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Abstract—Draft surveying is an essential procedure in 

determining the displacement and loaded cargo weight of bulk 

carriers. Currently, the most acceptable method is through 

manual visual observation by trained draft surveyors. However, 

this process is subjective, error-prone, and unsafe under poor 

visibility or during rough sea conditions. This study presents an 

automated computer vision-powered UAV draft surveying 

system integrating TensorRT Optimized YOLO11n object 

detection and YOLO11n-seg image segmentation models 

deployed on an NVIDIA Jetson Orin Nano. The system performs 

real-time draft estimation by detecting draft marks, segmenting 

the waterline, and computing draft values using convergence and 

line-fitting algorithms. Comparative evaluation with licensed 

human surveyors on 40 paired readings yielded an MAE of 

0.1068 m, RMSE of 0.2740 m, and an R² of 0.948, demonstrating 

human-comparable accuracy. Agreement analysis indicates high 

reliability (two-way random effects ICC(2,1) = 0.974) and a small 

mean bias (system − manual = +0.0628 m, 95% limits of 

agreement: −0.467 m to +0.592 m). Moreover, a paired t-test (t = 

1.469, df = 39) found no statistically significant difference 

between methods (p ≈ 0.150). The results validate that the 

proposed UAV-driven computer vision system can perform 

reliable, real-time draft surveying with accuracy comparable to 

human experts. 
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I. INTRODUCTION 

Ships play an important role in facilitating the global and 
international exchange of goods. In 2023 alone, the global 
trade volume of dry bulk shipping was around 5.508 billion 
metric tons [1]. 

To determine the weight of bulk cargo, ship draft surveys 
are conducted [2]. A draft is defined to be the vertical distance 
between the waterline and the bottom of the ship hull [3]. The 
method is based on Archimedes’ principle and is conducted by 
observers who visually observe a ship’s six draft marks while 
aiming to maintain an observation angle parallel to the water’s 
surface to determine the ship’s displacement tonnage, from 
which the weight can be calculated. Precision is important in 
measuring the draft as a singular centimeter error may 
correspond to an 80-ton error valued at around 40,000 USD or 
500 USD per ton [1]. 

The ship draft represents the vertical distance from the 
waterline to the keel. Manual observation is traditionally 
prone to human error, but it is now evolving through 
automation [1, 2]. Draft marks are standardized numerical 
indicators positioned vertically along the hull, functioning as 

calibrated measurement points, while the draft line or 
waterline forms the critical reference boundary where water 
meets the hull, from which all measurements originate [3, 4]. 
Draft points represent strategically positioned locations, 
typically at the forward and starboard, port, midship, and aft 
sections along the vessel hull, while draft scales refer to the 
vertical row of draft marks that together form a measurement 
system used to read the draft at a specific point on the vessel 
[5]. 

Manual observation over a time period by draft surveyors 
is the current accepted and widely practiced method, yet this is 
highly subjective and prone to human errors [1, 3, 5]. 
Additionally, manual observation is also greatly affected by 
other factors including surveyor experience, large waves, 
visibility, and tilted or rusted draft characters, among others 
[4, 5]. It is necessary to consider appropriate weather 
conditions during draft surveying to ensure that the vessel is 
stable for an accurate reading [6]. Moreover, having multiple 
people complete the draft surveying is ideal because it allows 
for crosschecking measurements for errors between surveys, 
ensuring that all final calculations are ideally accurate [7, 8]. 

In response to the need for precision in draft surveys and 
upholding the occupational safety of surveyors, recent studies 
have been conducted to aid in the automation of the draft 
reading process. A review from [2] highlighted recent 
advancements in automating ship draft surveying, including 
image recognition technologies, radar, optical fiber, IR, ship 
hull climbing robot, ship draft measuring ruler, sonar, and 
pressure sensor detection. Of these advancements, image 
recognition performed mostly on par with visual observation, 
while sensor-based solutions typically struggle under dynamic 
or harsh maritime conditions [2, 9, 10]. 

Several computer vision studies have presented similar 
solutions, utilizing a combination of YOLO object detection 
models for draft mark detection and U-Net or Mask R-CNN 
for waterline segmentation [11, 12, 13]. Chernyi and 
Ivanovskii [11] utilize YOLOv5 due to its low compute power 
requirement and speed in conjunction with U-Net to divide the 
image between “water” and “not water”. Their method 
allowed them to achieve a mean Average Precision of 93.9% 
and processes video at 30 frames per second (FPS). 
Additionally, they state that 1800 sample values from a one 
minute 30 FPS video is sufficient. The primary caveat of their 
method is the requirement that a video of the measured draft 
point must be recorded before processed by their proposed 
system. 
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A study conducted in China [12] proposed a multitask 
learning framework (MTL-VDR) for automated vessel draft 
reading, integrating object detection and image segmentation 
within a single unified model. In their proposed system, the 
first stage utilizes YOLOv8 to detect and extract the region of 
the hull with draft marks. Then, their multi-task framework 
processes the extracted region, performing draft scale 
recognition and vessel-water segmentation before calculating 
the final draft. Their results show an error of only ± 0.074m 
while achieving a process time of 0.016s per video frame on a 
laptop with AMD Ryzen 7 5800H CPU accelerated by a 
NVIDIA GTX 3060 GPU. Though their study shows promise 
for draft reading, the approach is limited to single-frame 
image analysis and cannot ensure accurate draft estimation 
when the water surface fluctuates due to waves or motion. 
They address this limitation and recommend temporal 
stabilization or multi-frame averaging techniques to improve 
reliability in real-world, dynamic maritime environments. 

