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Abstract—This study investigates the application of head pose
estimation (HPE) to assess visual attention in children with special
needs (CwSN) during robot-assisted therapy sessions, focusing on
its effectiveness and the attention patterns exhibited by these
children. CwSN often faces unique challenges, such as sensory
processing difficulties or delayed cognitive processing. Age and
therapy duration also influenced attention levels, with younger
children generally exhibiting shorter attention spans than older
participants. Additionally, familiarity with technology, such as
prior screentime at home, positively impacted engagement during
robot-assisted therapy. An experimental study was conducted with
30 children aged 2 to 7 years, including those with autism
spectrum disorder (ASD), speech delay (SD), and attention-
deficit/hyperactivity disorder (ADHD). Using an integrated
camera, head movements were tracked to analyse forward-facing
head direction as an indicator of attention. The system achieved
an overall accuracy of 82% and an average attention percentage
of 65%, highlighting that visual attention varies significantly
based on the type of disability, age, and therapy duration. The
integration of the robot enhanced visual engagement across all
groups, fostering improved interaction and attention. These
findings emphasise the importance of tailoring robot-assisted
therapy (RAT) to the specific needs and attention patterns of
children with different disabilities, ages, and therapy histories,
underscoring the potential of assistive robotics to optimise
therapeutic outcomes in special education settings. This research
highlights the potential of personalised RAT to improve social,
cognitive, and motor skills. It offers evidence-based strategies for
integrating assistive robotics into special education and
therapeutic settings for CwSN.

Keywords—Head pose estimation; visual attention; robot-
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I.  INTRODUCTION

Visual attention assessment is critical for understanding and
enhancing therapeutic outcomes for CwSN. These children
often exhibit atypical visual attention patterns, which impact
their social interactions, communication skills, and leaming
processes [1] [2]. Accurate assessment of visual attention
provides valuableinsights into cognitiveandbehavioural states,
enabling therapists to tailor interventions that promote
engagement and skill development. Nevertheless, traditional
observation-based assessments predominantly remain
subjective anddemonstrate variability across different sessions,
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thereby limiting the accuracy and reliability of therapeutic
evaluations.

To address these limitations, there is an increasing need for
an Al-driven methodology capable of objectively quantifying
attention through head pose estimation (HPE). The
understanding and supervision of visual attention using such
computational techniques are essential for improving
engagement in therapeutic and educational settings, in
alignment with the global movement towards intelligent and
inclusive educational technologies. The HPE, specifically
analysing head direction patterns, is significant in assessing
attention in CwSN [1]. Monitoring head movements helps
therapists understand where a child is focusing their attention
during therapy sessions [2], enabling real-time feedback and
adaptive strategies that foster improved social and cognitive
outcomes [3].

However, quantifying and accurately assessing head
direction in CwSN presents significant challenges. These
children may struggle to maintain a consistent gaze or display
rapid and unpredictable head movements, adding complexity to
understanding head direction patterns unique to this group[4].
Gainingmore profound insights intothese patterns is crucial for
tailoringinterventions to supporttheir developmental needs [5].

Despite significant advancements in head pose estimation,
few studies have utilised these methodologies to evaluate visual
attention among children during real-world therapeutic
sessions. Current models primarily focus on adult datasets or
controlled laboratory environments, thus limiting their
applicability in educational and clinical contexts. This research
aims to address this limitation by developing and validatinga
real-time head pose estimation framework designed to assess
visual attention within the scope of robot-assisted therapy.

This study evaluates head direction patterns in CwSN
during RAT sessions. Using an integrated camera system to
track head movements toward a service robot, we aim to
identify distinct attention patterns associated with CwSN. The
novelty of this work lies in the integration of a hybrid HPE
algorithm into real-world therapy sessions, as well as the multi-
factor analysis of attention patterns across disability type, age,
and therapy duration. These contributions advance the field of
RAT by providing real-time, evidence-based insights that can
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guide the design of more personalised engagement strategies
and improve therapeutic outcomes for CwSN.

The remainder of this study is organised as follows:
Section II reviews related work on head pose estimation and
visual attention assessment. Section III describes the
methodology, including the proposed framework, data
collection, and analysis procedures. Sections IV and V presents
theresults and discussion, while Section VIconcludes the study
with implications, limitations, and directions for future
research.

