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Abstract—Real-time surveillance systems require accurate and 

efficient object detection to ensure safety and situational 

awareness. Existing methods, such as YOLOv5 and Vision 

Transformer-based detectors, often struggle to reliably identify 

small, distant, or occluded objects while maintaining real-time 

inference, limiting their applicability in complex surveillance 

environments. To address these challenges, this study proposes 

PRISM, a hybrid Transformer–YOLOv8 framework that 

integrates fast local feature extraction with global contextual 

refinement. The method introduces two novel components: i) a 

Context-Aware Feed Forward Network (CA-FFN) within the 

Vision Transformer (ViT), which dynamically weights channel 

features to reduce redundancy and enhance global context 

modeling, and ii) Cross-Scale Attention Skip Connections 

(CSASC) for selective fusion of multi-scale YOLOv8 and ViT 

features, improving detection of small or occluded objects. The 

model is implemented in PyTorch and trained on a comprehensive 

surveillance dataset consisting of pedestrians, vehicles, bicycles, 

bags, and miscellaneous objects. Experimental evaluation 

demonstrates that PRISM achieves 96% accuracy, a significant 

improvement of ~4–5% over baseline methods, with robust 

performance across all object categories. Key performance 

indicators verify the reliability of the model to real-time usage, and 

the lightweight design makes it edge deployable. These findings 

imply that PRISM can be used to provide a speed-accuracy 

balance in a complex and dynamic setting, which is more efficient 

than the current methods. The study also notes the partial 

extensions, such as the incorporation of multi-sensors and 

continuous video streams to do time modeling as an extension, 

which will offer a good base to the next-generation intelligent 

surveillance systems. 

Keywords—Real-time object detection; hybrid transformer–

YOLOv8; Context-Aware Feed Forward Network (CA-FFN); Cross-

Scale Attention Skip Connections (CSASC); surveillance video 

analytics; multi-scale feature fusion 

I. INTRODUCTION 

Real-time surveillance has turned into an inseparable 
component of the contemporary governance of the city, social 
security and management of vital infrastructure [1]. Since the 
idea of smart cities has entered a new phase and the necessity 
of automated monitoring devices [2] is growing, the ability to 
properly distinguish and classify objects in dynamic and 
complicated environments has received primary importance 
[3]. These traditional computer vision algorithms have been 
largely reliant on handcrafted features that are sensitive to 
varying light conditions, occlusion, and size, and hence limit 
their application in real-world surveillance [4]. With the 
emergence of deep learning (DL) algorithms, and in particular 
convolutional neural networks (CNNs) [5], object detection has 
gotten a significant boost due to automated feature extraction 
and strong recognition features. The You Only Look Once 
(YOLO) family of CNN-based [6] detection methods has 
become one of the most popular frameworks in real-time 
detection because it operates in a single stage, and all images 
are processed in a single pass, having an impressive inference 
speed [7]. However, the YOLO-based models are mostly 
centered on the local spatial information, disregarding the 
contextual relationships at a large scale, which may worsen the 
performance of the model on the detection of small, hidden, or 
distant objects [8]. ViTs, on the other hand, make use of self-
attention mechanisms to learn global dependencies [9], which 
give a better representation of more complex scenes and greater 
detection of difficult-to-detect object classes. However, ViTs 
are computationally expensive and latency-prone, which makes 
them less ideal for real-time execution on edge devices [10]. 
Hybrid models using CNN backbones and transformers have 
also been studied, but most existing methods are inclined to 
excessive computational cost or non-optimal multi-scale 
feature integration, which leads to a trade-off between 
efficiency and accuracy [11], [12]. 
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To address these challenges, this study presents PRISM, a 
new hybrid system of scalable real-time monitoring of 
surveillance objects. PRISM combines the property of 
extracting features of objects within a short time frame used in 
YOLOv8 with a lightweight ViT module, with an addition of a 
Context-Aware Feed-Forward Network (CA-FFN) that boosts 
the network’s understanding of the objects in their entirety. This 
is done using a Cross-Scale Attention Skip Connection 
(CSASC) mechanism that is effective in producing local and 
global features at multiple scales without compromising speed 
and accuracy. The framework integrates powerful 
preprocessing, data augmentation, and CIoU-based 
optimization to achieve maximum performance in the detection 
of various categories of objects such as pedestrians, vehicles, 
bicycles, and miscellaneous objects. PRISM aims to work 
around the shortcomings of the current method, combining the 
strengths of YOLOv8 and ViTs to provide a better detection of 
small, occluded, and distant objects, preserving the 
performance of real-time detection. The proposed framework 
would be applicable to both edge and cloud deployments and 
would be flexible, scaled, and robust in the present-day 
surveillance applications. 

A. Research Motivation 

The increased complexity of urban observation contexts 
(i.e., occlusion, changing light, and object size variability) 
requires detection systems to achieve high accuracy while 
meeting real-time demands [13]. Existing models rely on speed 
or are not generalizable when faced with challenging situations, 
which creates the need to develop a generalizable, scalable 
hybrid approach to robust object recognition. 

B. Significance of the Study 

This study addresses important gaps in present-day 
surveillance object detection by utilizing multi-scale contextual 
learning and fast inference. The proposed framework improves 
the detection of small, occluded, and distant objects to collect 
reliable data for a better and more effective public safety, traffic 
management, and infrastructure protection. Lastly, this solution 
is deployable across edge and cloud devices. 

C. Recent Innovation and Challenges 

Recent advancements, such as transformer-based models 
and hybrid CNN-transformers, have increased the quality of 
representation of global features. However, there are still 
difficulties in achieving a balance between computational 
efficiency, multi-scale feature fusion, and real-time operation. 
Integrating lightweight attention mechanisms effectively is still 
a primary challenge to implement practical, scalable 
surveillance solutions in changing, dynamic environments. 

D. Key Contributions 

• Hybrid Framework Design: Development of PRISM, a 
scalable object detection framework that combines fast 
local feature extraction with global contextual 
refinement for robust real-time surveillance. 

• Novel Fusion Mechanism: Innovation of CSASC to 
improve multi-scale feature fusion while ensuring 
computational efficiency. 

• Transformer Optimization: Addition of a CA-FFN to the 
lightweight ViT module to enhance global feature 
learning on small, occluded, and faraway objects. 

• Robust Preprocessing Pipeline: Use of a systematic data 
cleaning, augmentation, normalization, and adaptive 
training approach to achieve model generalization in 
various surveillance environments. 

