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Abstract—Real-time surveillance systems require accurate and
efficient object detection to ensure safety and situational
awareness. Existing methods, such as YOLOv5 and Vision
Transformer-based detectors, often struggle to reliably identify
small, distant, or occluded objects while maintaining real-time
inference, limiting their applicability in complex surveillance
environments. To address these challenges, this study proposes
PRISM, a hybrid Transformer—-YOLOvVS framework that
integrates fast local feature extraction with global contextual
refinement. The method introduces two novel components: i) a
Context-Aware Feed Forward Network (CA-FFN) within the
Vision Transformer (ViT), which dynamically weights channel
features to reduce redundancy and enhance global context
modeling, and ii) Cross-Scale Attention Skip Connections
(CSASC) for selective fusion of multi-scale YOLOvS and ViT
features, improving detection of small or occluded objects. The
model is implemented in PyTorchand trained on a comprehensive
surveillance dataset consisting of pedestrians, vehicles, bicycles,
bags, and miscellaneous objects. Experimental evaluation
demonstrates that PRISM achieves 96% accuracy, a significant
improvement of ~4-5% over baseline methods, with robust
performance across all object categories. Key performance
indicators verify the reliability of the model to real-time usage, and
the lightweight design makes it edge deployable. These findings
imply that PRISM can be used to provide a speed-accuracy
balance in a complex and dynamic setting, which is more efficient
than the current methods. The study also notes the partial
extensions, such as the incorporation of multi-sensors and
continuous video streams to do time modeling as an extension,
which will offer a good base to the next-generation intelligent
surveillance systems.

Keywords—Real-time object detection; hybrid transformer—
YOLOv8; Context-Aware Feed Forward Network (CA-FFN); Cross-
Scale Attention Skip Connections (CSASC); surveillance video
analytics; multi-scale feature fusion

I. INTRODUCTION

Real-time surveillance has turned into an inseparable
component of the contemporary governance of the city, social
security and management of vital infrastructure [1]. Since the
idea of smart cities has entered a new phase and the necessity
of automated monitoring devices [2] is growing, the ability to
properly distinguish and classify objects in dynamic and
complicated environments has received primary importance
[3]. These traditional computer vision algorithms have been
largely reliant on handcrafted features that are sensitive to
varying light conditions, occlusion, and size, and hence limit
their application in real-world surveillance [4]. With the
emergence of deep learning (DL) algorithms, and in particular
convolutional neural networks (CNNs) [5], object detection has
gotten a significant boost due to automated feature extraction
and strong recognition features. The You Only Look Once
(YOLO) family of CNN-based [6] detection methods has
become one of the most popular frameworks in real-time
detectionbecause it operates in a single stage, and all images
are processed in a single pass, having an impressive inference
speed [7]. However, the YOLO-based models are mostly
centered on the local spatial information, disregarding the
contextual relationships at a large scale, which may worsen the
performance of the model on the detection of small, hidden, or
distant objects [8]. ViTs, on the other hand, make use of self-
attention mechanisms to learn global dependencies [9], which
givea better representationof more complex scenes and greater
detection of difficult-to-detect object classes. However, ViTs
are computationally expensive and latency-prone, which makes
them less ideal for real-time execution on edge devices [10].
Hybrid models using CNN backbones and transformers have
also been studied, but most existing methods are inclined to
excessive computational cost or non-optimal multi-scale
feature integration, which leads to a trade-off between
efficiency and accuracy [11], [12].
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To address these challenges, this study presents PRISM, a
new hybrid system of scalable real-time monitoring of
surveillance objects. PRISM combines the property of
extracting features of objects within a short time frame used in
YOLOvVS8 with a lightweight ViT module, with an addition of a
Context-Aware Feed-Forward Network (CA-FFN) that boosts
the network’sunderstanding of the objects in their entirety. This
is done using a Cross-Scale Attention Skip Connection
(CSASC) mechanism that is effective in producing local and
global features at multiple scales without compromising speed
and accuracy. The framework integrates powerful
preprocessing, data augmentation, and CloU-based
optimization to achieve maximum performance in the detection
of various categories of objects such as pedestrians, vehicles,
bicycles, and miscellaneous objects. PRISM aims to work
around the shortcomings of the current method, combining the
strengths of YOLOvV8 and ViTs to provide a better detection of
small, occluded, and distant objects, preserving the
performance of real-time detection. The proposed framework
would be applicable to both edge and cloud deployments and
would be flexible, scaled, and robust in the present-day
surveillance applications.

A. Research Motivation

The increased complexity of urban observation contexts
(i.e., occlusion, changing light, and object size variability)
requires detection systems to achieve high accuracy while
meeting real-time demands [ 13]. Existing models rely on speed
orare not generalizable when faced with challenging situations,
which creates the need to develop a generalizable, scalable
hybrid approach to robust object recognition.

B. Significance of the Study

This study addresses important gaps in present-day
surveillance object detection by utilizingmulti-scale contextual
learning and fast inference. The proposed framework improves
the detection of small, occluded, and distantobjects to collect
reliabledata fora betterand more effective public safety, traffic
management, and infrastructure protection. Lastly, this solution
is deployable across edge and cloud devices.

C. Recent Innovation and Challenges

Recent advancements, such as transformer-based models
and hybrid CNN-transformers, have increased the quality of
representation of global features. However, there are still
difficulties in achieving a balance between computational
efficiency, multi-scale feature fusion, and real-time operation.
Integrating lightweight attention mechanisms effectively is still
a primary challenge to implement practical, scalable
surveillance solutions in changing, dynamic environments.

D. Key Contributions

e Hybrid Framework Design: Development of PRISM, a
scalable object detection framework that combines fast
local feature extraction with global contextual
refinement for robust real-time surveillance.

e Novel Fusion Mechanism: Innovation of CSASC to
improve multi-scale feature fusion while ensuring
computational efficiency.
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e Transformer Optimization: Addition ofa CA-FFNto the
lightweight ViT module to enhance global feature
learning on small, occluded, and faraway objects.

e Robust Preprocessing Pipeline: Use of a systematic data
cleaning, augmentation, normalization, and adaptive
training approach to achieve model generalization in
various surveillance environments.