II. LITERATURE REVIEW

A. Head Pose Estimation Techniques

Head pose estimation (HPE) is pivotal in interpreting visual
attention and social interactions, especially among CwSN.
Various methods have been developed to estimate head pose,
broadly categorised into feature-based, appearance-based, and
hybrid approaches. Feature-based methods rely on detecting
facial landmarks such as the eyes, nose,and mouth to infer head
orientation [6]. The algorithms and techniques associated with
these methods can be categorised into classical approaches,
machine learning-based models, deep learning algorithms [16],
and hybrid techniques. Classical algorithms, such as Active
Shape Models (ASM) and Active Appearance Models (AAM),
focus on statistical shape modelling and texture analysis [7][8].

At the same time, machine learning-based approaches
utilise classifiers like Support Vector Machines (SVM) and
Random Forests for head pose prediction [9][10][11]. Deep
learning algorithms, including Convolutional Neural Networks
(CNNs) and heatmap regression methods, leverage advanced
architectures to enhance accuracy and robustness in landmark
detection and pose estimation [ 12]. Appearance-based methods
employ machine learning techniques to analyse pixel intensity
patterns across the face without explicitly detecting facial
features. CNNs have been widely adopted in this category due
to their robustness in handling variations in lighting and facial
expressions. These methods have advanced with the
development of deep learning, enabling more accurate and
efficient head pose estimation.

Significant advancements in HPE techniques for assessing
visual attention in CwSN have been achieved. Deep learning
approaches, including CNNs and transformer-based models,
have gained prominence due to their ability to handle the
complex and variable head movement characteristic of CwSN
populations. These models have been optimised for real-time
performance, enabling seamless integration into interactive
therapy sessions without causingdelays or disruptions [13][14].

Hybrid techniques, such as the Perspective-n-Point (PnP)
algorithm, integrate 2D facial landmarks with 3D head models
for precise orientation estimation [6][10]. These advancements
contribute significantly to the field of HPE, with applications
spanning robotics, healthcare, and human-computer
interaction. While effective, these methods can face challenges
with occlusions and variations in facial expressions, which are
common in real-world settings.

Researchers have developed non-intrusive methods using
robot cameras and Al-based frameworks such as dlib and
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MediaPipe to capture head movements without requiring
children to wear any devices. Techniques that leverage facial
landmark detection and 3D modelling have improved the
accuracy of HPE, even in uncontrolled environments with
varying lighting conditions and occlusions. These
advancements are essential for creating responsive therapeutic
tools that can adapt to the unique behaviours of CwSN.

In the context of CwSN, real-time and adaptive HPE
techniques are crucial. CwSN may exhibit rapid or atypical
movements, making robust and flexible estimation methods
essential. Recent developments have focused on enhancing
these methods to increase accessibility and practicality for use
in therapeutic settings, ensuring minimal intrusion while
maintaining maximum accuracy.

B. Visual Attention in Children with Special Needs

Children with special needs (CwSN) often face challenges
in maintaining attention, particularly in social contexts, where
they may focus less on facial features and eye regions than
typically developing peers, instead directing their attention
toward objects or patterns. This atypical visual attention can
hinder the development of social and communication skills,
making it a critical area of interest for researchers. Studies
employing eye-tracking technology have revealed that these
children spend significantly [ 15] less time engaging with social
stimuli, such as people, and more time attending to non-social
elements within their environment. These findings suggest that
interventions to redirect their visual attention toward socially
relevant stimuli could enhance social skill acquisition [17].
Additionally, difficulties with joint attention and the ability to
share a focus on an object or activity with another person are
common and significantly impact language development.
Targeted strategies to improve joint attention could, therefore,
play a vitalrole in supporting the developmental needs of these
children [18].

Recent advancements in research and technology have
paved the way for innovative interventions tailored to the
unique requirements of CwSN. Visual dysfunction, prevalent in
this population, necessitates diagnostic approaches that extend
beyond traditional visual acuity assessments. [19]. For
example, integrating Augmented Reality (AR) in learning
environments has demonstrated the potential to improve visual
attention by providing multi-sensory experiences that actively
engage children [20]. Additionally, tools such as 3D-printed
toys have beenshown to improve attention spansand fine motor
skills in children with autism [21]. Environmental factors also
play a critical role, with studies indicating that exposure to
greenery, such as classroom windows overlooking natural
landscapes, can positively impact sustained attention levels.
Such findings highlight the importance of creating enriched
environments and using adaptive tools to foster visual and
cognitive engagement in CwSN [22] [23].

Educational strategies and structured interventions further
enhance visual attention and related skills. Visual media, such
as flashcards, have been shown to improve memory and
recognition in autistic children [24]. Art provides an effective
medium for visual expression among CwSN [25]. These
strategies align with cognitive load theory, which emphasises
tailoring instructional methods to manage cognitive demands
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and optimise learning outcomes. By understanding how CwSN
allocate their visual attention, therapists and educators can
design targeted interventions that enhance engagement with
social stimuli and promote meaningful improvements in
communication, social interaction, and overall learning.

