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Abstract—Draft surveying is an essential procedure in
determining the displacement and loaded cargo weight of bulk
carriers. Currently, the most acceptable method is through
manual visual observation by trained draft surveyors. However,
this process is subjective, error-prone, and unsafe under poor
visibility or during rough sea conditions. This study presents an
automated computer vision-powered UAV draft surveying
system integrating TensorRT Optimized YOLOl1ln object
detection and YOLOIlln-seg image segmentation models
deployed on an NVIDIA Jetson Orin Nano. The system performs
real-time draft estimation by detecting draft marks, segmenting
the waterline, and computing draft values using convergence and
line-fitting algorithms. Comparative evaluation with licensed
human surveyors on 40 paired readings yielded an MAE of
0.1068 m, RMSE of 0.2740 m, and an R of 0.948, demonstrating
human-comparable accuracy. Agreement analysis indicates high
reliability (two-way random effects ICC(2,1) = 0.974) and a small
mean bias (system — manual = +0.0628 m, 95% limits of
agreement: —0.467 m to +0.592 m). Moreover, a paired t-test (t =
1.469, df = 39) found no statistically significant difference
between methods (p = 0.150). The results validate that the
proposed UAV-driven computer vision system can perform
reliable, real-time draft surveying with accuracy comparable to
human experts.

Keywords—Draft survey; UAV; machine learning; computer
vision

I.  INTRODUCTION

Ships play an important role in facilitating the global and
international exchange of goods. In 2023 alone, the global
trade volume of dry bulk shipping was around 5.508 billion
metric tons [1].

To determine the weight of bulk cargo, ship draft surveys
are conducted [2]. A draft is defined to be the vertical distance
between the waterline and the bottom of the ship hull [3]. The
method is based on Archimedes’ principle and is conducted by
observers who visually observe a ship’s six draft marks while
aiming to maintain an observation angle parallel to the water’s
surface to determine the ship’s displacement tonnage, from
which the weight can be calculated. Precision is important in
measuring the draft as a singular centimeter error may
correspond to an 80-ton error valued at around 40,000 USD or
500 USD per ton [1].

The ship draft represents the vertical distance from the
waterline to the keel. Manual observation is traditionally
prone to human error, but it is now evolving through
automation [1, 2]. Draft marks are standardized numerical
indicators positioned vertically along the hull, functioning as

Hinatuan Mining Corporation.

calibrated measurement points, while the draft line or
waterline forms the critical reference boundary where water
meets the hull, from which all measurements originate [3, 4].
Draft points represent strategically positioned locations,
typically at the forward and starboard, port, midship, and aft
sections along the vessel hull, while draft scales refer to the
vertical row of draft marks that together form a measurement
system used to read the draft at a specific point on the vessel

[5].

Manual observation over a time period by draft surveyors
is the current accepted and widely practiced method, yet this is
highly subjective and prone to human errors [1, 3, 5].
Additionally, manual observation is also greatly affected by
other factors including surveyor experience, large waves,
visibility, and tilted or rusted draft characters, among others
[4, 5]. Tt is necessary to consider appropriate weather
conditions during draft surveying to ensure that the vessel is
stable for an accurate reading [6]. Moreover, having multiple
people complete the draft surveying is ideal because it allows
for crosschecking measurements for errors between surveys,
ensuring that all final calculations are ideally accurate [7, 8].

In response to the need for precision in draft surveys and
upholding the occupational safety of surveyors, recent studies
have been conducted to aid in the automation of the draft
reading process. A review from [2] highlighted recent
advancements in automating ship draft surveying, including
image recognition technologies, radar, optical fiber, IR, ship
hull climbing robot, ship draft measuring ruler, sonar, and
pressure sensor detection. Of these advancements, image
recognition performed mostly on par with visual observation,
while sensor-based solutions typically struggle under dynamic
or harsh maritime conditions [2, 9, 10].

Several computer vision studies have presented similar
solutions, utilizing a combination of YOLO object detection
models for draft mark detection and U-Net or Mask R-CNN
for waterline segmentation [11, 12, 13]. Chemyi and
Ivanovskii [11] utilize YOLOVS due to its low compute power
requirement and speed in conjunction with U-Net to divide the
image between “water” and “not water”. Their method
allowed them to achieve a mean Average Precision of 93.9%
and processes video at 30 frames per second (FPS).
Additionally, they state that 1800 sample values from a one
minute 30 FPS video is sufficient. The primary caveat of their
method is the requirement that a video of the measured draft
point must be recorded before processed by their proposed
system.
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A study conducted in China [12] proposed a multitask
learning framework (MTL-VDR) for automated vessel draft
reading, integrating object detection and image segmentation
within a single unified model. In their proposed system, the
first stage utilizes YOLOvS to detect and extract the region of
the hull with draft marks. Then, their multi-task framework
processes the extracted region, performing draft scale
recognition and vessel-water segmentation before calculating
the final draft. Their results show an error of only + 0.074m
while achieving a process time of 0.016s per video frame on a
laptop with AMD Ryzen 7 5800H CPU accelerated by a
NVIDIA GTX 3060 GPU. Though their study shows promise
for draft reading, the approach is limited to single-frame
image analysis and cannot ensure accurate draft estimation
when the water surface fluctuates due to waves or motion.
They address this limitation and recommend temporal
stabilization or multi-frame averaging techniques to improve
reliability in real-world, dynamic maritime environments.

