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Abstract—Skin cancer is one of the fastest-growing health 

problems worldwide. Early and accurate diagnosis is essential for 

improving treatment success and patient survival. However, many 

previous studies have focused on single CNN architectures or 

limited datasets, resulting in models with restricted 

generalizability. To address this gap, this study presents a 

comparative evaluation of three deep learning architectures 

(DenseNet169, MobileNetV2, and VGG19) for automatic 

classification of benign and malignant skin cancers using 

dermoscopic digital images. A total of 10,000 images were 

compiled from three public Kaggle datasets, preprocessed through 

resizing and data augmentation, and trained using transfer 

learning based on ImageNet weights. Two data split schemes 

(60:20:20 and 80:10:10) were applied to assess model robustness. 

Experimental results show that DenseNet169 achieved the highest 

test accuracy of 90.7 per cent, while MobileNetV2 was the fastest 

with an inference time of 16 seconds. These findings highlight the 

tradeoff between accuracy and computational efficiency and 

support the use of deep learning models, particularly DenseNet169 

and MobileNetV2, in the development of real-time AI-assisted skin 

cancer diagnostic systems. 
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I. INTRODUCTION 

Skin cancer is a common type of cancer that has been 
increasing rapidly year after year [1]. According to WHO data, 
each year, there are over two million cases of skin cancer 
diagnosed, the majority of which are benign, such as actinic 
keratosis and basal cell carcinoma [2]. Malignant skin cancers, 
such as melanoma, continue to pose a substantial danger due to 
their high metastatic potential and death rate [3]. Since the speed 
at which the lesion can be identified and treated has a significant 
impact on treatment outcomes, early diagnosis is an essential 
step in lowering melanoma mortality. Unfortunately, the 
standard skin cancer detection procedure continues to rely 
mainly on visual inspection by a dermatologist, which is 
subjective and requires extensive clinical experience, rendering 
it prone to errors and inconsistencies [4]. 

Automation attempts in medical diagnosis have become the 
subject of significant research, particularly when it comes to 
medical image processing [5], [6], [7], [8], [9], [10], [11]. The 
use of deep learning, which excels in extracting visual features 
and accurately classifying objects, is one of the popular methods 
[12]. Deep learning can learn visual patterns from picture data 
from start to finish, eliminating the need for human feature 
extraction [13]. Deep learning can distinguish tiny distinctions 
between skin lesion types that are often not visible to the human 

eye, making it a promising technology to support objective, 
rapid, and efficient clinical judgments [14], [15], [16]. 

Several studies in classifying skin lesions in dermatoscopic 
images have successfully demonstrated using CNN models. 
Previous studies [17] proposed a hybrid deep learning model to 
improve the accuracy of skin cancer classification by combining 
ConvNeXtV2 blocks and a separable self-attention mechanism, 
especially in differentiating between benign and malignant 
lesions that share a similar appearance. This model was shown 
to be more superior than the other ten CNN and ViT models with 
an accuracy of 93,48% and only 21,92 million parameters, and 
also efficient for clinical applications. Furthermore, deep 
learning methods with ResNet, VGG16, and AlexNet models 
were applied to the HAM10000 dataset for skin cancer 
classification, with improvements through data augmentation 
and imbalanced data addition, resulting in accuracies of 92,9%, 
98,4%, and 88,3%, respectively, where the improved VGG16 
model was selected as the best model to support early detection 
of skin cancer [18]. Further research [19] developed an 
automatic skin cancer detection system based on the 
DenseNet169 model trained using the Skin Cancer: Malignant 
versus Benign dataset, and successfully achieved a high 
accuracy of 89.7%, surpassing several conventional models and 
potentially supporting medical personnel in more accurate and 
efficient early diagnosis. Six deep learning models, including 
EfficientNet (B0, B1, B2) and MobileNet (V2, V3-Small, V3-
Large), were used in the study [20]. Each model uses the ISIC 
dataset to classify skin cancer. The best results were obtained 
from MobileNet-V3-Large with an accuracy of 89.41%, a recall 
of 90.59%, and an F1-score of 89.53%, accelerating diagnosis 
and improving accuracy [20]. Another study focused on the use 
of the MobileNetV2 model for digital image-based skin cancer 
classification. After training and evaluation, the MobileNetV2 
model successfully achieved an accuracy of 85% in 
distinguishing between cancerous and non-cancerous skin lesion 
images [21]. In another study [22], several pre-trained models 
are applied in the deep learning methods, one of which was 
VGG19. The VGG19 model achieved an accuracy of 87% using 
the HAM10000 dataset after the augmentation and fine-tuning 
process, showing quite good performance in classifying skin 
cancer. While the study [23] enhanced the pre-trained VGG19 
model by adding max pooling and dense layers to improve the 
skin cancer prediction capability. The improved VGG19 model 
successfully achieves an accuracy of 88% in skin cancer 
classification. 