C. Robot-Assisted Therapy

Robot-assisted therapy (RAT) has emerged as a promising
tool for supporting CwSN, particularly enhancing their social,
emotional, and cognitive skills. Recent advancements have
focused on designing robots to address specific challenges
faced by children with autism. For instance, robot
functionalities tailored for Applied Behaviour Analysis (ABA)
therapy demonstrate the ability to stimulate cognitive skills
while adapting to individual limitations [26]. A dual-cycle
therapy model emphasising the integration of therapists as
teleoperators, which enhances the effectiveness of robot-
mediated interactions with neurodivergent children [27].

Social assistive robots have also been shown to facilitate
emotional expression and secure social interactions in therapy
sessions. These robots provide a judgment-free environment,
significantly improving engagement and therapeutic outcomes
in children with autism spectrum disorders (ASD) [28].
Furthermore, the use of social humanoid robots as mediators in
interventions emphasises their potential to promote
communication skills and interaction between children,
teachers, and therapists [29]. The importance of advancing
robot design lies in better accommodating the needs of CwSN.

In addition to fostering social and emotional growth, robot-
assisted therapy is being explored in broader contexts, such as
mental healthinterventionsand physical skill development. The
potential of robots to engage adolescents in therapeutic settings,
with implications for similar applications in CwSN [30].
Integrating interactive elements in robot-mediated therapy has
proven effective in enhancing engagement, indicating that these
tools hold significant promise for complementing traditional
therapy methods across diverse therapeutic contexts.

In summary, previous research has demonstrated promising
methodologies for head pose estimation and attention tracking;
however, mostare confined to controlled environments or adult
populations. Furthermore, the integration of these techniques
into robot-assisted therapy remains insufficiently explored. To
address these limitations, this study presents a hybrid
framework combining Dlib and MediaPipe for robust head pose
estimation and employs it to assess visual attention among
children with special needs.

III. METHODOLOGY

The study involved an in-situ experiment at the Kizzu Kids
Rehabilitation and Enrichment Centre, focusing on CwSN.
Service robots were integrated into the participants' standard
therapy routines in these sessions. Data was collected during
these sessions, capturing video recordings, images, and tabular
data in CSV files. These multimodal data sources were utilised
to investigate visual attention patterns, particularly analysing
how the children directed their gaze and engaged with their
surroundings during therapy.
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The collected data were used to evaluate a real-time system
for measuring visual attention. Section III A describes the
experimental procedure, outlining the data acquisition process
and the specific formats for the captured data. In Section III B,
the study introduces system architecture, detailing its
components and incorporating a widely adopted HPE
algorithm. This algorithm enables the assessment of gaze
direction and engagement levels, thereby facilitating an
analysis of the children's visual attention during RAT sessions.

A. Data Gathering from the In-situ Experiment

This section describes an experiment in which therapy
sessions were recorded to create a database for machine
learning research. These sessions involved the use of service
robots to support CwSN, including those diagnosed with ASD,
ADHD, and SD. The robot facilitated app-based activities that
complemented therapy sessions by providing structured tasks
across multiple domains, including communication
(AutiSpark), social-emotional (LogicLike), cognitive (Khan
Academy Kids), and motor domains (ABC Kids). These apps
functioned primarily as mediators, ensuring the children remain
engaged with the robot interface. At the same time, the core
focus of the study was the integration of the hybrid head pose
estimation (HPE) system. During these sessions, the robot’s
integrated camera and HPE workflow (dlib, MediaPipe, and
PnP) simultaneously recorded and analysed head movements to
quantify visual attention in real-time.

Thirty CwSN underwent the RAT to train skills across
multiple domains, highlighting the potential of integrating
technology and robotics into therapeutic intervention.

1) Participants: Thirty children diagnosed with ASD,
ADHD, and SD were selected who are currently receiving
treatment at the Kizzu Kids Rehabilitation and Enrichment
Centre (Malaysia), a specialised institution for the rehabilitation
of CwSN.

Ethical approval was obtained from the ethics committees
of Universiti Teknologi MARA and Kizzu Kids Rehabilitation
and Enrichment Centre. All the parents signed consent forms
before their children were included in the study. Children were
free to leave the experiment at any time and were always
supported by a professional educator, other than the researcher.

2) Therobottherapist: Temi 3 service robot: The robot that
led the RAT was the Temi 3 service robot (see Fig. 1), a
telepresence robot and a trustworthy autonomous personal
assistant focused on high-quality video. By combiningartificial
intelligence and autonomous navigation, it can recognise and
follow people on demand, memorise predefined locations, and
navigate effortlessly in various settings, including hotels,
restaurants, shops, businesses, educational institutions,
healthcare facilities, and more.