Wang et al. [13] had a similar approach but utilized three
distinct models for their system, namely Mask R-CNN for
segmenting the targeted region with draft marks and the water
regions, U-Net to refine the waterline boundary, and ResNet
for recognition of draft characters. They achieved 93%
accuracy in waterline segmentation, 98.5% accuracy in digit
recognition, and an accuracy within three standard deviations
of manual readings. They have achieved a processing speed of
0.36s per frame using a 32GB RAM PC with NVIDIA GTX
1080Ti GPU by analyzing recorded video footage. Despite the
high accuracy, their system remains constrained by non-real-
time performance and sensitivity to environmental
disturbances. However, they do introduce a perspective
distortion correction formula similar to [1] which greatly
improves upon the quality of their draft estimate.

Based on the discussion of related literature above, the use
of Convolutional Neural Networks (CNN) in the form of
either U-Net, YOLO, or Mask R-CNN is relatively successful
in detecting draft marks and segmenting water from an image.
Despite the promising accuracy achieved by CNN-based
systems, these methods remain confined to post-processed or
static analysis. None, to date, have demonstrated an integrated
real-time approach suitable in guaranteeing stable
measurements for dynamic maritime environments where
waves, reflections, and vessel motion introduce substantial
visual fluctuations [12]. Further, an interesting problem that
has yet to be brought up by previous studies is determining a
way to know when or how to finalize measurement for real-
time analysis. Hence a gap exists in achieving both real-time
draft estimation and automated stability evaluation.

This study addresses these prior limitations by
implementing real-time detection and segmentation through a
deployable UAV system with TensorRT optimized YOLO11n
and YOLOl1In-seg on a Jetson Orin Nano for real-time
analysis in the field. YOLO11ln has improved small object
detection capability and is more computationally efficient
compared to its predecessors [14, 15, 16]. Although Mask R-
CNN and U-Net excel in segmentation accuracy, the need for
real-time analysis means that a balanced approach in speed
and accuracy is required, making YOLOI In-seg suited for the
task [14, 15, 16, 17]. Model optimization with TensorRT was
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implemented as it is crucial in maximizing inference speed,
where various studies have shown significant performance
gains with TensorRT optimization [18, 19, 20]. The Jetson
Orin Nano was chosen to eliminate dependence on cloud
computing as it is powerful enough to handle both inference
and mathematical tasks on its own which is crucial when
operating out in the sea where a stable intemet connection
may not be present [21]. Where this study delineates from
previous studies is the introduction of temporal subsampling
and a cumulative averaging mechanism for continuous
evaluation of sequential draft readings.

Temporal subsampling is a technique where every 1/N
frame is taken for processing [22, 23, 24]. This technique is
useful in conserving computational resources, which is
essential in edge computing, provided that data skipped
between frames is negligible. Recent data in the Philippines
shows that the local wave period can be roughly estimated to
be around 5-6 seconds [25, 26, 27]. Performing a simple
calculation, we can infer that the dominant frequency is 1/5 or
0.2 Hz, and consequently the Nyquist sampling rate is 0.4 Hz.
Subsampling the input stream of 30 FPS at a rate of every
third frame yields a sampling rate of 10 Hz, far higher than the
minimum Nyquist requirement indicating that data resolution
is sufficient. For this study, the minimum time for data
collection of draft estimates will be 1 minute similar to [11],
yielding at least 600 datapoints.

Each subsampled frame then contributes to a cumulative
moving average (CMA). The CMA utilizes all data from the
start of time to the present time point and has a characteristic
of eventually converging into a stable value as more data
points accumulate [28, 29, 30, 31, 32]. This stable value is the
potential draft estimate. To validate stability, convergence
check based on zero-slope fitting and normalized root mean
square error (NRMSE) criteria automatically determines when
a sufficiently stable reading has been achieved [33, 34, 35, 36,
37, 38, 39]. Normalization of the RMSE translates it into a
meaningful percentage value of how much the data fits the
model, where NRMSE < 10% is excellent, NRMSE between
10% and 20% is good, NRMSE between 20% and 30% is fair,
and NRMSE > 30% is poor [35, 36, 37]. In the Philippine
context, draft estimation is precise only up to the thousandth
decimal, hence we set the minimum tolerance for near-zero
slope to be at least 0.0001, and the NRMSE must be 0.1% to
indicate true stability.