Referring to the background, the purpose of this study is to 
evaluate and compare the performance of seven deep learning 
architectures in classifying skin cancer into two main categories, 
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namely benign and malignant. The models used are 
MobileNetV2, InceptionV3, Xception, DenseNet169, 
ResNet50, VGG16, and VGG19, each of which represents a 
variation in architectural complexity and computational 
efficiency. The dataset used was obtained from the Kaggle 
platform, which consists of 10,000 digital images that have been 
labeled according to the type of lesion. This study uses a transfer 
learning approach, where all models are initialized with weights 
from pre-training on ImageNet, then the medical data is fine-
tuned to match its characteristics. 

The main purpose of this study is to achieve an optimal deep 
learning model to classify skin cancer based on evaluation 
metrics, including recall, precision, accuracy, and F1-score. The 
results of this study are expected to contribute in the 
advancement of digital picture development-based clinical 
decision support systems, especially in the diagnosis of skin 
cancer. In addition, this study also aims to encourage the use of 
artificial intelligence in the health sector more widely by 
considering the aspects of reliability, speed, and efficiency of 
medical classification systems. It is also expected to provide a 
thorough grasp of the strengths and the limitations of deep 
learning architecture in the classification of benign and 
malignant skin cancer by conducting a comprehensive 
evaluation of the performance of each model. In addition, the 
results of this study can be a starting point for the development 
of an intelligent diagnostic system that is more accurate, easily 
accessible, and able to support early detection of skin cancer 
effectively. 

The novelty of this study lies in the comprehensive 
comparison of CNN architectures using multiple public datasets 
and dual data split schemes to assess both accuracy and 
inference efficiency in real-world skin cancer classification. 

 The remainder of this study is organized as follows: 
Section II reviews related studies on skin cancer classification 
using deep learning. Section III explains the materials and 
methods, including dataset composition, preprocessing, and 
CNN architectures. Section IV presents the experimental results 
and analysis, while Section V concludes the study with key 
findings and future directions. 

II. RELATED WORKS 

The previous related studies using digital image processing 
approaches and deep learning methods for image classification 
are summarized in Table I. Various deep learning models such 
as DenseNet169, DenseNet121, MobileNetV2, VGG19, 
ResNet50, Xception, InceptionV3, and EfficientNetB0 have 
been applied in these studies. The accuracy results of these 
models vary, ranging from 85% to 89%. 

Table I presents a comparison of the results of several 
previous studies using a deep learning approach to classify and 
detect skin cancer. Most studies use a digital image-based 
approach with popular models including DenseNet, MobileNet, 
VGG, ResNet, Xception, Inception, and EfficientNet. An 
accuracy of 89.7% is the highest result using the DenseNet169 
model [19], followed by the E-VGG16 model [24] and 
DenseNet121 [25], which each recorded an accuracy of 89%. 
Another study [22], [23] showed competitive results using 
VGG19 and its modified version, with accuracies of 87% and 

88%. These results indicate that deep learning models are 
suitable for skin cancer classification with high accuracy results. 

In addition, the MobileNetV2 model was used in two 
different studies with accuracy results of 85.6% and 85% 
respectively, indicating the efficiency of this model in a limited 
computing environment, even with a slight decrease in accuracy 
[20], [21]. ResNet50 also showed consistency with 87% 
accuracy in two separate studies [10], [26]. Further research 
used a combination of features from the Xception and 
InceptionV3 models to detect Monkeypox skin disease and 
obtained an accuracy of 85.9%, indicating the potential of the 
combination architecture approach [27]. Meanwhile, research 
using EfficientNetB0 recorded an accuracy of 87% [28], 
showing the superiority of a lightweight yet effective model. 
Overall, the data in this table indicates that various deep learning 
models have demonstrated competitive performance and are 
worth considering for image-based skin disease classification 
systems. However, few studies have systematically examined 
how variations in dataset composition and data split schemes 
affect the performance and generalizability of CNN 
architectures for skin cancer classification. 

