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Abstract—This study proposes a Q-learning-based adaptive 

duty cycle scheduling algorithm for LoRaWAN in a smart city 

eco-system to enhance the energy efficiency, reduce transmission 

delay, and handle dynamic traffic conditions. Additionally, it also 

incorporates an intelligent and efficient channel utilization 

scheme for LoRaWAN-enabled IoT networks and also integrates 

a lightweight security strategy at the edge (gateways), making it 

suitable for low-power, low-computation LoRaWAN 

environments. In this adaptive and intelligent LoRaWAN 

framework Q-learning agent dynamically selects various 

transmission actions based on the contextual states, including 

buffer size, energy levels, and channel conditions, which 

optimizes energy efficiency and also enhances the reliability of 

data transmission in LoRaWAN. The light-weight intrusion 

detection mechanism also filters suspicious packets using trust 

scores and payload analysis to ensure secure data delivery and 

adaptive, scalable, and proactive protection against several 

prevalent threats in LoRaWAN-driven IoT. It also incorporates a 

channel-aware scheduling to avoid congestion and improve 

overall transmission performance. Experimental outcome further 

confirms improvement over throughput, delay, bandwidth 

utilization, energy conservation, and resilience against malicious 

or faulty transmissions, demonstrating the framework’s ability to 

optimize the resource allocation performance while balancing the 

above metrics adaptively. 
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I. INTRODUCTION 

The rapid advancement of the Internet of Things (IoT) has 
created a demand for low-power, long-range wireless 
communication technologies. IoT involves connecting a wide 
range of end-devices, which are battery-powered sensor nodes, 
to the Internet and also enabling communication and data 
exchange between them [1] [2].  Therefore, the need arises to 
design the power usage profile carefully in order to extend the 
battery’s lifetime. Also, the communication range needs to go 
from several hundred meters up to several kilometers as IoT 
end devices are distributed over a large area of operation. 
Considering all the aforementioned characteristics, this can be 
only realized by using the low power wide area network 
(LPWAN) technologies as LPWAN technologies can support 
resource management, throughput, and delay constraints in IoT 
[3]. There exist several LPWAN technologies present in the 
market, such as SigFox [4], Narrow Band (NB)-IoT [5], or 

Long-Range Wide Area Networks (LoRaWAN) [6] and Long-
Term Evolution for Machines (LTE-M) [7]. The maximum 
data rate in SigFox is ~100 bps, whereas in NB-IoT it is ~250 
kbps. On the other hand, in LoRaWAN, it is approximately 
~50 kbps, and in the case of LTE-M, the maximum data rate is 
approximately ~1 Mbps. LoRaWAN [6] is among the leading 
LPWAN technologies as it offers the possibility for private 
network deployments and easy integration with a number of 
worldwide network platforms and has the ability to provide 
long-range communication with low power consumption. Due 
to this and its open access specification, LoRaWAN have 
gained significant attention from academia and industries for 
IoT [8] [9]. The LoRa physical layer has been patented by 
Semtech in the year 2014 [10]. LoRa is a radio frequency (RF) 
modulation technology that defines the physical layer features 
for long-range communications. However, the LoRaWAN 
medium access control (MAC) protocol is an open-source 
protocol standardized by the LoRa Alliance that runs on the top 
of LoRa physical layer. 

LoRaWAN is also popular in smart city applications as it 
provides cost-effective, scalable, and power-efficient solutions 
for connecting thousands of widely distributed and low-data-
rate devices.  It supports long-range communication while 
covering ~2-15 km in rural areas and 1-5 km in urban settings. 
The end devices in LoRaWAN can last upto 5 to 10 years on 
battery, that reduces the need for frequent maintenance. It also 
offers low-cost unlicensed spectrum (ISM) bands, whereas 
LoRaWAN gateways are also affordable and can support 
thousands of devices. It also supports municipalities to deploy 
and control their own infrastructures in smart city applications. 
LoRaWAN also supports flexible network architecture with 
public, private, and hybrid networks, whereas designed for 
massive IoT deployments. Also, it uses AES-128 encryption 
schemes at the network and application layers while ensuring 
end-to-end security for data transmitted from sensors to 
applications [9] [10].  LoRaWAN is a popular communication 
protocol designed for low-power wide-area IoT deployments. 
While it excels in range and energy efficiency for small data 
transfers but it faces several inherent limitations and challenges 
due to its design trade-offs [20] [21]. The challenges arise due 
to low data rates, inefficient resource allocation, energy 
consumption, and network congestion problems [22]. It has 
also been observed that traditional fixed-duty cycle 
mechanisms suffer from suboptimal bandwidth utilization, 
increased transmission delays, and energy wastage, especially 
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in dynamic environments where real-time data transmission is 
crucial [23].  The root cause for the low data rate transmissions 
is chrip spread spectrum modulation, which prioritizes 
robustness and range over speed, and also spreading factor 
(SF) that results in long transmission time and poor latency 
[24]. LoRaWAN uses a pure ALOHA channel access method 
that also increases the chances of retransmissions. collisions 
and unfair resource usage. The frequent transmissions (TX), 
collisions, and high SF factors result in reduced battery life. 
LoRaWAN gateways operate in licensed ISM bands (868 MHz 
in EU, 915 MHz in US) with strict duty cycle limitations. As 
the network of IoT end devices grows with limited channel 
availability, that also results in frequent packet drops, low QoS, 
and scalability problems [25].  It is also observed that the 
LoRaWAN protocol suffers from security vulnerabilities to 
jamming and intrusions. No such in-built mechanism is found 
in LoRaWAN for intrusion detection or anomaly classification 
[15]. 

