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Abstract—This study proposes a Q-learning-based adaptive
duty cycle scheduling algorithm for LoRaWAN in a smart city
eco-system to enhance the energy efficiency, reduce transmission
delay, and handle dynamic traffic conditions. Additionally, it also
incorporates an intelligent and efficient channel utilization
scheme for LoORaWAN-enabled IoT networks and also integrates
a lightweight security strategy at the edge (gateways), making it
suitable  for  low-power, low-computation = LoRaWAN
environments. In this adaptive and intelligent LoRaWAN
framework Q-learning agent dynamically selects various
transmission actions based on the contextual states, including
buffer size, energy levels, and channel conditions, which
optimizes energy efficiency and also enhances the reliability of
data transmission in LoRaWAN. The light-weight intrusion
detection mechanism also filters suspicious packets using trust
scores and payload analysis to ensure secure data delivery and
adaptive, scalable, and proactive protection against several
prevalent threats in LoORaWAN-driven IoT. It also incorporates a
channel-aware scheduling to avoid congestion and improve
overall transmission performance. Experimental outcome further
confirms improvement over throughput, delay, bandwidth
utilization, energy conservation, and resilience against malicious
or faulty transmissions, demonstrating the framework’s ability to
optimize the resource allocation performance while balancing the
above metrics adaptively.
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I.  INTRODUCTION

The rapid advancement of the Internet of Things (IoT) has
created a demand for low-power, long-range wireless
communication technologies. IoT involves connecting a wide
range of end-devices, which are battery-powered sensor nodes,
to the Intemet and also enabling communication and data
exchange between them [1] [2]. Therefore, the need arises to
design the power usage profile carefully in order to extend the
battery’s lifetime. Also, the communication range needs to go
from several hundred meters up to several kilometers as IoT
end devices are distributed over a large area of operation.
Considering all the aforementioned characteristics, this can be
only realized by using the low power wide area network
(LPWAN) technologies as LPWAN technologies can support
resource management, throughput, and delay constraints in [oT
[3]. There exist several LPWAN technologies present in the
market, such as SigFox [4], Narrow Band (NB)-IoT [5], or

Long-Range Wide Area Networks (LoRaWAN) [6] and Long-
Term Evolution for Machines (LTE-M) [7]. The maximum
data rate in SigFox is ~100 bps, whereas in NB-IoT it is ~250
kbps. On the other hand, in LoRaWAN, it is approximately
~50 kbps, and in the case of LTE-M, the maximum data rate is
approximately ~1 Mbps. LoORaWAN [6] is among the leading
LPWAN technologies as it offers the possibility for private
network deployments and easy integration with a number of
worldwide network platforms and has the ability to provide
long-range communication with low power consumption. Due
to this and its open access specification, LoRaWAN have
gained significant attention from academia and industries for
IoT [8] [9]. The LoRa physical layer has been patented by
Semtech in the year 2014 [10]. LoRa is a radio frequency (RF)
modulation technology that defines the physical layer features
for long-range communications. However, the LoRaWAN
medium access control (MAC) protocol is an open-source
protocol standardized by the LoRa Alliance that runs on the top
of LoRa physical layer.

LoRaWAN is also popular in smart city applications as it
provides cost-effective, scalable, and power-efficient solutions
for connecting thousands of widely distributed and low-data-
rate devices. It supports long-range communication while
covering ~2-15 km in rural areas and 1-5 km in urban settings.
The end devices in LoORaWAN can last upto 5 to 10 years on
battery, that reduces the need for frequent maintenance. It also
offers low-cost unlicensed spectrum (ISM) bands, whereas
LoRaWAN gateways are also affordable and can support
thousands of devices. It also supports municipalities to deploy
and control their own infrastructures in smart city applications.
LoRaWAN also supports flexible network architecture with
public, private, and hybrid networks, whereas designed for
massive IoT deployments. Also, it uses AES-128 encryption
schemes at the network and application layers while ensuring
end-to-end security for data transmitted from sensors to
applications [9] [10]. LoRaWAN is a popular communication
protocol designed for low-power wide-area IoT deployments.
While it excels in range and energy efficiency for small data
transfers but it faces several inherent limitations and challenges
due to its design trade-offs [20] [21]. The challenges arise due
to low data rates, inefficient resource allocation, energy
consumption, and network congestion problems [22]. It has
also been observed that traditional fixed-duty cycle
mechanisms suffer from suboptimal bandwidth utilization,
increased transmission delays, and energy wastage, especially
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in dynamic environments where real-time data transmission is
crucial [23]. The root cause for the low data rate transmissions
is chrip spread spectrum modulation, which prioritizes
robustness and range over speed, and also spreading factor
(SF) that results in long transmission time and poor latency
[24]. LoRaWAN uses a pure ALOHA channel access method
that also increases the chances of retransmissions. collisions
and unfair resource usage. The frequent transmissions (TX),
collisions, and high SF factors result in reduced battery life.
LoRaWAN gateways operate in licensed ISM bands (868 MHz
in EU, 915 MHz in US) with strict duty cycle limitations. As
the network of IoT end devices grows with limited channel
availability, that also results in frequent packet drops, low QoS,
and scalability problems [25]. It is also observed that the
LoRaWAN protocol suffers from security vulnerabilities to
jamming and intrusions. No such in-built mechanism is found
in LoRaWAN for intrusion detection or anomaly classification
[15].