The remaining section of this study will follow the below
organization. In Section II, prior research inreal-time detection
in the transfer application will be explored, examining findings
and restrictions of YOLO and Transformer-based models. In
Section III, the most notable challenges in surveillance object
detection are identified. These are small object recognition,
occlusions, and computational efficiency. The proposed
Scalable Transformer-YOLO Model methodology is discussed
in Section IV and includes preprocessing of the dataset,
architecture of the model, and training methodologies.
Section V presents results from experimentation, performance
metrics, and comparisons to other conventional models.
Section VIconcludes with a few conclusions, along with some
major discussion and potential future improvement work for the
real-time surveillance detection system outcomes.

II. RELATED WORKS

Ouyang [14] was proposed as a hybrid system, which
combines the concepts of DETR and YOLO to become more
robust and more accurate. It is a two-stage pipeline architecture
in which the bounding boxes of objects were predicted by
YOLO extremely quickly. Then, to add high precision
transformer-based model refinement was employed. On the
COCO dataset, DEYOhasachievedan achievement of52.1 AP
and has surpassed the traditional YOLO models in both
detection and performance. The combination of YOLO and
transformers assists in the local and global contexts, which
progresses the objectrecognition in difficult scenes. Although
DEYO improved the accuracy, it had a negative response as it
took a long time to converge and was computationally too
costly to use in real-time. The principal disadvantage was its
accompanying downside of preparing a large amount of
training data and adjusting hyperparameters, consuming
resources. Additionally, the transformer-based refinement
added even more latencies, restricting its capacity forreal-time
surveillance applications.

Song et al. [15] proposed ViDT, a novel object detection
model based solely on the ViTs, which has subsequently
improveddetectionaccuracy. ViDT, in contrast to earlier CNN-
based models, fabricates amechanism for retrievinglong-range
image dependencies, which has improved object recognition.
The model has displayed an AP 0f49.2 on the COCO dataset;
thereby, it outperforms conventional object detection models.
The capacity to learn contextual relationships was one of the
main benefits of this model and proved useful in situations
when objects were interacting. It is, however, a resource-
consumptive and, therefore, not applicable to near-real-time
edge solutions that require improved resource utilization. The
other weakness is that it is based on training on large datasets,
and this usually translates to the transformers requiring much
more labeled data in order to perform optimally. The necessity
to have lightweight models of transformers that would create a
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reasonable balance between accuracy and efficiency in
computation has been mentioned in the work.

Wang et al. [16] suggested Mamba YOLO, a state-of-the-
art model for object detection, which incorporated the use of
SSMs in the YOLO to enhance efficiency and accuracy.
Mamba YOLO, which makes use of SSMs in the continuity of
its one-step thinkingprocess, allows tracking of objects through
time. In this way, it greatly aids by reducing the complexity of
computation and hence completely enables the applications of
Real-time in autonomous systems and surveillance. The model
demonstrated huge progress on the COCO and VOC datasets
with large improvements compared to classical YOLO versions
on both precision and recall. Another weakness was the
inability to perform better in extreme light conditions because
objects with poor contrast were hard to notice. Nonetheless,
Mamba YOLO had potential for makinga valuable contribution
to the real-time detection area, given the blend of YOLO's
speed with SSMs' sequential page processing abilities.

G. and B. [17] created YoloTransformer-TransDetect, a
hybrid in that their framework merges YOLO with transformer-
based attention mechanisms to implement defect detection. The
sequenceincluded firstusing YOLOto quickly identify defects,
followed by the transformer module that worked to extract
featuresata finerlevel of grain to improve accuracy. There was
better performance of the model in detecting defects in steel
tubes, as well as an increase in the detection rates. The
technique was not able to work with extremely complicated or
visually similar defect patterns in a single pass and had to
undergo additional post-processing. A tiny defect and
occlusion, one of the common problems in industry, was
classically privileged when the method could reliably, if not
efficiently, identify. The research found that some feature
learningand localization wererealized using transformer-based
techniques along with YOLO. Its operation efficiency,
however, was questioned, andrestricted its use in real-time. The
future research undertakes the aim of optimization of
transformer block to offer convenience in shortcomings.

Li, Yan, and Shi [18] introduced PP-YOLOE, a new version
of YOLO for object detection, which comes with a multi-scale
attention mechanism. The adaptive scaling method improves
feature extraction to better specify fine distinction details in
every scale of any object. Application of these mechanisms
significantly enhanced the total accuracy of detection on the
COCO data set, mainly on small objects, thus are highly
overlooked in previous traditional YOLO models. This
network, with the help of attention-based techniques, was rather
a skilled object localizer in cluttered and occluded scenes,
where it provided fewer false positives. Latency can limit
applications in which real-time decision-making is required as
video surveillance or even autonomous driving. It is also
suggested in the study that lightweight models of transformer
should be followed up in order to achieve a good speed-
accuracy trade-off.

Su etal. [19] came up with a different model of breast mass
detection as they divided the mass into LOGO and applied the
strengths of YOLOVS to it. The algorithm is a two-step process
and involves both segmentation and detection of breast masses.
First, the image is segmented and cropped with the help of a
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YOLOvVS5L6 model on high-resolution mammograms; then, the
image and the area with breast masses are processed by various
global and local transformer branches; finally, they are
combined to yield the final segmentation output. Although
these are encouraging figures, integration of transformers has
computational difficulties, and it is not an easy task to
implement it in a regular hospital system that has low
computing capabilities. The study revealed that fusing
transformers with YOLO improves boundary refinement and
lesion detection but requires excessive data augmentation for
generalization onto other imaging datasets.

Shah and Tembhurne [20] developed Defect Transformer, a
hybrid architecture utilizing transformers, set to leverage
surface defects in industrial applications, which is based on
attention-based feature extraction for localization and
classification of defects, as well as other aspects. The model
was reported to be more accurate in detecting microscopic
defects compared to the traditional CNN models. It is however,
limited in application when it comes to real-time monitoring
due to extremely high levels of computational complexity. This
study demonstrated that perceiving the world context can be
useful in betteringthe process of defect classification. Although
it can have multiple applications, there are major limitations to
its implementation in real-time applications because of the
memory and processing requirements of embedded systems.