The remaining section of this study will follow the below 
organization. In Section II, prior research in real-time detection 
in the transfer application will be explored, examining findings 
and restrictions of YOLO and Transformer-based models. In 
Section III, the most notable challenges in surveillance object 
detection are identified. These are small object recognition, 
occlusions, and computational efficiency. The proposed 
Scalable Transformer-YOLO Model methodology is discussed 
in Section IV and includes preprocessing of the dataset, 
architecture of the model, and training methodologies. 
Section V presents results from experimentation, performance 
metrics, and comparisons to other conventional models. 
Section VI concludes with a few conclusions, along with some 
major discussion and potential future improvement work for the 
real-time surveillance detection system outcomes. 

II. RELATED WORKS 

Ouyang [14] was proposed as a hybrid system, which 
combines the concepts of DETR and YOLO to become more 
robust and more accurate. It is a two-stage pipeline architecture 
in which the bounding boxes of objects were predicted by 
YOLO extremely quickly. Then, to add high precision 
transformer-based model refinement was employed. On the 
COCO dataset, DEYO has achieved an achievement of 52.1 AP 
and has surpassed the traditional YOLO models in both 
detection and performance. The combination of YOLO and 
transformers assists in the local and global contexts, which 
progresses the object recognition in difficult scenes. Although 
DEYO improved the accuracy, it had a negative response as it 
took a long time to converge and was computationally too 
costly to use in real-time. The principal disadvantage was its 
accompanying downside of preparing a large amount of 
training data and adjusting hyperparameters, consuming 
resources. Additionally, the transformer-based refinement 
added even more latencies, restricting its capacity for real-time 
surveillance applications. 

Song et al. [15] proposed ViDT, a novel object detection 
model based solely on the ViTs, which has subsequently 
improved detection accuracy. ViDT, in contrast to earlier CNN-
based models, fabricates a mechanism for retrieving long-range 
image dependencies, which has improved object recognition. 
The model has displayed an AP of 49.2 on the COCO dataset; 
thereby, it outperforms conventional object detection models. 
The capacity to learn contextual relationships was one of the 
main benefits of this model and proved useful in situations 
when objects were interacting. It is, however, a resource-
consumptive and, therefore, not applicable to near-real-time 
edge solutions that require improved resource utilization. The 
other weakness is that it is based on training on large datasets, 
and this usually translates to the transformers requiring much 
more labeled data in order to perform optimally. The necessity 
to have lightweight models of transformers that would create a 
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reasonable balance between accuracy and efficiency in 
computation has been mentioned in the work. 

Wang et al. [16] suggested Mamba YOLO, a state-of-the-
art model for object detection, which incorporated the use of 
SSMs in the YOLO to enhance efficiency and accuracy. 
Mamba YOLO, which makes use of SSMs in the continuity of 
its one-step thinking process, allows tracking of objects through 
time. In this way, it greatly aids by reducing the complexity of 
computation and hence completely enables the applications of 
Real-time in autonomous systems and surveillance. The model 
demonstrated huge progress on the COCO and VOC datasets 
with large improvements compared to classical YOLO versions 
on both precision and recall. Another weakness was the 
inability to perform better in extreme light conditions because 
objects with poor contrast were hard to notice. Nonetheless, 
Mamba YOLO had potential for making a valuable contribution 
to the real-time detection area, given the blend of YOLO's 
speed with SSMs' sequential page processing abilities. 

G. and B. [17] created YoloTransformer-TransDetect, a 
hybrid in that their framework merges YOLO with transformer-
based attention mechanisms to implement defect detection. The 
sequence included first using YOLO to quickly identify defects, 
followed by the transformer module that worked to extract 
features at a finer level of grain to improve accuracy. There was 
better performance of the model in detecting defects in steel 
tubes, as well as an increase in the detection rates. The 
technique was not able to work with extremely complicated or 
visually similar defect patterns in a single pass and had to 
undergo additional post-processing. A tiny defect and 
occlusion, one of the common problems in industry, was 
classically privileged when the method could reliably, if not 
efficiently, identify. The research found that some feature 
learning and localization were realized using transformer-based 
techniques along with YOLO. Its operation efficiency, 
however, was questioned, and restricted its use in real-time. The 
future research undertakes the aim of optimization of 
transformer block to offer convenience in shortcomings. 

Li, Yan, and Shi [18] introduced PP-YOLOE, a new version 
of YOLO for object detection, which comes with a multi-scale 
attention mechanism. The adaptive scaling method improves 
feature extraction to better specify fine distinction details in 
every scale of any object. Application of these mechanisms 
significantly enhanced the total accuracy of detection on the 
COCO data set, mainly on small objects, thus are highly 
overlooked in previous traditional YOLO models. This 
network, with the help of attention-based techniques, was rather 
a skilled object localizer in cluttered and occluded scenes, 
where it provided fewer false positives. Latency can limit 
applications in which real-time decision-making is required as 
video surveillance or even autonomous driving. It is also 
suggested in the study that lightweight models of transformer 
should be followed up in order to achieve a good speed-
accuracy trade-off. 

Su et al. [19] came up with a different model of breast mass 
detection as they divided the mass into LOGO and applied the 
strengths of YOLOv5 to it. The algorithm is a two-step process 
and involves both segmentation and detection of breast masses. 
First, the image is segmented and cropped with the help of a 

YOLOv5L6 model on high-resolution mammograms; then, the 
image and the area with breast masses are processed by various 
global and local transformer branches; finally, they are 
combined to yield the final segmentation output. Although 
these are encouraging figures, integration of transformers has 
computational difficulties, and it is not an easy task to 
implement it in a regular hospital system that has low 
computing capabilities. The study revealed that fusing 
transformers with YOLO improves boundary refinement and 
lesion detection but requires excessive data augmentation for 
generalization onto other imaging datasets. 

Shah and Tembhurne [20] developed Defect Transformer, a 
hybrid architecture utilizing transformers, set to leverage 
surface defects in industrial applications, which is based on 
attention-based feature extraction for localization and 
classification of defects, as well as other aspects. The model 
was reported to be more accurate in detecting microscopic 
defects compared to the traditional CNN models. It is however, 
limited in application when it comes to real-time monitoring 
due to extremely high levels of computational complexity. This 
study demonstrated that perceiving the world context can be 
useful in bettering the process of defect classification. Although 
it can have multiple applications, there are major limitations to 
its implementation in real-time applications because of the 
memory and processing requirements of embedded systems. 