TABLE I.  RELATED WORKS SUMMARY 

Author Task Method 
Acc 

(%) 

R. Pathania et 

al. [19] 

Skin cancer 

detection 
DenseNet169 89.7 

O. Sahin et al 

[20] 

Skin cancer 

classification 
MobileNetV2 85.6 

D. Moturi et al 

[21] 

Melanoma skin 

cancer detection 
MobileNetV2 85 

I. Ahmad et al 

[22] 

Skin cancer 

detection 
VGG19 87 

I. Kandhro et al 

[23] 

Skin cancer 

detection and 

classification 

E-VGG19 88 

D. Albashish et 

al [26] 

Melanoma skin 

cancer classification 
ResNet50 87 

N. Pratama et al 

[27] 

Monkeypox skin 

disease detection 

Combining feature 

Xception and 

InceptionV3 

85.9 

N. Khasanah et 

al [10] 

Melanoma skin 

cancer detection 
ResNet50 87 

S. Matiray et al 

[28] 

Skin cancer 

detection 
EfficientNetB0 87 

V. Anand et al 

[25] 

Skin disease 

classification 
DenseNet121 89 

S. Mushtaq et al 

[24] 

Skin cancer 

classification 
E-VGG16 89 

III. MATERIALS AND METHODS 

In this section, the stages of the methodology applied in the 
study are described. This study focuses on testing and 
comparing seven deep learning models with a transfer learning 
approach, using public data from the Kaggle platform to classify 
benign and malignant skin cancers. The entire process is 
designed systematically, starting from the data input stage, pre-
processing, model training, to evaluation of results, as shown in 
the workflow illustration in Fig. 1. 
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In this study, the primary data used consisted of 10,000 skin 
cancer images obtained from the Kaggle platform. The initial 
stages of the study included data pre-processing, which 
consisted of image resizing and augmentation applications to 
increase the diversity and quality of training data. Furthermore, 
this study tested and compared the performance of seven deep 
learning model architectures, namely, MobileNetV2, 
InceptionV3, DenseNet169, ResNet50, Xception, VGG16, and 
VGG19. Fig. 1 provides an overview of the main stages in the 
research process. In contrast, Fig. 2 shows the complete research 
stages of this research, which consist of collecting the data, 
processing the data itself, continuing to the training process with 
several training models, the evaluation process, and finally 
drawing conclusions. Fig. 3 provides a detailed visualization of 
the training and implementation stages of the model in this 
study, showing an example of the transfer learning application 
process flow on the seven models. 

 

Fig. 1. Overview of the general stages of the research. 

 

Fig. 2. Flowchart of the research stages. 

 

Fig. 3. Proposed model architecture framework. 

The initial stage of this research includes collecting skin 
cancer image data totaling 10,000 images, which are then 
classified into two main categories, namelyz, benign and 
malignant. The data is the result of the combination of the three 
different dataset sources. The first dataset, as many as 3,600 
images, was obtained from the Skin Cancer Malignant and 
Benign Dataset (SCMBD) [29]. Secondly, the source came from 
the Melanoma Skin Cancer Dataset (MSCD) with 5,000 images 
[30]. And finally, the third dataset, named the Melanoma Cancer 

Image Dataset (MCID), consists of 1,400 [31]. All three 
different datasets are divided into two classes, namely, benign 
and malignant. Table II shows the details of the data division 
from each source. 

TABLE II.  SUMMARY OF THE COMBINED DATASET SOURCE 

Class 

Name 

SCMBD 

Dataset 

MSCD 

Dataset 

Additional 

data MCID 
Sub Total 

Benign 1,800 2,500 700 5,000 

Malignant 1,800 2,500 700 5,000 

Total 3,600 5,000 1,400 10,000 

Training data, validation data, and testing data are the three 
primary subsets of the skin cancer image data used in this study. 
To support the experimentation and model evaluation process, 
two data division schemes are used: the first scheme with a ratio 
of 60% for training, 20% for validation, and 20% for testing, and 
an alternative scheme with a ratio of 80%:10%:10%. This 
division is carried out systematically after all images from the 
three datasets are combined and standardized in size to 224 × 
224 pixels to suit the input needs of the deep learning model 
[32]. The amount of data in each subset and the division scheme 
are presented in detail in Table III. 

The purpose of using these two division schemes is to ensure 
that the developed model receives sufficient training data, is 
optimally validated, and is independently tested so that its 
performance evaluation is accurate [33]. This approach also 
allows testing the model's robustness to variations in data 
proportions and helps find the most effective data sharing 
configuration in skin cancer image classification. Thus, this data 
sharing strategy also contributes in reducing evaluation bias and 
increasing the validity of the overall research results  [34]. 