Shang et al. [21] presented the Defect-Aware Transformer
Network, a deep learning framework designed for intelligent
defect detection in modern industrial applications. The model
integrated a self-attention mechanism to improve feature
representation, which helps to detect those defects that were
considered subtle and fine-grained, as is often missed with
traditional convolutional models. This was in addition to the
mix that was the transformer-based feature extraction and the
conventional DL methodologies, which offered good learning
of' both local and global defect patterns. The experimental tests
have demonstrated that the model resulted in a significant
improvement of the trade-off between the accuracy and
robustness of the classification, in particular, against defects
with low contrast and textured backgrounds. In spite of these
strengths, the authors also mentioned that their method is
computationally expensive and thus not practical in real-time
use in the automation of industry.

Current object detection studies highlight hybrid models,
where YOLO is combined with transformers to make a balance
between speed and precision. Hybrid methods enhance
accuracy, butare computationally expensive. Pure transformer-
based models detect long-range dependencies and contextual
associations, but depend on large datasets and intensive
resources. Some models combine sequential modules or multi-
scale attention to achieve real-time efficiency and identify fine
details. Although refinements based on transformers improve
overall detection performance and localization, they also
increase latency and computational requirements, which
reduces their feasibility in real-world applications such as
surveillance, autonomous systems, and industrial defect
detection.
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III. PROBLEM STATEMENT

Real-time object detection forms are one of the core
components of surveillance systems where accuracy,
flexibility, and efficiency are of equal significance. YOLO-
based models are appreciated due to their lightweight
architecture and fast inference that allows them to be deployed
in edge cases and real-time systems. However, they do not
properly identify small, distant, or hidden objects that usually
appear in crowded and dynamic surveillance conditions [16].
Transformer-based models, on the other hand, are good at
capturing global spatial context and enhance the quality of
detection, but are costly to compute, and thus are restricted in
their use in resource limited or real-time environments [22].
Hybrid architectures that integrate YOLO with transformer-
based architectures have been reached to overcome those
drawbacks, but they are generally accompanied by additional
issues such as slow convergence, large memory complexity,
and scalability constraints in the field environment. These
drawbacks leavearesearch gap thathinders the development of
smart surveillance. This is dealt with in the present work by the
development of an optimized hybrid framework that trades
accuracy, contextual learning, and efficiency of inference both
in edge and cloud-based environments.

Vol. 16, No. 10, 2025

IV. PROPOSED PRISM FRAMEWORK FOR REAL-TIME
OBIJECT DETECTION

The suggested PRISM framework is modelled as the
powerful and scalable object-detecting built-in surveillance
system in real-time that is able to take into account the
challenges of crowdedscenes, changingillumination, partiality,
and small sizes of items. The architecture is a hybrid between
the convolutional and transformer-based architecture to trade
local detail speech and global contextual reasoning. YOLOV8
is essentially the backbone network, and is effective at
extractingmulti-scale local features giving spatial precisionand
fast inference, which are essential to real time implementation.
Following the extraction step, a lightweight ViT fine-tunes
them by capturing long-range dependencies and high-level
semantic relationships across the scene. The ViT component is
enhanced with a CA-FFN to perform efficient channel-wise
recalibration of the features as well as minimizing redundancy
in the output. In order to fill the gap between local spatial
information and global context, a new CSASC mechanism is
added for enabling the proper merging of YOLOvVS8 features
with ViT-refined results. The combined detection head
subsequently executes bounding box regression and
classification, which is optimized using CloU-based loss and
adaptive learning policies. Overall, this hybrid architecture
provides a high-accuracy real-time system that is still
computationally lightweight and well-suited for cloud and edge
deployments in surveillance systems.

o Global Contextual Refinement E
(Modified ViT + CA-FFN) 6‘3 8
.INPUT : p Backbone Feature Extraction Local Feature -E 3
Surveillance Object Data Pre-processing | (YOLOVS-Local Features) Maps g =

Detection for YOLO I &

Multi-scale Local
Features i
Feature Fusion

» (CSASC-Cross-scale Attention Skip
Connections)

Predicted
Classes

Model Evaluation and Deployment

Detection Head and Optimization
(Bounding Box + Classification)

Fused Local + Global |
Features

Fig. 1. Proposed PRISM framework.

Fig. 1 shows the process used to detect by the proposed
system. The preprocessing of input video streams is followed
by feature extraction by means of the YOLOvS8 backbone and a
lightweight ViT. The extracted features are then used to
perform object detection and classification after which the
outputs undergo post-processing to give a higher caliber.
Evidence is formed to evaluate the quality of detection. The
framework is then capable of implementing real -time decision-
making or deployment on edge and cloud platforms, which
guarantees scalability, efficiency, and flexibility in various
settings of surveillance

A. Dataset Overview

The "Surveillance Object Detection Dataset for YOLO"
[23] from Kaggle aims to create a training and test dataset with
labeled training images specifically for surveillance real-time
object detection applications. Approximately, 1,000 annotated

images were taken based on real-world surveillance footage,
and they depict vehicles and pedestrians, as well as objects of
interest, the images are annotated with bounding boxes in the
YOLO format thatcan be used with YOLOv8 models. In every
annotation file, there are the class IDs, and coordinates of the
bounding box in normalized form (0 to 1) which implies that it
is resolution-independent. The dataset is most suitable in the
real-time security applications including smart monitoring,
anomaly detection, and traffic monitoring whereby strong
object detection is a must. It has a great foundation with its
formal annotation format and core object types that offer a
strong and realistic platform to train YOLOvV8 based
surveillance models with better accuracy and reliability. The
dataset parameters were given in Table L
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TABLE L. DATASET ATTRIBUTES

Attribute Description Attribute

~1,000 images (varies based on dataset

Total Images Total Images

version)
Image . . . Image
Resolution Varies; normalized to 640x640 pixels Resolution
Object Vehicles, pedestrians, suspicious Object
Classes objects Classes
Annotation YOLO format (TXT files with Annotation
Format bounding box details) Format

Data Source Surveillance camera feeds Data Source

B. Dataset Preprocessing

The input data required for the YOLOvV8 model must be
acquired using preprocessing techniques for higher precision,
generalization, and stability in real-world applications of
surveillance. The preprocessing techniques include data
cleaning, conversion of format, data augmentation,
normalization, and data splitting. These are all importantin
improving the dataset and the performance of the model.

