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Abstract—Personalized cancer treatment remains challenging 

due to the complexity of genomic data and variability in drug 

responses. Previous federated learning (FL) approaches handled 

distributed patient data to preserve privacy but treated genomic 

and pharmacological features as flat, tabular inputs, limiting the 

ability to capture gene–drug interactions. In this study, we propose 

a Graph Neural Network (GNN)-based framework, 

FedGraphOnco, which models patient-specific gene–drug 

interactions as structured graphs, enabling the network to learn 

complex relational patterns that are difficult or impractical for 

FL-only models. Attention mechanisms and SHapley Additive 

exPlanations (SHAP) are incorporated to provide interpretable 

insights into important genes, pathways, and drug interactions, 

increasing clinical trust. Using the GDSC dataset with gene 

expression, mutation status, copy number variation, and IC50 

drug responses, the model demonstrates high predictive accuracy 

(Pearson correlation = 0.85, RMSE = 2.6, MAE = 1.9, dosage 

deviation = 2.8%), robustness to noise and non-IID data, and 

adaptive, personalized dosage recommendations. The approach 

highlights the advantages of combining privacy-preserving FL, 

GNNs, multi-omics data integration, explainability, and adaptive 

dosing, offering a scalable and interpretable solution for precision 

oncology. 

Keywords—Graph Neural Networks; cancer drug dosage; 
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I. INTRODUCTION 

This system uses AI-based deep learning to customize 
dosages of cancer drugs while also allowing the patient data to 
remain in distributed healthcare systems to maintain their 
privacy by not storing private information in one isolated 
location. The use of artificial intelligence in organizing and 
initiating personalized oncology trials will have a positive 

impact on current challenges in the efficacious introduction of 
new drugs into oncology practice [1], [2], [3]. Using AI together 
with real-world data in precision medicine will also allow drug 
development to target cancer cells that will be conducive to 
complete and rapid drug development [4]. Precision medicine is 
changing healthcare by giving personalized diagnostics and 
treatments based on a patient’s DNA, living conditions and 
behaviors [5]. The movement is aided by computer-based 
science and methods such as machine learning and 
bioinformatics which let us understand and solve drug response 
and personalized medicine issues. Lung cancer remains one of 
the leading causes of cancer-related deaths across the globe. It is 
a heterogeneous disease with a complex genetic evolution [6], 
[7]. Conventional treatment strategies often fail to improve 
outcomes due to the variability of patients’ molecular profiles 
and responses. Given this variability, personalized medicine 
focusing on treatments based on individual and patient 
population genetic and molecular characteristics has gained 
widespread attention [8], [9]. Advances in genomic technologies 
and biomarker identification are supporting the effort to develop 
more effective, tailored treatment regimens, improve patient 
treatment outcomes, and limit side effects [10]. Personalized 
cancer treatment provides patient-specific therapies that 
consider the genetic, molecular, and clinical features of the 
patient. Although some significant strides have been made in the 
treatment of cancer, the identification of the optimal therapeutic 
regimens for the patient remains challenging [11]. Many orally 
delivered anti-cancer medications, particularly the kinase 
inhibitors are typically dosed at a standard fixed dose which may 
not be appropriate for all patients, potentially leading to adverse 
effects if the dose is too high, or therapeutic failure if the dose is 
too low [12]. Lung cancer continues to be a principal cause of 
cancer-related deaths globally but despite its heterogenicity and 
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biological diversity, patients experience marked variations in 
prognosis and treatment. Conventional prognostic models often 
do not account for this complexity, leading to increased interest 
in artificial intelligence as a personalized prognostic tool [13]. 
This study presents FedGraphOnco, a federated GNN that 
represents genomic and pharmacological data as biological 
graphs to predict the dosage of cancer drugs. It provides privacy 
guarantees based on multi-layer security, handles non-IID 
distributions with FedProx, and incorporates SHAP- and 
attention-based explainability to provide accurate, secure, and 
interpretable precision in oncology. 