This study utilised the default settings and standard
equipment of the Temi 3 robot unless otherwise specified. The
Temi 3 has multiple advanced cameras designed to enhance its
functionalities. It features a 13-megapixel high-resolution
camera with autofocus, capable of recording 1080p video at 30
frames per second (FPS), a 120-degree field of view (FOV), a
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5-element lens, and a hybrid infrared (IR) filter. Additionally,
it includes a wide-angle 13-megapixel camera for remote
navigation, offering a 95-degree FOV and 1080p video
recordingat 30 FPS. Complementing these is a Time-of-Flight
(TOF) depth camera, which operates at 30 FPS with a 90-
degree FOV and an effective range of up to 5 meters, enabling
depth perception essential for navigation and object detection.
Among its software features, Temi 3 includes face detection
and tracking capabilities, which are employed in in-situ
experiments to guide the robot toward the child during
interactions.

Drive/Photo/Video Camera

Action Button LED Indicator

Microphone Array Volume Touch Buttons

[
&
W VAT S MELR TOBT

3D Depth Camera Face Tracking Camera

Speakers (2 Tweeter, 2 Midrange)

3D Safety Depth Camera

Sub Woofer Lidar Sensor

Range Sensors

Fig. 1. The Temi 3 Robot. The camera used for recording the child's head
pose is the one on top.

3) Protocol for the In-situ experiments: To evaluate the
children’s attention, this study focused on participants who
were already enrolled in therapy sessions of varying durations
and had been diagnosed by specialists before commencing the
program. In this research, pre-existing app-based leaming
modules were downloaded and integrated into a robot interface
to facilitate interaction between the children and the robot
duringtherapy sessions. These modules were carefully selected
to align with the therapeutic needs of the children, incorporating
tasks adapted to their developmental levels. These tasks are
designed to observe how children visually engage with the
robot and respond to visual stimuli presented through the
robot's interface.

The robot served as a mediator during the therapy sessions,
integrating pre-existing apps and a camera system to facilitate
interaction and observation. It was included in the children’s
daily activities and identified through a specific “visual
schedule”. A visual schedule communicates the sequence of
upcomingactivitiesor eventsusingobjects, photographs, icons,
words,ora combination ofthese supports. Duringeach session,
the children engaged in tasks presented through the robot, with
the apps deliveringvisual stimuli and the camera capturing data
to observe and analyse the children’s visual attention.

To facilitate interaction, the robot-led sessions were
conducted in the same room where the children typically
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received their therapy, ensuring a familiar and comfortable
environment. The robot was positioned in front ofthe child and
initially placed at a distance of at least 0.5 meters. Children
were allowed to adjust their seating position to enhance
comfort. Each session focused on a single activity to evaluate
visual attention, with tasks presented in a randomised sequence
to minimise repetitive or predictable patterns. The robot
introduced each activity using clear and straightforward verbal
instructions and visual prompts to engage the children in the
tasks effectively (see Fig. 2).

Fig.2. An example of a child—robot interaction during the therapeutic
session. A therapist was always present nearby to support the child.

A therapist familiar with the children’s daily treatment
routines was present duringthe sessions to provide security and
support. The therapist offered positive reinforcement through
verbal cues, such as "good" or "right", and, in some instances,
physical reinforcement, such as a gentle touch or pat. These
reinforcement strategies were individualised to meet each
child’s needs and address their unique behaviours.

Before the main sessions, an introductory session was
conducted to familiarise the children with the robot and
minimise potential novelty effects. During this preliminary
session, the robot was introduced in a non-therapeutic context
for approximately ten minutes, allowing the children to
acclimate to its presence in a relaxed and informal manner.

4) Video recording and annotation

"

1i11|1~‘m|”§;§§12

(a) Forward (b) Looking Down

(¢) Looking Up

(f) Face not detected

(d) Looking Right (e) Looking Left

Fig.3. The frame is extracted from four videos recorded by the robot’s
camera (the child interacts with the robot, while the system records and
annotates the head position in real-time).
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Fig. 3 above showcases a series of frames extracted from
videos recorded by the Temi 3 robot’s camera, capturing
various head poses ofa child duringthe interaction. Each frame
represents a different head position, annotated in real-time by
the system. The poses include: a) Forward, where the child
looks directly at the camera; b) Looking Down, where the child
tilts their head downward; ¢) Looking Up, with the child tilting
their head upward; d) Looking Right, with the head turned to
the right; e) Looking Left, where the child turns their head to
the left; and f) Face Not Detected, where the face is obscured
or not visible to the system. These annotated frames
demonstrate the system's capability to record and categorise
head positions during live interactions, essential for analysing
visual attention and engagement.