Machine Learmning (ML) is a popularly growing field with
many applications, including wireless communications [26]
[27]. There are various studies which claim that ML could be
used to improve the performance, efficiency, and security of
LoRaWAN [28]. ML algorithms empower LoRaWAN
networks to dynamically allocate resources, predict network
traffic, mitigate interference, and optimize energy
consumption, thereby enhancing network capacity, reliability,
and battery life. With ML-driven insights, operators can
proactively plan network expansions and ensure better quality
of service (QoS), and also achieve self-optimizing networks
that autonomously adapt to changing conditions. However,
popular supervised learning approaches such as SVM,
Decision Trees, Random Forest, and Logistic Regression
models rely on a large amount of labelled data, which is often
scarce and expensive in LoRaWAN due to limited sensing and
reporting capability [29]. Also, models trained on static
datasets may fail to generalize in dynamic, noisy environments
with high traffic variability. Traditional supervised approaches
also do not adapt well to real-time changes in topology or
energy levels. These models also suffer from scalability issues
and security bias limitations. It has been also observed that
existing Deep Learning (DL) models, such as CNN, LSTM,
DNN, auto encoders, require significant resources for training
and interference which is not practical for low-powered LoRa
nodes. DL models heavily rely on large datasets which is often
unavailable in LoRaWAN due to low data rates and sparse
feedback. Also, these DL models suffer from latency issues,
overfitting problems, black-box nature, and deployment
complexities [29] [30]. It has been also observed that the
existing unsupervised ML techniques suffer from poor
contextual awareness, false positives, and parameter tuning
issues in large-scale LoORaWAN deployments.

The proposed system, therefore, aims to optimize the
throughput, minimize transmission delay, and preserve energy
while meeting the criteria for secure transmission, thereby
enhancing the overall performance of LoRaWAN. However,
the proposed work also finds the popularity of RL strategies
and their scope towards improving the performance of
LoRaWAN and further formulates a unique form of light-
weight computational and analytical framework for Q-learning
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based adaptive duty cycle management in LoORaWAN, which is
also further integrated with a security modeling. Here, the
framework aims to optimize the LoRaWAN resources in
dynamic conditions and also offers resiliency against different
forms of adversaries in LoORaWAN, which affects the energy
and QoS performance in LoRaWAN.

The key contribution of this work is listed as follows:

e Unlike traditional fixed duty cycling and static
scheduling strategies, the proposed work employs Q-
leaming to dynamically adapt transmission decisions
based on real-time network conditions and also
significantly =~ improves energy efficiency and
throughput. Here Q-learning based adaptive duty-
cycling dynamically adjusts transmission slots
considering buffer, energy, channel, and duty cycle
constraints.

e In contrast to the generic ML models that require
extensive training data and centralized models, the
proposed approach offers a light-weight and model-free
reinforcement learning strategy that enables distributed
and online learning at individual IoT nodes in
LoRaWAN.

e The integration of trust-based intrusion detection
modeling enhances the security by proactively filtering
malicious data packets, a feature that is missing in
existing standard ML approaches for resource
management in LoRaWAN that focus solely on
performance optimization without considering security.
The framework also can be extended to incorporate
trust scores from gateway-based intrusion detection,
allowing the RL agent to make security-aware
scheduling decision without compromising resource
optimization.

e [t offers an effective RL-driven approach for selecting
transmission strategies that adaptively optimizes
throughput, bandwidth utilization in response to
dynamic traffic patterns. The proposed work shows
superior performance in terms of delay, energy
conservation, and secure transmission under variable
traffic and channel conditions compared to popular
baseline schemes.

e Unlike existing RL-based LoRaWAN studies, our
framework uniquely integrates a Q-learning-driven
adaptive duty cycle with trust-aware security with trust-
aware security feedback. It combines Q-learning driven
adaptive duty cycle for efficient resource management
with a trust-aware security module. While the Q-
learning agent optimizes transmission slots and power
levels, the security layer independently evaluates trust
scores from gateway-based intrusion detection that
ensure reliable and secure data transmission alongside
optimized network performance.

e In future work, the Q-learning agent could be extended
to incorporate trust scores from gateway-based intrusion
detection, which will enable joint resource management
and security-aware decision making.
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The aforementioned contributions are presented in a
structured manner. The organization of the study is as follows:
Section I reviews the existing methodologies, while the
identified limitations are outlined in Section IIl. Section IV
describes the system model, followed by the discussion of
results in Section V. Finally, Section VI concludes the study
with a summary of key findings.

II. REVIEW OF LITERATURE

There exist various forms of related research studies that
have also focused on improving the performance of
LoRaWAN using ML approaches. The authors in [11] have
proposed a load-balancing method for dense IoT networks such
as smart city scenarios. The authors basically performed
training of various ML techniques such as Multiple Linear
Regression (MLR), Gaussian Naive Bayes (GNB), Linear
Discriminant Analysis (LDA), Decision Tree (DT), Random
Forest (RF), and few others. These classifiers are applied to an
urban IoT network, where the simulation results showed
performance improvement over packet success ratio (PSR),
and the framework also offered optimized energy consumption
in the LoRaW AN network. In [12], the authors have introduced
an SF allocation scheme considering SVM and DT that aims to
resolve the collision issue in the LoRaWAN network. The
training dataset was generated using simulator for LoRa
SimLoRaSF, and a custom simulator was also designed for
LoRaWAN using Python. The authors in [13] also emphasizes
toward resource classification problem for static EDs in
LoRaWAN using various ML techniques. Such as RF, SVM,
logistic regression (LR), K-Nearest Neighbour (KNN), and few
more others. The experimental outcome shows that the RF
method accomplished the highest accuracy of 92% compared
to other ML techniques. It has been observed that various DL
methods were applied to improve the performance of
LoRaWAN by optimizing resource parameters, predicting
network traffic, mitigating inter-intra interferences, and
optimizing energy constraints.