TABLE III.  DATASET DISTRIBUTION 

Ratio Subset Total data in 

each subset 
Total dataset 

Scheme 1 

60:20:20 

Data training 6,000 

10,000 Data validation 2,000 

Data testing 2,000 

Scheme 2 

80:20:20 

Data training 8,000 

10,000 Data validation 1,000 
Data testing 1,000 

To meet the input dimensions required by all the CNN 
architectures, the dataset in this study was standardized to 
224×224 pixels. To increase the capacity of training data and 
overcome the limitations of the number of datasets, this study 
applied an image augmentation technique that was specifically 
carried out only on a subset of the training data (training set). 
The augmentation process involves various image 
transformations, including scaling, rotation, translation, zoom, 
horizontal flipping, vertical and horizontal position shifts (height 
and width shift), and brightness adjustment. This augmentation 
technique not only functions to artificially increase the amount 
of data but also enriches the variety of visual patterns, which are 
learned in the training process by the model. With the increasing 
diversity of augmented data, it is hoped that the model can 
recognize features more comprehensively and have better 
generalization capabilities to new data outside the training 
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dataset [35]. Examples of preprocessing and image 
augmentation results can be seen in Fig. 4, which shows a 
visualization of the transformation before the data is used in the 
training process. Details of the augmentation parameters applied 
during training are presented in Table IV as a technical reference 
for implementation, with parameters such as horizontal flip 
enabled, rotation range of 20 degrees, and zoom, shear, width 
shift, and height shift range, each valued at 0.2. Meanwhile, 
Table V shows the amount of augmented data from each dataset 
division scheme in detail. 

TABLE IV.  TRAINING DATA AUGMENTATION PARAMETERS 

Parameters Value 

Horizontal flip True 

Rotation range 20 degrees 

Zoom range 0.2 

Shear range 0.2 

Width shift range 0.2 

 

Fig. 4. Example training images from each class. 

TABLE V.  TRAINING DATASET BEFORE AND AFTER AUGMENTATION 

Scheme Classes 
Before 

augmentation 

After 

augmentation 

Scheme 1 

60% of dataset 

Benign 2,942 5,884 

Malignant 3,058 6,116 

Total 2 classes 6,000 12,000 

Scheme 2 

80% of dataset 

Benign 3,998 7,976 

Malignant 4,012 8,024 

Total 2 classes 8,000 16,000 

Table V shows the amount of data before and after 
augmentation based on the two dataset division schemes used in 
this study. In scheme 1, the training data consists of 2,942 benign 
class images and 3,058 malignant class images. After 
augmentation, they become 5,884 and 6,116 images, 
respectively, so that the total training data is 12,000 images. 
Meanwhile, scheme 2 uses 80% of the entire dataset for training, 
resulting in 3,998 benign images and 4,012 malignant images, 
which are multiplied through augmentation to 7,976 and 8,024 
images, respectively, with a total of 16,000 training images. The 
application of this augmentation aims to increase the amount and 
diversity of data so that the model is better able to recognize 
visual patterns of both classes of skin cancer accurately. 

The training process is carried out using a transfer learning 
approach using seven CNN architectures, namely MobileNetV2, 
InceptionV3, Xception, DenseNet169, ResNet50, VGG16, and 
VGG19. Initial weights that have been previously trained on the 
ImageNet dataset are initialized on each model, then fine-tuning 
is carried out so that the model is able to adapt to the visual 
characteristics of dermatoscopic images of skin cancer [36]. In 
the training process, the Adam optimization algorithm was used 

with a learning rate value of 0.001. The performance of each 
model was monitored periodically based on the accuracy and 
loss values on the training and validation data in each epoch. The 
training results were recorded in the form of average training 
accuracy, average validation accuracy, average training loss, 
average validation loss, and total training time. After training, 
the model was saved in an .h5 file and was ready for testing. 

The initial stage begins by inputting skin cancer images as 
input into the model with a size (input shape) of 224 × 224 × 3. 
The image data consists of two classes, namely benign skin 
cancer and malignant skin cancer. The training process is carried 
out on seven CNN model architectures, namely, MobileNetV2, 
InceptionV3, DenseNet169, ResNet50, Xception, VGG19, and 
VGG16. The training process is carried out for 20 epochs using 
the Binary Cross entropy loss function, which is suitable for the 
binary classification process. A dropout mechanism of 0.5 and 
an early stopping approach with a 5-epoch patience are used to 
prevent overfitting. If the model's performance on the validation 
data does not improve for five consecutive epochs, training will 
end. A learning rate value of 0.001 as a default of Adam 
optimizer is also used in the optimization process. At the end of 
the network (dense layer), 128 neurons are used with the ReLU 
activation function, and followed by generating the binary 
output of benign or malignant using the sigmoid activation 
function in the output layer. 