B. Head Direction Detection Algorithm

dlib's Face Detector and Predictor

Detect
Landmarks
feach face)

HPE with Perspective-n-Point (PnP)

frame MediaPlpe’s Face Mesh
Flipd Convert Set Non-
Convertto (%) Frame to Writsable
RGB RGE

Set Writeable terate & Propare
& convertro (M Checkfor lmpf pueract ey 20830
8GR Points Coordinates

Fig.4. Comprehensive workflow of the head pose estimation.

Fig. 4 illustrates a comprehensive workflow for HPE,
integrating dlib's face detector and MediaPipe Face Mesh as
complementary modules for robust facial landmark detection
and analysis. The hybrid approach, which combines Dlib’s 68-
point landmark predictor with MediaPipe Face Mesh, was
selected to leverage Dlib's geometric precision alongside the
real-time tracking stability provided by MediaPipe. This
integration enhances accuracy across diverse lighting
conditions and head movements, which are commonly
encountered during therapeutic sessions involving children.

To estimate the three-dimensional head orientation, the
Perspective-n-Point (PnP) algorithm was employed to assess
the three-dimensional head pose due to its efficiency and
appropriateness for monocular camera input, thereby ensuring
compatibility with standard RGB webcams integrated into the
robotic platform.

Input video frames from a camera are preprocessed through
two distinct pathways. The first pathway utilises dlib, where
frames are converted to grayscale, facial regions are detected,
and 68-point facial landmarks are extracted. This pathway
ensures accurate detection and tracking of facial features under
various lighting and environmental conditions. In the second
pathway, MediaPipe’s Face Mesh processes the input frames
by converting them to RGB format and, if necessary, flipping
them for consistency. The frames are then set to a non-writable
state to optimise computational performance before detecting
facial landmarks. These landmarks undergo iterative
refinement to extract key points, which are further processed to
generate 2D and 3D coordinate mappings. This dual-pathway
approach enhances the system's robustness, enabling it to
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accommodate diverse input formats while maintaining
precision across various scenarios.

The extracted key points from both pathways are input into
the HPE module, which employs the Perspective-n-Point (PnP)
algorithmfor pose computation. This algorithm calculates head
orientation by solving for rotation and translation vectors,
which are then decomposed to derive X, Y, and Z rotation
angles. These angles represent the real-time spatial orientation
of the head, enabling precise monitoring and tracking of head
movements. The integrationofthe dlib and MediaPipe modules
ensures that the system achieves a balance between
computational efficiency and detection accuracy.

Finally, the outputs from the workflow are presented in
multiple formats to support diverse analytical needs. Annotated
videos are generated in MP4 format, individual frame images
are saved as JPG files, and a CSV file is produced to log
timestamps, rotation angles, and head directions data. These
multimodal outputs provide a comprehensive dataset for
analysing head pose dynamics, thereby supporting applications
in visual attention assessment and behavioural research. The
modular design of this workflow ensures adaptability and
effectiveness for real-time analysis in therapeutic
environments.

C. Performance Measures

The forward-facing head pose measure was calculated to
evaluate engagement and focus of the participants during
therapy sessions, providing a quantitative metric for assessing
visual attention. This was achieved by determining the total
number of instances where the forward head pose was detected
in real-time using head pose estimation algorithms. The
forward-facing pose, which indicates that the child is looking
directly at the task or stimuli, was analysed explicitly as a key
performance measure of attention.

To calculate the frequency of forward-facing head poses as
a measure of attention, the following formula was used:

Frequency of Forward Head Pose (%) = ﬁ x 100 (1)
In this formula, T represents the total number of instances
where the system correctly detected the forward head pose and
verified its accuracy based on video frame analysis, indicating
the participant's direct focus on the task or stimulus. F
represents the total number of instances where the system
detected a non-forward head pose (left, right, up, or down).
Still, upon reviewing the video frames, these instances were
verified to be correct forward head poses. This formula
provides anormalised percentage of forward-facinghead poses,
enabling a consistent evaluation of visual attention during the
therapysession. This formulaprovided a normalised percentage
of forward-facing poses, enabling a consistent and comparable
assessment across participants and sessions.