An extended Kalman Filter-based LSTM method based on
regression is proposed for predicting collisions in the
LoRaWAN network, which is introduced in the study of [14].
As a collision in the LoRa network is directly linked with the
SF, hence SF has not been considered for adaptive
configuration. As a result, the presented LSTM approach leads
to underperformance when applied in a dynamic LoRaWAN
network. The study in [15] proposed DeepLoRa, which is an
environment-aware path loss model. On the other hand, in [16],
a DL method is proposed for managing the transmission
interval of IoT devices in LoRa networks by utilizing Intel
Berkeley Research Lab Data. The paper [17] proposed a DL
method for joint collision detection and resource management.
Here, the presented work considers two DL methods: fully
connected neural networks (FCNNs) for collision detection and
CNN for SF management. The experimental results show
improved prediction performance and energy consumption
when compared with traditional ML methods. The paper [18]
proposed an RL-based approach for optimizing and updating
LoRa communication parameters. The authors utilized the RL
method to derive optimal disseminating policies by aiming to
maximize the accumulated average node throughput. The
authors claim that their approach to the LoRaWAN has given a
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remarkable increase in the accumulated average per-node
throughput of 147%.

The authors in [19] presented a novel method for resource
allocation in LoRaWAN networks. Here, the method used Q-
leaming strategy of RL to learn the optimal resource allocation
policy for each ED in the network. In the presented method,
GW acts as an agent of Q-learning, where the Q-reward is
based on the weighted sum of the number of successfully
received packets in the proposed method. The Q-learning
method was evaluated using simulation, and the outcome
shows that the proposed method achieves PSR by ~20%
compared to a random resource allocation scheme.

III. RESEARCH PROBLEM

LoRaWAN networks significantly face challenges in
balancing energy efficiency, reliable data transmission, and
security against malicious activities. Traditional static duty
cycle mechanism in LoRaWAN leads to inefficient bandwidth
utilization and energy wastage, especially under dynamic
traffic and channel conditions. Furthermore, LoRaWAN’s
lightweight nature makes it susceptible to various security
threats, including spoofing and packet injection. The research
addresses the need for an adaptive secure scheduling
mechanism by formulating a Q-learning-based framework that
can dynamically adjust the transmission duty cycle based on
real-time state conditions. However, the challenge also arises to
design a light-weight trust-aware intrusion detection system to
block malicious packets in LoORaWAN. Despite the popularity,
existing AI/ML-based optimization techniques often fail to
adapt to the variability in network traffic, dynamic occupancy
patterns, and energy constraints in large-scale LoRaWAN
deployments.

IV. RESEARCH METHOD

The proposed work, therefore, aims to develop a novel,
highly efficient, and scalable AI/ML-driven adaptive resource
management and secure framework for LoRaWAN in a smart
city eco-system where the resource management strategy is
well-capable of optimizing the duty cycle allocation,
bandwidth utilization, and energy-efficient transmission while
maintaining high data throughput and minimal latency. The
proposed framework of LoRaWAN operates in the MAC layer
that effectively defines how LoRa devices communicate with
the gateway and network servers. In the proposed work, the
adaptive LoORaWAN framework (Fig. 1) is structured into three
primary components, which are Q-learning-based scheduling,
channel-aware management, and lightweight edge security.
Here, Fig. 1 also shows a typical LoRa network deployment
scenario. Before delving into algorithmic details, the section
outlines the operational flow of these core components in
LoRaWAN.

A. LoRaWAN-Based IoT Deployment

Let, D ={d;,d,,...,d,} € Z* be the set of n LoRa IoT
devices in a LoRaWAN environment. The LoRa-based IoT
network also consists of m LoRa gateways such as G =
{g1,82, ., 8m} EZT. Tt is also assumed during the analytical
modeling that the network should also consist of a central
network server S. The total time steps for simulation is
considered to be T. Therefore, each IoT device d; €D is
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located at position of Loc(d;) € R% And also, each gateway
g €G has a coverage radius of R;. The deployment
assumption also considers that the devices and gateways are
randomly distributed in a 2D space, and coverage check can be
validated considering the following Eq. (1).

||Loc(di) — Loc(g; || <R; (1)

At each time step of t; € T each device d; generates a data
packet in the form of Pi(t) = temp(t), huml@ 7® id;) where

i vhi
temperature  readings, (it)

represents the humidity readings, ® represents the current
time stamp and id; refers to the unique device ID. It also

templ.(t) represents  the hum

1

assumes that the packet Pi(t) is sent to a randomly selected
gateway gj € G. Here it is assumed that IoT end devices
periodically generate data packets, and that are transmitted to
randomly selected gateways. The packet loss model also
considers that each gateway g; has a probability of packet loss
0f0.05 and success of 0.95. The condition of data transmission

is modeled using Eq. (2). If it is found that Xl.(jt) = 1, then the

gateway forwards the packet to the server Pi(t) — §. The server
further stores and processes the packets in Eq. (3).