Shang et al. [21] presented the Defect-Aware Transformer 
Network, a deep learning framework designed for intelligent 
defect detection in modern industrial applications. The model 
integrated a self-attention mechanism to improve feature 
representation, which helps to detect those defects that were 
considered subtle and fine-grained, as is often missed with 
traditional convolutional models. This was in addition to the 
mix that was the transformer-based feature extraction and the 
conventional DL methodologies, which offered good learning 
of both local and global defect patterns. The experimental tests 
have demonstrated that the model resulted in a significant 
improvement of the trade-off between the accuracy and 
robustness of the classification, in particular, against defects 
with low contrast and textured backgrounds. In spite of these 
strengths, the authors also mentioned that their method is 
computationally expensive and thus not practical in real-time 
use in the automation of industry. 

Current object detection studies highlight hybrid models, 
where YOLO is combined with transformers to make a balance 
between speed and precision. Hybrid methods enhance 
accuracy, but are computationally expensive. Pure transformer-
based models detect long-range dependencies and contextual 
associations, but depend on large datasets and intensive 
resources. Some models combine sequential modules or multi-
scale attention to achieve real-time efficiency and identify fine 
details. Although refinements based on transformers improve 
overall detection performance and localization, they also 
increase latency and computational requirements, which 
reduces their feasibility in real-world applications such as 
surveillance, autonomous systems, and industrial defect 
detection. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

765 | P a g e  
www.ijacsa.thesai.org 

III. PROBLEM STATEMENT 

Real-time object detection forms are one of the core 
components of surveillance systems where accuracy, 
flexibility, and efficiency are of equal significance. YOLO-
based models are appreciated due to their lightweight 
architecture and fast inference that allows them to be deployed 
in edge cases and real-time systems. However, they do not 
properly identify small, distant, or hidden objects that usually 
appear in crowded and dynamic surveillance conditions [16]. 
Transformer-based models, on the other hand, are good at 
capturing global spatial context and enhance the quality of 
detection, but are costly to compute, and thus are restricted in 
their use in resource limited or real-time environments [22]. 
Hybrid architectures that integrate YOLO with transformer-
based architectures have been reached to overcome those 
drawbacks, but they are generally accompanied by additional 
issues such as slow convergence, large memory complexity, 
and scalability constraints in the field environment. These 
drawbacks leave a research gap that hinders the development of 
smart surveillance. This is dealt with in the present work by the 
development of an optimized hybrid framework that trades 
accuracy, contextual learning, and efficiency of inference both 
in edge and cloud-based environments. 

IV. PROPOSED PRISM FRAMEWORK FOR REAL-TIME 

OBJECT DETECTION 

The suggested PRISM framework is modelled as the 
powerful and scalable object-detecting built-in surveillance 
system in real-time that is able to take into account the 
challenges of crowded scenes, changing illumination, partiality, 
and small sizes of items. The architecture is a hybrid between 
the convolutional and transformer-based architecture to trade 
local detail speech and global contextual reasoning. YOLOv8 
is essentially the backbone network, and is effective at 
extracting multi-scale local features giving spatial precision and 
fast inference, which are essential to real time implementation. 
Following the extraction step, a lightweight ViT fine-tunes 
them by capturing long-range dependencies and high-level 
semantic relationships across the scene. The ViT component is 
enhanced with a CA-FFN to perform efficient channel-wise 
recalibration of the features as well as minimizing redundancy 
in the output. In order to fill the gap between local spatial 
information and global context, a new CSASC mechanism is 
added for enabling the proper merging of YOLOv8 features 
with ViT-refined results. The combined detection head 
subsequently executes bounding box regression and 
classification, which is optimized using CIoU-based loss and 
adaptive learning policies. Overall, this hybrid architecture 
provides a high-accuracy real-time system that is still 
computationally lightweight and well-suited for cloud and edge 
deployments in surveillance systems. 

 

Fig. 1. Proposed PRISM framework. 

Fig. 1 shows the process used to detect by the proposed 
system. The preprocessing of input video streams is followed 
by feature extraction by means of the YOLOv8 backbone and a 
lightweight ViT. The extracted features are then used to 
perform object detection and classification after which the 
outputs undergo post-processing to give a higher caliber. 
Evidence is formed to evaluate the quality of detection. The 
framework is then capable of implementing real-time decision-
making or deployment on edge and cloud platforms, which 
guarantees scalability, efficiency, and flexibility in various 
settings of surveillance 

A. Dataset Overview 

The "Surveillance Object Detection Dataset for YOLO" 
[23] from Kaggle aims to create a training and test dataset with 
labeled training images specifically for surveillance real-time 
object detection applications. Approximately, 1,000 annotated 

images were taken based on real-world surveillance footage, 
and they depict vehicles and pedestrians, as well as objects of 
interest, the images are annotated with bounding boxes in the 
YOLO format that can be used with YOLOv8 models. In every 
annotation file, there are the class IDs, and coordinates of the 
bounding box in normalized form (0 to 1) which implies that it 
is resolution-independent. The dataset is most suitable in the 
real-time security applications including smart monitoring, 
anomaly detection, and traffic monitoring whereby strong 
object detection is a must. It has a great foundation with its 
formal annotation format and core object types that offer a 
strong and realistic platform to train YOLOv8 based 
surveillance models with better accuracy and reliability. The 
dataset parameters were given in Table I. 
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TABLE I. DATASET ATTRIBUTES 

Attribute Description Attribute 

Total Images 
~1,000 images (varies based on dataset 

version) 
Total Images 

Image 

Resolution 
Varies; normalized to 640×640 pixels 

Image 

Resolution 

Object 

Classes 

Vehicles, pedestrians, suspicious 

objects 

Object 

Classes 

Annotation 

Format 

YOLO format (TXT files with 

bounding box details) 

Annotation 

Format 

Data Source Surveillance camera feeds Data Source 

B. Dataset Preprocessing 

The input data required for the YOLOv8 model must be 
acquired using preprocessing techniques for higher precision, 
generalization, and stability in real-world applications of 
surveillance. The preprocessing techniques include data 
cleaning, conversion of format, data augmentation, 
normalization, and data splitting. These are all important in 
improving the dataset and the performance of the model. 

1) Data cleaning: Cleaning data involves finding and 

fixing errors, inconsistencies, gaps, or duplicate entries in a 

dataset. It is important for verifying the accuracy, consistency, 

and reliability, all of which are required in order to construct 

effective and trustworthy machine learning models. 

a) Identification and removal of corrupt and damaged 

images: Images that have been corrupted by the files, have an 
encoding problem, or have been incompletely downloaded are 
filtered out of the dataset before training [24]. Corrupt files lead 
to loading errors, higher overhead of computation, or non-batch 

processing, and therefore instability during model training. The 
images in the dataset that cannot be read might cause the model 
to drop out some training examples, and this can also lead to 
inconsistency in the learning of features and disrupt gradient 

changes. 