Wang et al. [13] had a similar approach but utilized three 
distinct models for their system, namely Mask R-CNN for 
segmenting the targeted region with draft marks and the water 
regions, U-Net to refine the waterline boundary, and ResNet 
for recognition of draft characters. They achieved 93% 
accuracy in waterline segmentation, 98.5% accuracy in digit 
recognition, and an accuracy within three standard deviations 
of manual readings. They have achieved a processing speed of 
0.36s per frame using a 32GB RAM PC with NVIDIA GTX 
1080Ti GPU by analyzing recorded video footage. Despite the 
high accuracy, their system remains constrained by non-real-
time performance and sensitivity to environmental 
disturbances. However, they do introduce a perspective 
distortion correction formula similar to [1] which greatly 
improves upon the quality of their draft estimate. 

Based on the discussion of related literature above, the use 
of Convolutional Neural Networks (CNN) in the form of 
either U-Net, YOLO, or Mask R-CNN is relatively successful 
in detecting draft marks and segmenting water from an image. 
Despite the promising accuracy achieved by CNN-based 
systems, these methods remain confined to post-processed or 
static analysis. None, to date, have demonstrated an integrated 
real-time approach suitable in guaranteeing stable 
measurements for dynamic maritime environments where 
waves, reflections, and vessel motion introduce substantial 
visual fluctuations [12]. Further, an interesting problem that 
has yet to be brought up by previous studies is determining a 
way to know when or how to finalize measurement for real-
time analysis. Hence a gap exists in achieving both real-time 
draft estimation and automated stability evaluation. 

This study addresses these prior limitations by 
implementing real-time detection and segmentation through a 
deployable UAV system with TensorRT optimized YOLO11n 
and YOLO11n-seg on a Jetson Orin Nano for real-time 
analysis in the field. YOLO11n has improved small object 
detection capability and is more computationally efficient 
compared to its predecessors [14, 15, 16]. Although Mask R-
CNN and U-Net excel in segmentation accuracy, the need for 
real-time analysis means that a balanced approach in speed 
and accuracy is required, making YOLO11n-seg suited for the 
task [14, 15, 16, 17]. Model optimization with TensorRT was 

implemented as it is crucial in maximizing inference speed, 
where various studies have shown significant performance 
gains with TensorRT optimization [18, 19, 20]. The Jetson 
Orin Nano was chosen to eliminate dependence on cloud 
computing as it is powerful enough to handle both inference 
and mathematical tasks on its own which is crucial when 
operating out in the sea where a stable internet connection 
may not be present [21]. Where this study delineates from 
previous studies is the introduction of temporal subsampling 
and a cumulative averaging mechanism for continuous 
evaluation of sequential draft readings. 

Temporal subsampling is a technique where every 1/N 
frame is taken for processing [22, 23, 24]. This technique is 
useful in conserving computational resources, which is 
essential in edge computing, provided that data skipped 
between frames is negligible.  Recent data in the Philippines 
shows that the local wave period can be roughly estimated to 
be around 5-6 seconds [25, 26, 27]. Performing a simple 
calculation, we can infer that the dominant frequency is 1/5 or 
0.2 Hz, and consequently the Nyquist sampling rate is 0.4 Hz.  
Subsampling the input stream of 30 FPS at a rate of every 
third frame yields a sampling rate of 10 Hz, far higher than the 
minimum Nyquist requirement indicating that data resolution 
is sufficient. For this study, the minimum time for data 
collection of draft estimates will be 1 minute similar to [11], 
yielding at least 600 datapoints. 

Each subsampled frame then contributes to a cumulative 
moving average (CMA). The CMA utilizes all data from the 
start of time to the present time point and has a characteristic 
of eventually converging into a stable value as more data 
points accumulate [28, 29, 30, 31, 32]. This stable value is the 
potential draft estimate. To validate stability, convergence 
check based on zero-slope fitting and normalized root mean 
square error (NRMSE) criteria automatically determines when 
a sufficiently stable reading has been achieved [33, 34, 35, 36, 
37, 38, 39]. Normalization of the RMSE translates it into a 
meaningful percentage value of how much the data fits the 
model, where NRMSE < 10% is excellent, NRMSE between 
10% and 20% is good, NRMSE between 20% and 30% is fair, 
and NRMSE > 30% is poor [35, 36, 37]. In the Philippine 
context, draft estimation is precise only up to the thousandth 
decimal, hence we set the minimum tolerance for near-zero 
slope to be at least 0.0001, and the NRMSE must be 0.1% to 
indicate true stability. 