X9 = {1, if g; succesfully receives P @
: 0 Otherwise

g = UL, {POX{ = 1} 3)

Here, in the above Eq. (3), ¢ represents the cumulative set
of successfully received packets over time from all IoT end
devices in the LoRaWAN-enabled smart city eco-system. The
proposed work emphasizes towards designing and developing
a novel adaptive duty cycle slot allocation mechanism using
Reinforcement Learning (RL) to enhance the performance of
large-scale LoRaWAN in smart city eco-system. The following
Fig. 1(a) shows the LoRaWAN network deployment scenario
without a network server, and Fig. 1(b) shows the LoRaWAN
network deployment scenario with the inclusion of a network
server in the proposed work.

LoRaWAN Network Deployment
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Fig. 1. LoRa network deployment in [oT smart city: a) LoRaWAN network
with gateway placement, b) LoRaWAN with gateway and network server.

B. Improving LoRaWAN Performance Using Reinforcement
Learning (RL) Algorithms

The proposed study emphasizes towards improving the
performance of LoORaWAN via ML-based decision making for
adaptive duty cycle slot allocation. The proposed work
leverages RL techniques in LoRaWAN to intelligently manage
the network resources and aims to maximize efficiency along
with optimal delivery performance. Reinforcement Learning
(RL) is a data-driven approach where it leans rules and
policies from experience by interacting with the network and
observing the results. RL is a dynamic approach that has the
capability to adapt to the environmental changes. LoRaWAN
networks are constantly changing owing to the dynamic
scenarios and due to the underlying propagation environment.
As a result, RL algorithms can be used to leam how to
optimize the network parameters for these changes, ensuring
that the network remains reliable and efficient. As RL is a
scalable approach, it can be used to optimize large and
complex networks [21]. Therefore, the proposed work realizes
that in LoRaWAN, RL could be used to optimize resources by
training agents for making decisions to maximize overall
network efficiency and minimize interference, along with
energy consumption. The proposed work in the first phase of
design, therefore, introduces a novel and cost-effective
adaptive duty cycle slot allocation using Q-learning modeling
and also ensures dynamic slot assignment. In the second phase
of design, it incorporates a scheme for bandwidth and
efficiency optimization, followed by a security analysis in the
third phase.

1) Adaptive duty cycle with RL in LoRaWAN: Duty cycle
in LoRaWAN determines how often a device is capable of
transmitting data packets. It has been observed that the static
allocation paradigms often lead to congestion, collisions, or
under-utilization of resources. Therefore, the proposed work
introduces an approach of adaptive duty cycling using Q-
learning to dynamically choose the best time slot based on
traffic, battery, and buffer status, which in longer run reduces
contention and also improves energy efficiency.
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Fig.2. Reinforcement learning in LoRaWAN.

2) State representation for Q-learning agent: In the
proposed analytical modeling of LoRaWAN, each end device
state in the context of IoT smart city is defined as a tuple of
s ={b., E., l;, Dy, c;). Here, b, refers to buffer size at time t,
E, implies the battery level at time t, whereas [, implies time
since last transmission. D, on the other hand, implies current
duty cycle slot and c, represents channel status (i.e O=idle, 1 =
busy). Fig. 2 shows baseline RL concept which is adopted in
the proposed LoRaWAN framework designing.

3) Action space definition in LoRaWAN: The proposed
analytical strategy further defines the action space A =
{TXm-gh, TX, o Wait}as a set of high power transmission,
which require high energy usage and lower delay denoted with
TXpign, low power transmission, which require low energy
usage but higher delay denoted with TX,,,, and wait implies
skip transmission where the buffer grows and battery is
conserved. The prime reason behind considering TX; p, is
that it is used for urgent data or poor channel conditions. It
aims to minimize the delay and improve packet delivery
probability (stronger signal) for urgent packets or unreliable
channel conditions in LoaRaWAN. On the other hand, the
action corresponds to TX;,,, imply when channel conditions
are good or delay is tolerable for packet transmission. This
action also conserves battery life while still sending data.
Here, the action wait refers to preserve battery or adhere to
duty cycle limits. This action has got importance when the
network is highly congested or data is not urgent. This
approach not only conserve energy but also helps avoiding
duty cycle violation. In the RL perspective the proposed work
decides the action space to support light-weight decision
model in resource constrained devices with three discrete
actions. The learning agent learns a policy to select the best
action at each time step depending on the above state space
criteria highlighted in s, = {(b,,E,,l;, D, c;) to enhance the
performance and resource management in LoRaWAN. In the
proposed work Q-learning helps managing the resources and
LoRaWAN traffic and enables adaptive traffic handling.
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4) Q-learning in adaptive traffic handling: In the
proposed approach of performance improvement of
LoRaWAN the states encode the traffic contexts in the form of
s;. Here, the buffer size implies traffic backlog, which means
how much data is waiting to be sent. On the other hand, E,
refers to the remaining battery level of end IoT devices. On
the other hand, [, helps controlling the latency factor. The
factor of D,is used as a duty cycle slot that measures the
compliance constraint. These states help the leaming agent
understand the traffic load and network status accordingly RL
mechanism  effectively manages the resources. TXp;gp is
learned when urgent traffic and high buffer build-up occur. On
the other hand, TXj,,, is leared by the agent when traffic is
moderate and conditions are favourable. The Q-learning learns
to skip Tx for the action wait and avoid penalty and transmit
later when the condition improves. In the case of
learningwait, the Q-learning model realizes that the traffic is
low, that means there is no urgency to transmit, whereas
transmission at that point might waste energy or duty cycle.
wait allows agents to accumulate more data and possibly send
it together later. Q-learning learns that delaying when the
buffer is small and doesn’t incur a big penalty, and also may
result in higher future rewards. The wait is useful as it helps
avoiding duty cycle violation, helps when the channel is busy
(c; = 1) and also useful in the case of battery E, is critically
low. The agent learns to wait for better conditions. Here, via
Q-learning, the agent chooses the optimal actions to balance
delay, energy usage, and duty cycle compliance, which also
positively influence the throughput and data delivery outcome.
The Q-Function updating is represented with Eq. (4).