Model evaluation was performed using a subset of test data 
to measure the final performance of each deep learning 
architecture in classifying skin cancer images into two 
categories, namely benign and malignant. Performance 
evaluation was performed by calculating a number of key 
classification metrics, such as recall, precision, accuracy, F1-
score, and inference time to measure the efficiency of model 
predictions in the context of real applications [37]. In addition, 
a confusion matrix was used to summarize the performance of 
the classification distribution of true (correct) and false 
(incorrect) predictions from each class, thus offering a more 
thorough comprehension of the effectiveness of the model in 
digital image-based classification tasks. The components of the 
confusion matrix used are True Positive (TP), representing the 
number of malignant cancer cases that were successfully 
predicted correctly, while True Negative (TN) shows the 
number of benign cancer cases that were correctly identified. 
Meanwhile, False Positive (FP) refers to benign cancer cases 
that were incorrectly classified as malignant, and False Negative 
(FN) describes malignant cancer cases that failed to be 
recognized by the model [37]. 

The calculation of recall, precision, accuracy, and F1-score 
follows the formulas outlined in Eq. (1) to Eq. (4). Accuracy 
provides an overview of the accuracy of the model's predictions. 
Recall evaluates the model's potential ability to accurately 
classify cases of malignant cancer, which is very important to 
avoid the risk of delayed diagnosis. Precision evaluates the 
accuracy of the model’s predictions, avoiding misdiagnosis of 
healthy patients. Meanwhile, F1-score offers a balanced 
measure of performance, which particularly relevant when there 
is an imbalance in the amount of data between classes. It is also 
known as the harmonic mean of precision and recall. Inference 
time is also an important indicator in assessing the suitability of 
a model for application to a real-time detection system in a 
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clinical context [38]. By applying a combination of these 
metrics, this study aims to present a thorough evaluation of 
model performance in digital image-based skin cancer 
classification. 

Accuracy=
TP+TN

TP+TN+FP+FN
x100            (1) 

Precision=
TP

TP+FP
x100            (2) 

Recall=
TP

TP+FN
x100            (3) 

F1-score=2x
RecallxPrecision

Recall+Precision
x100            (4) 

IV. RESULT AND DISCUSSION 

A. Result 

The implementation and comparative evaluation of seven 
models were carried out using Jupyter Notebook. The Python 
programming language used in this study is backed by a number 
of significant libraries, including Keras, NumPy, Pandas, 
Matplotlib, and TensorFlow, which manage the training and 
testing stages of the deep learning models. The purpose of this 
study is to identify the deep learning model that best 
distinguishes between benign and malignant forms of skin 
cancer. There are seven types of CNN models tested, namely 
MobileNetV2, InceptionV3, DenseNet169, ResNet50, 
Xception, VGG19, and VGG16. All models are trained using an 
algorithm called Adam, which functions to accelerate and 
stabilize the training process. Adam was chosen because it is 
able to adjust its learning rate automatically, so that training is 
more efficient than other methods, such as RMSprop. A learning 
rate of 0.001 is often used as an initial value because it is 
considered stable enough to prevent excessive weight updates 
but still efficient in reducing loss during training. This value is 
also very suitable for adaptive optimizers such as Adam, which 
automatically adjust the learning rate of each parameter. In 
addition, this learning rate has been proven effective in various 
studies for models with medium to high complexity and is able 
to avoid the risk of overshooting the minimum point. 

The training process on the seven models was carried out 
using a fine-tuning strategy, where some early layers of the pre-
trained model were kept frozen, while the final layers were 
retrained using the skin cancer dataset. This strategy allows the 
model to adjust the general knowledge obtained from large 
datasets such as ImageNet to the specific characteristics of the 
dataset used in this study. By applying a dropout rate in the 
model of 0.5, it is expected to be able to reduce the chance of 
overfitting while maintaining the ability to capture important 
details from the training data. Every model has the same initial 
hyperparameters in order to preserve equality throughout the 
evaluation process. Table VI shows the results of the training 
process, including the accuracy, loss, and training time of each 
model, as a basis for model performance analysis. 

Based on the experimental results on seven deep learning 
architectures with two data splitting scenarios (60:20:20 and 
80:10:10), DenseNet169 showed the most outstanding 
performance. This model managed to achieve the highest 
validation accuracy, which was 87.07% in the 60:20:20 scenario 
and increased to 89.57% in the 80:10:10 scenario. In addition, 
the validation loss value on DenseNet169 was also recorded as 
the lowest compared to other models, indicating good training 
stability and generalization ability without symptoms of 
overfitting. This proves that, despite only the last layer being 
retrained throughout the fine-tuning procedure, DenseNet169 is 
able to identify significantly important patterns in the data. 

