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Abstract—Skin cancer is one of the fastest-growing health
problems worldwide. Early and accurate diagnosis is essential for
improving treatment success and patient survival. However, many
previous studies have focused on single CNN architectures or
limited datasets, resulting in models with restricted
generalizability. To address this gap, this study presents a
comparative evaluation of three deep learning architectures
(DenseNet169, MobileNetV2, and VGG19) for automatic
classification of benign and malignant skin cancers using
dermoscopic digital images. A total of 10,000 images were
compiled from three public Kaggle datasets, preprocessed through
resizing and data augmentation, and trained using transfer
learning based on ImageNet weights. Two data split schemes
(60:20:20 and 80:10:10) were applied to assess model robustness.
Experimental results show that DenseNet169 achieved the highest
test accuracy of 90.7 per cent, while MobileNetV2 was the fastest
with an inference time of 16 seconds. These findings highlight the
tradeoff between accuracy and computational efficiency and
support the use of deep learning models, particularly DenseNet169
and MobileNetV2,in the development of real-time Al-assisted skin
cancer diagnostic systems.

Keywords—Artificial intelligence;  convolutional neural
network; deep learning; dermoscopic images; skin cancer
classification

1. INTRODUCTION

Skin cancer is a common type of cancer that has been
increasing rapidly year after year [1]. According to WHO data,
each year, there are over two million cases of skin cancer
diagnosed, the majority of which are benign, such as actinic
keratosis and basal cell carcinoma [2]. Malignant skin cancers,
such as melanoma, continue to pose a substantial danger due to
their high metastaticpotential and death rate [3]. Sincethe speed
atwhichthe lesion can be identified and treated has a significant
impact on treatment outcomes, early diagnosis is an essential
step in lowering melanoma mortality. Unfortunately, the
standard skin cancer detection procedure continues to rely
mainly on visual inspection by a dermatologist, which is
subjective and requires extensive clinical experience, rendering
it prone to errors and inconsistencies [4].

Automation attempts in medical diagnosis have become the
subject of significant research, particularly when it comes to
medical image processing [5],[6],[7], [8],[9],[10],[11]. The
use of deep learning, which excels in extracting visual features
and accuratelyclassifyingobjects, is one of the popularmethods
[12]. Deep learning can learn visual patterns from picture data
from start to finish, eliminating the need for human feature
extraction[13]. Deep learning can distinguish tiny distinctions
between skin lesion types that are often not visible to the human

eye, making it a promising technology to support objective,
rapid, and efficient clinical judgments [14], [15], [16].

Several studies in classifying skin lesions in dermatoscopic
images have successfully demonstrated using CNN models.
Previous studies [17] proposed a hybrid deep learning model to
improvethe accuracy of skin cancer classification by combining
ConvNeXtV2 blocks and a separable self-attention mechanism,
especially in differentiating between benign and malignant
lesions thatshare a similar appearance. This model was shown
to be more superior than the other ten CNN and ViT models with
an accuracy 0f 93,48% and only 21,92 million parameters, and
also efficient for clinical applications. Furthermore, deep
learning methods with ResNet, VGG16, and AlexNet models
were applied to the HAM10000 dataset for skin cancer
classification, with improvements through data augmentation
and imbalanced data addition, resulting in accuracies of 92,9%,
98,4%, and 88,3%, respectively, where the improved VGG16
model was selected as the best model to support early detection
of skin cancer [18]. Further research [19] developed an
automatic skin cancer detection system based on the
DenseNet169 model trained using the Skin Cancer: Malignant
versus Benign dataset, and successfully achieved a high
accuracy of 89.7%, surpassing several conventional models and
potentially supporting medical personnel in more accurate and
efficient early diagnosis. Six deep learning models, including
EfficientNet (B0, B1, B2) and MobileNet (V2, V3-Small, V3-
Large), were used in the study [20]. Each model uses the ISIC
dataset to classify skin cancer. The best results were obtained
from MobileNet-V3-Large with an accuracy 0£89.41%, a recall
0f90.59%, and an F1-score of 89.53%, accelerating diagnosis
and improving accuracy [20]. Another study focused on the use
of'the MobileNetV2 model for digital image-based skin cancer
classification. After training and evaluation, the MobileNetV2
model successfully achieved an accuracy of 85% in
distinguishingbetween cancerousandnon-cancerous skinlesion
images [21]. In another study [22], several pre-trained models
are applied in the deep learning methods, one of which was
VGG19.The VGG19 model achieved an accuracy of 8 7% using
the HAM10000 dataset after the augmentation and fine-tuning
process, showing quite good performance in classifying skin
cancer. While the study [23] enhanced the pre-trained VGG19
model by adding max pooling and dense layers to improve the
skin cancer prediction capability. The improved VGG19 model
successfully achieves an accuracy of 88% in skin cancer
classification.