In brief, this work seeks to determine whether a field-
deployable UAV-based computer vision system can achieve 
draft measurement accuracy comparable to human surveyors 
while maintaining operational reliability under real maritime 
conditions. It further aims to deliver real-time draft readings 
despite the limited computational resources of edge devices by 
employing TensorRT-optimized YOLO11n and YOLO11n-
seg models, combined with lightweight algorithms for 
temporal subsampling, CMA, and draft reading stability 
checks based on line fitting and NRMSE.  

The remainder of the study is organized as follows: 
Section II presents the system design, algorithm, and 
methodology. Section III discusses results and performance 
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evaluation. Finally, Section IV provides a conclusion iterating 
key findings and recommendations for future work. 

II. METHODOLOGY 

In designing an effective real-time draft surveying system, 
it needs to achieve real-time performance on edge computing 
hardware while also being a field-deployable measurement 
platform capable of achieving accuracy matching those of 
experienced surveyors even when faced by dynamic maritime 
conditions.  To fulfill these requirements, the Aerial Draft 
Surveyor (ADS) system integrates a UAV-mounted camera 
for live video acquisition, an NVIDIA Jetson Orin Nano for 
on-site model inference, and a computer vision pipeline that 
detects draft marks, segments the waterline, and computes 
draft estimates in real time. The following subsections detail 
the system architecture, model training and development, draft 
computation algorithms, data gathering procedure, and 
statistical tests and validation for system evaluation. 

A. System Architecture 

The system architecture consists of four primary parts: the 
drone, the remote control (RC), the Jetson Orin Nano, and the 
User Interface (see Fig. 1). 

 
Fig. 1. System architecture. 

The manually operated drone, a DJI Phantom 4, is capable 
of long-range flight in windy seaside conditions and is 
equipped with an onboard camera with wireless video 
transmission at 1080p, 30 FPS. It is positioned directly in front 
of the targeted draft marks at a distance of 3 to 5 meters while 
maintaining perpendicular line of sight. The drone transmits 
its captured video to the operator's remote controller. The 

remote controller then streams this live video feed it receives 
from the drone via an RTMP (Real-Time Messaging Protocol) 
stream over a LAN (Local Area Network) generated by a 
simple mobile hotspot, which is received by an RTMP server 
running on the NVIDIA Jetson Orin Nano. This video stream 
is then fed to a program running on the Jetson Orin Nano 
responsible for running inference on the video feed, 
performing both object detection and image segmentation to 
detect ship draft marks and isolating the waterline. It then 
calculates the draft value and outputs the result to a user 
interface for review and logging. For hardware, a portable 
power supply was used to power the device, an LCD was 
attached to display the program’s user interface, and 
peripherals were utilized for ease of use (see Fig. 2). 

 
Fig. 2. Basic system hardware components. 

B. System Development 

Frames from the video stream were subsampled by the 
program then processed by two deep learning models: 
YOLO11n and YOLO11n-seg. A lightweight nano model was 
chosen to facilitate real-time inference on the Jetson Orin 
Nano. These models were trained using images in labeled 
datasets from Roboflow using a 70:20:10 train-validation-
testing split (see Fig. 3 and Fig. 4). 

 
Fig. 3. Detection dataset. 

 
Fig. 4. Segmentation dataset. 
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Augmentations were applied to enhance model 
performance in varying conditions. Below is a summary of the 
model training parameters applied (Table I). 

TABLE I. SUMMARY OF MODEL TRAINING PARAMETERS 

Model 
Image

s 

Augmentation

s Applied 

Epoch

s 
Size Classes 

YOLO11n   24457 

Rotation 

(±15°) 

Shear (±15° H, 

±15° V) 

Blur (up to 

1px) 

Noise (up to 

1.05% px) 

250 
512x51

2 

0, 1, 2, 3, 

4, 5, 6, 7, 

8, 9, M 

YOLO11n

-seg 
13667 

Hue (±15°) 

Saturation 

(±25%) 

Brightness 

(±15%) 

Exposure 

(±10%) 

Blur (up to 

2.5px) 

Noise (up to 

0.65% px) 

50a 512x51

2 

Water, 

backgroun

d 

a. Model set to train for 250 epochs but stopped at 50 due to no improvement. 

Model training utilized labeled datasets obtained from 
Roboflow Universe, which contained publicly available ship 
hull images with annotated draft marks and waterlines. For 
training draft mark detection, dataset from user shuichi1 
which featured pictures of draft marks from various ships in 
different perspectives was used. To train the segmentation 
model, dataset from user shuixian1 which featured annotated 
segmented waterline was used. 