A. Research Motivation 

The high pace of accuracy in oncology development 
underscores the necessity of computational models that have the 
capability of prescribing patient-specific dosages of drugs using 
various genomic and pharmacological data. Nevertheless, 
centralized learning methods have critical challenges such as 
patient privacy, non-homogenous data distribution across 
facilities, and the inability to interpret predictions. The current 
reinforcement learning models or the use of vectors do not 
always represent the complex network-based interactions of 
cancer biology. It is against these gaps that this study is driven 
to come up with a federated framework which is graph-based 
and preserves privacy, is robust to non-IID data, and is offerable 
to make a dosage recommendation that is interpretable to 
advance safe and reliable personalized cancer treatment. 

B. Significance of the Study 

Personalized oncology is developed based on a patient-
specific GNN model to predict complex interactions between 
genes and drugs with the help of multi-omics data. 
Scientifically, it offers new information on the genomic factors 
of drug response and emphasizes important molecular 
characteristics that modulate the results of treatment. On a 
clinical level, it aids in precision oncology, producing 
interpretable and individualized dosage proposals, bolstering 
clinicians, and minimizing the risks of adverse drugs. In 
practice, the privacy-conserving FL method allows 
collaborating with multiple institutions safely, enhances the 
generalizability of the model, and can be applied in real life in 
decentralized healthcare environments. In general, the study has 
shown that it is possible to have a scalable, interpretable, and 
accurate AI-driven adaptive cancer drug dosing. 

C. Recent Innovation and Challenges 

The recent developments in precision medicine contain 
artificial intelligence in driving drug repurposing, FL 
architecture to plan radiation, and multi-omics datasets and 
treatment to optimize personalized anticancer means [14]. The 
discovery of new biomarkers is easier and allowing tailored 
therapies to have more accurate and precise patient-outcomes. 
Yet, a considerable amount of issues still need to be addressed, 
including the heterogeneity of data across institutions, the 
inaccessibility of large-scale validation of clinical data, and the 
unreliability of the AI models’ interpretation [15]. As well, the 
ability to reconcile high model performance with demanding 
privacy requirements on patient data remains an important 
obstacle to broader clinical usage. 

D. Key Contribution 

• FedGraphOnco Framework for Drug Dosage Prediction: 
Proposed a novel Federated Learning-enhanced GNN 
architecture that enables decentralized, privacy-
preserving prediction of cancer drug dosages using 
patient-specific biological graphs. 

• Privacy-Preserving Multi-Institutional Learning: 
Enabled collaborative learning across simulated 
healthcare nodes without sharing raw patient data, using 
federated aggregation mechanisms to preserve privacy 
and support scalability.  

• Patient-specific graphs integrate multi-omics features 
(gene expression, mutation, CNV) with drug 
characteristics, capturing biologically meaningful gene–
gene, drug–target, and pathway interactions. 

• Federated aggregation uses FedProx with encrypted and 
noise-perturbed updates to handle non-IID genomic 
distributions, ensuring privacy-preserving and stable 
convergence across institutions. 

• Attention mechanism identifies key genes and gene–
drug interactions, providing clinically interpretable 
insights that guide personalized and accurate dosage 
predictions. 

E. Research Questions 

• How can a privacy-preserving federated GNN be 
designed to collaboratively predict cancer drug response 
using distributed genomic data without sharing sensitive 
patient information? 

• To what extent can the integration of GNNs, federated 
learning, and privacy-enhancing mechanisms improve 
the accuracy, robustness, and scalability of cancer drug 
personalization compared to centralized approaches? 

• How can explainable AI techniques, such as attention 
mechanisms and SHAP-based feature interpretation, 
enhance the transparency and clinical interpretability of 
the proposed federated model in real-world oncology 
applications? 

F. Rest of the Section 

The following sections of this study are structured as 
follows: Section II provides an overview of existing literature. 
Section III outlines the problem addressed in this work and 
outlines the problem statement underlying the proposed 
methodology. Section IV discusses the effectiveness of the 
methodology. The results and discussion are presented in 
Section V. Finally, Section VI concludes and summarizes future 
work. 