Machine Learning (ML) is a popularly growing field with 
many applications, including wireless communications [26] 
[27]. There are various studies which claim that ML could be 
used to improve the performance, efficiency, and security of 
LoRaWAN [28]. ML algorithms empower LoRaWAN 
networks to dynamically allocate resources, predict network 
traffic, mitigate interference, and optimize energy 
consumption, thereby enhancing network capacity, reliability, 
and battery life. With ML-driven insights, operators can 
proactively plan network expansions and ensure better quality 
of service (QoS), and also achieve self-optimizing networks 
that autonomously adapt to changing conditions. However, 
popular supervised learning approaches such as SVM, 
Decision Trees, Random Forest, and Logistic Regression 
models rely on a large amount of labelled data, which is often 
scarce and expensive in LoRaWAN due to limited sensing and 
reporting capability [29]. Also, models trained on static 
datasets may fail to generalize in dynamic, noisy environments 
with high traffic variability. Traditional supervised approaches 
also do not adapt well to real-time changes in topology or 
energy levels. These models also suffer from scalability issues 
and security bias limitations. It has been also observed that 
existing Deep Learning (DL) models, such as CNN, LSTM, 
DNN, auto encoders, require significant resources for training 
and interference which is not practical for low-powered LoRa 
nodes. DL models heavily rely on large datasets which is often 
unavailable in LoRaWAN due to low data rates and sparse 
feedback. Also, these DL models suffer from latency issues, 
overfitting problems, black-box nature, and deployment 
complexities [29] [30].  It has been also observed that the 
existing unsupervised ML techniques suffer from poor 
contextual awareness, false positives, and parameter tuning 
issues in large-scale LoRaWAN deployments. 

The proposed system, therefore, aims to optimize the 
throughput, minimize transmission delay, and preserve energy 
while meeting the criteria for secure transmission, thereby 
enhancing the overall performance of LoRaWAN. However, 
the proposed work also finds the popularity of RL strategies 
and their scope towards improving the performance of 
LoRaWAN and further formulates a unique form of light-
weight computational and analytical framework for Q-learning 

based adaptive duty cycle management in LoRaWAN, which is 
also further integrated with a security modeling. Here, the 
framework aims to optimize the LoRaWAN resources in 
dynamic conditions and also offers resiliency against different 
forms of adversaries in LoRaWAN, which affects the energy 
and QoS performance in LoRaWAN. 

The key contribution of this work is listed as follows: 

• Unlike traditional fixed duty cycling and static 
scheduling strategies, the proposed work employs Q-
learning to dynamically adapt transmission decisions 
based on real-time network conditions and also 
significantly improves energy efficiency and 
throughput. Here Q-learning based adaptive duty-
cycling dynamically adjusts transmission slots 
considering buffer, energy, channel, and duty cycle 
constraints. 

• In contrast to the generic ML models that require 
extensive training data and centralized models, the 
proposed approach offers a light-weight and model-free 
reinforcement learning strategy that enables distributed 
and online learning at individual IoT nodes in 
LoRaWAN. 

• The integration of trust-based intrusion detection 
modeling enhances the security by proactively filtering 
malicious data packets, a feature that is missing in 
existing standard ML approaches for resource 
management in LoRaWAN that focus solely on 
performance optimization without considering security. 
The framework also can be extended to incorporate 
trust scores from gateway-based intrusion detection, 
allowing the RL agent to make security-aware 
scheduling decision without compromising resource 
optimization. 

• It offers an effective RL-driven approach for selecting 
transmission strategies that adaptively optimizes 
throughput, bandwidth utilization in response to 
dynamic traffic patterns. The proposed work shows 
superior performance in terms of delay, energy 
conservation, and secure transmission under variable 
traffic and channel conditions compared to popular 
baseline schemes. 

• Unlike existing RL-based LoRaWAN studies, our 
framework uniquely integrates a Q-learning-driven 
adaptive duty cycle with trust-aware security with trust-
aware security feedback. It combines Q-learning driven 
adaptive duty cycle for efficient resource management 
with a trust-aware security module. While the Q-
learning agent optimizes transmission slots and power 
levels, the security layer independently evaluates trust 
scores from gateway-based intrusion detection that 
ensure reliable and secure data transmission alongside 
optimized network performance. 

• In future work, the Q-learning agent could be extended 
to incorporate trust scores from gateway-based intrusion 
detection, which will enable joint resource management 
and security-aware decision making. 
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The aforementioned contributions are presented in a 
structured manner. The organization of the study is as follows: 
Section II reviews the existing methodologies, while the 
identified limitations are outlined in Section III. Section IV 
describes the system model, followed by the discussion of 
results in Section V. Finally, Section VI concludes the study 
with a summary of key findings. 

II. REVIEW OF LITERATURE 

There exist various forms of related research studies that 
have also focused on improving the performance of 
LoRaWAN using ML approaches. The authors in [11] have 
proposed a load-balancing method for dense IoT networks such 
as smart city scenarios. The authors basically performed 
training of various ML techniques such as Multiple Linear 
Regression (MLR), Gaussian Naïve Bayes (GNB), Linear 
Discriminant Analysis (LDA), Decision Tree (DT), Random 
Forest (RF), and few others. These classifiers are applied to an 
urban IoT network, where the simulation results showed 
performance improvement over packet success ratio (PSR), 
and the framework also offered optimized energy consumption 
in the LoRaWAN network. In [12], the authors have introduced 
an SF allocation scheme considering SVM and DT that aims to 
resolve the collision issue in the LoRaWAN network. The 
training dataset was generated using simulator for LoRa 
SimLoRaSF, and a custom simulator was also designed for 
LoRaWAN using Python. The authors in [13] also emphasizes 
toward resource classification problem for static EDs in 
LoRaWAN using various ML techniques. Such as RF, SVM, 
logistic regression (LR), K-Nearest Neighbour (KNN), and few 
more others. The experimental outcome shows that the RF 
method accomplished the highest accuracy of 92% compared 
to other ML techniques. It has been observed that various DL 
methods were applied to improve the performance of 
LoRaWAN by optimizing resource parameters, predicting 
network traffic, mitigating inter-intra interferences, and 
optimizing energy constraints. 

An extended Kalman Filter-based LSTM method based on 
regression is proposed for predicting collisions in the 
LoRaWAN network, which is introduced in the study of [14]. 
As a collision in the LoRa network is directly linked with the 
SF, hence SF has not been considered for adaptive 
configuration. As a result, the presented LSTM approach leads 
to underperformance when applied in a dynamic LoRaWAN 
network. The study in [15] proposed DeepLoRa, which is an 
environment-aware path loss model. On the other hand, in [16], 
a DL method is proposed for managing the transmission 
interval of IoT devices in LoRa networks by utilizing Intel 
Berkeley Research Lab Data. The paper [17] proposed a DL 
method for joint collision detection and resource management. 
Here, the presented work considers two DL methods: fully 
connected neural networks (FCNNs) for collision detection and 
CNN for SF management. The experimental results show 
improved prediction performance and energy consumption 
when compared with traditional ML methods. The paper [18] 
proposed an RL-based approach for optimizing and updating 
LoRa communication parameters. The authors utilized the RL 
method to derive optimal disseminating policies by aiming to 
maximize the accumulated average node throughput. The 
authors claim that their approach to the LoRaWAN has given a 

remarkable increase in the accumulated average per-node 
throughput of 147%. 