In brief, this work seeks to determine whether a field-
deployable UAV-based computer vision system can achieve
draft measurement accuracy comparable to human surveyors
while maintaining operational reliability under real maritime
conditions. It further aims to deliver real-time draft readings
despite the limited computational resources of edge devices by
employing TensorRT-optimized YOLO11ln and YOLOI1l1n-
seg models, combined with lightweight algorithms for
temporal subsampling, CMA, and draft reading stability
checks based on line fitting and NRMSE.

The remainder of the study is organized as follows:
Section II presents the system design, algorithm, and
methodology. Section III discusses results and performance
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evaluation. Finally, Section IV provides a conclusion iterating
key findings and recommendations for future work.

II. METHODOLOGY

In designing an effective real-time draft surveying system,
it needs to achieve real-time performance on edge computing
hardware while also being a field-deployable measurement
platform capable of achieving accuracy matching those of
experienced surveyors even when faced by dynamic maritime
conditions. To fulfill these requirements, the Aerial Draft
Surveyor (ADS) system integrates a UAV-mounted camera
for live video acquisition, an NVIDIA Jetson Orin Nano for
on-site model inference, and a computer vision pipeline that
detects draft marks, segments the waterline, and computes
draft estimates in real time. The following subsections detail
the system architecture, model training and development, draft
computation algorithms, data gathering procedure, and
statistical tests and validation for system evaluation.

A. System Architecture

The system architecture consists of four primary parts: the
drone, the remote control (RC), the Jetson Orin Nano, and the
User Interface (see Fig. 1).

Drone

erver hosted on Jetson Orin Nano

TT for feedhack

Fig. 1. System architecture.

The manually operated drone, a DJI Phantom 4, is capable
of long-range flight in windy seaside conditions and is
equipped with an onboard camera with wireless video
transmission at 1080p, 30 FPS. It is positioned directly in front
of the targeted draft marks at a distance of 3 to 5 meters while
maintaining perpendicular line of sight. The drone transmits
its captured video to the operator's remote controller. The
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remote controller then streams this live video feed it receives
from the drone via an RTMP (Real-Time Messaging Protocol)
stream over a LAN (Local Area Network) generated by a
simple mobile hotspot, which is received by an RTMP server
running on the NVIDIA Jetson Orin Nano. This video stream
is then fed to a program running on the Jetson Orin Nano
responsible for running inference on the video feed,
performing both object detection and image segmentation to
detect ship draft marks and isolating the waterline. It then
calculates the draft value and outputs the result to a user
interface for review and logging. For hardware, a portable
power supply was used to power the device, an LCD was
attached to display the program’s user interface, and
peripherals were utilized for ease of use (see Fig. 2).

System

LCD Jetson Orin Nano

Porluble power supply Keyhoard and Mouse

Fig.2. Basic system hardware components.

B. System Development

Frames from the video stream were subsampled by the
program then processed by two deep learning models:
YOLOI11n and YOLOLI In-seg. A lightweight nano model was
chosen to facilitate real-time inference on the Jetson Orin
Nano. These models were trained using images in labeled
datasets from Roboflow using a 70:20:10 train-validation-
testing split (see Fig. 3 and Fig. 4).
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Fig.3. Detection dataset.
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Fig. 4. Segmentation dataset.
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Augmentations were applied to enhance model
performance in varying conditions. Below is a summary of the
model training parameters applied (Table I).

TABLEI. SUMMARY OF MODEL TRAINING PARAMETERS

Image | Augmentation | Epoch

Model s s Applied s

Size Classes

Rotation
=15°)
Shear (£15° H, 0. 1
£15°V) 250 512x51 45
Blur (up to 2 3
1px)

Noise (up to
1.05% px)

YOLOl1n 24457

Hue (£15°)
Saturation
(#25%)
Brightness
*F15%) Water,
Exposure 50¢ gl 231 backgroun
(#10%) d

Blur (up to
2.5px)

Noise (up to
0.65% px)

YOLOI11n
-seg

13667

* Model set to train for 250 epochs but stopped at 50 due to no improvement.
Model training utilized labeled datasets obtained from
Roboflow Universe, which contained publicly available ship
hull images with annotated draft marks and waterlines. For
training draft mark detection, dataset from user shuichil
which featured pictures of draft marks from various ships in
different perspectives was used. To train the segmentation
model, dataset from user shuixianl which featured annotated
segmented waterline was used.