Q(sp.ar) = Q(spay) +«a [rt + YH;";‘X Q(s¢41,2") — Q(St'at)](4)

Here, a represents the learning rate, whereas y implies the
discount factor, and also 7; refers to the intermediate rewards at
time t. Also, in the above expression, a’ represents the next
action, and further it leads to the Q-value for state action pair in
Q(s;, a,). While iteratively updating the above expression (4),
the agent progressively learns when to transmit and at what
power in LoRaWAN, and also learns when to wait to avoid
congestion or conserve resources. It also adapts to dynamic
traffic patterns in real-time. The agent evaluates b, and if it is
high, then it immediately sends in TXy;,p, or TX),,, depending
upon the channel conditions. If E; is low, then the agent
prefers to conserve energy, so either it chooses or TX),, or
wait. If [, is high, then it avoids excessive delay and prefer
any Tx. If D, is found near max, then it avoids sending and
prefers wait. Also, if ¢, = 1 that implies the channel is busy
and prefers wait. Here, D,~1 indicates that the end IoT node
has used almost all of its allowed transmission time for the
current regulatory duty cycle window. That’s why it is safer to
avoid transmitting until the cycle resets. In LoRaWAN,
especially in the EU 868 MHz band is subject to strict
regulatory duty cycle limits. If D,~1 in max and the learning
agent still chooses to transmit that means it may get penalty,
drop the packet and delay can occur for future transmissions.
This results in low or negative reward, so over time the agent
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leamns that wait is the optimal action, when D,~ 1. With
approach the Q-table find which action yields the best long-
termreturn and balances throughput, energy and reliability.

5) Reward function modeling: The design of reward
function modeling encourages high rewards for timely
transmission with low power. And also penalizes the agent for
buffer overflows, delays, or duty violations. It is modeled
using Eq. (5). Here, e = 5 for TX;,, and e = 2 for TX,,:

10 —e If TX succesful
r, =1 —05 if wait 5)
—2  if TX failed or battery low

The reward modeling in LoRaWAN encourages the
learning agent with a high reward if fast delivery is needed. On
the other hand, TXj,, also gets a higher reward despite a
higher delay, which promotes energy efficiency. Whereas
TXpign is used when speed is critical but very less frequently.
wait is not rewarded, but the penalty is low, allowing it to be
chosen in risky or sub-optimal states. The proposed Q-learming
in LoRaWAN also penalizes risky transmissions, such as if Tx
is fails or Tx when the battery is low. In such cases, the agent
gets negative rewards, and further, this reward structure also
pushes the agent to avoid such states.

6) LoRaWAN adaptive duty cycle mechanism: In the
proposed work, the time is divided into 10 discrete duty cycle
slots in the form of D,. Here, each slot might represent a fixed
duration, and the model cycles through them as time advances.
The update rule foradaptive duty cycle is givenusing Eq. (6):

Diy1 =Dy +1mod 10 (6)

This equation shows that after each decision step (time
step), the slot automatically advances to the next. In the
proposed system content of LoRaWAN, the model behaviour
simulates a rolling time window where duty cycle behaviour
resets periodically, matching regulatory constraints (e.g. 1%
per hour transmission time in EU868). In the proposed Q-
learning-based adaptive duty cycling-based strategy, agents
learn which slots are best for transmission based on success
rate (i.e., whether Tx is successful), energy cost
( TXnign TXjow) > and channel conditions (e.g., fewer
collisions). Through Q-learning, LoORaWAN builds state-action
values Q(s;, a,) that include D, as a state component. It has to
be noted that with this approach, the agent doesn’t learn what
to do, but it learns when to do it. The benefit of this adaptive
duty cycling approach is that the agent learns to adapt to traffic
patterns, interference, and energy constraints over time.

It has to be noted that the proposed framework operates in
three phases: 1) Q-leamming-based adaptive duty cycle
assignment, 2) efficient channel scheduling, and 3) security-
aware packet evaluation. Algorithm 1 to Algorithm 3 together
represent the complete operational procedure in which the RL
agent selects optimal transmission actions while considering
energy levels, buffer status, and channel conditions, thereby
achieving adaptive, secure, and efficient resource management
in LoRaWAN. The RL agent is also capable of selecting
optimal transmission actions while considering trust scores as
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well. The following algorithm shows Q-learning for adaptive
duty cycle in LoRaWAN.

Algorithm 1: Q-learning for Adaptive Duty Cycle in
LoRaWAN

Initialize Q (s¢, a;) arbitrarily for V(s;, a,) pairs
For each episode:
Initialize  environment (E) and  state
(bs, E¢, L, Dy, ce)
Repeat for each time step
With probability € select random action
ar € {TXnign,TXiow, wait }
Otherwise select a; = arg max Q(s, )

Execute action a, observe
reward 7z,
next state S¢41.
Diy1 =Dy +1mod 10 «— Adaptive
Duty Cycle slot update
Update Q(s,a) using:

Q(sp,ar) = Q(sp,a) +a [rt +
Y H}la,X Q(ser1,a’) — QCse, at)]

s> s
If terminal condition is met, break

The algorithm design and modeling ensure that the Q-
learning agent adapts based on the dynamic state s,. It also
offers a duty cycle slot allocation where the reward strategy is
encouraged for optimal time. Here, Q-learning automatically
adapts policy using reward signals.