Corrupt images are those that fail the image integrity 
checks. It ensures that all files are complete, well-formatted, 
and can be accessed. Such images should be deleted, 
particularly for programs, such as DL models like YOLOv8, 
where model performance can degrade due to missing or 
incomplete data. Suppose 𝐼𝑐 refers to the number of corrupt 
images, and 𝐼𝑡 to the total number of images in the dataset. The 
percentage of corrupt image removal can be calculated as in 
Eq. (1): 

𝑃𝑐 = (
𝐼𝑐

𝐼𝑡
) × 100   (1) 

b) Filtering mislabelled or empty annotations: Every 
image in the dataset should ideally have a YOLO annotation file 
containing bounding box coordinates and class labels. If an 
annotation file is missing, empty, or incorrectly labeled, the 
affected images will be adjusted or removed accordingly. 

Mislabelled annotations could lead to incorrect detections, 
misclassifications, and an increase in the model's false positive 

rate, thereby lowering overall detection accuracy. 

c) Identification and elimination of duplicate images: 
Duplicate images lead to bias in the dataset, whereby the model 
overfits to the frequently seen samples. It follows when the 
model picks redundant sonic patterns and reduces its 
generalization ability to unseen test data of the surveillance 

system. Duplicates are mostly generated if datasets were joined, 
for example, in cases of automatic image gathering into 

surveillance systems, or data augmentation errors. 

As in Table II, the removal of these problematic images 
makes way for a better dataset, thereby leading to improved 
model efficacy, lesser false detection, and improved 
generalizations in real surveillance environments. This refined 
dataset is now improved and made apt for preprocessing, 
augmenting, and training for the YOLOv8 model. 

TABLE II. DATA CLEANING OPERATIONS 

Issue Identified 
Issue 

Identified 

Percentage of Dataset 

(%) 

Corrupt/Damaged Images 120 2.40% 

Mislabeled/Empty 

Annotations 
340 6.80% 

Duplicate Images 215 4.30% 

Total Removed 675 13.50% 

2) Format conversion: To ensure conformity, all the images 

are also transformed into JPEG (.jpg) or PNG (.png) file format. 

The bounding box annotations are also YOLO format, 

representing the objects by normalized coordinates in the image 

frame. The normalizing equation of the bounding box is in 

Eq. (2): 

x′ =
𝑥

𝑊
, y ′ =

𝑦

𝐻
, 𝐰 ′ =

𝑤

𝑊
, h′ =

ℎ

𝐻
    (2) 

To make the model more robust and diverse in terms of data, 
augmentation is done. These changes enable the model to train 
to identify items in many different situations of low light, 
motion blur and occlusions. 

3) Data augmentation: In order to increase the dataset 

diversity and robustness of the model, augmentation is applied. 

Such transformations allow the model to learn to recognize 

objects in various conditions ranging from low light, motion 

blur, and occlusions. 

The augmentations are used randomly to prevent 
overfitting, thereby, preserving model generalization in real-
world surveillance environments, as provided in Table III. 

TABLE III. AUGMENTATION TECHNIQUES AND THEIR EFFECTS 

Augmentation 

Technique 
Effect on Model Performance 

Scaling (Zoom in/out) Helps recognize objects at varying distances 

Rotation (±15°) 
Improves robustness to different camera 

angles 

Flipping (Horizontal) 
Enhances ability to detect objects in flipped 

views 

Contrast Adjustment Compensates for poor lighting conditions 

Gaussian Noise Addition Improves robustness to real-world noise 
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4) Normalization: This process of normalizing pixel 

intensities is highly significant as preprocessing and allows 

making the training of the model stable and efficient. The 0 to 

255 raw pixel values in DL typically cause certain wild 

variation in the weight update in back propagation. These 

variations can lead to the unstableness of gradient descent, 

sluggish convergence, and model optimization. In order to 

solve these issues, pixel intensity is modified, and the intensity 

values are scaled within a fixed range between 0 and 1 in order 

to ensure a uniform intensity distribution across all images for 

the model to learn. 

This enables the model to learn features more robustly by 
diminishing variances in brightness and contrast across the 
various images. It also allows for faster convergence that will 
help mitigate the effects of vanishing and exploding gradients. 
Generally, the normalization can be mathematically expressed, 
as in Eq. (3): 

I′ =
I−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑖𝑛
    (3) 

where, the original pixel value is denoted by I, while 
𝐼𝑚𝑖𝑛  and 𝐼𝑚𝑖𝑖𝑛 represent the minimum and maximum pixel 
intensities, typically 0 and 255, respectively. The normalized 
pixel value, I', is scaled within the range [0, 1]. This 
normalization ensures that the input distributions across all 
images are consistent, enabling the model to train more 
effectively. As a result, the model achieves better 
generalization, leading to improved accuracy in real-time object 
detection tasks. 

5) Dataset splitting: As soon as preprocessing is done, the 

dataset is separated into orderly and effective subsets: training, 

validation, and testing for testing model performance in a 

balanced way. A balanced separation of the dataset is very 

crucial to avoid overfitting, optimized the learning of the 

model, and accurate evaluation of unseen data. The above 

dataset is split with reference to the standard splitting into 70% 

of the entire data for training, and allows learning the shapes, 

object features, and positions of the bounding box,20% for 

validation to ensure hyperparameter tuning and performance 

monitoring during the training process. The validation dataset 

helps in ensuring that the model generalizes well while 

protecting against overfitting onto the training dataset.10% set 

aside for testing to give unbiased feedback about the model's 

detection accuracy on data it has not seen. The details of the 

distribution of this dataset into different test sets are shown in 

Table IV. 

