of visual attention 
for CwSN across varying therapy durations, ranging from 6 
months to 36 months. The data reveal that children in the 6-
month therapy group exhibited the highest attention levels at 
67%. However, as therapy duration increased to 12, 24, and 36 
months, attention percentages slightly decreased and stabilised 
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at around 63-64%. This pattern suggests that shorter therapy 
durations may initially result in heightened attention, 
potentially due to the novelty effect and intensive engagement 
during the early stages of therapy. In contrast, stabilising 
attention levels over longer therapy durations may indicate that 
children adapt to the therapy routines or experience a plateau in 
attentional improvement. These findings underscore the need to 
revise and adjust therapeutic strategies over time to sustain 
engagement and optimise long-term outcomes. 

 
Fig. 9. The percentages of visual attention for different therapy durations. 

V. DISCUSSION 

The results indicate that the proposed framework effectively 
identifies head orientation with high accuracy and stability. 
This section discusses the implications of these findings, 
compares them with previous studies, and highlights potential 
applications as well as existing limitations. 

The outcomes of this study demonstrate the feasibility of 
integrating a head pose estimation algorithm within the context 
of robot-assisted therapy (RAT) to evaluate visual attention in 
children with special needs (CwSN). The system achieved an 
overall head orientation detection accuracy of 82%, alongside 
an average attention rate of 65%, indicating consistent 
performance across diverse participant groups and 
experimental scenarios. These results align with previous 
studies on real-time head pose estimation, which reported 
accuracy rates ranging from 78% to 85% under controlled 
conditions [31][32][33]. This consistency supports the 
robustness of the hybrid Dlib–MediaPipe–PnP methodology, 
demonstrating its resilience in the dynamic and unpredictable 
environment of therapy sessions. 

Notably, the findings also reveal considerable variability in 
the results, suggesting that factors such as age, therapy 
experience, and type of disability have a substantial impact on 
engagement levels. This variation highlights the importance of 
considering developmental and contextual variables when 
interpreting performance metrics, as children with greater 
therapy exposure and familiarity with structured activities tend 
to achieve higher accuracy and attention scores. 

Beyond technical validation, the study emphasises the 
broader implications of integrating robotics into therapeutic 
practice. RAT not only offers an objective and real-time method 
for attention monitoring but also facilitates opportunities for 
tailoring interventions to individual needs. The observed 
differences across various diagnostic groups and therapy 

durations indicate that a “one-size-fits-all” strategy may be 
inadequate, and that customised approaches are imperative to 
maintain long-term engagement. 

These findings contribute to the growing body of evidence 
supporting artificial intelligence (AI) and robotics as effective 
tools for enhancing therapeutic precision, inclusivity, and 
personalisation. By integrating computer vision with 
behavioural analytics, the proposed framework demonstrates 
the potential of AI-driven systems to objectively quantify visual 
attention, thereby providing therapists with actionable data to 
support informed clinical decision-making. This integration 
represents a significant step toward data-informed, child-
centred therapy environments that foster measurable 
developmental outcomes and elevate the overall quality of 
interventions for children with special needs. 

Although the proposed framework demonstrates robust 
performance, several limitations should be acknowledged. The 
sample size was relatively small, and the controlled 
experimental setting may not fully reflect the variability and 
complexity of real-world therapeutic environments. 
Furthermore, external factors such as inconsistent lighting 
conditions and occasional occlusion intermittently influenced 
detection accuracy, suggesting the need for further refinement 
and validation in more diverse and naturalistic contexts. 

Notwithstanding these limitations, the findings hold 
significant implications for therapeutic practice and special 
education. By enabling objective monitoring of attention, the 
framework allows therapists to tailor interventions and track 
engagement patterns over time, thereby enhancing therapeutic 
precision and potentially improving developmental outcomes 
for children with special needs. 

In summary, this discussion highlights that the proposed 
hybrid head pose estimation framework demonstrates strong 
accuracy, real-time performance, and adaptability across 
diverse therapeutic contexts. The variations observed among 
participants underscore the importance of personalised and 
data-driven therapy strategies, wherein AI-based tools serve to 
complement rather than replace human expertise. By 
transforming head orientation data into meaningful attention 
metrics, this study bridges computational analysis with 
behavioural interpretation, enabling a more precise 
understanding of engagement in children with special needs. 
These insights establish a solid foundation for advancing 
intelligent robot-assisted systems and inform the development 
of future research directions in data-driven therapeutic 
interventions. 

VI. CONCLUSION 

The findings of this study highlight the significance of head 
direction patterns in assessing visual attention among children 
with special needs (CwSN), with variations in engagement, 
such as the high focus of S9 versus the challenges faced by S5, 
underscoring the influence of disability severity, therapy 
duration, and age. These results have important implications for 
robot-assisted therapy (RAT), as head direction data can inform 
the design of therapeutic activities better aligned with 
individual needs. Nonetheless, the study is limited by its 
relatively small sample size, variability in participant profiles, 
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and occasional inaccuracies in head pose classification. These 
limitations could be mitigated through larger, multicenter 
studies, the inclusion of multimodal behavioural measures (e.g., 
eye tracking, body posture), and further optimisation of the 
hybrid HPE algorithm to improve robustness in real-world 
conditions. Overall, the study emphasises the potential of head 
direction analysis in improving visual attention assessment and 
optimising RAT, offering a promising direction for enhancing 
therapeutic outcomes for CwSN. 

This study presents a validated head pose estimation 
framework designed to quantify visual attention in children 
with special needs during robot-assisted therapy. Theoretically, 
it advances the understanding of how AI-based visual cues can 
represent attentional behaviour in non-verbal or minimally 
responsive participants. Practically, the system provides a non-
intrusive solution that enhances engagement assessment within 
therapeutic and inclusive learning settings. Future research will 
involve larger participant groups, integration with eye-gaze and 
emotion detection technologies, and deployment in real 
therapeutic environments to validate scalability and 
adaptability. 

Overall, the study establishes a solid foundation for 
the integration of AI-driven attention assessment in therapy, 
bridging computational modelling with behavioural science. By 
promoting more personalised, data-informed, and child-centred 
approaches, this research contributes to the evolving landscape 
of intelligent robot-assisted therapy, paving the way for future 
innovations that enhance developmental outcomes for CwSN. 
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