These datasets were forked and augmentations were added 
to enhance model robustness in real-world conditions, and 
consequently, increase generalization. Augmentations for 
rotation (±15°) and shear (±15° H, ±15° V) were applied to 
enhance model resistance against varying camera angles. 
Image noise was added to allow the model to correctly 
identify regions despite water splashes. Lastly, blur was 
augmented into both datasets to accommodate for the drone’s 
motion which may induce blur. Saturation, brightness, and 
exposure were specifically added to the segmentation model to 
help it correctly segment the waterline against small variations 
in water color and brightness distortion from lighting. 

Both models were trained on Google Colab’s A100 High-
RAM GPU using the PyTorch implementation of YOLO11 
under the default training hyperparameters provided by the 
Ultralytics framework for 250 epochs. The YOLO11n model 
was trained for numerical detection of the ship’s draft marks 
while the YOLO11n-seg model was trained for waterline 
segmentation. Models were then converted into TensorRT 
.engine files locally on the Jetson Orin Nano to optimize 
performance. 

C. Draft Calculation Algorithm 

Algorithm 1 is a pseudocode representing the live-stream 
draft measurement pipeline, showing a simplified and high-
level overview of the functions for instantaneous draft analysis 
as well as determining the final draft. The 30 FPS stream is 
sent as an input to the primary loop function MeasureDraft 
(line 10), where it subsamples the video stream by sending 
every third detected frame as an input to the 
InstantaneousDraft function (line 1). The subsampled frame 
then passes through both object detection and segmentation 
(line 2), from which the bottom-center points of the bounding 
boxes that form the draft line are obtained (lines 3-4) to fit a 
line and predict the position of the next point (lines 5-6). The 
draft for this frame is then determined (line 7). Fig. 5 shows a 
visual representation of the InstantaneousDraft function. 

 
Fig. 5. Per frame instantaneous draft reading process. 

In calculating the final draft, a cumulative average is 
applied continuously (line 18) for each draft. When the 
number of samples have reached the threshold, a check for 
convergence is conducted, outputting the mean as the final 
draft if the slope and NRMSE fall below specified thresholds 
(lines 19-20). Fig. 6 provides an overview of the algorithm’s 
processes through a visual flowchart. 

 
Fig. 6. Algorithm flowchart. 
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Algorithm 1: Draft Calculation 

 INPUT: live video frames S 

 OUTPUT: streaming currentDraft, mean when converged 

  

1
: 

FUNCTION InstantaneousDraft(frame): 

2
: 

 draft_marks, water_mask  RunInference(frame) 

3
: 

 
bottom_centers  

ExtractBboxBotCenters(draft_marks) 

4
: 

 draft_line  FitLine (bottom_centers) 

5
: 

 predicted_point  InterpolateNext(draft_line) 

6
: 

 intersect  GetIntersection(draft_line, water_mask) 

7
: 

 
draft  CalculateDraft(draft_line, predicted_point, 

intersect) 

8
: 

 RETURN draft 

9
: 

END FUNCTION 

  

1
0: 

FUNCTION MeasureDraft(S) 

1
1: 

 frame_cnt  0 

1
2: 

 count  0, mean  0, window  [] 

1
3: 

 WHILE streaming IS available: 

1
4: 

  frame_cnt  frame_cnt + 1 

1
5: 

  IF frame_cnt MOD 3 == 0 THEN CONTINUE 

1
6: 

  current_draft  InstantaneousDraft(S) 

1
7: 

  count  count + 1 

1
8: 

  
mean  CumulativeAvg(mean, count, 

current_draft) 

1
9: 

  APPEND mean to window 

2
0: 

  IF count > 600:  

2
1: 

   POP mean from window 

2
2: 

   
IF Converged(window) THEN RETURN 

mean 

2
3: 

  END IF 

2
4: 

 END WHILE 

2
5: 

END FUNCTION 

The following are the key routines in this algorithm: 

• RunInference(frame): returns draft mark bounding 
boxes and waterline mask. 

• InterpolateNext(draft_line): predicts the point position 
of the next draft mark located below the waterline then 
connects all points. 

• GetIntersection(draft_line, water_mask): finds the 
coordinates where the draft line intersects with 
segmented water mask. 

• CalculateDraft(draft_line, predicted_point, intersect): 
calculates the draft in meters by translating pixel 
distances (1).  

• CumulativeAvg(mean, count, current_draft): uses  
recursive averaging to calculate a running mean of all 
draft measurements (4). 

• Converged(window): checks all cumulative means to 
determine if values have stabilized (6, 7). 

To calculate the draft value from the images, the Eq. (1) 
below from [1] is used: 

𝑣0 = 𝑣1 − 𝑠 (
𝑑0

𝑟 ∙ 𝑑1
)      (1) 

where, 𝑣0 is the estimated draft at 𝑝0(m); 𝑣1 is the known 
draft at 𝑝1 (m); 𝑑0  and 𝑑1  are pixel distances (px); 𝑟  is the 
perspective-correction ratio (unitless); and 𝑠  is the true 
spacing between adjacent draft marks (m) which is 0.2m. 
Values for 𝑑0 and 𝑑1 are obtained through simply calculating 
the distance between points using Eq. (2): 

𝑑0 = ‖𝑝0 − 𝑝1‖ ; 𝑑1 = ‖𝑝1 − 𝑝2‖ ; 𝑑2 = ‖𝑝2 − 𝑝3‖ (2) 

•  To account for instances, where the drone is not 
perfectly aligned with the ship’s hull, the distances 
obtained from the two draft marks 𝑑2 and 𝑑1 above the 
draft mark nearest the waterline are used as a reference 
(see Fig. 7). From here the perspective-correction ratio 
is obtained through Eq. (3). 