TABLE IV. DATASET PARTITIONING 

Dataset Partition Number of Images Percentage (%) 

Training Set 700 70% 

Validation Set 200 20% 

Test Set 100 10% 

C. Feature Extraction 

The YOLOv8 is used in the PRISM framework as the base 
of rapid local feature detection in the frames of surveillance 

video. The processing of every frame is done separately by 
convolutional layers of the YOLOv8 that identify low- and 
mid-level spatial features, including edges, textures, and 
contours of objects. These characteristics are essential in the 
detection of small, remote or partially obscured objects that are 
major problems in real-time video surveillance images. The 
architecture of YOLOv8 produces multi-scale feature maps, 
with multi-resolution detection heads which find objects 
proficiently. This feature enables precise identification of large, 
clearly defined objects, including vehicles, and smaller, less 
obvious objects, such as bicyclists or pedestrians. Formally, the 
extraction at each layer is given as Eq. (4): 

𝐹𝑙 = 𝜎(𝑊𝑙 ∗ 𝐹𝑙−1 + 𝑏𝑙)   (4) 

where, 𝐹𝑙  is feature map at layer 𝑙 , 𝑊𝑙  and 𝑏𝑙  are 
convolutional kernel and bias, ∗ is convolution, and 𝜎 is the 
activation function. This allows YOLOv8 to obtain spatial and 
contextual information in every frame of the video due to the 
hierarchical feature map aggregation. The heads of detection 
make predictions of bounding boxes and class likelihoods at 
scales of different sizes at detection time, where larger objects 
are more sensitive. 

YOLOv8 is a real-time, high-throughput spatial fidelity 
sequentially processing in the case of video datasets. The 
learned feature maps are subsequently fed to the small ViT, 
which learns the long-range dependencies and the intrinsic 
frame contextual relations. Such a mix is what guarantees that 
PRISM can guarantee the good performance of detecting the 
dynamic scenes and can handle the application of support to the 
use of occlusions, motion blur, and varying object sizes without 
reducing its real-time performance. 

D. Global Contextual Refinement 

After the local feature extraction stage, which is the 
YOLOv8, the PRISM framework adopts a lightweight ViT to 
refine the global context, i.e., long-range dependencies across 
the extracted robustly feature maps. Unlike the existing ViTs, 
the proposed architecture presents a novel addition to the 
traditional FFN layer with the CA-FFN that offers a higher 
efficiency level, less redundancy of features, and better edge 
correctness. The modified ViT framework is given in Fig. 2. 

The CA-FFN functions by initially performing a regular 
linear transformation on the input feature 𝑋 ∈ ℝ𝑁×𝐷, where 𝑁 
represents the number of tokens extracted from the YOLOv8 
feature map, and 𝐷 is the dimension for embeddings. Rather 
than a simple MLP, the transformed feature is subject to 
channel-wise attention, selectively amplifying informative 
features while suppressing irrelevant or redundant patterns: 

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
),   𝑋′ = 𝐴𝑉  (5) 

In Eq. (5), 𝑄, 𝐾, 𝑉 are the query, key, and value matrices 
from 𝑋, and 𝑑𝑘 is the scaling factor. The attention output 𝑋′is 
next fed into dynamic feature gating, where a learnable gating 
vector 𝐺 ∈ ℝ𝐷 is used to control the flow of information, given 
in Eq. (6): 

𝑋𝐶𝐴−𝐹𝐹𝑁 = 𝐺⨀ 𝐺𝐸𝐿𝑈(𝑋′𝑊1 + 𝑏1)𝑊2 + 𝑏2    (6) 
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Fig. 2. Global contextual refinement. 

where, 𝑊1 , 𝑊2  and 𝑏1 , 𝑏2  are the trainable weights and 
biases of the FFN, ⨀ represents element-wise multiplication, 
and GELU applies non-linear activation. The gating mechanism 
enables the network to suppress less useful channels and 

concentrate computational resources on important features, 
leading to a significant improvement in efficiency, particularly 
for edge deployment applications with limited resources. 

The PRISM framework, through the inclusion of CA-FFN, 
makes sure that global contextual information is narrowed 
without over-inflating computational complexity. The novelty 
can be easily stated: instead of the traditional ViTs, the FFN is 
substituted by the context-aware, attention-driven, gated 
module, which is, at the same time, more effective in terms of 
feature representation, redundancy, and lightweight 
architecture to fit into real-time video surveillance. The given 
step is essential to make sure that the fused YOLOv8 features 
have contextualized information, increasing the ability to find 
small, obscured, or visually challenging objects without making 
real-time performance worse. 

E. Feature Fusion Mechanism 

The PRISM framework uses representations by taking local 
feature representations provided by YOLOv8 and contextually 
enriched global feature representations provided by the CA-
FFN-enhanced ViT, integrating them with a Feature Fusion 
Mechanism. Conventional skip-connections only concatenate, 
or add, feature maps across layers, which can tend to dilute 
salient information and cannot prioritize important multi-scale 
cues that are necessary to detect small, distant, or occluded 
objects. In order to address this limitation, the proposed 
framework includes a Cross-Scale Attention Skip Connection 
(CSASC), a new selective integration feature; its architecture is 
given in Fig. 3. 

 

Fig. 3. CSASC fusion mechanism. 

The CSASC functions by initially aligning the spatial sizes 
of YOLOv8 feature maps 𝐹𝑌𝑂𝐿𝑂 ∈ ℝ𝐻1×𝑊1×𝐶1 and refiner-ViT 
features 𝐹𝑉𝑖𝑇 ∈ ℝ𝐻2×𝑊2×𝐶2 through bilinear interpolation and 
token reshaping. Then, attention maps for every scale are 
calculated to weigh the significance of various resolution 
features, as given in Eq. (7): 

𝛼 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑜𝑛𝑣1×1(𝐹𝑌𝑂𝐿𝑂)) + 𝐶𝑜𝑛𝑣1×1(𝐹𝑉𝑖𝑇) (7) 

𝐹𝑓𝑢𝑠𝑒𝑑 = 𝛼⨀𝐹𝑌𝑂𝐿𝑂 + (1 − 𝛼)⨀𝐹𝑉𝑖𝑇 (8) 

In Eq. (8), 𝛼 is the attention-weighting tensor derived from 
attention, ⨀  is element-wise multiplication, and 𝐶𝑜𝑛𝑣1×1 is 
used to reduce channel dimensions for computational 
efficiency. This attention-based fusion allows for more 

attention to features with larger contexts, such as small objects, 
far-away vehicles, or partially occluded pedestrians, and less 
attention to regions that do not contain informative features. 

With the application of CSASC, the framework rewards and 
maintains the multi-scale feature representation of both local 
and global contexts effectively. Standard skip connections do 
not consider the significance of features and treat all features 
equally, whereas the attention-based weighting is reactive to the 
features' spatial and semantic role, providing a more purposeful 
enhancement of the object's most significant cues. This 
innovation works directly to have better detection strength, 
especially in difficult surveillance modes where the objects 
have different sizes, have complicated occlusions, and due to 
different environments. Overall, the CSASC is not only a fusion 
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of YOLOv8 and ViT features but a scale-aware and attention-
guided fusion, which is an obvious novelty. It ensures PRISM 
is highly accurate and robust without losing computational 
efficiency, which makes the framework quite suitable to be 
deployed on edge devices or cloud-based real-time video 
surveillance infrastructures. 