These datasets were forked and augmentations were added
to enhance model robustness in real-world conditions, and
consequently, increase generalization. Augmentations for
rotation (£15°) and shear (£15° H, +£15° V) were applied to
enhance model resistance against varying camera angles.
Image noise was added to allow the model to correctly
identify regions despite water splashes. Lastly, blur was
augmented into both datasets to accommodate for the drone’s
motion which may induce blur. Saturation, brightness, and
exposure were specifically added to the segmentation model to
help it correctly segment the waterline against small variations
in water color and brightness distortion from lighting.

Both models were trained on Google Colab’s A100 High-
RAM GPU using the PyTorch implementation of YOLO11
under the default training hyperparameters provided by the
Ultralytics framework for 250 epochs. The YOLO11n model
was trained for numerical detection of the ship’s draft marks
while the YOLOIIn-seg model was trained for waterline
segmentation. Models were then converted into TensorRT
.engine files locally on the Jetson Orin Nano to optimize
performance.
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C. Draft Calculation Algorithm

Algorithm 1 is a pseudocode representing the live-stream
draft measurement pipeline, showing a simplified and high-
level overview of the functions for instantaneous draft analysis
as well as determining the final draft. The 30 FPS stream is
sent as an input to the primary loop function MeasureDraft
(line 10), where it subsamples the video stream by sending
every third detected frame as an input to the
InstantaneousDraft function (line 1). The subsampled frame
then passes through both object detection and segmentation
(line 2), from which the bottom-center points of the bounding
boxes that form the draft line are obtained (lines 3-4) to fit a
line and predict the position of the next point (lines 5-6). The
draft for this frame is then determined (line 7). Fig. 5 shows a
visual representation of the InstantaneousDraft function.

Detection boxes

Input Frame

Final processed image

Segmentation mask/polygon

Fig.5. Per frame instantaneous draft reading process.

In calculating the final draft, a cumulative average is
applied continuously (line 18) for each draft. When the
number of samples have reached the threshold, a check for
convergence is conducted, outputting the mean as the final
draft if the slope and NRMSE fall below specified thresholds
(lines 19-20). Fig. 6 provides an overview of the algorithm’s
processes through a visual flowchart.

< Start >’

Receive live video \_
- feed
Calculat t
NO Live Video / Filter objects, Interpolate, draw “:{:;:x:’"
Frames combine image line, get intersection 5
cumulative draft

S—

" 1s3rd
frame? ®
1YES
|
s tati d
5 egnl;:?m;:: an Extracted Mask save plot data,
Objects Polygon draft estimate
¥ _———
Objects Classify Objects ;
AND Mask (Marks), get ID and Get waterline mask ( End )
detected? xyxy \ 4

®

Fig. 6. Algorithm flowchart.
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Algorithm 1: Draft Calculation

INPUT: live video frames S
OUTPUT: streaming currentDraft, mean when converged

FUNCTION InstantaneousDraft(frame):

draft marks, water_mask € RunInference(frame)

bottom_centers <
ExtractBboxBotCenters(draft marks)

draft line €< FitLine (bottom_centers)
predicted_point € InterpolateNext(draft_line)

intersect € Getlntersection(draft_line, water _mask)

draft € CalculateDraft(draft line, predicted point,
intersect)

RETURN draft

END FUNCTION

FUNCTION MeasureDraft(S)

frame_cnt € 0

count € 0, mean € 0, window € []

WHILE streaming IS available:
frame_cnt < frame_cnt + 1
IF frame _cnt MOD 3 ==0 THEN CONTINUE
current_draft € InstantaneousDraft(S)

count € count + 1

mean €
current_draft)

CumulativeAvg(mean, count,

APPEND mean to window

IF count > 600:

POP mean from window

IF Converged(window) THEN RETURN
mean

’ END IF
‘ END WHILE

END FUNCTION

The following are the key routines in this algorithm:

RunlInference(frame): returns draft mark bounding
boxes and waterline mask.
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e InterpolateNext(draft line): predicts the point position
of the next draft mark located below the waterline then
connects all points.

o Getlntersection(draft line,
coordinates where the
segmented water mask.

water_mask): finds the
draft line intersects with

o CalculateDraft(draft line, predicted point, intersect):
calculates the draft in meters by translating pixel
distances (1).

e CumulativeAvg(mean, count, current draft): uses
recursive averaging to calculate a running mean of all
draft measurements (4).

e Converged(window): checks all cumulative means to
determine if values have stabilized (6, 7).