The forward-facing head pose was considered a reliable
indicator of attention, reflecting how participants maintained
their focus on the task or robotic intervention during therapy.
Higher frequencies of forward-facing poses were interpreted as
higher levels of engagement and attention, highlighting the
ability of the participant to stay visually connected to the
activity.
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This analysis offered valuable insights into engagement
patterns, emphasising forward-facing head poses as a direct
measure of visual attention. Using this metric, the study
demonstrated the importance of monitoring forward-facing
head poses as a performance measure, particularly for children
with special needs. This approach provides an objective and
real-time method for evaluating engagement, offering
actionable data to optimise therapy strategies and improve
outcomes.

IV. RESULTS

This section presents the experimental outcomes obtained
from the head pose estimation framework, including detection
accuracy, frame rate performance, and attention classification
metrics across participant groups.

A. Accuracy of Head Direction Detections

Thehead direction detectionalgorithmaccurately identified
and categorised the five predefined head orientations: forward,
left, right, up, and down. Validation against the automated
annotated dataset showed an overall accuracy of 82% across all
participants and sessions. Fig. 5 shows the accuracy percentage
for each participant.
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Fig. 5. The overallaccuracy percentage for each participant.

Amongthe 30 participants, a clear contrast in accuracy rates
was observed, with S4 and S19 recording the lowest rates and
S1 and S16 achieving the highest. S4 achieved 57% accuracy,
while S19 recorded 60%. Both participants are relatively
inexperienced in therapy, with S4 having attended only a single
session and S19 completing four sessions. This limited
exposure may have contributed to their lower performance, as
they are likely still developing familiarity and engagement with
the tasks. Additionally, their youngages, 2 years for S4 and 4
years for S19, may reflect less developed cognitive and
attentional abilities than older participants, further influencing
their accuracy levels.

In contrast, S1 and S16 demonstrated the highestaccuracy
rates, with S1 attaining 97% and S16 achieving 93%. Their
superior performance can be attributed to their extensive
therapeutic exposure and structured intervention programs. Sl,
a 4-year-old female, has undergone eight one-to-one therapy
sessions for personalised guidance and consistent engagement.
Similarly, S16, a 6-year-old male, has participated in an
intensive Early Intervention Program (EIP), attending sessions
five days per week for 24 months. This rigorous and targeted
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approach likely enhanced their cognitive and attentional
abilities, as well as their familiarity with therapeutic tasks,
enabling them to outperform their peers.

B. Percentages of Attention Among Children with Special
Needs

The attention percentages of CwSN were analysed to
understand their engagement levels during interactions.
Focusing on the proportion of time they maintained a forward
head pose, a key indicator of attention, the analysis aimed to
provide insights into their focus patterns. This measure is
particularly significant in assessing how children with special
needs respond to stimuli in structured settings, highlighting

their ability to stay engaged and attentive over time.
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Fig. 6 illustrates the attention percentage for each
participant during the study, showcasing a wide range of
engagement levels. The average attention percentage is 65%,
with notable variations at both extremes. These differences
highlight individual factors that influence the participant's
ability to remain attentive during therapy sessions, including
therapy duration, the severity of autism, age, and home
environment.

The participant with the highest percentage of attention is
S9, achieving an impressive 92%. S9 is a 5-year-old child with
mild autism who has undergone 10 months of therapy and
regularly experiences screen time at home. These factors may
contribute to their higher attention level, as mild autism and
longer therapy duration will likely enhance their ability to focus
and engage with the task. Additionally, familiarity with screen-
based interactions at home could make the experimental setup
more engaging and comfortable for them.

In contrast, the participant with the lowest attention
percentage is S5, recording just 47%. S5 is a 2-year-old child
with ASD who has only undergone 9 months of therapy and
does not have screen time athome. These factors might explain
their lower attention level, as youngages and limited therapy
duration can pose more significant challenges in maintaining
focus. Furthermore, the lack of exposure to screens may make
the experimental setup unfamiliar or less engaging for S5.
These findings emphasise the importance of tailoring
interventions to individual needs and considering factors such
as therapy duration, different disabilities, and home
environment when analysing engagement levels.
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The differences in attention percentages highlight the
importance of accounting for individual variability when
interpreting these results. Participants with higher attention
percentages, such as S9, may reflect the effectiveness of the
experimental design in fostering engagement, particularly for
children who benefit from longer therapy and familiar
environments. Conversely, participants with lower attention
levels, like S4, point to areas for improvement, such as
minimising distractions or adapting activities better to suit the
needs of children with more severe challenges. Understanding
these patterns provides valuable insights for designing more
inclusive and effective interventions, ensuring all participants
can maximise their engagement during similar studies or
therapeutic settings.