Referring to the background, the purpose of this study is to
evaluate and compare the performance of seven deep learning
architecturesin classifying skin cancer intotwo main categories,
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namely benign and malignant. The models used are
MobileNetV2, InceptionV3, Xception, DenseNetl69,
ResNet50, VGG16, and VGG19, each of which represents a
variation in architectural complexity and computational
efficiency. The dataset used was obtained from the Kaggle
platform, which consists of 10,000 digital imagesthat have been
labeled accordingto the type of lesion. This study usesa transfer
learning approach, where all models are initialized with weights
from pre-training on ImageNet, then the medical data is fine-
tuned to match its characteristics.

The main purpose of this study is to achieve an optimal deep
learning model to classify skin cancer based on evaluation
metrics, including recall, precision, accuracy, and F1 -score. The
results of this study are expected to contribute in the
advancement of digital picture development-based clinical
decision support systems, especially in the diagnosis of skin
cancer. In addition, this study also aims to encourage the use of
artificial intelligence in the health sector more widely by
considering the aspects of reliability, speed, and efficiency of
medical classification systems. It is also expected to provide a
thorough grasp of the strengths and the limitations of deep
learning architecture in the classification of benign and
malignant skin cancer by conducting a comprehensive
evaluation of the performance of each model. In addition, the
results of this study can be a starting point for the development
of an intelligent diagnostic system that is more accurate, easily
accessible, and able to support early detection of skin cancer
effectively.

The novelty of this study lies in the comprehensive
comparison of CNN architectures using multiple public datasets
and dual data split schemes to assess both accuracy and
inference efficiency in real-world skin cancer classification.

The remainder of this study is organized as follows:
Section Il reviews related studies on skin cancer classification
using deep learning. Section Il explains the materials and
methods, including dataset composition, preprocessing, and
CNN architectures. Section IV presents the experimental results
and analysis, while Section V concludes the study with key
findings and future directions.

II. RELATED WORKS

The previousrelated studies using digital image processing
approaches and deep learning methods for image classification
are summarized in Table I. Various deep learning models such
as DenseNetl69, DenseNetl2l, MobileNetV2, VGGI9,
ResNet50, Xception, InceptionV3, and EfficientNetBO have
been applied in these studies. The accuracy results of these
models vary, ranging from 85% to 89%.

Table I presents a comparison of the results of several
previous studies using a deep learning approach to classify and
detect skin cancer. Most studies use a digital image-based
approach with popular models including DenseNet, MobileNet,
VGG, ResNet, Xception, Inception, and EfficientNet. An
accuracy of 89.7% is the highest resultusing the DenseNet1 69
model [19], followed by the E-VGG16 model [24] and
DenseNet121 [25], which each recorded an accuracy of 89%.
Another study [22], [23] showed competitive results using
VGG19 and its modified version, with accuracies of 87% and
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88%. These results indicate that deep learning models are
suitable for skin cancer classification with high accuracyresults.

In addition, the MobileNetV2 model was used in two
different studies with accuracy results of 85.6% and 85%
respectively, indicating the efficiency of this model in a limited
computing environment, even with a slight decrease in accuracy
[20], [21]. ResNet50 also showed consistency with 87%
accuracy in two separate studies [10], [26]. Further research
used a combination of features from the Xception and
InceptionV3 models to detect Monkeypox skin disease and
obtained an accuracy of 85.9%, indicating the potential of the
combination architecture approach [27]. Meanwhile, research
using EfficientNetB0 recorded an accuracy of 87% [28],
showing the superiority of a lightweight yet effective model.
Overall, the data in this tableindicates that various deep learning
models have demonstrated competitive performance and are
worth considering for image-based skin disease classification
systems. However, few studies have systematically examined
how variations in dataset composition and data split schemes
affect the performance and generalizability of CNN
architectures for skin cancer classification.