1) Data cleaning: Cleaning data involves finding and
fixing errors, inconsistencies, gaps, or duplicate entries in a
dataset. It is important for verifying the accuracy, consistency,
and reliability, all of which are required in order to construct
effective and trustworthy machine learning models.

a) Identification and removal of corrupt and damaged
images: Imagesthat have been corrupted by the files, have an
encoding problem, or have been incompletely downloaded are
filtered out of the dataset before training [24]. Corrupt fileslead
to loading errors, higher overhead of computation, or non-batch
processing, and therefore instability during model training. The
images in the dataset that cannot be read might cause the model
to drop out some training examples, and this can also lead to
inconsistency in the learning of features and disrupt gradient
changes.

Corrupt images are those that fail the image integrity
checks. It ensures that all files are complete, well-formatted,
and can be accessed. Such images should be deleted,
particularly for programs, such as DL models like YOLOVS,
where model performance can degrade due to missing or
incomplete data. Suppose I, refers to the number of corrupt
images, and I, to the total number of images in the dataset. The
percentage of corrupt image removal can be calculated as in

Eq. (1):
PC=(;—j)><100 (1)

b) Filtering mislabelled or empty annotations: Every
image in the dataset should ideallyhave a YOLO annotation file
containing bounding box coordinates and class labels. If an
annotation file is missing, empty, or incorrectly labeled, the
affected images will be adjusted or removed accordingly.
Mislabelled annotations could lead to incorrect detections,
misclassifications, and an increase in the model's false positive
rate, thereby lowering overall detection accuracy.
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¢) Identification and elimination of duplicate images:
Duplicate images lead to bias in the dataset, whereby the model
overfits to the frequently seen samples. It follows when the
model picks redundant sonic patterns and reduces its
generalization ability to unseen test data of the surveillance
system. Duplicates are mostly generatedif datasets were joined,
for example, in cases of automatic image gathering into
surveillance systems, or data augmentation errors.

As in Table II, the removal of these problematic images
makes way for a better dataset, thereby leading to improved
model efficacy, lesser false detection, and improved
generalizations in real surveillance environments. This refined
dataset is now improved and made apt for preprocessing,
augmenting, and training for the YOLOv8 model.

TABLE II. DATA CLEANING OPERATIONS
e Issue Percentage of Dataset
Issue Identified Identified (%)

Corrupt/Damaged Images 120 2.40%
Mislabeled/Empty o

Annotations 340 6.80%

Duplicate Images 215 4.30%

Total Removed 675 13.50%

2) Format conversion: To ensureconformity, all the images
are also transformed into JPEG (.jpg) or PNG (.png) file format.
The bounding box annotations are also YOLO format,
representing theobjects by normalized coordinates in the image
frame. The normalizing equation of the bounding box is in
Eq. (2):

h
H

()

To make the model more robustand diverse in terms of data,
augmentation is done. These changes enable the model to train
to identify items in many different situations of low light,
motion blur and occlusions.

X w
X’ :W,y’: %'w’:W'h, =

3) Data augmentation: In order to increase the dataset
diversity and robustness of the model, augmentation is applied.
Such transformations allow the model to learn to recognize
objects in various conditions ranging from low light, motion
blur, and occlusions.

The augmentations are used randomly to prevent
overfitting, thereby, preserving model generalization in real-
world surveillance environments, as provided in Table III.

TABLEIII. AUGMENTATION TECHNIQUES AND THEIR EFFECTS
Augmen.tatmn Effect on Model Performance
Technique

Scaling (Zoom in/out) Helps recognize objects at varying distances

Improves robustness to different camera

Rotation (x15°) angles

Enhances ability to detect objects in flipped

Flipping (Horizontal) views

Contrast Adjustment Compensates for poor lighting conditions

Gaussian Noise Addition | Improves robustness to real-world noise
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4) Normalization: This process of normalizing pixel
intensities is highly significant as preprocessing and allows
making the training of the model stable and efficient. The 0 to
255 raw pixel values in DL typically cause certain wild
variation in the weight update in back propagation. These
variations can lead to the unstableness of gradient descent,
sluggish convergence, and model optimization. In order to
solve these issues, pixel intensity is modified, and the intensity
values are scaled within a fixed range between 0 and 1 in order
to ensure a uniform intensity distribution across all images for
the model to learn.

This enables the model to learn features more robustly by
diminishing variances in brightness and contrast across the
various images. It also allows for faster convergence that will
help mitigate the effects of vanishing and exploding gradients.
Generally, the normalization can be mathematically expressed,
as in Eq. (3):

II — I=Lnin (3)

Imax—Imiin

where, the original pixel value is denoted by 7, while
Lnin and I,,;;, represent the minimum and maximum pixel
intensities, typically 0 and 255, respectively. The normalized
pixel value, I’, is scaled within the range [0, 1]. This
normalization ensures that the input distributions across all
images are consistent, enabling the model to train more
effectively. As a result, the model achieves better
generalization, leadingto improved accuracy in real-time object
detection tasks.

5) Dataset splitting: As soon as preprocessing is done, the
dataset is separated into orderly and effective subsets: training,
validation, and testing for testing model performance in a
balanced way. A balanced separation of the dataset is very
crucial to avoid overfitting, optimized the learning of the
model, and accurate evaluation of unseen data. The above
datasetis split with reference to the standard splitting into 70%
of the entire data for training, and allows learning the shapes,
object features, and positions of the bounding box,20% for
validation to ensure hyperparameter tuning and performance
monitoring during the training process. The validation dataset
helps in ensuring that the model generalizes well while
protecting against overfitting onto the training dataset.10% set
aside for testing to give unbiased feedback about the model's
detection accuracy on data it has not seen. The details of the
distribution of this datasetinto different test sets are shown in
Table IV.

TABLEIV. DATASET PARTITIONING

Dataset Partition Number of Images Percentage (%)

Training Set 700 70%
Validation Set 200 20%
Test Set 100 10%

C. Feature Extraction

The YOLOVS is used in the PRISM framework as the base
of rapid local feature detection in the frames of surveillance

Vol. 16, No. 10, 2025

video. The processing of every frame is done separately by
convolutional layers of the YOLOvS that identify low- and
mid-level spatial features, including edges, textures, and
contours of objects. These characteristics are essential in the
detection of small, remote or partially obscured objects that are
major problems in real-time video surveillance images. The
architecture of YOLOvVS8 produces multi-scale feature maps,
with multi-resolution detection heads which find objects
proficiently. This feature enables precise identification of large,
clearly defined objects, including vehicles, and smaller, less
obvious objects,such as bicyclists or pedestrians. Formally, the
extraction at each layer is given as Eq. (4):

F,=o(W,*F_; + b)) 4

where, F; is feature map at layer [, W, and b, are
convolutional kernel and bias, * is convolution, and o is the
activation function. This allows YOLOVS to obtain spatial and
contextual information in every frame of the video due to the
hierarchical feature map aggregation. The heads of detection
make predictions of bounding boxes and class likelihoods at
scales of differentsizes at detection time, where larger objects
are more sensitive.