 
Fig. 7. System calculation to estimate draft mark value. 

𝑟 =
𝑑1

𝑑2
     (3) 

Welford’s algorithm, Eq. (4), is used in calculating for the 
CMA of draft readings as it is computationally inexpensive, 
expressing the running average in a recursive form requiring 
only the previous average and the new value to obtain the new 
average [32]. 

𝑥̅𝑛 = (
𝑛−1

1
)𝑥̅𝑛−1 + (

1

𝑛
) 𝑥𝑛   (4) 
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In Eq. (4), 𝑛  corresponds to the current point in time. 
Then, 𝑥̅𝑛  is the current cumulative average, 𝑥̅𝑛−1  is the 
previous cumulative average, and 𝑥𝑛 is the current value. In 
this case, 𝑥𝑛 represents the instantaneous draft reading at the 
current point in time, 𝑥̅𝑛−1 is the old cumulative draft estimate 
before the current reading, and 𝑥̅𝑛 is the new cumulative draft 
estimate. 

Linear regression, Eq. (5), is performed on all datapoints to 
estimate the slope and generate a fitted line. The goal is to 
determine whether the cumulative draft estimate is stable and 
may be finalized. 

𝑦 = 𝛽1𝑥 + 𝛽0   (5) 

Here, 𝑦 is the predicted value from the fitted line, 𝛽1 is the 
slope, 𝑥 is the time step or index, and 𝛽0 is the y-intercept. 
The slope is then identified by calculating 𝛽1  as shown in 
Eq. (6), where 𝑁 is the total number of points in the window, 
𝑥𝑖 is the frame index, 𝑥̅ is the average frame index, 𝑦𝑖 is the 
CMA at 𝑥𝑖, and 𝑦 is the average CMA within the window 𝑁. 

𝛽1 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦)𝑁

𝑖=1

∑ (𝑥𝑖−𝑥̅)2𝑁
𝑖=1

        (6) 

Though a near-zero slope hints at stability, NRMSE is also 
obtained through Eq. (7) to determine if the actual values 
around this fitted line are also stable, as simply identifying the 
slope does not reveal information on how much the data points 
are still varying. 

𝑁𝑅𝑀𝑆𝐸 =
√(1/𝑁) ∑ (𝑦𝑖−𝑦𝑖)2𝑁

𝑖=1

𝑦
  (7) 

Therefore, convergence of the draft estimate obtained from 
CMA is determined to be stable by both checking if slope and 
NRMSE fall under the required criterion, specified to be 𝛽1 ≤
0.0001 and  𝑁𝑅𝑀𝑆𝐸 ≤ 0.1%. 

D. Data Gathering 

Data was gathered by flying the drone towards a bulk 
cargo vessel. The operator will control the drone to record 
video from each of the ship's six draft locations, waiting for 
the system to output its final draft reading before moving to 
the next draft location. When all of the six draft locations are 
finished, the drone is retrieved. Whenever the ship is loaded 
with new cargo, the procedure is repeated. This is to ensure 
that the ship's draft would vary every time a measurement is 
taken. An overview of the process is shown in Fig. 8. 

 
Fig. 8. Data gathering procedure. 

E. Testing and Evaluation 

To evaluate the system's performance, a team of licensed 
surveyors were also sent to the bulk cargo vessel to perform 
manual reading of each of the six draft marks. The system's 
results are then compared against the surveyor's readings to 
quantify the system’s performance. 

F. Statistical Analysis 

To rigorously evaluate the agreement and accuracy of the 
automated draft survey system against traditional human 
measurements, four complementary statistical methods were 
applied. Firstly the standard error metrics, which include mean 
squared error (MSE), root mean squared error (RMSE), mean 
absolute error (MAE), and coefficient of determination (R2), 
are obtained. These determine how the algorithm's predictions 
track the ground truth observation of human surveyors 
alongside how much of the variability in ground truth is 
explained by the model. A paired t-test is also utilized to 
identify the existence of systematic biases and determine 
whether the mean difference between the two depart 
significantly from zero. 

Next, Bland-Altman analysis is used to visualize and 
quantify agreement across the full measurement range. This 
reveals whether the algorithm’s errors remain acceptably 
small and consistent at both low and high drafts, and identified 
any outliers [40]. In addition, the two-way random-effects, 
absolute-agreement intraclass correlation coefficient 
(ICC(2,1)) was also calculated. This partitions total variance 
into between-subject and error components, revealing whether 
the two are effectively interchangeable or not [41]. 