C. Type of Disability and Attention Pattern Analysis

The analysis of head direction among thirty children with
special needs revealed distinct patterns among the three
diagnostic groups: Autism Spectrum Disorder (ASD), Sensory
Disorder (SD), and Attention Deficit Hyperactivity Disorder
(ADHD).

100

81
80

Average of Attention

ASD SD ADHD
Participant's Disabilities

Fig. 7. The average of visual attention for different types of disability.

Fig. 7 illustrates the average percentages of visual attention
across three categories of disabilities. The results indicate that
children with ADHD (S20, S21, and S27) exhibit the highest
average attentionpercentage at 8 1%, followed by those with SD
at 63% and ASD at 63%. This suggests that the type of
disability significantly influences attention levels, with children
with ADHD demonstrating comparatively higher focus during
activities.

From observations and discussions with a therapist during
the therapy sessions, it was noted that children with ADHD tend
to exhibit hyperfocus on tasks that are highly stimulating or
engaging. These behaviours align with their preference for
dynamic and interactive activities that effectively capture their
attention. Additionally, shorter, highly interactive sessions are
efficient in maintaining focus. These structured and engaging
therapy strategies likely contribute to the higher average
attention percentages observed in children with ADHD
compared to otherdisability groups. Children with ASD and SD
might face different challenges that affect attention, such as
sensory processingdifficulties or delayed cognitive processing,
which could contribute to slightly lower average attention
levels compared to children with ADHD. These findings may
highlight a strength within the ADHD population with an
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ability to hyperfocus under the right conditions, which could be
leveraged to improve therapeutic and educational outcomes.

D. Age-Based Variations in Attention Percentages Analysis

Visual attention plays a critical role in understanding the
engagementand focus levels of CwSN duringtherapy sessions.
By analysing attention percentages across different age groups,
developmental patterns influencing their ability to concentrate
on tasks can be identified. Below is a graph (see Fig. 8)
illustrating the average attention percentages for children aged
2 to 7, which highlights the relationship between age and visual
attention capabilities.

100
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Fig. 8. The average visual attention for different ages.

The results reveal a noticeable trend where attention
percentages increase with age, peaking at 76% for 6-year-olds
before slightly declining to 67% for 7-year-olds. Younger
children, particularly 2-year-olds (S4 and S5), exhibit the
lowest attention levels at 48%, indicating developmental
differences in focus and engagement during therapy sessions.
This pattern suggests that as children grow older, their ability
to maintain attention improves, likely due to increased
cognitive development and maturity. However, the slight
decrease in the oldest age group (7 years) may reflect varying
individual differences or a plateau in attention development.
These findings demonstrate that attention levels tend to align
with developmental maturity as children grow older,
highlighting the natural progression of focus and engagement
with increasing age.

E. Impact of Therapy Duration on Attention

Therapy duration plays a significant role in influencing the
attention levels of CwSN. Analysing attention percentages
across different therapy durations provides valuable insights
into how the length of therapy impacts focus and engagement
over time. It is important to note that the children in this study
were interacting with a robot for the first time, and their
unfamiliarity with the robotic environment may have
influenced their attention levels. The novelty of the robot could
have initially captured their curiosity and engagement.

Fig. 9 illustrates the average percentages of visual attention
for CwSN across varying therapy durations, ranging from 6
months to 36 months. The data reveal that children in the 6-
month therapy group exhibited the highest attention levels at
67%. However, as therapy duration increased to 12,24, and 36
months, attention percentages slightly decreased and stabilised
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at around 63-64%. This pattern suggests that shorter therapy
durations may initially result in heightened attention,
potentially due to the novelty effect and intensive engagement
during the early stages of therapy. In contrast, stabilising
attention levels over longer therapy durations may indicate that
children adaptto the therapy routines or experience a plateau in
attentional improvement. These findings underscore the need to
revise and adjust therapeutic strategies over time to sustain
engagement and optimise long-term outcomes.

67 63 64 63
6 12 24 36

TherapyDuration (Month)

100

N o} %
o =} =}

Average of Attention

N
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Fig.9. The percentages of visual attention for different therapy durations.

V. DiscussiON

Theresults indicate that the proposed framework effectively
identifies head orientation with high accuracy and stability.
This section discusses the implications of these findings,
compares them with previous studies, and highlights potential
applications as well as existing limitations.

The outcomes of this study demonstrate the feasibility of
integrating a head pose estimation algorithm within the context
of robot-assisted therapy (RAT) to evaluate visual attention in
children with special needs (CwSN). The system achieved an
overall head orientation detection accuracy of 82%, alongside
an average attention rate of 65%, indicating consistent
performance across diverse participant groups and
experimental scenarios. These results align with previous
studies on real-time head pose estimation, which reported
accuracy rates ranging from 78% to 85% under controlled
conditions [31][32][33]. This consistency supports the
robustness of the hybrid Dlib—MediaPipe—PnP methodology,
demonstrating its resilience in the dynamic and unpredictable
environment of therapy sessions.