YOLOVS is a real-time, high-throughput spatial fidelity
sequentially processing in the case of video datasets. The
learned feature maps are subsequently fed to the small ViT,
which learns the long-range dependencies and the intrinsic
frame contextual relations. Such a mix is what guarantees that
PRISM can guarantee the good performance of detecting the
dynamic scenes and can handle the application of support to the
use of occlusions, motion blur,and varyingobject sizes without
reducing its real-time performance.

D. Global Contextual Refinement

After the local feature extraction stage, which is the
YOLOVS, the PRISM framework adopts a lightweight ViT to
refine the global context, i.e., long-range dependencies across
the extracted robustly feature maps. Unlike the existing ViTs,
the proposed architecture presents a novel addition to the
traditional FFN layer with the CA-FFN that offers a higher
efficiency level, less redundancy of features, and better edge
correctness. The modified ViT framework is given in Fig. 2.

The CA-FFN functions by initially performing a regular
linear transformation on the input feature X € R¥*?, where N
represents the number of tokens extracted from the YOLOv8
feature map, and D is the dimension for embeddings. Rather
than a simple MLP, the transformed feature is subject to
channel-wise attention, selectively amplifying informative
features while suppressing irrelevant or redundant patterns:

A = Softmax (ﬂ> X' = Av )
)

In Eq. (5),0Q,K,V are the query, key, and value matrices
from X, and d,, is the scaling factor. The attention output X'is
next fed into dynamic feature gating, where a learnable gating
vector G € RP is used to control the flow of information, given
in Eq. (6):

Xenerin = GO GELUX'W, + b, )W, +b, (6)

767 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Input Embeddings
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Multi-Head Self Attention (MHSA)
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Context-Aware Feed Forward Network (CA-FFN)
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Dynamic Feature Gating
Reduced Redudancy

Context-Refined Features
y

Refined Embeddings

Fig.2. Global contextual refinement.

where, W, , W, and b,, b, are the trainable weights and
biases of the FFN, ® represents element-wise multiplication,
and GELU applies non-linear activation. The gatingmechanism
enables the network to suppress less useful channels and
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concentrate computational resources on important features,
leading to a significant improvement in efficiency, particularly
for edge deployment applications with limited resources.

The PRISM framework, through the inclusion of CA-FFN,
makes sure that global contextual information is narrowed
without over-inflating computational complexity. The novelty
can be easily stated: instead of the traditional ViTs, the FFN is
substituted by the context-aware, attention-driven, gated
module, which is, at the same time, more effective in terms of
feature representation, redundancy, and lightweight
architecture to fit into real-time video surveillance. The given
step is essential to make sure that the fused YOLOvS features
have contextualized information, increasing the ability to find
small, obscured, or visually challenging objects withoutmaking
real-time performance worse.

E. Feature Fusion Mechanism

The PRISM framework uses representations by taking local
feature representations provided by YOLOvVS and contextually
enriched global feature representations provided by the CA-
FFN-enhanced ViT, integrating them with a Feature Fusion
Mechanism. Conventional skip-connections only concatenate,
or add, feature maps across layers, which can tend to dilute
salientinformation and cannot prioritize important multi-scale
cues that are necessary to detect small, distant, or occluded
objects. In order to address this limitation, the proposed
framework includes a Cross-Scale Attention Skip Connection
(CSASC), anew selective integration feature; its architecture is
given in Fig. 3.

YOLOVS8 Large-Scale Features
(Objects, Regions)

Multi-Scale Emphasis
Small Object Focus

YOLOVS Small-Scale Features LOC&] (FI}]&I' D
(Edges, Fine Details) w Cross-Scale Attention Skip
Connections (CSASC)
YOLOVS Medium-Scale Features Local (Mild R
(Shapes, Structures) Features) - Weighted Multi- Fused Feature Map
Attention Weighting W (Lozai[:;ei}tlfbal

VIT Global Contextual Features
(Long-Range Dependencies) G‘\Oba

Fig.3. CSASC fusion mechanism.

The CSASC functions by initially aligning the spatial sizes
of YOLOVS feature maps Fyy, o € RF1*W1XC¢1 and refiner-ViT
features F,;; € RF2XW2XC2 through bilinear interpolation and
token reshaping. Then, attention maps for every scale are
calculated to weigh the significance of various resolution
features, as given in Eq. (7):

a= Softmax(Conlel(Fyow)) + Conv, . (Fyir) (7)
Frusea = aOFygr0 + (1 - a)OF,r (3)

In Eq. (8), a is the attention-weighting tensor derived from
attention, © is element-wise multiplication, and Conv, , is
used to reduce channel dimensions for computational
efficiency. This attention-based fusion allows for more

attention to features with larger contexts, such as small objects,
far-away vehicles, or partially occluded pedestrians, and less
attention to regions that do not contain informative features.

With the application of CSASC, the framework rewards and
maintains the multi-scale feature representation of both local
and global contexts effectively. Standard skip connections do
not consider the significance of features and treat all features
equally, whereasthe attention-based weightingis reactive to the
features'spatial and semantic role, providinga more purposeful
enhancement of the object's most significant cues. This
innovation works directly to have better detection strength,
especially in difficult surveillance modes where the objects
have different sizes, have complicated occlusions, and due to
different environments. Overall,the CSASCis notonly a fusion
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of YOLOvVS and ViT features but a scale-aware and attention-
guided fusion, which is an obvious novelty. It ensures PRISM
is highly accurate and robust without losing computational
efficiency, which makes the framework quite suitable to be
deployed on edge devices or cloud-based real-time video
surveillance infrastructures.