II. RELATED WORKS 

Ahmed et al. [16] aim to achieve the goals of personalized 
cancer therapy more effectively by predicting how a patient will 
respond to drugs using artificial intelligence AI-driven models 
based on the patient's unique genetic profile. The study 
introduces a novel data federation technique to link and combine 
gene expression, gene mutations, and drug response, 
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representing each cell line and allowing for better quality and a 
larger amount of data. While studying the drug response, two 
ML models such as SVM and LR using PCA for feature 
reduction were derived along with a newly designed deep 
learning approach. Using the data federation approach, 
predictions were improved with a markedly 25% reduction in 
prediction error. The Enhanced Deep-DR model produced 
superior Pearson correlation with recent state-of-the-art models, 
and the generated AI models supporting a safer and more 
effective drug response prediction across various drugs in a 
generalized way. This presented approach also responds to the 
challenges of data scarcity and heterogeneity in personalized 
medicine. 

Lococo et al. [17] proposed to examine how AI, particularly 
ML and DL, which improve personalized prognostic evaluation 
in non-small-cell lung cancer, including staging, treatment 
response, and recurrence assignment. It outlines a variety of AI 
methods that assess integrated datasets, clinical, imaging, and 
molecular, to generate personalized survival and progression 
predictions based on specific datasets like radiological scans, 
genomic profiles, and patient medical history. It examines some 
of the challenges, including data heterogeneity, model 
interpretability, and generalizability. The benefits of AI will 
include more accurate staging, individualized therapies, and 
providing better outcome predictions, hopefully improving the 
treatment management of NSCLC. 

S Herraiz-Gil et al. [18] propose the objective of applying AI 
to drug discovery to mitigate the cost and time aspects, as well 
as the possibility that the clinical trials may fail, which is even 
more prevalent for complex diseases like cancer. It also 
examines techniques that are AI-derived, such as machine 
learning, deep learning, and evolutionary algorithms. In 
practice, the AI applications analyze biomedical, molecular, and 
clinical datasets in evaluating or predicting molecular 
interactions between drug targets and subsequently optimizing 
drug candidates. Incorporating AI will also help in the 
challenges with safety, efficacy, and heterogeneity. The overall 
advantages will be decreased development time and cost, 
improved precision, and supporting tailored medicine. 

Jian et al. [19] proposed this research to propagate 
personalized medication by the use of pharmaco metabolomics, 
an area that is very promising, which takes genetic and 
environmental factors together with pharmacological and 
biological pathways to predict the effectiveness of drugs in 
individuals. Here, employed the use of literature review and 
pharmacokinetics analysis with the collection of metabolomics 
data. The datasets are a collection of studies, published and 
indexed in PubMed and Web of Science between 2006 and 
2023. This approach avoids the limitations of previous methods, 
such as pharmacogenomics and TDM, which provide a holistic 
view. Benefits include and better prediction of drug metabolism, 
identification of biomarkers and improved precision in drug 
administration. 

Elhaie et al. [20] explored the application of machine 
learning techniques to improve precision in radiation dose 
measurement and prediction across medical and technical 
domains. The study addressed the limitations of traditional 
methods by utilizing advanced approaches such as 

classification, regression, clustering, time series forecasting, and 
generative modeling. These methods demonstrated significant 
benefits in tasks like radiation source detection, continuous dose 
monitoring, organ dose estimation, and predictive modeling, 
leading to improved accuracy and efficiency. The findings 
highlighted the potential for machine learning to optimize dose 
management in medical treatments, nuclear facilities, and 
emergency scenarios, supporting more personalized and real-
time radiation monitoring and protection. 

Zhang et al. [21] suggested an FL discovery as a method of 
knowledge-based planning in radiation therapy to overcome the 
problem of inter-institutional data sharing. This approach 
employed a gradient-boosting function with Federated 
Averaging on ten distributed subsets of prostate 45 Gy plans and 
demonstrated a similar prediction accuracy (MAE ~4.7%) as a 
centralized one (~4.4%) and improved significantly over 
individual site models (~6.5%). Results were consistent with 
different numbers of sites and imbalanced data factors. Although 
the benefits of the study demonstrated a privacy-preserving 
advantage, along with high-quality predictivity, it was also 
limited in scope to one disease location and more or less a small 
number of data to perform its task, thus would require multi-
institutional validation of predictions. 