7) Optimization of bandwidth and data efficiency in
LoRaWAN: 1t has to be noted that LoORaWAN in smart city
eco-system suffers from collisions and idle listening as many
IoT end devices share the same channel. Therefore, optimizing
channel utilization (bandwidth) and efficient data scheduling
can significantly improve the performance of LoRaWAN. If
there are N number of end devices (ED) and P, indicates the
packets the successfully transmitted packets at time t ,whereas
U, represents the bandwidth utilization at time t. Then the
bandwidth utilization can be modelled using Eq. (7) and
Throughput T; is measured using Eq. (8). The proposed work
further evaluated the transmission delay using Eq. (9). Here,
P, represents the set of packets receiver at t and tf,tl.,
represents the generation time and reception time of packets.
The system also computes the battery energy level of IoT
nodes or end devices in the form of Ef. Here, Ef represents the
battery level of device i at step t.

P
‘Ut = t/N (7)
T, = YN, 68! where 6f =
{1 if node i transsmission was succesful at t (8)
0 otherwie
Delayt = 1/|Pt | ZpEPt(tfx - tgen) (9)

In the proposed LoRaWAN framework Q-learning chooses
TXpign and TX,,,, based on the congestion and energy. The
bandwidth utilization is also tracked via U, whereas the
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proposed reward structure and simulation loop encourages
maximized throughput. The proposed Algorithm 2 for efficient
channel scheduling is represented as follows:

Algorithm 2: Efficient Channel Scheduling in LoORaWAN

For each time slot t:
For each IoT node i:

Estimate channel status ¢,

If b, > ¢ and energy sufficient:
Select TXpign and TX;o, via Q-
learning

Else:
Choose the ‘wait’ action

Update packet success/failure

Update metrics:

Throughput, delay, bandwidth utilization

It has to be noted that the proposed work in LoRaWAN
approximates an efficient channel scheduling (ECS) strategy
by using a Q-learning agent to dynamically decide on
transmission power or WAIT based on local buffer status,
energy, duty cycle, and channel status. However, full-fledged
ECS features like multi-channel assignment, real-time
congestion estimation are marked as future extensions.

C. Security-Aware RL Approach in LoRaWAN

The extensive analysis on LoRaWAN shows that it is
vulnerable to different forms of attacks, such as spoofing,
flooding, and data injection. Here, in the proposed system, a
security-aware RL strategy can detect malicious data patterns,
it can also maintain trust scores, and drop packets based on
suspicious behaviour. It also ensures secure routing and packet
forwarding. The security modeling considers a functional
strategy of malicious packet indicator (l)(Pi(t)) which generates
binary flags if packet P; € s is spoofed or malicious, else it
flags to 0. It can be represented using Eq. (10). If s, denotes the
set of received packets at time t. Then the intrusion detection
rate is computed using Eq. (11):

¢(Pi(t)) — {1 if Pi(t) is malicious (10)
0 otherwise

I =15, S0, #P) (11)

The intrusion detection rate basically measures how many
suspicious packets were found in the current time window. The
value of I, implies that the network is under attack or faulty
devices are sensing data. In this proposed security-aware
reinforcement learning approach, each IoT device is
continuously monitored. And also, the system learns patterns
of normal versus suspicious behavior. The devices that behave
badly get low trust scores, and their packets are blocked. Here,
the system scans the packets from all the IoT devices, and it
incorporates a model to spot unusual behavior in a packet, such
strange timing or values. The proposed work also implements a
security filter in this adaptive resource management framework
of LoRaWAN. Here, each gateway uses a rule-based intrusion
detection function using Eq. (12). Here, T; indicates the
temperature reading, H,; indicates the humidity reading,
whereas T, = 100 degrees and H,,;,, is ~5%. The trust score
7; for IoT device i is evaluated using Eq. (13). The T; ranges
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between 0 and 1. Here 1 means fully trusted device, whereas 0
indicate highly suspicious device. When too many of a
device’s packets are flagged, then the trust score drops. The
packet drop rate §-drop is also estimated using Eq. (14). This
mathematical model evaluates how many packets are rejected
as the proposed framework could not trust the source device.

1 if Ty> Tpayp or Hy < H

min 12
0 otherwise (12)

Detect(d) = {

Ti=1

_ Flagged Pi(t) fromi/ (13)

Total Pi(t) from i

_ Pi(t) dropped due to low T;

8drop - (14)

Total received Pi(t)

In the proposed work and security strategy, the model
simulates malicious behavior in LoRaWAN while injecting
fake data. It also simulates malicious IoT devices sending
falsified or abnormal data, which represents active attacks like
data injection. The proposed security filtering and black listing
formulation is well capable of defending network flooding
attacks or data corruption with fake sensor values. It also
prevents the adversaries from resending previously valid
packets. As the gateway/server could be extended to discard
old or replayed packets by checking if the timestamp is within
a valid range or not. If a node continuously refuses to transmit
data, then the proposed security framework could be extended
with a Q-learning agent that discourages excessive wait or non-
transmitting states via negative rewards and mitigates routing
blackhole by adapting duty cycles and penalizing inactivity in
LoRaWAN. The system is also well capable of resisting
Grayhole attack, Jamming attack, Sybil, and DoS intrusions in
LoRaWAN. The next segment of the study further illustrates
the results and discussion on the outcome obtained from
simulating the above analytical algorithms through numerical
computing and analysis.