F. Detection Head and Optimization

Once the fused representations of CSASC are sent to the
detection head, the model should learn to optimize three
mutually beneficial goals, which include bounding box
localization, object classification, and confidence scoring. The
Complete Intersection-over-Union (CloU) loss is used to
regress boundingboxes in order to be spatially aligned, because
itconsiders the area of overlap, the distance between center, and
the consistency of the aspect ratio. Given an estimated
boundingbox b, and ground truth b, the CloU loss is given
as Eq. (9):

2 C 3,C
Loy = 1—10U(by,by,) + % +av )

where, IoU is the intersection-over-union, p is the
Euclidean distance between box centers, d is the length of the
enclosing box diagonal, and v is penalizing aspect ratio
differences with weighting factor a. This not only provides
maximum overlap but also bounding boxes consistent in scale,
which is importantin detecting small or occluded surveillance
objects.

A binary cross-entropy loss is used to complete the
localization loss (L ;) and theobjectness confidence score loss
(L conys)» 50 as to achieve high category prediction accuracy and
reduce the false alarms. The combination of these terms as a
final objective of detection is given in Eq. (10):

Ltotal = /11LC10U + )IZLCZS + A3Lconf (10)

with empirically tuned weights 4;,4,,4; balancing
regression, classification, and confidence learning. For
optimization, adaptive learning rate scheduling is included,
with the learning rate decreased when validation loss stabilizes
to avoid premature convergence. Additionally, there is also a
check for unstable training modes: if any gradient spike or
divergence in loss (L > ) is detected, the update step is
skipped, thereby stabilizing convergence. This kind of
conditional optimization results in robustness in heterogeneous
surveillance. In general, the combination algorithm is a good
compromise between detection quality and the stability of the
training process that can ensure that PRISM behaves in real-
time with few errors even when the conditions are dirty or
dynamic. Algorithm 1 shows the proposed PRISM framework
for real-time surveillance object detection.

Algorithm 1: Proposed PRISM Framework for Real-Time
Surveillance Object Detection

Input: Video stream V = {fl, {2, ..., fn}, frame size = 640x640,
batch size =B

Output: Bounding boxes Bbox, class labels C for detected objects
1: Initialize YOLOvVS backbone 0y, ViT 0v, Detection Head 0d
2: Set learning rate a = 1e-4, optimizer = AdamW, loss = CloU +
BCE
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3: For each epoch E =1 to MaxEpoch do

4:  For each batch b in V do

5: Preprocess frames: resize, normalize, augment — Xb
6 LocalFeatures «— YOLOV8(Xb; Oy)

7 If resolution(LocalFeatures) < threshold t then

8: Apply multiscale upsampling

9: EndIf
10: GlobalFeatures « ViT(LocalFeatures; 6v)

11: GlobalFeatures <— CA-FFN(GlobalFeatures) //Novelty 1
12: FusedFeatures < CSASC(LocalFeatures, GlobalFeatures)
/ Novelty 2

13: Predictions < DetectionHead(FusedFeatures; 0d)

14: Compute Loss L = LCIoU + Lcls + Lconf

15: If L > § then

16: Backpropagate gradients with o (adaptive scheduling)
17: Else

18: Skip update to avoid unstable training

19: EndIf

20: EndFor

21: Validate model on validation set Vval
22: If mAP improves AND FPS > real-time constraint (=30 FPS)
then

23: Save model weights 6*
24: EndIf
25: EndFor

26: Evaluate 6* on test set Vtest

27: Generate metrics: Accuracy, Precision, Recall, F1, mAP, FPS
28: If deployment target = Edge then

29:  Apply pruning + quantization for lightweight inference
30: Return Bbox, C with optimized PRISM model

Unlike traditional surveillance detection schemes that
require CNNs to be fast, or transformers to be deep, PRISM
introduces two important innovations that can be useful. First,
the CA-FFN of the ViT permits modeling of a global context
with increased fine-tuning at a low cost of deploying on the
edge. Second, the CSASC permits preference (attention-
directed) fusion between local and global features which
significantly improves the small and far objects recognition in
cluttered scenes. PRISM achieves a high degree of detection
accuracy, robustness, and inference efficiency by integrating
these new components into a YOLOvS-ViT hybrid pipeline.
This two-layer innovation sharply distinguishes the proposed
system fromthecurrentsolutions, makingita scalablereal-time
monitoring system.

V. RESULTS AND DISCUSSION

This section will discuss in detail the proposed PRISM
framework that includes the YOLOvS8 combined with the
application of Transformer based refinement. The performance
is critically measured by some measures. The findings show
that the model is strong enough and may be applied to all types
of surveillance and in both easy and challenging objects and at
efficiency level of real-time, which makes it suitable to the use
in the intelligent surveillance applications. The parameter
configuration is given in Table V.
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TABLE V.  SIMULATION PARAMETERS FOR PRISM FRAMEWORK TABLE VI.  EVALUATION METRICS
Parameter Value/Setting Metrics Formula
Input Resolution 640 x 640 pixels TP + TN
Accuracy
Batch Size 32 TP +TN + FP + FN
iy TP
Optimizer AdamW (weight decay = 0.0005) Precision TP+ FP
Learning Rate Initial 0.001 with cosine scheduling TP
Recall —_—
Training Epochs 100 TZP I ;I;l
Hardware Platform NVIDIA RTX 3090 GPU, 24 GB VRAM Fl1-Score T XTP + FP i FN
A. Qualitative Results Training vs. Validation Loss Curve
Qualitative visual comparisons were made to show the o8l g less
advances that were made by the PRISM framework. Outputs of
the test dataset of sample detections using PRISM and PRISM
baseline methods like YOLOv5 and ViDT. PRISM is always 06
more accurate in the detection of small, distant, and partially-
occluded objects, with few false positives and higher Soa
localization. These graphical findings prove the usefulness of
the hybrid Transformer-YOLOvS8 architecture and the s
attention-based CSASCand CA-FFN modulesin improving the
object detection in challenging surveillance conditions. It is
shown in Fig. 4. 0.0 ‘ : , : , , | |
2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Epochs
Fig. 5. Training vs. Validation loss curve.
Training vs. Validation Accuracy Curve
1.000 — Training Accuracy
--- Validation Accuracy
Fig. 4. Object detection images. 0.975
0.950
B. Performance Evaluation 0025
This part provides a systematic assessment of the suggested -
PRISM model with regard to real-time object detection £ 0.900
surveillance effectiveness. The analysis identifies the strength, $osrs
efficacy, and responsiveness of the model in different settings,
providing insight into its trustworthiness and feasibility for use 0.830
in smart monitoring platforms. The performance metrics were 0.825
given in Table VL.
0.800[ /-
Fig. 5 demonstratesthe trends of trainingand validation loss :

over 20 epochs, showing a decreasing loss pattern that suggests
effective learning. Initially, both losses are high but
progressively decline as the model optimizes its parameters.
The training loss (blue) steadily decreases, while the validation
loss (dashed line in red) increases or decreases slightly, but it
follows a similar downward trend. Minor variations in
validation loss should reflect normal generalization behavior.
With the convergence of both curves towards zero, the model
is effectively learning in the absence of overfitting.