The authors in [19] presented a novel method for resource 
allocation in LoRaWAN networks. Here, the method used Q-
learning strategy of RL to learn the optimal resource allocation 
policy for each ED in the network. In the presented method, 
GW acts as an agent of Q-learning, where the Q-reward is 
based on the weighted sum of the number of successfully 
received packets in the proposed method. The Q-learning 
method was evaluated using simulation, and the outcome 
shows that the proposed method achieves PSR by ~20% 
compared to a random resource allocation scheme. 

III. RESEARCH PROBLEM 

LoRaWAN networks significantly face challenges in 
balancing energy efficiency, reliable data transmission, and 
security against malicious activities. Traditional static duty 
cycle mechanism in LoRaWAN leads to inefficient bandwidth 
utilization and energy wastage, especially under dynamic 
traffic and channel conditions. Furthermore, LoRaWAN’s 
lightweight nature makes it susceptible to various security 
threats, including spoofing and packet injection. The research 
addresses the need for an adaptive secure scheduling 
mechanism by formulating a Q-learning-based framework that 
can dynamically adjust the transmission duty cycle based on 
real-time state conditions. However, the challenge also arises to 
design a light-weight trust-aware intrusion detection system to 
block malicious packets in LoRaWAN. Despite the popularity, 
existing AI/ML-based optimization techniques often fail to 
adapt to the variability in network traffic, dynamic occupancy 
patterns, and energy constraints in large-scale LoRaWAN 
deployments. 

IV. RESEARCH METHOD 

The proposed work, therefore, aims to develop a novel, 
highly efficient, and scalable AI/ML-driven adaptive resource 
management and secure framework for LoRaWAN in a smart 
city eco-system where the resource management strategy is 
well-capable of optimizing the duty cycle allocation, 
bandwidth utilization, and energy-efficient transmission while 
maintaining high data throughput and minimal latency. The 
proposed framework of LoRaWAN operates in the MAC layer 
that effectively defines how LoRa devices communicate with 
the gateway and network servers.  In the proposed work, the 
adaptive LoRaWAN framework (Fig. 1) is structured into three 
primary components, which are Q-learning-based scheduling, 
channel-aware management, and lightweight edge security. 
Here, Fig. 1 also shows a typical LoRa network deployment 
scenario. Before delving into algorithmic details, the section 
outlines the operational flow of these core components in 
LoRaWAN. 

A. LoRaWAN-Based IoT Deployment 

Let,  D = {d1 ,d2 , … , dn} ∈ ℤ+ be the set of n  LoRa IoT 
devices in a LoRaWAN environment. The LoRa-based IoT 
network also consists of m  LoRa gateways such as G =
{g1, g2 ,… , gm} ∈ ℤ+. It is also assumed during the analytical 
modeling that the network should also consist of a central 
network server S . The total time steps for simulation is 
considered to be T.  Therefore, each IoT device di ∈ D  is 
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located at position of Loc(di) ∈ ℝ2. And also, each gateway 
gj ∈ G  has a coverage radius of R j . The deployment 

assumption also considers that the devices and gateways are 
randomly distributed in a 2D space, and coverage check can be 
validated considering the following Eq. (1). 

‖Loc(di) − Loc(gj‖ ≤ R j                     (1) 

At each time step of 𝑡𝑖 ∈ 𝑇 each device di generates a data 

packet in the form of 𝑃𝑖
(𝑡)

= 〈 𝑡𝑒𝑚𝑝𝑖
(𝑡)

, ℎ𝑢𝑚𝑖
(𝑡)

, 𝜏𝑖
(𝑡)

, 𝑖𝑑𝑖〉 where 

𝑡𝑒𝑚𝑝
𝑖
(𝑡)

 represents the temperature readings, ℎ𝑢𝑚
𝑖
(𝑡)

 

represents the humidity readings, 𝜏
𝑖
(𝑡)

 represents the current 
time stamp and 𝑖𝑑𝑖  refers to the unique device ID. It also 

assumes that the packet 𝑃
𝑖

(𝑡)
 is sent to a randomly selected 

gateway gj ∈ G . Here it is assumed that IoT end devices 

periodically generate data packets, and that are transmitted to 
randomly selected gateways. The packet loss model also 
considers that each gateway gj has a probability of packet loss 

of 0.05 and success of 0.95. The condition of data transmission 

is modeled using Eq. (2). If it is found that 𝑋
𝑖𝑗

(𝑡)
 = 1, then the 

gateway forwards the packet to the server 𝑃𝑖
(𝑡)

→ 𝑆. The server 

further stores and processes the packets in Eq. (3). 

Xij
(t)

= {1, if gj succesfully receives Pi
(t)

 

0 Otherwise 
       (2) 

ξs = ⋃ {Pi
(t)

|Xij
(t)

 =  1}T
t=1                        (3) 

Here, in the above Eq. (3), 𝜉𝑠 represents the cumulative set 
of successfully received packets over time from all IoT end 
devices in the LoRaWAN-enabled smart city eco-system.  The 
proposed work emphasizes towards designing and developing 
a novel adaptive duty cycle slot allocation mechanism using 
Reinforcement Learning (RL) to enhance the performance of 
large-scale LoRaWAN in smart city eco-system. The following 
Fig. 1(a) shows the LoRaWAN network deployment scenario 
without a network server, and Fig. 1(b) shows the LoRaWAN 
network deployment scenario with the inclusion of a network 
server in the proposed work. 

 
(a) 

 
(b) 

Fig. 1. LoRa network deployment in IoT smart city: a) LoRaWAN network 

with gateway placement, b) LoRaWAN with gateway and network server. 