TABLE. RELATED WORKS SUMMARY
Acc
Author Task Method (%)

R. Pathania et Skin cancer
al.[19] detection DenseNet169 89.7
O. Sahin et al Skin cancer MobileNetV2 85.6
[20] classification
D. Moturi et al Melanoma sk‘m MobileNetV2 85
[21] cancer detection
I. Ahmad et al Skin cancer
[22] detection VGGI9 87

Skin cancer
I Kandhroetal | 4 e tion and E-VGG19 88
[23] . .

classification
D. Albashish et Melanoma ;kin ' ResNet50 37
al [26] cancer classification
N. Pratama et al | Monkeypox skin Comb} ning feature

. . Xception and 85.9
[27] disease detection .
InceptionV3

N. Khasanah et Melanoma skin
al [10] cancer detection ResNet50 87
S. Matiray et al Skin cancer EfficientNetB0 g7
28] detection
V. Anand et al Skin _dlsea_se DenseNet121 89
[25] classification
S. Mushtaq et al | Skin cancer
[24] classification E-VGGlo6 89

III. MATERIALS AND METHODS

In this section, the stages of the methodology applied in the
study are described. This study focuses on testing and
comparing seven deep learning models with a transfer learning
approach, using public data from the Kaggle platformto classify
benign and malignant skin cancers. The entire process is
designed systematically, starting from the data input stage, pre-
processing, model training, to evaluation of results, as shown in
the workflow illustration in Fig. 1.
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In this study, the primary data used consisted of 10,000 skin
cancer images obtained from the Kaggle platform. The initial
stages of the study included data pre-processing, which
consisted of image resizing and augmentation applications to
increase the diversity and quality of training data. Furthermore,
this study tested and compared the performance of'seven deep
learning model architectures, namely, MobileNetV2,
InceptionV3, DenseNet169, ResNet50, Xception, VGG16, and
VGG19.Fig. 1 provides an overview of the main stages in the
researchprocess. In contrast, Fig. 2 shows the complete research
stages of this research, which consist of collecting the data,
processingthe dataitself, continuingto the training process with
several training models, the evaluation process, and finally
drawing conclusions. Fig. 3 provides a detailed visualization of
the training and implementation stages of the model in this
study, showing an example of the transfer learning application
process flow on the seven models.

) ) i)

RGB Image . Preprocessing 2 (S:T:::g: ::ligil
(10.000 images of skin 2 Training Model ’
cancer) 3. Evaluation Model 3 i;p(lms R

: . alysis Reports

Fig. 1. Overview of the general stages of the research.
Data Testing
20%
[ Evaluation Maodel J—{ Save model .hS }—4[ Model h3 ]

Result Analysis

Flowchart of the research stages.

Fig. 2.

Feature Extractor

input_shape
(224,224.3)

Fig.3. Proposed model architecture framework.

The initial stage of this research includes collecting skin
cancer image data totaling 10,000 images, which are then
classified into two main categories, namelyz, benign and
malignant. The data is the result of the combination of the three
different dataset sources. The first dataset, as many as 3,600
images, was obtained from the Skin Cancer Malignant and
Benign Dataset (SCMBD) [29]. Secondly, the source came from
the Melanoma Skin Cancer Dataset (MSCD) with 5,000 images
[30]. And finally, thethird dataset,named the Melanoma Cancer
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Image Dataset (MCID), consists of 1,400 [31]. All three
different datasets are divided into two classes, namely, benign
and malignant. Table II shows the details of the data division
from each source.

TABLEII. SUMMARY OF THE COMBINED DATASET SOURCE
Class SCMBD MSCD Additional Sub Total
Name Dataset Dataset data MCID

Benign 1,800 2,500 700 5,000
Malignant 1,800 2,500 700 5,000
Total 3,600 5,000 1,400 10,000

Training data, validation data, and testing data are the three
primary subsets of the skin cancer image data used in this study.
To supportthe experimentation and model evaluation process,
two data division schemes are used: the first scheme with a ratio
0f60% for training, 20% for validation, and 20% for testing, and
an alternative scheme with a ratio of 80%:10%:10%. This
divisionis carried out systematically after all images from the
three datasets are combined and standardized in size to 224 x
224 pixels to suit the input needs of the deep learning model
[32]. The amount of data in each subset and the division scheme
are presented in detail in Table IIL

The purpose of usingthese two division schemes is to ensure
that the developed model receives sufficient training data, is
optimally validated, and is independently tested so that its
performance evaluation is accurate [33]. This approach also
allows testing the model's robustness to variations in data
proportions and helps find the most effective data sharing
configuration in skincancer image classification. Thus, thisdata
sharing strategy also contributes in reducing evaluation bias and
increasing the validity of the overall research results [34].

TABLE III. DATASET DISTRIBUTION
Ratio Subset Total data in Total dataset
each subset

Data training 6,000

Scheme 1 .

60:20:20 Data validation | 2,000 10,000
Data testing 2,000

N Data training 8,000

Scheme 2 .