To calculate the draft value from the images, the Eq. (1)
below from [1] is used:

v =v=s (%) O

where, v, is the estimated draft at p,(m); v; is the known
draft at p, (m); d, and d; are pixel distances (px); r is the
perspective-correction ratio (unitless); and s is the true
spacing between adjacent draft marks (m) which is 02m.
Values for d, and d, are obtained through simply calculating
the distance between points using Eq. (2):

do = lpo —p1ll 5 d1 = llp1 — P2l 5 d2 = llp2 — 3]l (2)

e To account for instances, where the drone is not
perfectly aligned with the ship’s hull, the distances
obtained from the two draft marks d, and d, above the
draft mark nearest the waterline are used as a reference
(see Fig. 7). From here the perspective-correction ratio
is obtained through Eq. (3).

_dl 129

=32 133 09699

35
Vo = B4 = o —isay 09

vy = 8.3457 ~ 8.35

Fig. 7. System calculation to estimate draft mark value.
d
r = hut § (3)
d;

Welford’s algorithm, Eq. (4), is used in calculating for the
CMA of draft readings as it is computationally inexpensive,
expressing the running average in a recursive form requiring
only the previous average and the new value to obtain the new
average [32].

%o = (52) s + (5) 20 )
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In Eq. (4), n comresponds to the current point in time.
Then, X, is the current cumulative average, X,_; is the
previous cumulative average, and x,, is the current value. In
this case, x,, represents the instantaneous draft reading at the
current point in time, X,,_, is the old cumulative draft estimate
before the current reading, and x,, is the new cumulative draft
estimate.

Linear regression, Eq. (5), is performed on all datapoints to
estimate the slope and generate a fitted line. The goal is to
determine whether the cumulative draft estimate is stable and
may be finalized.

y=PB1x+Bo )

Here, ¥ is the predicted value from the fitted line, f; is the
slope, x is the time step or index, and S, is the y-intercept.
The slope is then identified by calculating 8, as shown in
Eq. (6), where N is the total number of points in the window,
x; is the frame index, X is the average frame index, y; is the
CMA atx;, and y is the average CMA within the window N.

B = w (6)

TN Ge-®)?

Though a near-zero slope hints at stability, NRMSE is also
obtained through Eq. (7) to determine if the actual values
around this fitted line are also stable, as simply identifying the
slope does not reveal information on how much the data points
are still varying.

JA/M Z Gri=9)?
NRMSE = S (7)

Therefore, convergence of the draft estimate obtained from
CMA is determined to be stable by both checking if slope and
NRMSE fall under the required criterion, specified to be f; <
0.0001 and NRMSE < 0.1%.

D. Data Gathering

Data was gathered by flying the drone towards a bulk
cargo vessel. The operator will control the drone to record
video from each of the ship's six draft locations, waiting for
the system to output its final draft reading before moving to
the next draft location. When all of the six draft locations are
finished, the drone is retrieved. Whenever the ship is loaded
with new cargo, the procedure is repeated. This is to ensure
that the ship's draft would vary every time a measurement is
taken. An overview of the process is shown in Fig. 8.

Establish drono-dovice RTMP stream Fly drone towards ship Control drone to capture current draft
connection scalo

’ s
Adjust drone to capture draft scale

Process frame and calculate draft Transmission of raw frame to device

Fig. 8. Data gathering procedure.
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E. Testing and Evaluation

To evaluate the system's performance, a team of licensed
surveyors were also sent to the bulk cargo vessel to perform
manual reading of each of the six draft marks. The system's
results are then compared against the surveyor's readings to
quantify the system’s performance.

F. Statistical Analysis

To rigorously evaluate the agreement and accuracy of the
automated draft survey system against traditional human
measurements, four complementary statistical methods were
applied. Firstly the standard error metrics, which include mean
squared error (MSE), root mean squared error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2),
are obtained. These determine how the algorithm's predictions
track the ground truth observation of human surveyors
alongside how much of the variability in ground truth is
explained by the model. A paired t-test is also utilized to
identify the existence of systematic biases and determine
whether the mean difference between the two depart
significantly from zero.

Next, Bland-Altman analysis is used to visualize and
quantify agreement across the full measurement range. This
reveals whether the algorithm’s errors remain acceptably
small and consistent at both low and high drafts, and identified
any outliers [40]. In addition, the two-way random-effects,
absolute-agreement  intraclass  correlation  coefficient
(ICC(2,1)) was also calculated. This partitions total variance
into between-subject and error components, revealing whether
the two are effectively interchangeable or not [41].