Algorithm 3: Intrusion Detection and Secure Transmission in
LoRaWAN

For each received Pi(t) from device i
1. Extract key info: device id, timestamp, data content
(payload)
2. Run anomaly or unusual behaviour detector on Pi(t)

-If Pi(t) is suspicious or trust_score [i] < 0.6
Drop the packet
Reduce trust_score[i] by a penalty value.
Blacklist « Blacklist U {Device;}
- Else
Accept the Pi(t)
Increase trust_score [i] by a reward value.

It has to be noted that in the proposed framework the
security layer operates synergistically with the Q-leaming
agent, in which the trust score of each device is periodically
updated considering packet consistency and transmission
success rate. These trust updates in longer run will indirectly
influence the agent’s state vector and also enable adaptive
scheduling decisions that prioritize reliable and trusted nodes
within LoRaWAN. While the Q-learning agent primarily
handles the scheduling, the trust mechanism ensures that
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unreliable or malicious nodes are filtered that indirectly support
more effective and reliable network operations.

V. RESULTS AND DISCUSSION

The proposed adaptive duty cycle management framework
using Q-learning for LoORaWAN is analytically modeled and
scripted in Python 3.10. The simulations are carried out
considering a Python-based environment using Jupyter
IDE/Notebook. The simulation framework considers a custom
discrete-event simulation modeling in Python for LoRaWAN.
It also implements a custom implementation of Q-leaming,
considering visualization libraries, data handling libraries, and
machine learning (ML) libraries. The security module also
incorporates custom filtering and blacklist logic. The
simulation system configuration considers an Intel Core i5
processor with 12 GB RAM and a Windows operating system.
The custom Q-learning is CPU-light for conceptual modeling,
so it doesn’t require GPU processing.

The experimental evaluation considered a custom discrete-
event simulation model developed in Python to emulate
LoRaWAN communication under varying traffic and channel
conditions. The proposed framework also includes realistic
parameters such as bandwidth (125 kHz), transmission power
levels consistent with LoRa Class-A devices. For comparison,
the popular baseline schemes such as Static (fixed duty-cycle
allocation), Random (stochastic transmission slot selection),
and Round Robin (cyclic slot assignment) were implemented.
All metrics, such as throughput (packets/sec) and energy (mJ),
are normalized averages derived from the simulation
experiments. The network topology configuration is shown in
Table 1.

TABLEI. SIMULATION CONFIGURATION
Parameters Values
Number of IoT Devices 10-100
Number of LoRa gateways 1-2
Simulation Time Step 50
No. of Episodes 1000

Coverage Radius (per Gateway) 1000 meters

Device Transmission Slots 10 slot cyclic duty schedule

Random Packet Loss Probability 10-15%

Attack Injection Rate 10% (Fake Sensor Values)
Initial Battery Level 100 Joule

TX}ign Energy Consumption 5 units

TX,,,, Energy Consumption 2 units

wait Energy Impact 0 (only incurs delay penalty)

Leaming Rate o 0.1
Discount Factor y 0.9
Exploration Rate & 0.1

The proposed work observes the trends from the plots after
implementing the strategy of adaptive duty cycle operation in
LoRaWAN. The observed trends from Q-learning is illustrated
in Fig. 3. Fig. 3(a) shows that trend in cumulative reward per
episode is initially low, but improves and stabilizes over
episodes. This indicates the Q-learning agent in the proposed
system leams effective actions to maximize successful
transmission and conserve energy while also avoids
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unnecessary transmissions as the encouragement with higher
reward in proposed Q-learning leads to better decision policy.

The analysis of the buffer size also implies that the buffers
remain within mid to low ranges, which clearly shows high
variability as buffer size fluctuates significantly from episode
to episode. The buffer size ranges from 0-4 packets [see
Fig. 3(b)]. The high-frequency fluctuations across the episode
range suggest that the buffer size is dynamic and frequently
changing. The buffer size is rarely remains zero or maxim
indicating the system is actively transmitting and receiving
data. Values between 1 and 3 dominate suggest a moderately
filled buffer across the learned period. The observed variability
also indicates that the system adapts dynamically to changes in
network load channel availability and energy constraints. Since
learning policy involves exploration using €-greedy policy
hence fluctuations are expected as the agent explores different
transmission strategies. Overtime although no clear smoothing
is visible, the agent avoids extreme buffer overflows or
starvation indicating policy convergence. The observed
variation suggests a balance between energy and throughput.

Here, Fig. 4 indicates the number of successfully
transmitted packets received by the gateway at each time step.
Here, the throughput values fluctuate based on agent’s learned
behavior and environmental dynamics such as channel
congestion or blacklist filtering. The Q-learning agent
gradually improves its decision-making strategy between
TXnign » TX10w and wait to prioritize successful transmissions
when the channel is idle and the battery is sufficient. This
adaptive learing process prevents excessive collision or batter
drain and ensure stable throughput over time. It also shows
good responsiveness and adaptive behavior with increasing
number of IoT End Devices (EDs).

Cumulative Reward per Episode

Reward

. |
T

o 20 600 800 1000

Episode

(@)

Avg. Buffer Size per Episode

2.0

15

Buffer Size (0-4)

1.0

0.5

0.0

0 200 400 600 800 1000
Episode

(b)

Fig.3. Observed trends from Q-learning: a) analysis of cumulative rewards
and b) average buffer size per episode.
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Fig. 4. Analysis of throughput in LoRaWAN.