Pati et al. [22] suggested a (FL) system based on boundaries-
level rare cancer, which can collect data at scale using 71 
institutions and prevent the exchange of sensitive MRI 
information. The research combined FL and up-to-date deep 
learning segmentation technique to jointly train models on 6,314 
patients and 25,256 scans. The findings demonstrated that the 
accuracy of FL-trained models is similar to or higher than that 
of centrally trained models, and FL-learned models maintain 
high accuracy and privacy security on data, along with 
robustness to overcome the heterogeneity of data sources. The 
two main pitfalls observed were the issue of complexity of 
standardization between institutions and limited interpretability 
that creates dilemmas in clinical translation and large-scale 
deployment. 

Cao et al. [23] have released FedBCa, a multicentric, bladder 
cancer MRI dataset with 275 3D T2-weighted MRI scans 
obtained in four hospitals and expert-labeled tumor 
segmentation and staging. The authors benchmarked few FL 
algorithms to show its usefulness such as FedAvg, FedProx, 
FedBN, and SiloBN regarding diagnostic and segmentations 
where the benchmarking was done using a controlled location of 
many GPUs in a localization like localized supervised / semi- 
supervised learning task. The obtained results showed higher 
generalizability of federated models than single-site training to 
be promising on accuracy and to guarantee cross-institution 
privacy. 

III. PROBLEM STATEMENT 

Among the significant concerns related to the efficient 
coordination of patient-specific genomic and clinical data 
between decentralized healthcare networks, substantial deficits 

still remain in the realm of AI-based oncology. As an example, 
[16] emphasize the heterogeneity of data and its scarcity as 
constraints to predictive models of drug response 
generalizability. Likewise, Zhang et al. [21] highlights the 
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challenge of maintaining privacy, when training a multi-
institutional model, limiting the scalability of knowledge-based 
treatment planning. The application of individual dosing of 
cancer drugs is still problematic because of the heterogeneity of 
the data, privacy factors and constraints of the current AI 

techniques. Real cancer data, e.g. GDSC, is highly 
heterogeneous: there are many more samples of lung cancer 
than of leukemia, genes, mutations, and copy number variation 
(CNV) are widely differentiated across patient samples. This 
non-identically distributed (non-IID) data makes it difficult to 
generalize a model across institutions. Moreover, privacy laws 

(e.g. HIPAA, GDPR) do not allow sharing of genomic, 
pharmacological and clinical data directly, so centralized 
training on models across multiple institutions is not possible, 
and not all training samples are easily available. Earlier AI and 
FL methods either use a simple tabular design and lack any 
sophisticated representation of non-IID distributions and 

combined gene-drug interactions, or utilize more advanced 
versions that can fail to attain the predictive accuracy and 
interpretability of the others. To combat such gaps, the 
proposed framework will merge patient-specific graph-
modeling, attention-based interpretability, and FedProx 
aggregation to allow robust, privacy-preserving, and clinically 

meaningful cancer drug dosing predictions. 