III. RESULTS AND DISCUSSION

This section features an evaluation of the live-stream draft
measurement system, beginning with the accuracy and
statistical reliability of the final draft estimates before
proceeding to the performance of the underlying deep-leaming
models. First, the automated draft readings will be compared
against manual surveyor measurements using the methods
outlined under the statistical analysis section. Next,
object-detection and segmentation metrics achieved by the
YOLOI11n and YOLOI11n-seg networks, including precision,
recall, mAP, IoU, and real-time inference and computation
speed will be presented. Finally, these results are interpreted
in the context of operational requirements for at-sea draft
monitoring, discussing both the system’s real-time capability
and its potential to augment traditional surveying methods.

A. System and Manual Draft Reading

To evaluate the accuracy and reliability of the Aerial Draft
Surveyor (ADS) system in comparison with traditional manual
measurements, a total of forty (40) readings were obtained
(see Table II). Each reading was simultaneously recorded by a
licensed surveyor through manual observation and by the ADS
through automated image processing. Both measurements
were performed under similar environmental conditions to
ensure fairness of comparison.

The quantitative comparison between manual and system-
obtained readings is summarized in Table III. Statistical
metrics including Mean Square Error (MSE), Root Mean
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Square Error (RMSE), Mean Absolute FError (MAE), and
Coefficient of Determination (R?) were computed to evaluate
accuracy, while a paired t-test (at 0 =0.05, df=39) assessed
whether systematic bias existed between the two measurement
methods.

TABLEII. SYSTEM AND MANUAL DRAFT READING
Index Measured Draft Index Measured Draft
System(m) | Manual(m) System(m) | Manual(m)

1 44 4.6 21 8.37 8.3
2 6.61 6.65 22 8.38 8.31
3 6.27 6.38 23 5.6 5.66
4 8.17 8.05 24 7.17 7.18
5 8.1 8.05 25 6.55 6.48
6 5.29 5.29 26 8.37 8.3
7 6.07 5.05° 27 8.36 831
8 7.17 7.13 28 5.58 5.66
9 6.3 6.26 29 7.16 7.18
10 8.37 8.37 30 8.38 83
11 8.32 8.37 31 8.37 8.31
12 53 5.29 32 5.56 5.66
13 6.39 5.05° 33 7.19 7.18
14 7.14 7.13 34 8.37 83
15 6.25 6.26 35 8.41 831
16 8.38 8.37 36 5.63 5.62
17 8.36 8.37 37 7.17 7.17
18 5.57 5.66 38 6.37 6.47
19 72 7.18 39 8.32 8.31
20 6.54 6.48 40 83 83

P Rust had turned mark into a color similar to the ship’s hull resulting in faulty reading.

TABLE III. SUMMARY OF EVALUATION METRICS
MSE RMSE MAE R? t-value
0.0751 0.2740 0.1068 0.9506 147

The linear relationship between the system’s readings and
those obtained manually is illustrated in Fig. 9. Each point
corresponds to a single measurement pair, with the dashed line
representing perfect 1:1 agreement and the solid line showing
the regression fit. As shown, the system’s predictions cluster
tightly along the 1:1 line, indicating excellent correspondence
with manual observations.

The obtained R? value of 0.9506 indicates a strong linear
agreement between automated and manual readings, meaning
that 95% of the variance in human-observed measurements
can be explained by the system’s estimates. The t-test result (t
=147 <2.02, p > 0.05) further supports that no statistically
significant difference exists between system and manual
observations, thereby validating the reliability for operational
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use. However, the average deviation is £0.1068m, which is
slightly larger than those from previous studies [12, 13].

System vs Manual Draft Readings Comparison

Data Points
---- 11 Line
—— Regression Line
80

o e ~
(=] [3,] (=]

System Draft Reading (m)

o
o

50

R? =0 9506
y MAE = 0.1068m

45 RMSE = 0.2740m

5 ] 7 8
Manual Draft Reading (m)

Fig.9. Scatter plot comparing manual and system readings.

The major discrepancy observed is during cases where
corrosion from rust led the system to misclassify the target
draft mark resulting in a faulty reading. Nonetheless, the
overall error remained small, and the algorithm proved
capable of converging towards a reasonable stable draft
estimate through the cumulative averaging and convergence
criteria described in Section IIC.

To examine the potential effect of such outliers, an
additional analysis was conducted by excluding measurements
affected by severe hull corrosion. Under these idealized
conditions, the mean absolute error (MAE) improved to
+0.0505 m, which falls within the same accuracy range
reported by [12] and [13]. This indicates that under optimal
imaging conditions, the system’s performance approaches that
of state-of-the-art laboratory-based methods.

B. Bland-Altman Analysis

TABLEIV. BLAND-ALTMAN SUMMARY
Parameter Value
Mean Difference (Bias) +0.063
Standard Deviation 0.269
Lower Limit of Agreement (LoA) -0.467
Upper Limit of Agreement (LoA) +0.592
% of Points Within LoA 95%

The mean difference (bias) between the manual and
machine readings was +0.063, suggesting a slight tendency for
the machine to read marginally higher than the manual
method. The 95% limits of agreement ranged from —0.592 to
+0467. Approximately 95% of the paired measurements fell
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within these limits, with no clear pattern of increasing
disagreement for higher or lower draft marks (see Fig. 10 and
Table IV).