The observed trends from Q-learning is illustrated in Fig. 5.
The interpretation of the [Fig. 5(a)] plot shows ratio of packets
successfully transmitted relative to total number of active
devices at each time step. The proposed Q-learning based
algorithm in LoRaWAN shows moderately efficient bandwidth
utilization trend that clearly depicts the fact that the Q-agent
balances the aggressive and conservative transmission
attempts. Low utilization at certain intervals correlates with
high interference (channel status busy) or conservative WAIT
actions, which the agent leamns to apply when risk is high or
energy is low. This approach significantly helped reducing the
congestion and packet loss. It offers ~65% utilization and the
algorithm with this approach avoids overloading the network
while maintains consistent data delivery and indicate balanced
usage of resources. Fig. 5(b) captures the average battery level
of all IoT devices over simulation steps. It highlights
decreasing but controlled energy curve that signifies an energy-
aware strategy in LoORaWAN. It also depicts that learning agent
adaptively decide and favor low power transmission or defer
transmission when essential as guided by the Q-learning
optimal policy. The gradual descent also reflects sustainable
energy usage rather than rapid depletion which verify the
framework’s suitability for long term operation in large-scale
and constrained LoRaWAN.

The comparison of throughput for proposed Q-learning in
(Fig. 6) shows that it achieves highest throughput in initial
steps in LoRaWAN. Slowly it starts adapting to the
environment dynamics and select transmission times that
maximizes rewards. This leads to higher and smarter
throughput over time. However, in random policy
inconsistency is observed in the throughput outcome as it
occasionally performs well by chance but lacks reliability and
wastes resources due to frequent collisions or poor timing.
However Round Robin offers stable but low throughput as it
underutilizes idle slots and cannot adapt to traffic or channel
conditions. Static duty cycle paradigms are fragile in dynamic
environments and result poor reliability and wasted capacity.
The Q-learning approach also occasionally yields zero
throughput at specific time steps these reflect intelligent
decision making such as avoiding unfavorable transmission
slots or conserving energy. Here, Q-learning adapts its policy
to maximize long-term throughput leading to overall superior
performance despite transient dips in LoRaWAN.
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Fig. 5. Observed trends from Q-learning: a) analysis of bandwidth
utilization ratio, and b) average energy consumption over time.

The delay outcome is found highly stable in the case of Q-
learning strategy, as it leams from the reward feedback to
choose actions (transmission slots) that minimizes delay. After
brief learning phase, it converges to an efficient schedule with
minimal delay. However, other methods such as Random,
Round Robin and Static either transmit blindly or without
adaption to repeated conflicts therefore, suffers from
instability, higher delay variance (see Fig. 7).

Throughput Over Time

5 wmE Q-Learning

&5 Random

E= RoundRobin
Static

Throughput

Time Step

Fig. 6. Comparison of throughput with different approaches.
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Fig. 7. Comparison of delay outcome with different approaches.

It can be seen from Fig. 8 that Q-learning rapidly explores
its action space in early stages which consumes energy.
However, once it learns the optimal transmission pattern then
energy consumption of IoT devices significantly drops and
remains stable. However, it also outperforms others by
minimizing the energy use once the optimal policy is learned
which static and non-adaptive schemes fail to achieve in
LoRaWAN.

Average Node Energy Over Time

100 —— Q-Learning
Random
—— Poundnobin

—— Static

™

0 5 0 15 L 25 0
Time Step

Fig. 8. Comparison of energy outcome with different approaches.

Fig. 9 reveals how many devices are being blacklisted
throughout the system’s operation in LoRaWAN. The blacklist
count increases gradually which suggests that the security
system is capable of detecting and isolating misbehaving or
low-trust devices which mostly forward suspicious packets in
LoRaWAN environment. Here, Q-learning plays a crucial role
towards evaluating device behavior and taking penalizing
actions over time. The trust-driven approach in the proposed
scheme not only improves security and reliability but also
contributes towards optimal throughput, lower delay and stable
energy consumption.

Blacklisted Device Count Over Time

20 30 40 50
Time Step

Fig.9. Analysis of security in LoORaWAN.
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VI. CONCLUSION

The proposed work introduces a Q-learning-based adaptive
scheduling and duty cycle strategy to enhance the performance
of LoRaWAN. Here, the proposed adaptive duty cycling
approach incorporates Q-leaming to dynamically choose the
best time slot based on traffic, battery and buffer status
reducing congestion and improving energy efficiency.
Additionally, the unified framework also offers dynamic
energy management and optimized transmission under traffic
variability. An efficient channel scheduling algorithm is also
proposed to enhance the bandwidth utilization, throughput and
delay performance in LoRaWAN. The performance of the
proposed Q-learing is also evaluated against Static, Random,
and Round Robin approaches. The experimental results show
that the Q-learning significantly improves the throughput
performance (peak: 5 units), and also ensure lower average
delay (converging to 0 within 10 steps), and improved energy
efficiency (stabilizing at ~52J, ~15% better than Round Robin).
It also offers a security analysis strategy that effectively
identifies up to 19 malicious or underperforming devices via
dynamic blacklisting. The outcome also conceptually justifies
that the learning-based approach adapts well to traffic
variations and security threats, outperforming static and
randomized methods. The proposed framework demonstrates
how reinforcement learning and lightweight edge security can
jointly enhance LoRaWAN performance and ensure adaptive,
energy-efficient, and secure communication in large-scale IoT
deployments. In future work, we aim to extend this framework
using deep reinforcement learning, multi-agent collaboration,
and trust-aware reward models, with validation on more
extensive LoRaWAN deployments.
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