Fig. 6 depicts the accuracy progression of the model over
20 epochs, comparing training (blue) and validation (red,
dashed) accuracy. Both curves show a steady increase,
constructive in learning. Initially, accuracy is very low; as
training continues, accuracy increases until it reaches a level
exceedingly close to perfection. Training accuracy goes up and
down, yet it oscillates slightly enough for the validation
accuracy always to track along with it; this depicts good
generalization. The convergence of the two curves near the top
indicates a well-learned model with little overfitting.

35 50 75 100 125 150 175 200
Epochs

Fig. 6. Training vs. Validation accuracy curve.

Object Detection Model Performance
95.5% 95.8% 95.6%

Performance (%)

Accuracy Precision Recall Fl-Score mAP

Fig. 7. Object detection performance.
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Fig. 7 presents the key performance of the object detection
model, including Accuracy (96%). Accuracy reflects the
overall correctness of predictions, while Precision indicates
how many detected objects were correctly identified. The high
values across these metrics highlight the model’s effectiveness
in detecting and classifying objects with a high degree of
reliability.

C. Category Wise Detection in Object Orientation

Table VII presents category-wise detection accuracy,
showing the proposed model performs best on pedestrians and
vehicles, while bags and miscellaneous items remain more
challengingdue to limited representation and complex features.

TABLE VII. DETECTION PERFORMANCE
Object Category Detection Accuracy (%)
Pedestrians 91.3
Vehicles 89.5
Bicycles 89.5
Bags 84.7
Miscellaneous 82.5

D. Accuracy versus FPS Trade-off in Object Detection
Models

Fig. 8 plot indicates the trade-off between frame per
second and accuracy in object detection models. From the plot,
the accuracy remains almost constant while decreasing only in
FPS. Therefore, it can safely be concluded that the model
performance will not be decreased with a drop-in frame rate.
Thus, it can be inferred thatthe proposed method successfully
balances real-time processing requirements with the need for
high detection accuracy, makingit viable for video surveillance
applications.

Fig. 9 shows howthe model learned on the training process.
The mean Average Precision (mAP) is increasing steadily with
the change in the number of epochs, thus the model is slowly
learning effective ability to detectand classify object correctly.
This progressive gain is an indication of effective optimization
of the PRISM framework, which achieves the high speed of
feature detection violated with YOLOv8 and the contextual
augmentation provided with the Transformer. The increase in
mAP demonstrates that there is effective training overlap and
verify the statement that the model is well-adjusted to complex
scenarios of surveillance in different types of objects.

E. Runtime Analysis and Edge Device Performance

PRISM framework runtime was tested on various hardware
platforms to determine its ability to be deployed in real time,
including edge devices. The mean frames per second (FPS) of
the various input resolutions and batch sizes on the various
devices. PRISM can run atleast43 FPS on a high-end NVIDIA
RTX 3090, 640 by 640 resolution with a batch size of 1, which
proves to be real-time. On a mid-range graphics card (e.g.,
NVIDIA RTX 2060), the model can be sustained at around 28
FPS, and with an edge device, e.g. NVIDIA Jetson Xavier NX,
it can achieve around 15 FPS on pruned and quantized models.
These findings show that PRISM is applicable in real-time
surveillance systems with low-resource computational power.
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Accuracy vs FPS Trade-off

—&— PRISM

96.0 9

95.9

Detection Accuracy (%)

5 1'0 1‘5 2'0 2‘5 3‘0 3‘5 4'0 4‘5 50
Frames per Second (FPS)

Fig. 8. Accuracy vs. FPS trade-off.

0 mAP Improvement Over Time
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Fig.9. mAP improvement over time.

FPS vs. Detection Accuracy Across Hardware Configurations
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Fig. 10. FPS vs. Hardware constraints.

Fig. 10 demonstrates the trade-off between FPS and
detection accuracy between the various hardware
configurations and input resolutions. Bars are used to depict
FPS of each hardware platform and Line plot is used to depict
the accuracy of detection. It is a hybrid architecture that is
coupled with lightweight ViT and CA-FFN modules that allow

771 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

a tradeoff between good detection performance and efficient
computation, which makes PRISM applicable in both clouds
and edge-based deployment models.

F. Global Contextual Refinement Performance (ViT + CA-
FFN)

Fig. 11 shows the effect of CA-FFN on the ViT. The CA-
FFN model has more precision across all recall levels. CA-FFN
offers higher precision, particularly for the cluttered scenes.
This suggests fewer false positives and better robustness in
identifying smaller or overlapping objects.

Effect of CA-FFN on PR Curve

1.0 —-==- VIT Baseline
—— VIT + CA-FFN

0.9

0.8

Precision
o
~

0.6

0.5

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 11. Effect of CA-FFN on PR curve.

G. Feature Fusion Performance

Fig. 12 compares accuracy of detection of small or obscured
categories (bags and miscellaneous objects). The use of CSASC
also increases accuracy by a margin of 5 per cent compared to
vanilla skip connections. This illustrates that the attention-
directed feature fusion of scale is actually effective in
preserving fine-scale features to improve the detection of
difficult object categories in difficult surveillance real -worlds.

gEDfofe«:t of CSASC on Small/Occcluded Object Detection

B Vanilla Skip
H CSASC

87.54

85.0

Detection Accuracy (%)

Bags Miscellaneous

Fig. 12. Effect of CSASC on small object detection.
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H. Ablation Study

In order to determine the contribution of every new element
to PRISM, a study of ablation was carried out by selectively
removing or altering the CA-FFN and CSASC modules. Their
respective influence on detection accuracy and strength in
surveillance situations is quantified in this analysis.