[Ts]
=

-05

Difference (Manual = Machine)

-1.0

T T T T
5 6 7 8

Mean of Machine & Manual

Fig. 10. Bland-Altman Plot of machine vs. Human surveyor readings.

The two major outliers were attributed to the presence of
rust which heavily impaired the detection model’s capabilities
in discerning the correct draft mark.

C. Intraclass Correlation Coefficient [ICC (2,1)]

The agreement between the automated (machine) and
manual draft readings was assessed using a two-way random-
effects absolute-agreement single-measure ICC (ICC(2,1)). As
shown in Table V, the ICC was 0.974 (95 % CI: 0.951-0.986;
F(39, 389) = 78.0; p < 0.001), indicating reliability and
consistency between the two methods.
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agreement remains very high. Furthermore, the high F-ratio (F
= 780, p < 0.001) confirms that between-measurement
variability far exceeds residual error variance, suggesting the
proposed system captures the same underlying measurement
signal as human surveyors.

D. Model Performance

TABLE VI. MODEL TRAINING VALIDATION RESULTS
Metric
Model Precision Recall mAP IoU Infﬁerence
time
YOLOlIn 99.82% | 99.80% | 99.49% | — 30ms
YOLOLlIn-seg | 98120, | 97.74% | 99.06% | 27287 | 20ms

TABLE V. INTRACLASS CORRELATION COEFFICIENT RESULTS
Statistic Value

Number of subjects 40
Number of raters/methods 2
ICC value 0.974
95% Confidence Interval (CI) 0.951-0.986
F Statistic (df1, df2) 78.0 (39, 38.9)
p-value <0.001

According to the benchmarks proposed by [41] ICC values
above 0.90 indicate excellent reliability. This suggests that
nearly all the observed variance in draft measurements is
attributable to genuine differences in the ship’s draft rather
than measurement error between the two methods. In practical
terms, the system’s readings are interchangeable with human
observations under typical survey conditions.

The narrow confidence interval (0.951-0.986) reinforces
the precision and stability of the reliability estimate, implying
that even with sampling uncertainty, the true level of

As seen in Table VI above, both the detection and
segmentation networks achieved near real-time speeds with
exceptionally high accuracy. The YOLO11n detector reached
99.82% precision, 99.81% recall and a mAP@0.5 of 99.49%,
processing each frame in about ~30 ms. Its companion model,
YOLOI In-seg, scored a mAP@0.5 of 99.06%, an IoU of
97.28%, and maintained over 97% recall (98.12 % precision)
on full-scene masks, with an inference time of around ~20 ms
per frame. Both models exhibit reliable isolation of their
targets in varying hull conditions, provided excessive rusting
does not distort the number for the detection model.

Speed and timing performance were evaluated on the
Jetson Orin Nano by processing a 10-second video clip
containing visible draft marks. The average inference time for
each model and computation times were recorded (see
Fig. 11). On average the complete pipeline yielded a latency
of approximately 10ms per frame, corresponding to an
effective throughput of 10 FPS.

12 1 w )

Fig. 11. Average system time for detection, segmentation, and calculation.

Compared to the systems proposed by [11], [12], and [13],
the process times of the ADS utilizing an edge computing
device lies in the middle, as seen in Table VIL

TABLE VII. COMPARISON OF COMPUTE TIMES BETWEEN STUDIES
Study Device Total time
Chernyi & Ivanovskii[11] N/A 33 ms*
Zhangetal [12] NVIDIA GTX 3060 16 ms
Wangetal. [13] NVIDIA GTX 1080Ti 360 ms
ADS NVIDIA Jetson Orin Nano 101 ms

% Value inferred from stated performance at 30 FPS, but no compute time was stated in the study.
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Due to hardware constraints, the ADS system does not
show the fastest processing times. However, previous studies
had only focused on processing recorded videos in calm and
stable conditions, whereas the ADS system was able to
demonstrate modest performance in real-time draft reading in
areal-world environment.