III. RESULTS AND DISCUSSION 

This section features an evaluation of the live‑stream draft 
measurement system, beginning with the accuracy and 
statistical reliability of the final draft estimates before 
proceeding to the performance of the underlying deep‑learning 
models. First, the automated draft readings will be compared 
against manual surveyor measurements using the methods 
outlined under the statistical analysis section. Next, 
object‑detection and segmentation metrics achieved by the 
YOLO11n and YOLO11n‑seg networks, including precision, 
recall, mAP, IoU, and real‑time inference and computation 
speed will be presented. Finally, these results are interpreted 
in the context of operational requirements for at‑sea draft 
monitoring, discussing both the system’s real‑time capability 
and its potential to augment traditional surveying methods. 

A. System and Manual Draft Reading 

To evaluate the accuracy and reliability of the Aerial Draft 
Surveyor (ADS) system in comparison with traditional manual 
measurements, a total of forty (40) readings were obtained 
(see Table II). Each reading was simultaneously recorded by a 
licensed surveyor through manual observation and by the ADS 
through automated image processing. Both measurements 
were performed under similar environmental conditions to 
ensure fairness of comparison. 

The quantitative comparison between manual and system-
obtained readings is summarized in Table III. Statistical 
metrics including Mean Square Error (MSE), Root Mean 
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Square Error (RMSE), Mean Absolute Error (MAE), and 
Coefficient of Determination (R²) were computed to evaluate 
accuracy, while a paired t-test (at α = 0.05, df = 39) assessed 
whether systematic bias existed between the two measurement 
methods. 

TABLE II. SYSTEM AND MANUAL DRAFT READING 

Index 
Measured Draft  

Index 
Measured Draft 

System(m) Manual(m)  System(m) Manual(m) 

1 4.4 4.6  21 8.37 8.3 

2 6.61 6.65  22 8.38 8.31 

3 6.27 6.38 
 

23 5.6 5.66 

4 8.17 8.05 
 

24 7.17 7.18 

5 8.1 8.05 
 

25 6.55 6.48 

6 5.29 5.29 
 

26 8.37 8.3 

7 6.07 5.05a 

 27 8.36 8.31 

8 7.17 7.13  28 5.58 5.66 

9 6.3 6.26  29 7.16 7.18 

10 8.37 8.37 
 

30 8.38 8.3 

11 8.32 8.37 
 

31 8.37 8.31 

12 5.3 5.29 
 

32 5.56 5.66 

13 6.39 5.05b 

 33 7.19 7.18 

14 7.14 7.13  34 8.37 8.3 

15 6.25 6.26  35 8.41 8.31 

16 8.38 8.37 
 

36 5.63 5.62 

17 8.36 8.37  37 7.17 7.17 

18 5.57 5.66  38 6.37 6.47 

19 7.2 7.18  39 8.32 8.31 

20 6.54 6.48  40 8.3 8.3 

a, b. Rust had turned mark into a color similar to the ship’s hull resulting in faulty reading . 

TABLE III. SUMMARY OF EVALUATION METRICS 

MSE RMSE MAE R2 t-value 

0.0751 0.2740 0.1068 0.9506 1.47 

The linear relationship between the system’s readings and 
those obtained manually is illustrated in Fig. 9. Each point 
corresponds to a single measurement pair, with the dashed line 
representing perfect 1:1 agreement and the solid line showing 
the regression fit. As shown, the system’s predictions cluster 
tightly along the 1:1 line, indicating excellent correspondence 
with manual observations. 

The obtained R² value of 0.9506 indicates a strong linear 
agreement between automated and manual readings, meaning 
that 95% of the variance in human-observed measurements 
can be explained by the system’s estimates. The t-test result (t 
= 1.47 < 2.02, p > 0.05) further supports that no statistically 
significant difference exists between system and manual 
observations, thereby validating the reliability for operational 

use. However, the average deviation is ±0.1068m, which is 
slightly larger than those from previous studies [12, 13]. 

 
Fig. 9. Scatter plot comparing manual and system readings. 

The major discrepancy observed is during cases where 
corrosion from rust led the system to misclassify the target 
draft mark resulting in a faulty reading. Nonetheless, the 
overall error remained small, and the algorithm proved 
capable of converging towards a reasonable stable draft 
estimate through the cumulative averaging and convergence 
criteria described in Section IIC. 

To examine the potential effect of such outliers, an 
additional analysis was conducted by excluding measurements 
affected by severe hull corrosion. Under these idealized 
conditions, the mean absolute error (MAE) improved to 
±0.0505 m, which falls within the same accuracy range 
reported by [12] and [13]. This indicates that under optimal 
imaging conditions, the system’s performance approaches that 
of state-of-the-art laboratory-based methods. 