TABLE VI.  COMPARISON OF MODEL TRAINING RESULT 

Model Split Data Val Acc (%) Val Loss (%) 

DenseNet169 60:20:20 87.07 29.87 

InceptionV3 60:20:20 82.35 39.97 

MobileNetV2 60:20:20 83.56 33.63 

ResNet50 60:20:20 66.41 64.44 

VGG16 60:20:20 81.8 43 

VGG19 60:20:20 86.95 31.91 

Xception 60:20:20 83.55 38.09 

DenseNet169 80:10:10 89.57 23.99 

InceptionV3 80:10:10 82.55 36.13 

MobileNetV2 80:10:10 85.79 31.29 

ResNet50 80:10:10 68.12 61.22 

VGG16 80:10:10 84.95 35.82 

VGG19 80:10:10 83.89 38.61 

Xception 80:10:10 85.69 32.29 

Meanwhile, several other models, such as MobileNetV2, 
Xception, and VGG19, also showed quite good performance 
with validation accuracy ranging from 83% to 86%, and loss 
values that are still quite good. These models still have decent 
potential for use in skin cancer classification, although not as 
optimal as DenseNet169. On the other hand, ResNet50 
consistently recorded the lowest performance, both in terms of 
validation accuracy and loss rate, in both data scenarios. This 
indicates that in this study, the ResNet50 architecture is less 
suitable for the dataset and hyperparameter configuration used. 
After the training process of the seven deep learning models was 
completed, each model was saved in .h5 (HDF5) format to 
preserve the weights and network architecture that had been 
trained. Saving in this format allows for future reuse of the 
model without having to repeat the training process from the 
beginning. The next stage is the testing process for all models 
using test data that has been previously separated from the 
training and validation data. The purpose of this testing is to 
evaluate the final performance of each model on new data that 
has never been seen before and how well the model can 
generalize the classification of benign and malignant skin 
cancers accurately under actual circumstances. The results of 
testing each model are shown in Table VII. 
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TABLE VII.  COMPARISON OF MODEL TESTING RESULT 

Model Split Data Test Accuracy (%) Test Loss (%) Precision (%) Recall (%) F1-score (%) Inference time 

DenseNet169 60:20:20 90.4 9.6 90.4 90.4 90.4 79 s 

InceptionV3 60:20:20 86.1 14 86 86.1 86 58 s 

MobileNetV2 60:20:20 88 12 88.3 87.7 87.9 16 s 

ResNet50 60:20:20 73.7 26.3 74.8 74.2 73.6 55 s 

VGG16 60:20:20 85 15 85 85.1 85 194 s 

VGG19 60:20:20 88.4 11.6 88.5 88.3 88.4 28 s 

Xception 60:20:20 86.7 13.4 86.7 86.5 86.5 78 s 

DenseNet169 80:10:10 90.7 9.3 90.7 90.7 90.7 41 s 

InceptionV3 80:10:10 83.2 16 84.6 83.2 83.2 25 s 

MobileNetV2 80:10:10 87.8 12.2 87.9 87.8 87.8 14 s 

ResNet50 80:10:10 72.7 27 72.7 72.7 72.7 40 s 

VGG16 80:10:10 82.3 17.7 82.3 82.3 82.3 90 s 

VGG19 80:10:10 83.2 16.8 83.2 83.2 83.2 118 s 

Xception 80:10:10 86.2 13.8 86.2 86.2 86.2 37 s 

Based on the test results, the three best models for skin 
cancer classification are DenseNet169, MobileNetV2, and 
VGG19. DenseNet169 shows the best performance with the 
highest accuracy of 90.7%, as well as equally high recall, 
precision, and F1-score (90.7%), making it the most reliable and 
stable model. MobileNetV2 is the most efficient model with the 
fastest inference time (14 to 16 seconds) and competitive 
accuracy of up to 88%, suitable for low-resource devices and 
real-time applications. Meanwhile, VGG19 offers high accuracy 
(up to 88.4%) and balanced classification metrics, although with 
a longer inference time (28 to 118 seconds), making it a good 
choice for systems with high precision requirements and 
sufficient computing resources. 

The analysis results of the three best models based on tests 
for classifying benign and malignant skin cancer are shown in 
Fig. 5. A thorough visual comparison of the three models is also 
provided in Fig. 5 to aid in the study and make it easier to 
recognize and comprehend the variations in model performance. 
Based on the results presented in Fig. 5, DenseNet169 
(80:10:10) shows the best overall performance with an accuracy 
value of 90.7%, accompanied by a low loss value (9.3%) and 
balanced recall, precision, and F1-score scores. The next two 
best models are VGG19 (60:20:20) and MobileNetV2 
(60:20:20), with accuracies of 88.4% and 88.0%, respectively. 
Considering pure accuracy, the three best models in order are 
DenseNet169 (80:10:10), VGG19 (60:20:20), and 
MobileNetV2 (60:20:20). However, if time efficiency is an 
important factor, MobileNetV2 is worth choosing as a superior 
alternative model. 