B. Improving LoRaWAN Performance Using Reinforcement 

Learning (RL) Algorithms 

The proposed study emphasizes towards improving the 
performance of LoRaWAN via ML-based decision making for 
adaptive duty cycle slot allocation. The proposed work 
leverages RL techniques in LoRaWAN to intelligently manage 
the network resources and aims to maximize efficiency along 
with optimal delivery performance. Reinforcement Learning 
(RL) is a data-driven approach where it learns rules and 
policies from experience by interacting with the network and 
observing the results. RL is a dynamic approach that has the 
capability to adapt to the environmental changes. LoRaWAN 
networks are constantly changing owing to the dynamic 
scenarios and due to the underlying propagation environment. 
As a result, RL algorithms can be used to learn how to 
optimize the network parameters for these changes, ensuring 
that the network remains reliable and efficient. As RL is a 
scalable approach, it can be used to optimize large and 
complex networks [21]. Therefore, the proposed work realizes 
that in LoRaWAN, RL could be used to optimize resources by 
training agents for making decisions to maximize overall 
network efficiency and minimize interference, along with 
energy consumption. The proposed work in the first phase of 
design, therefore, introduces a novel and cost-effective 
adaptive duty cycle slot allocation using Q-learning modeling 
and also ensures dynamic slot assignment. In the second phase 
of design, it incorporates a scheme for bandwidth and 
efficiency optimization, followed by a security analysis in the 
third phase. 

1) Adaptive duty cycle with RL in LoRaWAN: Duty cycle 

in LoRaWAN determines how often a device is capable of 

transmitting data packets. It has been observed that the static 

allocation paradigms often lead to congestion, collisions, or 

under-utilization of resources. Therefore, the proposed work 

introduces an approach of adaptive duty cycling using Q-

learning to dynamically choose the best time slot based on 

traffic, battery, and buffer status, which in longer run reduces 

contention and also improves energy efficiency. 
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Fig. 2. Reinforcement learning in LoRaWAN. 

2) State representation for Q-learning agent: In the 

proposed analytical modeling of LoRaWAN, each end device 

state in the context of IoT smart city is defined as a tuple of 

𝑠𝑡 = 〈𝑏𝑡, 𝐸𝑡, 𝑙𝑡,𝐷𝑡, 𝑐𝑡〉. Here, 𝑏𝑡 refers to buffer size at time 𝑡, 

𝐸𝑡 implies the battery level at time 𝑡, whereas 𝑙𝑡 implies time 

since last transmission. 𝐷𝑡 on the other hand, implies current 

duty cycle slot and 𝑐𝑡 represents channel status (i.e 0=idle, 1 = 

busy). Fig. 2 shows baseline RL concept which is adopted in 

the proposed LoRaWAN framework designing. 

3) Action space definition in LoRaWAN: The proposed 

analytical strategy further defines the action space 𝐴 =
{𝑇𝑋ℎ𝑖𝑔ℎ, 𝑇𝑋𝑙𝑜𝑤 , 𝑤𝑎𝑖𝑡 } as a set of high power transmission, 

which require high energy usage and lower delay denoted with 

𝑇𝑋ℎ𝑖𝑔ℎ,  low power transmission, which require low energy 

usage but higher delay denoted with 𝑇𝑋𝑙𝑜𝑤 , and 𝑤𝑎𝑖𝑡 implies 

skip transmission where the buffer grows and battery is 

conserved.  The prime reason behind considering 𝑇𝑋ℎ𝑖𝑔ℎ  is 

that it is used for urgent data or poor channel conditions. It 

aims to minimize the delay and improve packet delivery 

probability (stronger signal) for urgent packets or unreliable 

channel conditions in LoaRaWAN. On the other hand, the 

action corresponds to 𝑇𝑋𝑙𝑜𝑤 imply when channel conditions 

are good or delay is tolerable for packet transmission. This 

action also conserves battery life while still sending data. 

Here, the action 𝑤𝑎𝑖𝑡 refers to preserve battery or adhere to 

duty cycle limits. This action has got importance when the 

network is highly congested or data is not urgent. This 

approach not only conserve energy but also helps avoiding 

duty cycle violation. In the RL perspective the proposed work 

decides the action space to support light-weight decision 

model in resource constrained devices with three discrete 

actions. The learning agent learns a policy to select the best 

action at each time step depending on the above state space 

criteria highlighted in 𝑠𝑡 = 〈𝑏𝑡,𝐸𝑡, 𝑙𝑡, 𝐷𝑡, 𝑐𝑡〉  to enhance the 

performance and resource management in LoRaWAN. In the 

proposed work Q-learning helps managing the resources and 

LoRaWAN traffic and enables adaptive traffic handling. 

4) Q-learning in adaptive traffic handling: In the 

proposed approach of performance improvement of 

LoRaWAN the states encode the traffic contexts in the form of 

𝑠𝑡. Here, the buffer size implies traffic backlog, which means 

how much data is waiting to be sent. On the other hand, 𝐸𝑡 

refers to the remaining battery level of end IoT devices. On 

the other hand, 𝑙𝑡  helps controlling the latency factor. The 

factor of 𝐷𝑡 is used as a duty cycle slot that measures the 

compliance constraint. These states help the learning agent 

understand the traffic load and network status accordingly RL 

mechanism effectively manages the resources. 𝑇𝑋ℎ𝑖𝑔ℎ  is 

learned when urgent traffic and high buffer build-up occur. On 

the other hand, 𝑇𝑋𝑙𝑜𝑤 is learned by the agent when traffic is 

moderate and conditions are favourable. The Q-learning learns 

to skip Tx for the action 𝑤𝑎𝑖𝑡 and avoid penalty and transmit 

later when the condition improves. In the case of 

learning𝑤𝑎𝑖𝑡, the Q-learning model realizes that the traffic is 

low, that means there is no urgency to transmit, whereas 

transmission at that point might waste energy or duty cycle. 

𝑤𝑎𝑖𝑡 allows agents to accumulate more data and possibly send 

it together later. Q-learning learns that delaying when the 

buffer is small and doesn’t incur a big penalty, and also may 

result in higher future rewards. The 𝑤𝑎𝑖𝑡 is useful as it helps 

avoiding duty cycle violation, helps when the channel is busy 

(𝑐𝑡 = 1) and also useful in the case of battery  𝐸𝑡 is critically 

low. The agent learns to wait for better conditions. Here, via 

Q-learning, the agent chooses the optimal actions to balance 

delay, energy usage, and duty cycle compliance, which also 

positively influence the throughput and data delivery outcome. 

The Q-Function updating is represented with Eq. (4). 