B. Bland-Altman Analysis 

TABLE IV. BLAND-ALTMAN SUMMARY 

Parameter Value 

Mean Difference (Bias) +0.063 

Standard Deviation 0.269 

Lower Limit of Agreement (LoA) –0.467 

Upper Limit of Agreement (LoA) +0.592 

% of Points Within LoA 95% 

The mean difference (bias) between the manual and 
machine readings was +0.063, suggesting a slight tendency for 
the machine to read marginally higher than the manual 
method. The 95% limits of agreement ranged from –0.592 to 
+0.467. Approximately 95% of the paired measurements fell 
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within these limits, with no clear pattern of increasing 
disagreement for higher or lower draft marks (see Fig. 10 and 
Table IV). 

 
Fig. 10. Bland-Altman Plot of machine vs. Human surveyor readings. 

The two major outliers were attributed to the presence of 
rust which heavily impaired the detection model’s capabilities 
in discerning the correct draft mark. 

C. Intraclass Correlation Coefficient [ICC (2,1)] 

The agreement between the automated (machine) and 
manual draft readings was assessed using a two-way random-
effects absolute-agreement single-measure ICC (ICC(2,1)). As 
shown in Table V, the ICC was 0.974 (95 % CI: 0.951–0.986; 
F(39, 38.9) = 78.0; p < 0.001), indicating reliability and 
consistency between the two methods. 

TABLE V. INTRACLASS CORRELATION COEFFICIENT RESULTS 

Statistic Value 

Number of subjects 40 

Number of raters/methods 
2 

ICC value 
0.974 

95% Confidence Interval (CI) 0.951-0.986 

F Statistic (df1, df2) 78.0 (39, 38.9) 

p-value 
< 0.001 

According to the benchmarks proposed by [41] ICC values 
above 0.90 indicate excellent reliability. This suggests that 
nearly all the observed variance in draft measurements is 
attributable to genuine differences in the ship’s draft rather 
than measurement error between the two methods. In practical 
terms, the system’s readings are interchangeable with human 
observations under typical survey conditions. 

The narrow confidence interval (0.951–0.986) reinforces 
the precision and stability of the reliability estimate, implying 
that even with sampling uncertainty, the true level of 

agreement remains very high. Furthermore, the high F-ratio (F 
= 78.0, p < 0.001) confirms that between-measurement 
variability far exceeds residual error variance, suggesting the 
proposed system captures the same underlying measurement 
signal as human surveyors. 

D. Model Performance 

TABLE VI. MODEL TRAINING VALIDATION RESULTS 

Model 

Metric 

Precision Recall mAP IoU 
Inference 

time 

YOLO11n  99.82% 99.80% 99.49% — 30ms 

YOLO11n-seg 
98.12% 97.74% 99.06% 

97.28% 
20ms 

As seen in Table VI above, both the detection and 
segmentation networks achieved near real-time speeds with 
exceptionally high accuracy. The YOLO11n detector reached 
99.82% precision, 99.81% recall and a mAP@0.5 of 99.49%, 
processing each frame in about ~30 ms. Its companion model, 
YOLO11n-seg, scored a mAP@0.5 of 99.06%, an IoU of 
97.28%, and maintained over 97% recall (98.12 % precision) 
on full-scene masks, with an inference time of around ~20 ms 
per frame. Both models exhibit reliable isolation of their 
targets in varying hull conditions, provided excessive rusting 
does not distort the number for the detection model. 

Speed and timing performance were evaluated on the 
Jetson Orin Nano by processing a 10-second video clip 
containing visible draft marks. The average inference time for 
each model and computation times were recorded (see 
Fig. 11). On average the complete pipeline yielded a latency 
of approximately 10ms per frame, corresponding to an 
effective throughput of 10 FPS. 

 
Fig. 11. Average system time for detection, segmentation, and calculation. 

Compared to the systems proposed by [11], [12], and [13], 
the process times of the ADS utilizing an edge computing 
device lies in the middle, as seen in Table VII. 

TABLE VII. COMPARISON OF COMPUTE TIMES BETWEEN STUDIES 

Study Device Total time 

Chernyi & Ivanovskii [11] N/A    33 ms a 

Zhang et al. [12] NVIDIA GTX 3060    16 ms 

Wang et al. [13] NVIDIA GTX 1080Ti  360 ms 

ADS NVIDIA Jetson Orin Nano  101 ms 

a. Value inferred from stated performance at 30 FPS, but no compute time was stated in the study.  
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Due to hardware constraints, the ADS system does not 
show the fastest processing times. However, previous studies 
had only focused on processing recorded videos in calm and 
stable conditions, whereas the ADS system was able to 
demonstrate modest performance in real-time draft reading in 
a real-world environment. 