B. Discussion 

A variety of evaluation metrics of the five models included 
in this study were analyzed in order to assess the pre-trained 
CNN models. Several important steps were implemented, 
including data augmentation to increase the number of samples, 
and the application of class weighting in the loss function during 
training to give greater weight to underrepresented classes. This 
strategy was designed to ensure that the model is able to learn 

the data without bias towards the majority class. In addition, the 
balanced batch sampling technique was used to keep the class 
distribution proportional in each training batch, which helps 
reduce the impact of class imbalance. The validation and 
evaluation process was carried out thoroughly using F1-score, 
recall, precision, and its confusion matrix metrics to ensure 
prediction accuracy and provide a comprehensive understanding 
of the strengths and limitations of each CNN model in 
classifying benign and malignant skin cancers. 

Performance optimization was performed on three superior 
models through the application of fine-tuning techniques. 
Retraining a number of the model's final layers with a low 
learning rate and regularization technique reduces the possibility 
of overfitting. Fine-tuning was applied to DenseNet169, 
MobileNetV2, and VGG16 by opening some of the final layers, 
while the initial layers were kept frozen so that the pre-training 
knowledge was maintained. During the retraining process, the 
Adam optimizer was used with a standard learning rate value of 
0.001 to ensure that the weight update process was stable and 
efficient. 

 

Fig. 5. Analysis graph of the three best models (DenseNet169, 

MobileNetV2, and VGG19). 
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This section discusses the best performance obtained from 
the research results conducted, namely the DenseNet169, 
MobileNetV2, and VGG19 models. The first result from 
DenseNet169 produced a test accuracy of 90.7% and a loss of 
9.3%. Fig. 6 shows the results with testing data, while Fig. 7 
shows the confusion matrix of the DenseNet169 model. 

 

Fig. 6. Classification report of DenseNet169 model. 

 

Fig. 7. Confusion matrix of DenseNet169 model. 

Based on Fig. 6, the results of the DenseNet169 model show 
a very good performance in classifying two classes, namely 
benign and malignant. The precision value, recall, and F1-score 
of the benign class are 91.7%, 89.3%, and 90.5%, respectively, 
whereas the malignant class shows 89.8%, 92.1%, and 90.9%. 
The overall accuracy of the model reaches 90.7%, with macro 
and weighted average values (macro avg and weighted avg) also 
consistent at 90.7%, indicating that the model can maintain a 
balance of performance between classes without significant 
bias. This reflects how well the model was able to generalize to 
the test data. 

Second, the VGG19 model showed quite good classification 
performance with an overall accuracy of 88.4%. In the benign 
class, the model produced a precision value of 87.0% and a 
recall of 91.2%, with an F1-score reaching 89.1%, which 
indicates how well the model's ability can identify most benign 
cases. Meanwhile, in the malignant class, the precision was 
recorded as higher at 90.1%, but the recall was slightly lower at 
85.5%, resulting in an F1-score of 87.7%. This performance 
reflects that the model tends to be more careful in detecting 
malignant cases, but is quite effective in reducing false positive 
predictions. The macro and weighted average values of recall, 
precision, and F1-score are in the range of 88.3% to 88.6%, 
respectively, reflecting the stability and balance of classification 
between classes. Overall, the VGG19 model has good potential 
for use in image-based skin cancer detection systems with quite 
competitive performance. 

As seen in Fig. 8, it shows the classification report for the 
VGG19 model, while Fig. 9 shows its confusion matrix. Fig. 8 
presents evaluation metrics such as recall, precision, and f1-
score for each class (benign and malignant), while Fig. 9 depicts 
the distribution of correct and incorrect predictions in the form 

of a confusion matrix. Both figures provide a comprehensive 
visual representation of the performance of the VGG19 model 
in classifying skin cancer images. 

 

Fig. 8. Classification report of the VGG19 model. 

 

Fig. 9. Confusion matrix of the VGG19 model. 