E. Discussion

The error-metric analysis revealed excellent point-wise
performance  between the automated and manual
measurements (MSE = 0.0751, RMSE = 0.2740 m, MAE =
0.1068 m, R? = 0.9506). In practical terms, the algorithm’s
draft estimates deviate from human readings by about 0.11 m
on average, while capturing more than 95 % of the variation
observed by human surveyors. The MAE being larger than
those of [12] and [13] are attributed to the two faulty readings
caused by hull corrosion, obscuring the target draft mark. The
effect of these outliers were analyzed, and when excluded to
simulate idealized conditions, dropped the average deviation
or MAE to £0.0505, now within the accuracy ranges from [12]
and [13]. The paired t-test (t= 147, p > 0.05) confirmed that
the difference between the two methods is statistically
insignificant, indicating the absence of systematic bias and
validating the reliability of the automated approach for
operational use.

Bland—Altman analysis provided further evidence of
strong agreement, with a small positive bias of +0.063 m and
95 % limits of agreement between —0.467 m and +0.592 m.
Ninety-five per cent of all paired measurements lay within
these limits, demonstrating that deviations are both limited
and evenly distributed across the measurement range. Again,
the few outliers were traced to localized corrosion which
temporarily disrupted the detection model.

The intraclass correlation coefficient ICC(2,1) of 0.974 (95
% CI: 0.951-0.986; F(39, 38.9) = 78.0; p < 0.001) confirms
excellent absolute agreement between manual and automated
readings. According to [41], ICC values > 0.90 reflect
outstanding reliability. This finding implies that nearly all
variance arises from true physical changes in draft rather than
measurement noise, meaning that the automated readings are
interchangeable with those of human surveyors. The narrow
confidence interval further confirms the stability of this
reliability estimate. Taken together, the ICC, Bland-Altman,
and regression analyses establish a consistent pattern of
agreement, affirming the robustness of the system.

Model-level evaluation corroborates the system-level
findings. The YOLOIlln detector and YOLOIlln-seg
segmentation network achieved precision and recall exceeding
97 %, with mean average precision (mAP@0.5) values above
99 %. Despite running on an edge device, inference times
averaged 30 ms and 20 ms per frame, respectively, yielding a
full-pipeline latency of ~101 ms (~10 FPS). While this is
slower than the 16 ms reported by [12] on an RTX 3060 GPU,
it surpasses the 360 ms runtime of [13] and remains within
real-time operational limits for live draft monitoring. The
performance difference primarily reflects the hardware class,
and the ADS achieves comparable accuracy in the field while
maintaining full onboard processing capability without cloud
dependence.
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IV. CONCLUSION

This study presented the design, development,
implementation, and validation of the Aerial Draft Surveyor
(ADS), a UAV-based computer vision system that automates
ship draft measurement through YOLOI 1n object detection
and YOLOllIn-seg waterline segmentation, optimized for
real-time edge inference on an NVIDIA Jetson Orin Nano
through TensorRT. The system addressed key limitations
present in previous studies, particularly by implementing and
validating a real-time approach to draft-reading in the field. It
introduces temporal subsampling to reduce computational load
in real-time processing, CMA to ascertain a draft estimate, and
a convergence check to determine when to finalize the draft
estimate through stability checks with zero-slope fitting and
NRMSE.

Results demonstrated excellent agreement with manual
surveyor readings, achieving an MAE of 0.1068 m, RMSE of
0.2740 m, and R? = 0.9506, with no statistically significant
bias (t = 1.47, p > 0.05). Bland-Altman analysis showed 95 %
of paired readings within £0.6 m limits of agreement, while
the ICC(2,1) = 0974 (95 % CIL 0951-0.986) confirmed
reliability and consistency with human observations.
Moreover, TensorRT optimization allowed for efficient
inference on low-power edge hardware. Alongside lightweight
algorithms, it allowed for a throughput of ~10 FPS
representing a significant step toward practical, autonomous
draft surveying.

Yet, similar to its predecessors, the system remains
sensitive to corrosion and occluded draft marks, which
degrade detection accuracy or completely mislead the system
to an erroneous reading. Additionally, there is still much room
for improvement to further decrease latency from processing
to prevent frame skipping and obtain as much information as
possible from the live video feed. Another issue is the
dependence on human readings as ground truth as there is no
means to determine the correctness of manual observation.
Lastly, addressing adverse weather conditions in future studies
may significantly improve the dependability of similar
systems.

This study contributes to the field by: 1) introducing a real-
time, UAV-integrated measurement framework; 2) combining
temporal subsampling with convergence-based stability
evaluation for automated draft finalization; 3) demonstrating
TensorRT-accelerated YOLOlIn and YOLOlln-seg
performance on embedded systems; and 4) validating the
system through comparative field trials with licensed
surveyors. Collectively, these contributions bridge the gap
between laboratory-based automation studies and operational,
deployable maritime systems, addressing both research and
practical needs.

In summary, this work confirms the feasibility of real-
time, edge-deployed computer vision for ship draft surveying.
The system shows promise as being a supplementary tool for
real-time aid to support and validate manual draft surveying.
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