30:20:20 Data validation 1,000 10,000
Data testing 1,000

To meet the input dimensions required by all the CNN
architectures, the dataset in this study was standardized to
224x224 pixels. To increase the capacity of training data and
overcome the limitations of the number of datasets, this study
applied an image augmentation technique that was specifically
carried out only on a subset of the training data (training set).
The augmentation process involves various image
transformations, including scaling, rotation, translation, zoom,
horizontal flipping, verticalandhorizontal position shifts (height
and width shift), and brightness adjustment. This augmentation
technique not only functions to artificially increase the amount
of data but also enriches the variety of visual patterns, which are
learned in the training process by the model. With the increasing
diversity of augmented data, it is hoped that the model can
recognize features more comprehensively and have better
generalization capabilities to new data outside the training
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dataset [35]. Examples of preprocessing and image
augmentation results can be seen in Fig. 4, which shows a
visualization of the transformation before the datais used in the
training process. Details of the augmentation parameters applied
duringtrainingare presentedin Table IV as atechnical reference
for implementation, with parameters such as horizontal flip
enabled, rotation range of 20 degrees, and zoom, shear, width
shift, and height shift range, each valued at 0.2. Meanwhile,
Table V shows the amount of augmented data from each dataset
division scheme in detail.

TABLEIV. TRAINING DATA AUGMENTATION PARAMETERS
Parameters Value

Horizontal flip True

Rotation range 20 degrees

Zoom range 0.2

Shearrange 0.2

Width shift range 0.2

Benign Malignant
Original Data Resize Result Aug Result Original Data Resize Result Aug Result

'’

224x224 224x224 224x224 224x224

Fig. 4. Example training images from each class.

TABLE V. TRAINING DATASET BEFORE AND AFTER AUGMENTATION
Scheme Classes augﬁleefr(:tl:ﬁon augl::;et:ltion

Scheme 1 Benign 2,942 5,884

60% of dataset | Malignant 3,058 6,116

Total 2 classes 6,000 12,000

Scheme 2 Benign 3,998 7,976

80% of dataset | Malignant 4,012 8,024

Total 2 classes 8,000 16,000

Table V shows the amount of data before and after
augmentation based on the two dataset division schemes used in
this study. In scheme 1, the training dataconsists 0f2,942 benign
class images and 3,058 malignant class images. After
augmentation, they become 5,884 and 6,116 images,
respectively, so that the total training data is 12,000 images.
Meanwhile, scheme2 uses 80% of'the entire dataset for training,
resultingin 3,998 benign images and 4,012 malignant images,
which are multiplied through augmentation to 7,976 and 8,024
images, respectively, with a total of 16,000 training images. The
applicationofthis augmentation aims to increase the amountand
diversity of data so that the model is better able to recognize
visual patterns of both classes of skin cancer accurately.

The training process is carried out using a transfer learning
approachusingseven CNN architectures, namely MobileNetV2,
InceptionV3, Xception, DenseNet169, ResNet50, VGG16, and
VGGI19. Initial weights that have been previously trained on the
ImageNet datasetare initialized on each model, then fine-tuning
is carried out so that the model is able to adapt to the visual
characteristics of dermatoscopic images of skin cancer [36]. In
the training process, the Adam optimization algorithm was used
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with a learning rate value of 0.001. The performance of each
model was monitored periodically based on the accuracy and
loss values on the trainingand validation data in each epoch. The
training results were recorded in the form of average training
accuracy, average validation accuracy, average training loss,
average validation loss, and total training time. After training,
the model was saved in an .h5 file and was ready for testing.

The initial stage begins by inputting skin cancer images as
input into the model with a size (input shape) of 224 x 224 x 3.
The image data consists of two classes, namely benign skin
cancerandmalignantskincancer. The training processis carried
out on seven CNN model architectures, namely, MobileNetV2,
InceptionV3, DenseNet169, ResNet50, Xception, VGG19, and
VGGL16. The training process is carried out for 20 epochs using
the Binary Cross entropy loss function, which is suitable for the
binary classification process. A dropout mechanism of 0.5 and
an early stopping approach with a 5-epoch patience are used to
prevent overfitting. If the model's performance on the validation
data does not improve for five consecutive epochs, training will
end. A learning rate value of 0.001 as a default of Adam
optimizeris also used in the optimization process. At the end of
the network (dense layer), 128 neurons are used with the ReLU
activation function, and followed by generating the binary
output of benign or malignant using the sigmoid activation
function in the output layer.