E. Discussion 

The error-metric analysis revealed excellent point-wise 
performance between the automated and manual 
measurements (MSE = 0.0751, RMSE = 0.2740 m, MAE = 
0.1068 m, R² = 0.9506). In practical terms, the algorithm’s 
draft estimates deviate from human readings by about 0.11 m 
on average, while capturing more than 95 % of the variation 
observed by human surveyors. The MAE being larger than 
those of [12] and [13] are attributed to the two faulty readings 
caused by hull corrosion, obscuring the target draft mark. The 
effect of these outliers were analyzed, and when excluded to 
simulate idealized conditions, dropped the average deviation 
or MAE to ±0.0505, now within the accuracy ranges from [12] 
and [13]. The paired t-test (t = 1.47, p > 0.05) confirmed that 
the difference between the two methods is statistically 
insignificant, indicating the absence of systematic bias and 
validating the reliability of the automated approach for 
operational use. 

Bland–Altman analysis provided further evidence of 
strong agreement, with a small positive bias of +0.063 m and 
95 % limits of agreement between –0.467 m and +0.592 m. 
Ninety-five per cent of all paired measurements lay within 
these limits, demonstrating that deviations are both limited 
and evenly distributed across the measurement range. Again, 
the few outliers were traced to localized corrosion which 
temporarily disrupted the detection model.  

The intraclass correlation coefficient ICC(2,1) of 0.974 (95 
% CI: 0.951–0.986; F(39, 38.9) = 78.0; p < 0.001) confirms 
excellent absolute agreement between manual and automated 
readings. According to [41], ICC values > 0.90 reflect 
outstanding reliability. This finding implies that nearly all 
variance arises from true physical changes in draft rather than 
measurement noise, meaning that the automated readings are 
interchangeable with those of human surveyors. The narrow 
confidence interval further confirms the stability of this 
reliability estimate. Taken together, the ICC, Bland-Altman, 
and regression analyses establish a consistent pattern of 
agreement, affirming the robustness of the system. 

Model-level evaluation corroborates the system-level 
findings. The YOLO11n detector and YOLO11n-seg 
segmentation network achieved precision and recall exceeding 
97 %, with mean average precision (mAP@0.5) values above 
99 %. Despite running on an edge device, inference times 
averaged 30 ms and 20 ms per frame, respectively, yielding a 
full-pipeline latency of ~101 ms (~10 FPS). While this is 
slower than the 16 ms reported by [12] on an RTX 3060 GPU, 
it surpasses the 360 ms runtime of [13] and remains within 
real-time operational limits for live draft monitoring. The 
performance difference primarily reflects the hardware class, 
and the ADS achieves comparable accuracy in the field while 
maintaining full onboard processing capability without cloud 
dependence. 

IV. CONCLUSION 

This study presented the design, development, 
implementation, and validation of the Aerial Draft Surveyor 
(ADS), a UAV-based computer vision system that automates 
ship draft measurement through YOLO11n object detection 
and YOLO11n-seg waterline segmentation, optimized for 
real-time edge inference on an NVIDIA Jetson Orin Nano 
through TensorRT. The system addressed key limitations 
present in previous studies, particularly by implementing and 
validating a real-time approach to draft-reading in the field. It 
introduces temporal subsampling to reduce computational load 
in real-time processing, CMA to ascertain a draft estimate, and 
a convergence check to determine when to finalize the draft 
estimate through stability checks with zero-slope fitting and 
NRMSE. 

Results demonstrated excellent agreement with manual 
surveyor readings, achieving an MAE of 0.1068 m, RMSE of 
0.2740 m, and R² = 0.9506, with no statistically significant 
bias (t = 1.47, p > 0.05). Bland-Altman analysis showed 95 % 
of paired readings within ±0.6 m limits of agreement, while 
the ICC(2,1) = 0.974 (95 % CI: 0.951–0.986) confirmed 
reliability and consistency with human observations. 
Moreover, TensorRT optimization allowed for efficient 
inference on low-power edge hardware. Alongside lightweight 
algorithms, it allowed for a throughput of ~10 FPS 
representing a significant step toward practical, autonomous 
draft surveying. 

Yet, similar to its predecessors, the system remains 
sensitive to corrosion and occluded draft marks, which 
degrade detection accuracy or completely mislead the system 
to an erroneous reading. Additionally, there is still much room 
for improvement to further decrease latency from processing 
to prevent frame skipping and obtain as much information as 
possible from the live video feed. Another issue is the 
dependence on human readings as ground truth as there is no 
means to determine the correctness of manual observation. 
Lastly, addressing adverse weather conditions in future studies 
may significantly improve the dependability of similar 
systems. 

This study contributes to the field by: 1) introducing a real-
time, UAV-integrated measurement framework; 2) combining 
temporal subsampling with convergence-based stability 
evaluation for automated draft finalization; 3) demonstrating 
TensorRT-accelerated YOLO11n and YOLO11n-seg 
performance on embedded systems; and 4) validating the 
system through comparative field trials with licensed 
surveyors. Collectively, these contributions bridge the gap 
between laboratory-based automation studies and operational, 
deployable maritime systems, addressing both research and 
practical needs. 

In summary, this work confirms the feasibility of real-
time, edge-deployed computer vision for ship draft surveying. 
The system shows promise as being a supplementary tool for 
real-time aid to support and validate manual draft surveying. 
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