TABLE VIII. COMPARISON TABLE

Model Variant CA-FFN | CSASC A“‘z},'/:;‘cy ‘;},2;’
Baseline YOLOv8 X X 924 91.7
YOLOVS + ViT v X 95.1 94.5
YOLOVS + ViT+ CSASC | X v 943 93.8
PRISM (Full) v v 96.0 95.6

Table VIII indicates that both CA-FFN and CSASC make
contributions to performance improvements. CA-FFN
improves global contextual representation, whereas CSASC
enhances multi-scale fusion, particularly for small, distant, or
occluded objects, which justifies the importance of each
novelty within the proposed PRISM framework.

1. Comparative Evaluation

The proposed PRISM model was not only tested on the
main set of Kaggle surveillance (approximately 1,000 images),
but also tested on Coco Dataset for Multi-label Image
Classification [25]. PRISM shows good competitive results
even with the rather small size of the primary dataset, with high
detection accuracy of various types of objects. The proposed
design of hybrid YOLOvS8-Transformer with CA-FFN and
CSASC modules works well in capturing local features and
global contextual information to identify small, distant, and
partially obscured objects as opposed to the traditional object
detection models.

TABLE IX. COMPARATIVE ANALYSIS OF OBJECT DETECTION MODELS
BASED ON ACCURACY
Model Accuracy (mAP)
YOLOVS5 [26] 95%
ViDT [27] 94%
Proposed PRISM 96%

Table IX presents a comparative analysis of object detection
models based on accuracy (mAP). YOLOvVS achieves ~95%
and ViDT around ~94%, indicating strong but limited
performance. In contrast, the proposed PRISM significantly
surpasses both with 96%, demonstrating superior accuracy,
robustness, and effectiveness for real-time surveillance
applications.

TABLE X. PERFORMANCE COMPARISON ON DIFFERENT DATASETS
Number of Detection Accuracy
Dataset Images (mAP %)

Kaggle Surveillance ~1,000 96.0
Dataset

COCO [28] ~123,000 95.2
PASCAL VOC 2012 [29] ~11,530 94.5
VisDrone [30] ~10,209 93.8
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Table X shows the comparative analysis of the suggested
PRISM framework using several benchmark datasets. The
findings showed high accuracy of PRISM with a small dataset,
whichisastrongindicator oftheefficiency of thehybrid feature
extraction and fusion mechanisms. Furthermore, the
comparative analysis based on the standard benchmarks
demonstrates the model as robust and generalizable, and
operating on the same level or even higher than current state-
of-the-art detection models, including YOLOvS and ViDT. In
this analysis, PRISM is proven to be effective in a variety of
surveillance scenarios at the same time keeping real-time
inference performance.

TABLE XI. STATISTICAL EVALUATION OF PRISM PERFORMANCE
METRICS
Metric Mean | Std. Dev. 95% Confidence
(%) (€3] Interval

Accuracy 96.02 | +0.74 [95.15-96.89]
Precision 9548 | +0.81 [94.52 — 96.44]

Recall 9493 | +0.89 [93.89 —95.97]
F1-Score 95.20 | +0.77 [94.26 — 96.14]

mAP (IoU=0.5) 9556 | +0.68 [94.72 —96.40]

FPS (RTX 3090) 43.1 +1.2 [41.9 -44.3]

Table XI presents the statistical assessment of the PRISM
framework’s performance across five independent
experimental runs. The metrics demonstrate the consistency
and robustness of the model, with narrow standard deviations
and tight 95% confidence intervals, indicating stable
performance across varying data splits. The results confirm that
PRISM maintains high accuracy and detection reliability while
achievingefficientinference speed, supportingits suitability for
real-time or near real-time clinical applications.

J. Discussion

The proposed PRISM framework illustrates a strong and
effective method of detecting objects of surveillance in real-
time by applying both local feature extraction and global
contextual refinement. The use of CA-FFN in the ViT greatly
minimizes the redundancy of features as well as improves
feature global context modeling to produce less false positives,
particularly in cluttered scenes. Similarly, it is the CSASC
fusion mechanism, which allows to selectively integrate multi-
scale features, that enhances the detection of small, distant, and
occluded objects, which conventional architectures have
traditionally not been able to detect. Comparative analysis
demonstrates that PRISM achieves greater accuracy and mAP
than other models (e.g., YOLOvS, ViDT) at a similar inference
speed. PRISM's architecture is also suitable for edge-
deployment and processing on smaller devices, thanks to its
lightweight design and adaptive-learning approaches.
Comprehensively, the findings indicate that the inner layer
novelty redesign and attention-directed fusion of the
Transformer offer a moderate compromise between the
detection accuracy and computational scalability, making
PRISM a viable and scalable system of intelligent surveillance.

VI. CONCLUSION AND FUTURE WORKS

The proposed PRISM architecture is able to achieve the
combination of YOLOv8-based local feature extraction and a
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lightweight ViT with CA-FFN, and the new mechanism of
CSASC fusion. The comparisons indicate that PRISM is
superior in detection performance to other existing models like
YOLOvVS5 and ViDT, and the model can still run inference in
real-time. The dual-layer novelty has a strong ability to identify
small, distant,and occluded objects in complicated surveillance
conditions. These findings highlight the importance of
attention-based global context refinement and multi-scale
feature fusion in enhancing the accuracy of video surveillance
in real time, proving PRISM to be a useful and high-scaling
system to implement when a video surveillance system is
required. Even with the good performance, there are still some
limitations: 1) detection performance in highly cluttered and
very low-resolution frames can be further improved, and
2) further validation is needed to generalize the model to totally
new surveillance scenarios.

Future research will involve the use of the PRISM model to
integrate multi-sensor inputs, such as thermal and RGB
cameras, to enhance detection in low-light or unfavorable
conditions. Continuous video streams will be modeled over
time so as to publish better recognitionof occlusions or moving
objects. Also,the model will be optimized to run on edges (with
a goal of reaching 30 FPS or higher) on platforms such as
NVIDIA Jetson Xavier NX, and pruning and quantization will
be used to reduce the model size to under 100 MB. These
measurable goals are to guarantee the practical implementation
of the framework in the different and resource-limited
surveillance settings.
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