Q(st ,at) = Q(st ,at) + α [rt + γ max
a′

Q(st+1 ,a′) − Q(st ,at)](4) 

Here, 𝛼 represents the learning rate, whereas 𝛾 implies the 
discount factor, and also 𝑟𝑡  refers to the intermediate rewards at 
time 𝑡 . Also, in the above expression, 𝑎′  represents the next 
action, and further it leads to the Q-value for state action pair in 
𝑄(𝑠𝑡, 𝑎𝑡). While iteratively updating the above expression (4), 
the agent progressively learns when to transmit and at what 
power in LoRaWAN, and also learns when to wait to avoid 
congestion or conserve resources. It also adapts to dynamic 
traffic patterns in real-time. The agent evaluates 𝑏𝑡 and if it is 
high, then it immediately sends in  𝑇𝑋ℎ𝑖𝑔ℎ or 𝑇𝑋𝑙𝑜𝑤 depending 

upon the channel conditions. If  𝐸𝑡  is low, then the agent 
prefers to conserve energy, so either it chooses or 𝑇𝑋𝑙𝑜𝑤 or 
𝑤𝑎𝑖𝑡. If 𝑙𝑡 is high, then it avoids excessive delay and prefer 
any Tx. If 𝐷𝑡 is found near max, then it avoids sending and 
prefers 𝑤𝑎𝑖𝑡. Also, if 𝑐𝑡 = 1 that implies the channel is busy 
and prefers 𝑤𝑎𝑖𝑡. Here, 𝐷𝑡~1 indicates that the end IoT node 
has used almost all of its allowed transmission time for the 
current regulatory duty cycle window. That’s why it is safer to 
avoid transmitting until the cycle resets. In LoRaWAN, 
especially in the EU 868 MHz band is subject to strict 
regulatory duty cycle limits. If 𝐷𝑡~1 in max and the learning 
agent still chooses to transmit that means it may get penalty, 
drop the packet and delay can occur for future transmissions. 
This results in low or negative reward, so over time the agent 
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learns that 𝑤𝑎𝑖𝑡  is the optimal action, when 𝐷𝑡~ 1. With 
approach the Q-table find which action yields the best long-
term return and balances throughput, energy and reliability. 

5) Reward function modeling: The design of reward 

function modeling encourages high rewards for timely 

transmission with low power. And also penalizes the agent for 

buffer overflows, delays, or duty violations. It is modeled 

using Eq. (5). Here, e = 5 for  𝑇𝑋ℎ𝑖𝑔ℎ and  e =  2 for  𝑇𝑋𝑙𝑜𝑤: 

𝑟𝑡 =  {
10 − 𝑒 𝐼𝑓 𝑇𝑋 𝑠𝑢𝑐𝑐𝑒𝑠𝑓𝑢𝑙
−0.5 𝑖𝑓 𝑤𝑎𝑖𝑡

−2 𝑖𝑓 𝑇𝑋 𝑓𝑎𝑖𝑙𝑒𝑑 𝑜𝑟 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑜𝑤
          (5) 

The reward modeling in LoRaWAN encourages the 
learning agent with a high reward if fast delivery is needed. On 
the other hand,  𝑇𝑋𝑙𝑜𝑤  also gets a higher reward despite a 
higher delay, which promotes energy efficiency. Whereas 
𝑇𝑋ℎ𝑖𝑔ℎ is used when speed is critical but very less frequently. 

𝑤𝑎𝑖𝑡 is not rewarded, but the penalty is low, allowing it to be 
chosen in risky or sub-optimal states. The proposed Q-learning 
in LoRaWAN also penalizes risky transmissions, such as if Tx 
is fails or Tx when the battery is low. In such cases, the agent 
gets negative rewards, and further, this reward structure also 
pushes the agent to avoid such states. 

6) LoRaWAN adaptive duty cycle mechanism: In the 

proposed work, the time is divided into 10 discrete duty cycle 

slots in the form of 𝐷𝑡. Here, each slot might represent a fixed 

duration, and the model cycles through them as time advances. 

The update rule for adaptive duty cycle is given using Eq. (6): 

𝐷𝑡+1  = 𝐷𝑡 + 1 𝑚𝑜𝑑 10                 (6) 

This equation shows that after each decision step (time 
step), the slot automatically advances to the next. In the 
proposed system content of LoRaWAN, the model behaviour 
simulates a rolling time window where duty cycle behaviour 
resets periodically, matching regulatory constraints (e.g. 1% 
per hour transmission time in EU868). In the proposed Q-
learning-based adaptive duty cycling-based strategy, agents 
learn which slots are best for transmission based on success 
rate (i.e., whether Tx is successful), energy cost 
( 𝑇𝑋ℎ𝑖𝑔ℎ , 𝑇𝑋𝑙𝑜𝑤) , and channel conditions (e.g., fewer 

collisions). Through Q-learning, LoRaWAN builds state-action 
values  𝑄(𝑠𝑡, 𝑎𝑡) that include 𝐷𝑡 as a state component. It has to 
be noted that with this approach, the agent doesn’t learn what 
to do, but it learns when to do it. The benefit of this adaptive 
duty cycling approach is that the agent learns to adapt to traffic 
patterns, interference, and energy constraints over time. 

It has to be noted that the proposed framework operates in 
three phases: 1) Q-learning-based adaptive duty cycle 
assignment, 2) efficient channel scheduling, and 3) security-
aware packet evaluation. Algorithm 1 to Algorithm 3 together 
represent the complete operational procedure in which the RL 
agent selects optimal transmission actions while considering 
energy levels, buffer status, and channel conditions, thereby 
achieving adaptive, secure, and efficient resource management 
in LoRaWAN. The RL agent is also capable of selecting 
optimal transmission actions while considering trust scores as 

well. The following algorithm shows Q-learning for adaptive 
duty cycle in LoRaWAN. 

Algorithm 1: Q-learning for Adaptive Duty Cycle in 

LoRaWAN 

Initialize 𝑄(𝑠𝑡 , 𝑎𝑡) arbitrarily for ∀〈𝑠𝑡 , 𝑎𝑡〉 pairs 

For each episode:  

Initialize environment (𝐸) and state 𝑠𝑡  =             
〈𝑏𝑡 , 𝐸𝑡 , 𝑙𝑡 ,𝐷𝑡 , 𝑐𝑡〉 

 Repeat for each time step 

          With probability 𝜀 select random action 

          𝑎𝑡  ∈ {𝑇𝑋ℎ𝑖𝑔ℎ ,𝑇𝑋𝑙𝑜𝑤 , 𝑤𝑎𝑖𝑡 }   

  Otherwise select 𝑎𝑡 = arg max
a′

Q(s, a)  

  Execute action a, observe  

reward 𝑟𝑡 ,  

next state 𝑠𝑡+1. 