Model evaluation was performed using a subset of test data
to measure the final performance of each deep leaming
architecture in classifying skin cancer images into two
categories, namely benign and malignant. Performance
evaluation was performed by calculating a number of key
classification metrics, such as recall, precision, accuracy, F1-
score, and inference time to measure the efficiency of model
predictions in the contextof real applications [37]. In addition,
a confusion matrix wasused to summarize the performance of
the classification distribution of true (correct) and false
(incorrect) predictions from each class, thus offering a more
thorough comprehension of the effectiveness of the model in
digital image-based classification tasks. The components of the
confusion matrix used are True Positive (TP), representing the
number of malignant cancer cases that were successfully
predicted correctly, while True Negative (TN) shows the
number of benign cancer cases that were correctly identified.
Meanwhile, False Positive (FP) refers to benign cancer cases
that were incorrectly classified as malignant,and False Negative
(FN) describes malignant cancer cases that failed to be
recognized by the model [37].

The calculation of recall, precision, accuracy, and F1 -score
follows the formulas outlined in Eq. (1) to Eq. (4). Accuracy
provides an overview of the accuracy ofthe model's predictions.
Recall evaluates the model's potential ability to accurately
classify cases of malignant cancer, which is very important to
avoid the risk of delayed diagnosis. Precision evaluates the
accuracy of the model’s predictions, avoiding misdiagnosis of
healthy patients. Meanwhile, Fl-score offers a balanced
measure of performance, which particularly relevant when there
is an imbalance in the amount of data between classes. It is also
known as the harmonic mean of precision and recall. Inference
time is also an important indicator in assessing the suitability of
a model for application to a real-time detection system in a
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clinical context [38]. By applying a combination of these
metrics, this study aims to present a thorough evaluation of
model performance in digital image-based skin cancer
classification.

TP+TN
Accuracmeloo (1)
Precision=——— x 100 2)
TP+FP
Recall=——x100 3)
TP+FN

Fl-score=2x RecallxPrecision <100 (4)

Recall+Precision
IV. RESULT AND DISCUSSION

A. Result

The implementation and comparative evaluation of seven
models were carried out using Jupyter Notebook. The Python
programming language used in this study is backed by a number
of significant libraries, including Keras, NumPy, Pandas,
Matplotlib, and TensorFlow, which manage the training and
testing stages of the deep learning models. The purpose of this
study is to identify the deep learning model that best
distinguishes between benign and malignant forms of skin
cancer. There are seven types of CNN models tested, namely
MobileNetV2, InceptionV3, DenseNetl69, ResNet50,
Xception, VGG19, and VGG16. All models are trained using an
algorithm called Adam, which functions to accelerate and
stabilize the training process. Adam was chosen because it is
able to adjust its learning rate automatically, so that training is
more efficient than other methods, such as RMSprop. A learning
rate of 0.001 is often used as an initial value because it is
considered stable enough to prevent excessive weight updates
but still efficientin reducing loss during training. This value is
also very suitable for adaptive optimizers such as Adam, which
automatically adjust the learning rate of each parameter. In
addition, this learning rate has been proven effective in various
studies for models with medium to high complexity and is able
to avoid the risk of overshooting the minimum point.

The training process on the seven models was carried out
using a fine-tuning strategy, where some early layers of the pre-
trained model were kept frozen, while the final layers were
retrained using the skin cancer dataset. This strategy allows the
model to adjust the general knowledge obtained from large
datasets such as ImageNet to the specific characteristics of the
dataset used in this study. By applying a dropout rate in the
model of 0.5, it is expected to be able to reduce the chance of
overfitting while maintaining the ability to capture important
details from the training data. Every model has the same initial
hyperparameters in order to preserve equality throughout the
evaluation process. Table VI shows the results of the training
process, including the accuracy, loss, and training time of each
model, as a basis for model performance analysis.
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Based on the experimental results on seven deep learning
architectures with two data splitting scenarios (60:20:20 and
80:10:10), DenseNet169 showed the most outstanding
performance. This model managed to achieve the highest
validationaccuracy, which was 87.07%in the 60:20:20 scenario
and increased to 89.57% in the 80:10:10 scenario. In addition,
the validation loss value on DenseNet169 was also recorded as
the lowest compared to other models, indicating good training
stability and generalization ability without symptoms of
overfitting. This proves that, despite only the last layer being
retrained throughout the fine-tuning procedure, DenseNet169 is
able to identify significantly important patterns in the data.