Notably, the findings also reveal considerable variability in
the results, suggesting that factors such as age, therapy
experience, and type of disability have a substantial impact on
engagement levels. This variation highlights the importance of
considering developmental and contextual variables when
interpreting performance metrics, as children with greater
therapy exposure and familiarity with structured activities tend
to achieve higher accuracy and attention scores.

Beyond technical validation, the study emphasises the
broader implications of integrating robotics into therapeutic
practice. RATnot only offers an objective and real -time method
for attention monitoring but also facilitates opportunities for
tailoring interventions to individual needs. The observed
differences across various diagnostic groups and therapy
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durations indicate that a “one-size-fits-all” strategy may be
inadequate, and that customised approaches are imperative to
maintain long-term engagement.

These findings contribute to the growing body of evidence
supporting artificial intelligence (Al) and robotics as effective
tools for enhancing therapeutic precision, inclusivity, and
personalisation. By integrating computer vision with
behavioural analytics, the proposed framework demonstrates
the potential of Al-drivensystemsto objectively quantify visual
attention, thereby providing therapists with actionable data to
support informed clinical decision-making. This integration
represents a significant step toward data-informed, child-
centred therapy environments that foster measurable
developmental outcomes and elevate the overall quality of
interventions for children with special needs.

Although the proposed framework demonstrates robust
performance, several limitations should be acknowledged. The
sample size was relatively small, and the controlled
experimental setting may not fully reflect the variability and
complexity of real-world therapeutic environments.
Furthermore, external factors such as inconsistent lighting
conditions and occasional occlusion intermittently influenced
detection accuracy, suggesting the need for furtherrefinement
and validation in more diverse and naturalistic contexts.

Notwithstanding these limitations, the findings hold
significant implications for therapeutic practice and special
education. By enabling objective monitoring of attention, the
framework allows therapists to tailor interventions and track
engagement patterns over time, thereby enhancing therapeutic
precision and potentially improving developmental outcomes
for children with special needs.

In summary, this discussion highlights that the proposed
hybrid head pose estimation framework demonstrates strong
accuracy, real-time performance, and adaptability across
diverse therapeutic contexts. The variations observed among
participants underscore the importance of personalised and
data-driven therapy strategies, wherein Al-based tools serve to
complement rather than replace human expertise. By
transforming head orientation data into meaningful attention
metrics, this study bridges computational analysis with
behavioural interpretation, enabling a more precise
understanding of engagement in children with special needs.
These insights establish a solid foundation for advancing
intelligent robot-assisted systems and inform the development
of future research directions in data-driven therapeutic
interventions.

VI. CONCLUSION

The findings of this study highlight the significance of head
direction patterns in assessing visual attention among children
with special needs (CwSN), with variations in engagement,
such as the high focus of S9 versus the challenges faced by S5,
underscoring the influence of disability severity, therapy
duration,andage. These results have important implications for
robot-assisted therapy (RAT), as head direction datacan inform
the design of therapeutic activities better aligned with
individual needs. Nonetheless, the study is limited by its
relatively small sample size, variability in participant profiles,
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and occasional inaccuracies in head pose classification. These
limitations could be mitigated through larger, multicenter
studies, the inclusion of multimodal behavioural measures (e.g,
eye tracking, body posture), and further optimisation of the
hybrid HPE algorithm to improve robustness in real-world
conditions. Overall, the study emphasises the potential of head
direction analysis in improving visual attention assessment and
optimising RAT, offering a promising direction for enhancing
therapeutic outcomes for CwSN.

This study presents a validated head pose estimation
framework designed to quantify visual attention in children
with special needs during robot-assisted therapy. Theoretically,
itadvances the understanding of how Al-based visual cues can
represent attentional behaviour in non-verbal or minimally
responsive participants. Practically, the system provides a non-
intrusive solution that enhances engagement assessment within
therapeutic and inclusive learning settings. Future research will
involve larger participant groups, integration with eye-gaze and
emotion detection technologies, and deployment in real
therapeutic environments to validate scalability and
adaptability.

Overall, the study establishes a solid foundation for
the integration of Al-driven attention assessment in therapy,
bridging computational modelling with behavioural science. By
promotingmore personalised, data-informed, and child-centred
approaches, this research contributes to the evolving landscape
of intelligent robot-assisted therapy, paving the way for future
innovations that enhance developmental outcomes for CwSN.
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