𝐷𝑡+1  = 𝐷𝑡 + 1 mod 10   ← Adaptive             

Duty Cycle slot update  

  Update Q(s, a) using:  

   𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 +

𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

  𝑠 → 𝑠′ 
  If terminal condition is met, break  

The algorithm design and modeling ensure that the Q-
learning agent adapts based on the dynamic state 𝑠𝑡 . It also 
offers a duty cycle slot allocation where the reward strategy is 
encouraged for optimal time. Here, Q-learning automatically 
adapts policy using reward signals. 

7) Optimization of bandwidth and data efficiency in 

LoRaWAN: It has to be noted that LoRaWAN in smart city 

eco-system suffers from collisions and idle listening as many 

IoT end devices share the same channel. Therefore, optimizing 

channel utilization (bandwidth) and efficient data scheduling 

can significantly improve the performance of LoRaWAN.  If 

there are 𝑁 number of end devices (ED) and 𝑃𝑡  indicates the 

packets the successfully transmitted packets at time 𝑡 ,whereas 

𝒰𝑡  represents the bandwidth utilization at time 𝑡 . Then the 

bandwidth utilization can be modelled using Eq. (7) and 

Throughput 𝑇𝑡 is measured using Eq. (8). The proposed work 

further evaluated the transmission delay using Eq. (9). Here, 

𝑃𝑡  represents the set of packets receiver at 𝑡  and 𝑡𝑟𝑥
𝑝 , 𝑡𝑔𝑒𝑛

𝑝  

represents the generation time and reception time of packets.  

The system also computes the battery energy level of IoT 

nodes or end devices in the form of 𝐸𝑖
𝑡. Here, 𝐸𝑖

𝑡 represents the 

battery level of device 𝑖 at step 𝑡. 

𝒰𝑡 =
𝑃𝑡

𝑁⁄                     (7) 

𝑇𝑡 =  ∑ 𝛿𝑖
𝑡𝑁

𝑖=1   where 𝛿𝑖
𝑡 =

 {
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑟𝑎𝑛𝑠𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑤𝑎𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑓𝑢𝑙 𝑎𝑡 𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑒 

 (8) 

𝐷𝑒𝑙𝑎𝑦𝑡 = 1
|𝑃𝑡 |⁄ ∑ (𝑡𝑟𝑥

𝑝 − 𝑡𝑔𝑒𝑛
𝑝

𝑝∈𝑃𝑡
)                  (9) 

In the proposed LoRaWAN framework Q-learning chooses 
𝑇𝑋ℎ𝑖𝑔ℎ  and 𝑇𝑋𝑙𝑜𝑤 based on the congestion and energy. The 
bandwidth utilization is also tracked via 𝒰𝑡  whereas the 
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proposed reward structure and simulation loop encourages 
maximized throughput. The proposed Algorithm 2 for efficient 
channel scheduling is represented as follows: 

Algorithm 2: Efficient Channel Scheduling in LoRaWAN 

For each time slot 𝑡:  
For each IoT node 𝑖:  

  Estimate channel status 𝑐𝑡 

  If 𝑏𝑡 > 𝜙 and energy sufficient:  

Select 𝑇𝑋ℎ𝑖𝑔ℎ  and 𝑇𝑋𝑙𝑜𝑤  via Q-

learning  

  Else:  

   Choose the ′𝑤𝑎𝑖𝑡′ action  

  Update packet success/failure  

  Update metrics: 

             Throughput, delay, bandwidth utilization  

It has to be noted that the proposed work in LoRaWAN 
approximates an efficient channel scheduling (ECS) strategy 
by using a Q-learning agent to dynamically decide on 
transmission power or WAIT based on local buffer status, 
energy, duty cycle, and channel status. However, full-fledged 
ECS features like multi-channel assignment, real-time 
congestion estimation are marked as future extensions. 

C. Security-Aware RL Approach in LoRaWAN 

The extensive analysis on LoRaWAN shows that it is 
vulnerable to different forms of attacks, such as spoofing, 
flooding, and data injection. Here, in the proposed system, a 
security-aware RL strategy can detect malicious data patterns, 
it can also maintain trust scores, and drop packets based on 
suspicious behaviour. It also ensures secure routing and packet 
forwarding. The security modeling considers a functional 

strategy of malicious packet indicator 𝜙(𝑃𝑖
(𝑡)

) which generates 

binary flags if packet 𝑃𝑖 ∈ 𝑠 is spoofed or malicious, else it 
flags to 0. It can be represented using Eq. (10). If 𝑠𝑡 denotes the 
set of received packets at time 𝑡. Then the intrusion detection 
rate is computed using Eq. (11): 

𝜙(𝑃𝑖
(𝑡)

) =  {1  𝑖𝑓 𝑃𝑖
(𝑡)

 𝑖𝑠 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
        (10) 

𝐼𝑡 = 1
𝑠𝑡

⁄ ∑ 𝜙(𝑃𝑖
(𝑡)

)
𝑃𝑖

(𝑡)
∈𝑠𝑡

                   (11) 

The intrusion detection rate basically measures how many 
suspicious packets were found in the current time window. The 
value of 𝐼𝑡 implies that the network is under attack or faulty 
devices are sensing data. In this proposed security-aware 
reinforcement learning approach, each IoT device is 
continuously monitored. And also, the system learns patterns 
of normal versus suspicious behavior. The devices that behave 
badly get low trust scores, and their packets are blocked. Here, 
the system scans the packets from all the IoT devices, and it 
incorporates a model to spot unusual behavior in a packet, such 
strange timing or values. The proposed work also implements a 
security filter in this adaptive resource management framework 
of LoRaWAN. Here, each gateway uses a rule-based intrusion 
detection function using Eq. (12). Here, 𝑇𝑑  indicates the 
temperature reading, 𝐻𝑑  indicates the humidity reading, 
whereas 𝑇𝑚𝑎𝑥 = 100 degrees and 𝐻𝑚𝑖𝑛  is ~5%. The trust score 
𝜏𝑖 for IoT device 𝑖 is evaluated using Eq. (13). The τi ranges 

between 0 and 1. Here 1 means fully trusted device, whereas 0 
indicate highly suspicious device.  When too many of a 
device’s packets are flagged, then the trust score drops. The 
packet drop rate 𝛿-drop is also estimated using Eq. (14).  This 
mathematical model evaluates how many packets are rejected 
as the proposed framework could not trust the source device. 