F. Detection Head and Optimization 

Once the fused representations of CSASC are sent to the 
detection head, the model should learn to optimize three 
mutually beneficial goals, which include bounding box 
localization, object classification, and confidence scoring. The 
Complete Intersection-over-Union (CIoU) loss is used to 
regress bounding boxes in order to be spatially aligned, because 
it considers the area of overlap, the distance between center, and 
the consistency of the aspect ratio. Given an estimated 
bounding box 𝑏𝑝 and ground truth 𝑏𝑔𝑡, the CIoU loss is given 

as Eq. (9): 

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈(𝑏𝑝,𝑏𝑔𝑡) +
𝜌2(𝑏𝑝

𝑐 ,𝑏𝑔𝑡
𝑐 )

𝑑2 + 𝛼𝑣  (9) 

where, 𝐼𝑜𝑈  is the intersection-over-union, 𝜌  is the 
Euclidean distance between box centers, 𝑑 is the length of the 
enclosing box diagonal, and 𝑣  is penalizing aspect ratio 
differences with weighting factor 𝛼. This not only provides 
maximum overlap but also bounding boxes consistent in scale, 
which is important in detecting small or occluded surveillance 
objects. 

A binary cross-entropy loss is used to complete the 
localization loss (𝐿𝑐𝑙𝑠) and the objectness confidence score loss 
(𝐿𝑐𝑜𝑛𝑓), so as to achieve high category prediction accuracy and 

reduce the false alarms. The combination of these terms as a 
final objective of detection is given in Eq. (10): 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝐶𝐼𝑜𝑈 + 𝜆2𝐿𝑐𝑙𝑠 + 𝜆3𝐿𝑐𝑜𝑛𝑓 (10) 

with empirically tuned weights 𝜆1 ,𝜆2 ,𝜆3  balancing 
regression, classification, and confidence learning. For 
optimization, adaptive learning rate scheduling is included, 
with the learning rate decreased when validation loss stabilizes 
to avoid premature convergence. Additionally, there is also a 
check for unstable training modes: if any gradient spike or 
divergence in loss (𝐿𝑡𝑜𝑡𝑎𝑙 >  𝛿) is detected, the update step is 
skipped, thereby stabilizing convergence. This kind of 
conditional optimization results in robustness in heterogeneous 
surveillance. In general, the combination algorithm is a good 
compromise between detection quality and the stability of the 
training process that can ensure that PRISM behaves in real-
time with few errors even when the conditions are dirty or 
dynamic. Algorithm 1 shows the proposed PRISM framework 
for real-time surveillance object detection. 

Algorithm 1: Proposed PRISM Framework for Real-Time 

Surveillance Object Detection 

Input: Video stream V = {f1, f2, …, fn}, frame size = 640×640, 

batch size = B 

Output: Bounding boxes Bbox, class labels C for detected objects 

1: Initialize YOLOv8 backbone θy, ViT θv, Detection Head θd 

2: Set learning rate α = 1e-4, optimizer = AdamW, loss = CIoU + 

BCE 

3: For each epoch E = 1 to MaxEpoch do  

4:     For each batch b in V do 

5:         Preprocess frames: resize, normalize, augment → Xb  

6:         LocalFeatures ← YOLOv8(Xb; θy) 

7:         If resolution(LocalFeatures) < threshold τ then 

8:             Apply multiscale upsampling  

9:         EndIf 

10:        GlobalFeatures ← ViT(LocalFeatures; θv) 

11:        GlobalFeatures ← CA-FFN(GlobalFeatures)   // Novelty 1 

12:        FusedFeatures ← CSASC(LocalFeatures, GlobalFeatures) 

// Novelty 2 

13:        Predictions ← DetectionHead(FusedFeatures; θd) 

14:        Compute Loss L = LCIoU + Lcls + Lconf 

15:        If L > δ then 

16:            Backpropagate gradients with α (adaptive scheduling) 

17:        Else 

18:            Skip update to avoid unstable training  

19:        EndIf 

20:    EndFor 

21:    Validate model on validation set Vval 

22:    If mAP improves AND FPS ≥ real-time constraint (≥30 FPS) 

then 

23:        Save model weights θ* 

24:    EndIf 

25: EndFor 

26: Evaluate θ* on test set Vtest 

27: Generate metrics: Accuracy, Precision, Recall, F1, mAP, FPS 

28: If deployment target = Edge then 

29:     Apply pruning + quantization for lightweight inference  

30: Return Bbox, C with optimized PRISM model 

Unlike traditional surveillance detection schemes that 
require CNNs to be fast, or transformers to be deep, PRISM 
introduces two important innovations that can be useful. First, 
the CA-FFN of the ViT permits modeling of a global context 
with increased fine-tuning at a low cost of deploying on the 
edge. Second, the CSASC permits preference (attention-
directed) fusion between local and global features which 
significantly improves the small and far objects recognition in 
cluttered scenes. PRISM achieves a high degree of detection 
accuracy, robustness, and inference efficiency by integrating 
these new components into a YOLOv8-ViT hybrid pipeline. 
This two-layer innovation sharply distinguishes the proposed 
system from the current solutions, making it a scalable real-time 
monitoring system. 

V. RESULTS AND DISCUSSION 

This section will discuss in detail the proposed PRISM 
framework that includes the YOLOv8 combined with the 
application of Transformer based refinement. The performance 
is critically measured by some measures. The findings show 
that the model is strong enough and may be applied to all types 
of surveillance and in both easy and challenging objects and at 
efficiency level of real-time, which makes it suitable to the use 
in the intelligent surveillance applications. The parameter 
configuration is given in Table V. 
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TABLE V. SIMULATION PARAMETERS FOR PRISM FRAMEWORK 

Parameter Value/Setting 

Input Resolution 640 × 640 pixels 

Batch Size 32 

Optimizer AdamW (weight decay = 0.0005) 

Learning Rate Initial 0.001 with cosine scheduling  

Training Epochs 100 

Hardware Platform NVIDIA RTX 3090 GPU, 24 GB VRAM 

A. Qualitative Results 

Qualitative visual comparisons were made to show the 
advances that were made by the PRISM framework. Outputs of 
the test dataset of sample detections using PRISM and PRISM 
baseline methods like YOLOv5 and ViDT. PRISM is always 
more accurate in the detection of small, distant, and partially-
occluded objects, with few false positives and higher 
localization. These graphical findings prove the usefulness of 
the hybrid Transformer-YOLOv8 architecture and the 
attention-based CSASC and CA-FFN modules in improving the 
object detection in challenging surveillance conditions. It is 
shown in Fig. 4. 