TABLE VI. COMPARISON OF MODEL TRAINING RESULT
Model Split Data Val Acc (%) Val Loss (%)

DenseNet169 60:20:20 87.07 29.87
InceptionV3 60:20:20 82.35 39.97
MobileNetV2 60:20:20 83.56 33.63
ResNet50 60:20:20 66.41 64.44
VGGl6 60:20:20 81.8 43

VGGI9 60:20:20 86.95 3191
Xception 60:20:20 83.55 38.09
DenseNet169 80:10:10 89.57 23.99
InceptionV3 80:10:10 82.55 36.13
MobileNetV2 80:10:10 85.79 31.29
ResNet50 80:10:10 68.12 61.22
VGG16 80:10:10 84.95 35.82
VGGI19 80:10:10 83.89 38.61
Xception 80:10:10 85.69 32.29

Meanwhile, several other models, such as MobileNetV2,
Xception, and VGG19, also showed quite good performance
with validation accuracy ranging from 83% to 86%, and loss
values that are still quite good. These models still have decent
potential for use in skin cancer classification, although not as
optimal as DenseNet169. On the other hand, ResNet50
consistently recorded the lowest performance, both in terms of
validation accuracy and loss rate, in both data scenarios. This
indicates that in this study, the ResNet50 architecture is less
suitable for the dataset and hyperparameter configuration used.
Afterthe trainingprocess of the seven deep learningmodels was
completed, each model was saved in .h5 (HDF5) format to
preserve the weights and network architecture that had been
trained. Saving in this format allows for future reuse of the
model without having to repeat the training process from the
beginning. The next stage is the testing process for all models
using test data that has been previously separated from the
training and validation data. The purpose of this testing is to
evaluate the final performance of each model on new data that
has never been seen before and how well the model can
generalize the classification of benign and malignant skin
cancers accurately under actual circumstances. The results of
testing each model are shown in Table VIL
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TABLE VII. COMPARISON OF MODEL TESTING RESULT
Model Split Data Test Accuracy (%) Test Loss (%) Precision (%) Recall (%) F1-score (%) Inference time
DenseNet169 60:20:20 90.4 9.6 90.4 90.4 90.4 79s
InceptionV3 60:20:20 86.1 14 86 86.1 86 58s
MobileNetV2 60:20:20 88 12 88.3 87.7 87.9 16s
ResNet50 60:20:20 73.7 263 74.8 742 73.6 55s
VGGl6 60:20:20 85 15 85 85.1 85 194 s
VGG19 60:20:20 88.4 11.6 88.5 88.3 88.4 28s
Xception 60:20:20 86.7 134 86.7 86.5 86.5 78s
DenseNet169 80:10:10 90.7 9.3 90.7 90.7 90.7 41s
InceptionV3 80:10:10 83.2 16 84.6 83.2 83.2 25s
MobileNetV2 80:10:10 87.8 122 87.9 87.8 87.8 14s
ResNet50 80:10:10 72.7 27 72.7 72.7 72.7 40s
VGG16 80:10:10 82.3 17.7 823 82.3 823 90 s
VGG19 80:10:10 83.2 16.8 83.2 83.2 83.2 118s
Xception 80:10:10 86.2 13.8 86.2 86.2 86.2 37s

Based on the test results, the three best models for skin
cancer classification are DenseNet169, MobileNetV2, and
VGG19. DenseNet169 shows the best performance with the
highest accuracy of 90.7%, as well as equally high recall,
precision,and F1-score (90.7%), makingit the mostreliableand
stable model. MobileNetV2 is the most efficient model with the
fastest inference time (14 to 16 seconds) and competitive
accuracy of up to 88%, suitable for low-resource devices and
real-time applications. Meanwhile, VGG19 offershigh accuracy
(up to 88.4%) and balanced classification metrics, although with
a longer inference time (28 to 118 seconds), making it a good
choice for systems with high precision requirements and
sufficient computing resources.

The analysis results of the three best models based on tests
for classifying benign and malignant skin cancer are shown in
Fig. 5. A thorough visual comparison of the three models is also
provided in Fig. 5 to aid in the study and make it easier to
recognizeand comprehend the variations in model performance.
Based on the results presented in Fig. 5, DenseNetl69
(80:10:10) shows the best overall performance with an accuracy
value of 90.7%, accompanied by a low loss value (9.3%) and
balanced recall, precision, and F1-score scores. The next two
best models are VGG19 (60:20:20) and MobileNetV2
(60:20:20), with accuracies of 88.4% and 88.0%, respectively.
Considering pure accuracy, the three best models in order are
DenseNet169  (80:10:10), VGG19  (60:20:20), and
MobileNetV2 (60:20:20). However, if time efficiency is an
important factor, MobileNetV2 is worth choosing as a superior
alternative model.