𝐷𝑒𝑡𝑒𝑐𝑡(𝑑) = {
1  if  𝑇𝑑 > 𝑇𝑚𝑎𝑥 𝑜𝑟 𝐻𝑑 < 𝐻𝑚𝑖𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
     (12) 

τi = 1 −
Flagged Pi

(t)
 from i

Total  P
i

(t)
 from i 

⁄       (13) 

δdrop =
Pi

(t)
 dropped due to low τi

Total received P
i

(t)
 

⁄  (14) 

In the proposed work and security strategy, the model 
simulates malicious behavior in LoRaWAN while injecting 
fake data. It also simulates malicious IoT devices sending 
falsified or abnormal data, which represents active attacks like 
data injection. The proposed security filtering and black listing 
formulation is well capable of defending network flooding 
attacks or data corruption with fake sensor values. It also 
prevents the adversaries from resending previously valid 
packets. As the gateway/server could be extended to discard 
old or replayed packets by checking if the timestamp is within 
a valid range or not. If a node continuously refuses to transmit 
data, then the proposed security framework could be extended 
with a Q-learning agent that discourages excessive wait or non-
transmitting states via negative rewards and mitigates routing 
blackhole by adapting duty cycles and penalizing inactivity in 
LoRaWAN. The system is also well capable of resisting 
Grayhole attack, Jamming attack, Sybil, and DoS intrusions in 
LoRaWAN. The next segment of the study further illustrates 
the results and discussion on the outcome obtained from 
simulating the above analytical algorithms through numerical 
computing and analysis. 

Algorithm 3: Intrusion Detection and Secure Transmission in 

LoRaWAN  

For each received Pi

(t)
 from device 𝑖 

1. Extract key info: device_id, timestamp, data content 

(payload) 

 2. Run anomaly or unusual behaviour detector on Pi

(t)
 

  - If Pi

(t)
 is suspicious or trust_score [𝑖] < 0.6  

       Drop the packet  

       Reduce trust_score[𝑖] by a penalty value.  

       Blacklist ← Blacklist ∪ {Devicei } 
  - Else 

     Accept the  Pi

(t)
 

     Increase trust_score [𝑖] by a reward value. 

It has to be noted that in the proposed framework the 
security layer operates synergistically with the Q-learning 
agent, in which the trust score of each device is periodically 
updated considering packet consistency and transmission 
success rate. These trust updates in longer run will indirectly 
influence the agent’s state vector and also enable adaptive 
scheduling decisions that prioritize reliable and trusted nodes 
within LoRaWAN. While the Q-learning agent primarily 
handles the scheduling, the trust mechanism ensures that 
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unreliable or malicious nodes are filtered that indirectly support 
more effective and reliable network operations. 

V. RESULTS AND DISCUSSION 

The proposed adaptive duty cycle management framework 
using Q-learning for LoRaWAN is analytically modeled and 
scripted in Python 3.10. The simulations are carried out 
considering a Python-based environment using Jupyter 
IDE/Notebook. The simulation framework considers a custom 
discrete-event simulation modeling in Python for LoRaWAN. 
It also implements a custom implementation of Q-learning, 
considering visualization libraries, data handling libraries, and 
machine learning (ML) libraries. The security module also 
incorporates custom filtering and blacklist logic. The 
simulation system configuration considers an Intel Core i5 
processor with 12 GB RAM and a Windows operating system. 
The custom Q-learning is CPU-light for conceptual modeling, 
so it doesn’t require GPU processing. 

The experimental evaluation considered a custom discrete-
event simulation model developed in Python to emulate 
LoRaWAN communication under varying traffic and channel 
conditions. The proposed framework also includes realistic 
parameters such as bandwidth (125 kHz), transmission power 
levels consistent with LoRa Class-A devices. For comparison, 
the popular baseline schemes such as Static (fixed duty-cycle 
allocation), Random (stochastic transmission slot selection), 
and Round Robin (cyclic slot assignment) were implemented. 
All metrics, such as throughput (packets/sec) and energy (mJ), 
are normalized averages derived from the simulation 
experiments. The network topology configuration is shown in 
Table I. 

TABLE I.  SIMULATION CONFIGURATION 

Parameters Values 

Number of IoT Devices  10-100 

Number of LoRa gateways  1-2 

Simulation Time Step  50 

No. of Episodes 1000 

Coverage Radius (per Gateway) 1000 meters  

Device Transmission Slots  10 slot cyclic duty schedule  

Random Packet Loss Probability  10-15%  

Attack Injection Rate  10% (Fake Sensor Values)  

Initial Battery Level  100 Joule  

𝑻𝑿𝒉𝒊𝒈𝒉  Energy Consumption  5 units  

𝑻𝑿𝒍𝒐𝒘  Energy Consumption  2 units  

𝒘𝒂𝒊𝒕  Energy Impact  0 (only incurs delay penalty)  

Learning Rate α 0.1  

Discount Factor 𝜸 0.9  

Exploration Rate 𝜺 0.1  

The proposed work observes the trends from the plots after 
implementing the strategy of adaptive duty cycle operation in 
LoRaWAN. The observed trends from Q-learning is illustrated 
in Fig. 3. Fig. 3(a) shows that trend in cumulative reward per 
episode is initially low, but improves and stabilizes over 
episodes. This indicates the Q-learning agent in the proposed 
system learns effective actions to maximize successful 
transmission and conserve energy while also avoids 

unnecessary transmissions as the encouragement with higher 
reward in proposed Q-learning leads to better decision policy. 

The analysis of the buffer size also implies that the buffers 
remain within mid to low ranges, which clearly shows high 
variability as buffer size fluctuates significantly from episode 
to episode. The buffer size ranges from 0-4 packets [see 
Fig. 3(b)]. The high-frequency fluctuations across the episode 
range suggest that the buffer size is dynamic and frequently 
changing. The buffer size is rarely remains zero or maxim 
indicating the system is actively transmitting and receiving 
data. Values between 1 and 3 dominate suggest a moderately 
filled buffer across the learned period. The observed variability 
also indicates that the system adapts dynamically to changes in 
network load channel availability and energy constraints. Since 
learning policy involves exploration using 𝜀 -greedy policy 
hence fluctuations are expected as the agent explores different 
transmission strategies. Overtime although no clear smoothing 
is visible, the agent avoids extreme buffer overflows or 
starvation indicating policy convergence. The observed 
variation suggests a balance between energy and throughput. 