 

Fig. 4. Object detection images. 

B. Performance Evaluation 

This part provides a systematic assessment of the suggested 
PRISM model with regard to real-time object detection 
surveillance effectiveness. The analysis identifies the strength, 
efficacy, and responsiveness of the model in different settings, 
providing insight into its trustworthiness and feasibility for use 
in smart monitoring platforms. The performance metrics were 
given in Table VI. 

Fig. 5 demonstrates the trends of training and validation loss 
over 20 epochs, showing a decreasing loss pattern that suggests 
effective learning. Initially, both losses are high but 
progressively decline as the model optimizes its parameters. 
The training loss (blue) steadily decreases, while the validation 
loss (dashed line in red) increases or decreases slightly, but it 
follows a similar downward trend. Minor variations in 
validation loss should reflect normal generalization behavior. 
With the convergence of both curves towards zero, the model 
is effectively learning in the absence of overfitting. 

Fig. 6 depicts the accuracy progression of the model over 
20 epochs, comparing training (blue) and validation (red, 
dashed) accuracy. Both curves show a steady increase, 
constructive in learning. Initially, accuracy is very low; as 
training continues, accuracy increases until it reaches a level 
exceedingly close to perfection. Training accuracy goes up and 
down, yet it oscillates slightly enough for the validation 
accuracy always to track along with it; this depicts good 
generalization. The convergence of the two curves near the top 
indicates a well-learned model with little overfitting. 

TABLE VI. EVALUATION METRICS 

Metrics Formula 

Accuracy  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁′
 

F1-Score 
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁′
 

 

Fig. 5. Training vs. Validation loss curve. 

 

Fig. 6. Training vs. Validation accuracy curve. 

 

Fig. 7. Object detection performance. 
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Fig. 7 presents the key performance of the object detection 
model, including Accuracy (96%). Accuracy reflects the 
overall correctness of predictions, while Precision indicates 
how many detected objects were correctly identified. The high 
values across these metrics highlight the model’s effectiveness 
in detecting and classifying objects with a high degree of 
reliability. 

C. Category Wise Detection in Object Orientation  

Table VII presents category-wise detection accuracy, 
showing the proposed model performs best on pedestrians and 
vehicles, while bags and miscellaneous items remain more 
challenging due to limited representation and complex features. 

TABLE VII. DETECTION PERFORMANCE 

Object Category Detection Accuracy (%) 

Pedestrians 91.3 

Vehicles 89.5 

Bicycles 89.5 

Bags 84.7 

Miscellaneous 82.5 

D. Accuracy versus FPS Trade-off in Object Detection 

Models 

Fig. 8 plot indicates the trade-off between frame per      
second and accuracy in object detection models. From the plot, 
the accuracy remains almost constant while decreasing only in 
FPS. Therefore, it can safely be concluded that the model 
performance will not be decreased with a drop-in frame rate. 
Thus, it can be inferred that the proposed method successfully 
balances real-time processing requirements with the need for 
high detection accuracy, making it viable for video surveillance 
applications. 

Fig. 9 shows how the model learned on the training process. 
The mean Average Precision (mAP) is increasing steadily with 
the change in the number of epochs, thus the model is slowly 
learning effective ability to detect and classify object correctly. 
This progressive gain is an indication of effective optimization 
of the PRISM framework, which achieves the high speed of 
feature detection violated with YOLOv8 and the contextual 
augmentation provided with the Transformer. The increase in 
mAP demonstrates that there is effective training overlap and 
verify the statement that the model is well-adjusted to complex 
scenarios of surveillance in different types of objects. 

E. Runtime Analysis and Edge Device Performance  

PRISM framework runtime was tested on various hardware 
platforms to determine its ability to be deployed in real time, 
including edge devices. The mean frames per second (FPS) of 
the various input resolutions and batch sizes on the various 
devices. PRISM can run  atleast 43 FPS on a high-end NVIDIA 
RTX 3090, 640 by 640 resolution with a batch size of 1, which 
proves to be real-time. On a mid-range graphics card (e.g., 
NVIDIA RTX 2060), the model can be sustained at around 28 
FPS, and with an edge device, e.g. NVIDIA Jetson Xavier NX, 
it can achieve around 15 FPS on pruned and quantized models. 
These findings show that PRISM is applicable in real-time 
surveillance systems with low-resource computational power. 

 

Fig. 8. Accuracy vs. FPS trade-off. 

 

Fig. 9. mAP improvement over time. 

 

Fig. 10. FPS vs. Hardware constraints. 

Fig. 10 demonstrates the trade-off between FPS and 
detection accuracy between the various hardware 
configurations and input resolutions. Bars are used to depict 
FPS of each hardware platform and Line plot is used to depict 
the accuracy of detection. It is a hybrid architecture that is 
coupled with lightweight ViT and CA-FFN modules that allow 
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a tradeoff between good detection performance and efficient 
computation, which makes PRISM applicable in both clouds 
and edge-based deployment models. 

F. Global Contextual Refinement Performance (ViT + CA-

FFN) 

Fig. 11 shows the effect of CA-FFN on the ViT. The CA-
FFN model has more precision across all recall levels. CA-FFN 
offers higher precision, particularly for the cluttered scenes. 
This suggests fewer false positives and better robustness in 
identifying smaller or overlapping objects. 

 

Fig. 11. Effect of CA-FFN on PR curve. 

G. Feature Fusion Performance 

Fig. 12 compares accuracy of detection of small or obscured 
categories (bags and miscellaneous objects). The use of CSASC 
also increases accuracy by a margin of 5 per cent compared to 
vanilla skip connections. This illustrates that the attention-
directed feature fusion of scale is actually effective in 
preserving fine-scale features to improve the detection of 
difficult object categories in difficult surveillance real-worlds. 

 

Fig. 12. Effect of CSASC on small object detection. 

H. Ablation Study 

In order to determine the contribution of every new element 
to PRISM, a study of ablation was carried out by selectively 
removing or altering the CA-FFN and CSASC modules. Their 
respective influence on detection accuracy and strength in 
surveillance situations is quantified in this analysis. 