B. Discussion

A variety of evaluation metrics of the five models included
in this study were analyzed in order to assess the pre-trained
CNN models. Several important steps were implemented,
including data augmentation to increase the number of samples,
and the applicationof class weightingin the loss function during
training to give greater weightto underrepresented classes. This
strategy was designed to ensure that the model is able to leam

the data without bias towards the majority class. In addition, the
balanced batch sampling technique was used to keep the class
distribution proportional in each training batch, which helps
reduce the impact of class imbalance. The validation and
evaluation process was carried out thoroughly using F1 -score,
recall, precision, and its confusion matrix metrics to ensure
prediction accuracy and providea comprehensive understanding
of the strengths and limitations of each CNN model in
classifying benign and malignant skin cancers.

Performance optimization was performed on three superior
models through the application of fine-tuning techniques.
Retraining a number of the model's final layers with a low
learningrate and regularization technique reduces the possibility
of overfitting. Fine-tuning was applied to DenseNetl69,
MobileNetV2, and VGG16 by opening some of the final layers,
while the initial layers were kept frozen so that the pre-training
knowledge was maintained. During the retraining process, the
Adam optimizer was used with a standard learning rate value of
0.001 to ensure that the weight update process was stable and
efficient.

Analysis graph of the 3 best models (DenseNet169, MobileNetV2, and VGG19)

0, %, 9%,
38 884 88,3 B85 &7 883 87,9 84
"
%
16
‘ 1 ‘ ‘ ‘ ‘ ‘ ‘ I I
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Fig.5. Analysis graph of the three best models (DenseNet169,
MobileNetV2, and VGG19).
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This section discusses the best performance obtained from
the research results conducted, namely the DenseNetl169,
MobileNetV2, and VGG19 models. The first result from
DenseNet169 produced a test accuracy of 90.7% and a loss of
9.3%. Fig. 6 shows the results with testing data, while Fig. 7
shows the confusion matrix of the DenseNet169 model.

Classification Report:

precision recall fl-score support

benign ©.917 @.893 @e.985 495
malignant ©8.898 8.921 8.909 585
accuracy 8.9087 1000
macro avg @8.987 a.9a7 8.987 1000
weighted avg @.987 e.9a7 8.987 leee

Fig. 6. Classification report of DenseNet169 model.

Confusion Matrix
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benign

malignant

benign malignant
Predicted Label

Fig. 7. Confusion matrix of DenseNet169 model.

Based on Fig. 6, the results of the DenseNet169 model show
a very good performance in classifying two classes, namely
benign and malignant. The precision value, recall, and F1-score
of'the benign class are 91.7%, 89.3%, and 90.5%, respectively,
whereas the malignant class shows 89.8%, 92.1%, and 90.9%.
The overall accuracy of the model reaches 90.7%, with macro
and weighted average values (macro avgand weighted avg) also
consistent at 90.7%, indicating that the model can maintain a
balance of performance between classes without significant
bias. This reflects how well the model was able to generalize to
the test data.

Second, the VGG19 model showed quite good classification
performance withan overall accuracy of 88.4%. In the benign
class, the model produced a precision value of 87.0% and a
recall of 91.2%, with an Fl-score reaching 89.1%, which
indicates how well the model's ability can identify most benign
cases. Meanwhile, in the malignant class, the precision was
recorded as higher at 90.1%, but the recall was slightly lower at
85.5%, resulting in an F1-score of 87.7%. This performance
reflects that the model tends to be more careful in detecting
malignant cases, but is quite effective in reducing false positive
predictions. The macro and weighted average values of recall,
precision, and F1-score are in the range of 88.3% to 88.6%,
respectively, reflecting the stability and balance of classification
between classes. Overall, the VGG19 model has good potential
for use in image-based skin cancer detection systems with quite
competitive performance.

As seen in Fig. 8, it shows the classification report for the
VGG19 model, while Fig. 9 shows its confusion matrix. Fig. 8
presents evaluation metrics such as recall, precision, and fl-
score for each class (benign and malignant), while Fig. 9 depicts
the distribution of correct and incorrect predictions in the form
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of a confusion matrix. Both figures provide a comprehensive
visual representation of the performance of the VGG19 model
in classifying skin cancer images.

Classification Report:

precision recall fl-score support

benign 0.870 0.912 0.891 1032
malignant 0.901 0.855 0.877 966
accuracy 0.884 1998
macro avg 0.886 0.883 0.884 1998
weighted avg 0.885 0.884 0.884 1998

Fig. 8. Classification report of the VGG19 model.
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Fig.9. Confusion matrix of the VGG19 model.