Here, Fig. 4 indicates the number of successfully 
transmitted packets received by the gateway at each time step. 
Here, the throughput values fluctuate based on agent’s learned 
behavior and environmental dynamics such as channel 
congestion or blacklist filtering. The Q-learning agent 
gradually improves its decision-making strategy between 
𝑇𝑋ℎ𝑖𝑔ℎ , 𝑇𝑋𝑙𝑜𝑤 and 𝑤𝑎𝑖𝑡 to prioritize successful transmissions 

when the channel is idle and the battery is sufficient. This 
adaptive learning process prevents excessive collision or batter 
drain and ensure stable throughput over time. It also shows 
good responsiveness and adaptive behavior with increasing 
number of IoT End Devices (EDs). 

 
(a) 

 
(b) 

Fig. 3. Observed trends from Q-learning: a) analysis of cumulative rewards 

and b) average buffer size per episode. 
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Fig. 4. Analysis of throughput in LoRaWAN. 

The observed trends from Q-learning is illustrated in Fig. 5. 
The interpretation of the [Fig. 5(a)] plot shows ratio of packets 
successfully transmitted relative to total number of active 
devices at each time step. The proposed Q-learning based 
algorithm in LoRaWAN shows moderately efficient bandwidth 
utilization trend that clearly depicts the fact that the Q-agent 
balances the aggressive and conservative transmission 
attempts. Low utilization at certain intervals correlates with 
high interference (channel status busy) or conservative WAIT 
actions, which the agent learns to apply when risk is high or 
energy is low. This approach significantly helped reducing the 
congestion and packet loss. It offers ~65% utilization and the 
algorithm with this approach avoids overloading the network 
while maintains consistent data delivery and indicate balanced 
usage of resources. Fig. 5(b) captures the average battery level 
of all IoT devices over simulation steps. It highlights 
decreasing but controlled energy curve that signifies an energy-
aware strategy in LoRaWAN. It also depicts that learning agent 
adaptively decide and favor low power transmission or defer 
transmission when essential as guided by the Q-learning 
optimal policy. The gradual descent also reflects sustainable 
energy usage rather than rapid depletion which verify the 
framework’s suitability for long term operation in large-scale 
and constrained LoRaWAN. 

The comparison of throughput for proposed Q-learning in 
(Fig. 6) shows that it achieves highest throughput in initial 
steps in LoRaWAN. Slowly it starts adapting to the 
environment dynamics and select transmission times that 
maximizes rewards. This leads to higher and smarter 
throughput over time. However, in random policy 
inconsistency is observed in the throughput outcome as it 
occasionally performs well by chance but lacks reliability and 
wastes resources due to frequent collisions or poor timing. 
However Round Robin offers stable but low throughput as it 
underutilizes idle slots and cannot adapt to traffic or channel 
conditions. Static duty cycle paradigms are fragile in dynamic 
environments and result poor reliability and wasted capacity. 
The Q-learning approach also occasionally yields zero 
throughput at specific time steps these reflect intelligent 
decision making such as avoiding unfavorable transmission 
slots or conserving energy. Here, Q-learning adapts its policy 
to maximize long-term throughput leading to overall superior 
performance despite transient dips in LoRaWAN. 

 
(a) 

 
(b) 

Fig. 5. Observed trends from Q-learning: a) analysis of bandwidth 

utilization ratio, and b) average energy consumption over time. 

The delay outcome is found highly stable in the case of Q-
learning strategy, as it learns from the reward feedback to 
choose actions (transmission slots) that minimizes delay. After 
brief learning phase, it converges to an efficient schedule with 
minimal delay. However, other methods such as Random, 
Round Robin and Static either transmit blindly or without 
adaption to repeated conflicts therefore, suffers from 
instability, higher delay variance (see Fig. 7). 

 

Fig. 6. Comparison of throughput with different approaches. 
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Fig. 7. Comparison of delay outcome with different approaches. 

It can be seen from Fig. 8 that Q-learning rapidly explores 
its action space in early stages which consumes energy. 
However, once it learns the optimal transmission pattern then 
energy consumption of IoT devices significantly drops and 
remains stable. However, it also outperforms others by 
minimizing the energy use once the optimal policy is learned 
which static and non-adaptive schemes fail to achieve in 
LoRaWAN. 

 

Fig. 8. Comparison of energy outcome with different approaches. 

Fig. 9 reveals how many devices are being blacklisted 
throughout the system’s operation in LoRaWAN. The blacklist 
count increases gradually which suggests that the security 
system is capable of detecting and isolating misbehaving or 
low-trust devices which mostly forward suspicious packets in 
LoRaWAN environment. Here, Q-learning plays a crucial role 
towards evaluating device behavior and taking penalizing 
actions over time. The trust-driven approach in the proposed 
scheme not only improves security and reliability but also 
contributes towards optimal throughput, lower delay and stable 
energy consumption. 

 

Fig. 9. Analysis of security in LoRaWAN. 

VI. CONCLUSION 

The proposed work introduces a Q-learning-based adaptive 
scheduling and duty cycle strategy to enhance the performance 
of LoRaWAN. Here, the proposed adaptive duty cycling 
approach incorporates Q-learning to dynamically choose the 
best time slot based on traffic, battery and buffer status 
reducing congestion and improving energy efficiency.  
Additionally, the unified framework also offers dynamic 
energy management and optimized transmission under traffic 
variability. An efficient channel scheduling algorithm is also 
proposed to enhance the bandwidth utilization, throughput and 
delay performance in LoRaWAN. The performance of the 
proposed Q-learning is also evaluated against Static, Random, 
and Round Robin approaches. The experimental results show 
that the Q-learning significantly improves the throughput 
performance (peak: 5 units), and also ensure lower average 
delay (converging to 0 within 10 steps), and improved energy 
efficiency (stabilizing at ~52J, ~15% better than Round Robin). 
It also offers a security analysis strategy that effectively 
identifies up to 19 malicious or underperforming devices via 
dynamic blacklisting. The outcome also conceptually justifies 
that the learning-based approach adapts well to traffic 
variations and security threats, outperforming static and 
randomized methods. The proposed framework demonstrates 
how reinforcement learning and lightweight edge security can 
jointly enhance LoRaWAN performance and ensure adaptive, 
energy-efficient, and secure communication in large-scale IoT 
deployments. In future work, we aim to extend this framework 
using deep reinforcement learning, multi-agent collaboration, 
and trust-aware reward models, with validation on more 
extensive LoRaWAN deployments. 
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