And at last, MobileNetV2, produces a test accuracy of 88% 
and a loss of 12%. The results of the MobileNetV2 model with 
testing data and its confusion matrix can be seen in Fig. 10 and 
Fig. 11, respectively. The MobileNetV2 model shows good 
performance in classifying benign and malignant categories, 
with an overall accuracy of 88.0%. The benign class has a 
precision value of 85.7%, a recall of 92.6%, and an F1-score of 
89.0%, indicating that it is quite efficient in identifying most 
benign cases, although there are several false predictions. In 
contrast, in the malignant class, the precision value is recorded 
as higher, namely 91.0%, but with a lower recall of 82.9%, 
indicating that although the positive predictions for this class are 
quite accurate, the model still misses a number of malignant 
cases. The macro and weighted average values of recall, 
precision, and F1-score range from 87.8% to 88.4%, reflecting 
a relatively balanced model performance between classes. 
Despite some disparity in detection between classes, the model 
still shows good potential for use in general skin cancer image 
classification. 

Based on the evaluation results of the three deep learning 
models tested, it can be concluded that DenseNet169 is the 
model with the best performance in skin cancer image 
classification. With a test accuracy of 90.7% and a loss value of 
only 9.3%, this model shows a very good balance between 
recall, precision, and F1-score for both classes, namely benign 
and malignant. The high macro and weighted average values of 
90.7% indicate that this model is able to fairly classify both 
classes without significant bias. These results indicate that 
DenseNet169 is not only accurate but also stable and reliable in 
handling data variations, making it the main choice for a digital 
image-based skin cancer classification system. 
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Fig. 10. Classification report of MobileNetV2 model. 

 

Fig. 11. Confusion matrix of MobileNetV2 model. 

The VGG19 and MobileNetV2 models also demonstrate 
competitive performance, achieving accuracies of 88.4% and 
88.0%, respectively. VGG19 exhibits higher recall for the 
benign class, while MobileNetV2 attains superior precision for 
the malignant class. Although a minor recall imbalance exists 
between the two classes, both models deliver stable and 
consistent performance. MobileNetV2, in particular, shows an 
advantage in inference efficiency, making it suitable for 
deployment on resource-constrained devices. Overall, all three 
models exhibit strong potential for integration into computer-
aided skin cancer diagnostic systems. DenseNet169 remains the 
most robust and accurate architecture, while MobileNetV2 
offers a lightweight yet effective alternative for real-time or 
embedded applications. While this study primarily focuses on 
classification accuracy, future research may explore explainable 
AI (XAI) methods such as Grad-CAM to visualize feature 
attention on dermoscopic images, thereby improving model 
interpretability and clinical trust. To further validate the 
proposed approach, Table VIII compares the results of this study 
with those reported in previous works. 

TABLE VIII.  COMPARISON OF MODEL EVALUATION RESULTS WITH 

PREVIOUS STUDIES 

Proposed 

method 

Acc 

(%) 

This 

Study 

Acc 

(%) 

[19] 

Acc 

(%) 

[20] 

Acc 

(%) 

[21] 

Acc 

(%) 

[22] 

Acc 

(%) 

[23] 

Densenet169 90.7 89.7 - - - - 

VGG19 88.4 - - - 87 88 

MobileNetv2 88 - 85.6 85 - - 

V. CONCLUSION 

This study evaluated three deep learning architectures, 
namely DenseNet169, MobileNetV2, and VGG19, for 
automatic skin cancer classification using digital dermatoscopic 
images. The dataset combined three public Kaggle sources 
containing 10,000 benign and malignant cases, evaluated under 

two data-split schemes (60:20:20 and 80:10:10). Among the 
models, DenseNet169 achieved the highest accuracy of 90.7%, 
demonstrating superior robustness and balanced precision-recall 
performance. MobileNetV2 and VGG19 also showed 
competitive accuracy (88.0 to 88.4%) with consistent reliability, 
where MobileNetV2 excelled in inference efficiency, making it 
suitable for mobile or real-time clinical applications. 

These findings confirm the potential of deep learning-based 
approaches to enhance early skin cancer detection. Each model 
offers distinct advantages that can be adapted to various 
healthcare environments depending on system requirements and 
resource availability. However, this study is limited by dataset 
diversity in terms of ethnicity, lighting, and geographic 
distribution, and it does not yet incorporate advanced ensemble 
learning, lesion segmentation, or explainable AI techniques. 
Future work will focus on improving generalization through 
multi-source data integration, exploring model interpretability 
via XAI methods such as Grad-CAM, and developing 
lightweight web- or mobile-based diagnostic tools for real-world 
deployment. 

Overall, the results demonstrate that CNN-based 
architectures, particularly DenseNet169, can significantly 
contribute to advancing medical image analysis and AI-assisted 
dermatological diagnostics. In clinical practice, such models can 
accelerate the diagnostic process, reduce misclassification risks, 
and improve early detection outcomes. Rather than replacing 
dermatologists, these systems are designed to support clinical 
decision-making, helping to improve patient recovery rates and 
the overall quality of healthcare services. 
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