And at last, MobileNetV2, produces a test accuracy of 88%
and a loss of 12%. The results of the MobileNetV2 model with
testing data and its confusion matrix can be seen in Fig. 10 and
Fig. 11, respectively. The MobileNetV2 model shows good
performance in classifying benign and malignant categories,
with an overall accuracy of 88.0%. The benign class has a
precision value of 85.7%, arecall 0 92.6%, and an F1 -score of
89.0%, indicating that it is quite efficient in identifying most
benign cases, although there are several false predictions. In
contrast, in the malignant class, the precision value is recorded
as higher, namely 91.0%, but with a lower recall of 82.9%,
indicatingthat although the positive predictions for this class are
quite accurate, the model still misses a number of malignant
cases. The macro and weighted average values of recall,
precision, and F1-score range from 87.8% to 88.4%, reflecting
a relatively balanced model performance between classes.
Despite some disparity in detection between classes, the model
still shows good potential for use in general skin cancer image
classification.

Based on the evaluation results of the three deep leamning
models tested, it can be concluded that DenseNetl169 is the
model with the best performance in skin cancer image
classification. With a test accuracy 0£90.7% and a loss value of
only 9.3%, this model shows a very good balance between
recall, precision, and F1-score for both classes, namely benign
and malignant. The high macro and weighted average values of
90.7% indicate that this model is able to fairly classify both
classes without significant bias. These results indicate that
DenseNet169 is notonly accurate but also stable and reliable in
handling data variations, making it the main choice for a digital
image-based skin cancer classification system.
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Classification Report:

precision recall fl-score support
benign 2.857 0.926 0.890 1es51
malignant 0.910 @.829 0.868 949
accuracy 0.880 2000
macro avg 0.884 @.878 0.879 2000
weighted avg 0.882 0.880 0.880 2000

Fig. 10. Classification report of MobileNetV2 model.
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Fig. 11. Confusion matrix of MobileNetV2 model.

The VGG19 and MobileNetV2 models also demonstrate
competitive performance, achieving accuracies of 88.4% and
88.0%, respectively. VGG19 exhibits higher recall for the
benign class, while MobileNetV2 attains superior precision for
the malignant class. Although a minor recall imbalance exists
between the two classes, both models deliver stable and
consistent performance. MobileNetV2, in particular, shows an
advantage in inference efficiency, making it suitable for
deployment on resource-constrained devices. Overall, all three
models exhibit strong potential for integration into computer-
aided skin cancer diagnostic systems. DenseNet 169 remains the
most robust and accurate architecture, while MobileNetV2
offers a lightweight yet effective alternative for real-time or
embedded applications. While this study primarily focuses on
classification accuracy, future research may explore explainable
Al (XAI) methods such as Grad-CAM to visualize feature
attention on dermoscopic images, thereby improving model
interpretability and clinical trust. To further validate the
proposed approach, Table VIII comparesthe results of this study
with those reported in previous works.

TABLE VIII. COMPARISON OF MODEL EVALUATION RESULTS WITH
PREVIOUS STUDIES

Acc
proposcd | () |05 |Gl o | o | on
Study [19] [20] [21] [22] [23]
Densenet169 90.7 89.7 - - - -
VGG19 88.4 - - - 87 88
MobileNetv2 88 - 85.6 85 - -

V. CONCLUSION

This study evaluated three deep learning architectures,
namely DenseNetl69, MobileNetV2, and VGG19, for
automatic skin cancer classification using digital dermatoscopic
images. The dataset combined three public Kaggle sources
containing 10,000 benign and malignant cases, evaluated under
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two data-split schemes (60:20:20 and 80:10:10). Among the
models, DenseNetl 69 achieved the highestaccuracy of 90.7%,
demonstrating superior robustness and balanced precision-recall
performance. MobileNetV2 and VGGI19 also showed
competitive accuracy (88.0 to 88.4%) with consistent reliability,
where MobileNetV2 excelled in inference efficiency, making it
suitable for mobile or real-time clinical applications.

These findings confirm the potential of deep learning-based
approaches to enhance early skin cancer detection. Each model
offers distinct advantages that can be adapted to various
healthcare environments depending on systemrequirements and
resource availability. However, this study is limited by dataset
diversity in terms of ethnicity, lighting, and geographic
distribution, and it does not yet incorporate advanced ensemble
learning, lesion segmentation, or explainable Al techniques.
Future work will focus on improving generalization through
multi-source data integration, exploring model interpretability
via XAl methods such as Grad-CAM, and developing
lightweight web-or mobile-based diagnostictools for real-world
deployment.

Overall, the results demonstrate that CNN-based
architectures, particularly DenseNetl69, can significantly
contribute to advancing medical image analysis and Al-assisted
dermatological diagnostics. In clinical practice,suchmodels can
accelerate the diagnostic process, reduce misclassification risks,
and improve early detection outcomes. Rather than replacing
dermatologists, these systems are designed to support clinical
decision-making, helping to improve patient recovery rates and
the overall quality of healthcare services.
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