TABLE VIII. COMPARISON TABLE 

Model Variant CA-FFN CSASC 
Accuracy 

(%) 

mAP 

(%) 

Baseline YOLOv8 ✗ ✗ 92.4 91.7 

YOLOv8 + ViT ✓ ✗ 95.1 94.5 

YOLOv8 + ViT + CSASC ✗ ✓ 94.3 93.8 

PRISM (Full) ✓ ✓ 96.0 95.6 

Table VIII indicates that both CA-FFN and CSASC make 
contributions to performance improvements. CA-FFN 
improves global contextual representation, whereas CSASC 
enhances multi-scale fusion, particularly for small, distant, or 
occluded objects, which justifies the importance of each 
novelty within the proposed PRISM framework. 

I. Comparative Evaluation 

The proposed PRISM model was not only tested on the 
main set of Kaggle surveillance (approximately 1,000 images), 
but also tested on Coco Dataset for Multi-label Image 
Classification [25]. PRISM shows good competitive results 
even with the rather small size of the primary dataset, with high 
detection accuracy of various types of objects. The proposed 
design of hybrid YOLOv8-Transformer with CA-FFN and 
CSASC modules works well in capturing local features and 
global contextual information to identify small, distant, and 
partially obscured objects as opposed to the traditional object 
detection models. 

TABLE IX. COMPARATIVE ANALYSIS OF OBJECT DETECTION MODELS 

BASED ON ACCURACY 

Model Accuracy (mAP) 

YOLOv5 [26] 95% 

ViDT [27] 94% 

Proposed PRISM 96% 

Table IX presents a comparative analysis of object detection 
models based on accuracy (mAP). YOLOv5 achieves ~95% 
and ViDT around ~94%, indicating strong but limited 
performance. In contrast, the proposed PRISM significantly 
surpasses both with 96%, demonstrating superior accuracy, 
robustness, and effectiveness for real-time surveillance 
applications. 

TABLE X. PERFORMANCE COMPARISON ON DIFFERENT DATASETS 

Dataset 
Number of 

Images 

Detection Accuracy 

(mAP %) 

Kaggle Surveillance 

Dataset 
~1,000 96.0 

COCO [28] ~123,000 95.2 

PASCAL VOC 2012 [29] ~11,530 94.5 

VisDrone [30] ~10,209 93.8 
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Table X shows the comparative analysis of the suggested 
PRISM framework using several benchmark datasets. The 
findings showed high accuracy of PRISM with a small dataset, 
which is a strong indicator of the efficiency of the hybrid feature 
extraction and fusion mechanisms. Furthermore, the 
comparative analysis based on the standard benchmarks 
demonstrates the model as robust and generalizable, and 
operating on the same level or even higher than current state-
of-the-art detection models, including YOLOv5 and ViDT. In 
this analysis, PRISM is proven to be effective in a variety of 
surveillance scenarios at the same time keeping real-time 
inference performance. 

TABLE XI. STATISTICAL EVALUATION OF PRISM PERFORMANCE 

METRICS 

Metric 
Mean 

(%) 

Std. Dev. 

(±) 

95% Confidence 

Interval 

Accuracy 96.02 ±0.74 [95.15 – 96.89] 

Precision 95.48 ±0.81 [94.52 – 96.44] 

Recall 94.93 ±0.89 [93.89 – 95.97] 

F1-Score 95.20 ±0.77 [94.26 – 96.14] 

mAP (IoU = 0.5) 95.56 ±0.68 [94.72 – 96.40] 

FPS (RTX 3090) 43.1 ±1.2 [41.9 – 44.3] 

Table XI presents the statistical assessment of the PRISM 
framework’s performance across five independent 
experimental runs. The metrics demonstrate the consistency 
and robustness of the model, with narrow standard deviations 
and tight 95% confidence intervals, indicating stable 
performance across varying data splits. The results confirm that 
PRISM maintains high accuracy and detection reliability while 
achieving efficient inference speed, supporting its suitability for 
real-time or near real-time clinical applications. 

J. Discussion 

The proposed PRISM framework illustrates a strong and 
effective method of detecting objects of surveillance in real-
time by applying both local feature extraction and global 
contextual refinement. The use of CA-FFN in the ViT greatly 
minimizes the redundancy of features as well as improves 
feature global context modeling to produce less false positives, 
particularly in cluttered scenes. Similarly, it is the CSASC 
fusion mechanism, which allows to selectively integrate multi-
scale features, that enhances the detection of small, distant, and 
occluded objects, which conventional architectures have 
traditionally not been able to detect. Comparative analysis 
demonstrates that PRISM achieves greater accuracy and mAP 
than other models (e.g., YOLOv5, ViDT) at a similar inference 
speed. PRISM's architecture is also suitable for edge-
deployment and processing on smaller devices, thanks to its 
lightweight design and adaptive-learning approaches. 
Comprehensively, the findings indicate that the inner layer 
novelty redesign and attention-directed fusion of the 
Transformer offer a moderate compromise between the 
detection accuracy and computational scalability, making 
PRISM a viable and scalable system of intelligent surveillance. 

VI. CONCLUSION AND FUTURE WORKS 

The proposed PRISM architecture is able to achieve the 
combination of YOLOv8-based local feature extraction and a 

lightweight ViT with CA-FFN, and the new mechanism of 
CSASC fusion. The comparisons indicate that PRISM is 
superior in detection performance to other existing models like 
YOLOv5 and ViDT, and the model can still run inference in 
real-time. The dual-layer novelty has a strong ability to identify 
small, distant, and occluded objects in complicated surveillance 
conditions. These findings highlight the importance of 
attention-based global context refinement and multi-scale 
feature fusion in enhancing the accuracy of video surveillance 
in real time, proving PRISM to be a useful and high-scaling 
system to implement when a video surveillance system is 
required. Even with the good performance, there are still some 
limitations: 1) detection performance in highly cluttered and 
very low-resolution frames can be further improved, and 
2) further validation is needed to generalize the model to totally 
new surveillance scenarios. 

Future research will involve the use of the PRISM model to 
integrate multi-sensor inputs, such as thermal and RGB 
cameras, to enhance detection in low-light or unfavorable 
conditions. Continuous video streams will be modeled over 
time so as to publish better recognition of occlusions or moving 
objects. Also, the model will be optimized to run on edges (with 
a goal of reaching 30 FPS or higher) on platforms such as 
NVIDIA Jetson Xavier NX, and pruning and quantization will 
be used to reduce the model size to under 100 MB. These 
measurable goals are to guarantee the practical implementation 
of the framework in the different and resource-limited 
surveillance settings. 
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