IV. PRIVACY-PRESERVING FEDERATED GNN APPROACH 

FOR CANCER DRUG PERSONALIZATION 

The FedGraphOnco framework proposed is based on FL 
implemented with GNNs, which provides personalized, privacy-
aware, and interpretable predictions of cancer drug dosage. In 
comparison with the traditional reinforcing methods of learning, 
FedGraphOnco takes into account the network-based 
characteristics of cancer biology by modeling genomic and 
pharmacological data in the form of structured graphs. GDSC 
data contains values of drug responses (IC50), gene expression, 
somatic mutations, copy number changes, and drug 
characteristics. Missing-value imputation, feature encoding, 
correlation filtering, variance thresholding, Z-score 
normalization, and IC50 log transformation are used in data 
preprocessing. After preprocessing, every sample of patients is 
turned into a graph, with the nodes being genes and drugs, the 
node properties being the molecular features, and the edges 
being the gene-gene or drug-target interactions. GNNs are 
trained in local institutions and generate graph embeddings that 
predict doses through regression layers. Gradients are then 
clipped, encrypted and perturbed with differential privacy to 
transmit sensitive data. FedProx-based aggregation is done at the 
central server, which is robust to non-IID distribution of clients. 
The distributed international model is reallocated and locally 
optimized during repeated communication rounds until 
convergence. Lastly, explainability is reached by SHAP values 
and attention scores, with emphasis made on important genes 
and drug interactions that provide recommendations. This 
ensures adjustive, safe, and clinically interpretive dosage results. 
The proposed FedGraphOnco framework depicts this well-
structured workflow, which is illustrated in Fig. 1. 

 
Fig. 1. Workflow for privacy-preserving cancer drug personalization. 

A. Data Collection 

The study utilizes the Genomics of Drug Sensitivity in 
Cancer (GDSC) dataset, which is a large-scale 
pharmacogenomic database constructed in partnership between 
the Wellcome Sanger Institute and the Massachusetts General 
Hospital Cancer Center [24]. The reason why GDSC was chosen 
is the large-scale, well-curated multi-omics data and wide-
ranged drug response profiles available in the data, which 
proved to be extremely appropriate in modeling personalized 
cancer drug responses. The data set comprises of more than 1000 
genetically characterized human cancer cell lines and drug 
sensitivity values in the form of IC50 against about 250 to 300 
anticancer drugs. Genomic characteristics consist of the levels 
of gene expression, their somatic mutation status, and copy 
number variations (CNVs) that enable the incorporation of 
multi-omics data into patient-specific graphs. The data is 
representative of different types of cancer, such as Lung, Breast, 
Colon, and Leukemia. The GDSC information can be accessed 
publicly on the GDSC site and Kaggle to be data-mined and is 
thus transparent and reproducible. This is the best option to 
develop and test the proposed FedGraphOnco framework on 
predicting the dose of different drugs personally and without 
invasion of privacy because of its extensive architecture and 
well-developed feature set. 

B. Data Preprocessing 

1) Data cleaning: Handling missing or corrupted values in 

genomic data is essential to maintain dataset integrity and 

model accuracy. Numerical missing values are imputed with 

statistical methods while categorical missing values are filled 

using the most frequent category or biological domain 

knowledge, that is given in Eq. (1), 

𝑥𝑖
(𝑖𝑚𝑝)

=
1

𝑁
∑ 𝑥𝑗

𝑁
𝑗=1       (1) 

where, 𝑥𝑖
(𝑖𝑚𝑝)

 means imputed value, 𝑁 represents number of 

observed values, 𝑥𝑗 means observed data points. 

2) Data cleaning: Converts categorical genomic features 

such as mutation status or cancer type into numerical forms 

usable by machine learning algorithms. Mutation statuses are 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

790 | P a g e  
www.ijacsa.thesai.org 

encoded as binary variables while other categorical features are 

one-hot encoded to avoid false ordinal implications, that is 

represented in Eq. (2), 

𝑀𝑖 = {
1,                       mutated
0,                wild − type

   (2) 

One-hot encoding for a categorical feature with 𝑘 categories, 
which is represented in Eq. (3), 

Cij = {
1,      if sample i belongs to category j
0,                                               otherwise

 (3) 

3) Feature selection: Reduces dimensionality and removes 

noise by filtering out redundant or non-informative genomic 

features, which improves model efficiency and accuracy. 

4) Correlation filtering is given in Eq. (4): 

|corr(xi , xj)| > ρth     (4) 

If true, one of the features 𝑥𝑖, 𝑥𝑗 is dropped. 

Variance thresholding is given in Eq. (5), 

𝜎𝑖
2 < 𝜖         (5) 

5) Normalization: Standardizes feature scales to enhance 

model convergence and performance. Both gene expression 

features and drug response targets are normalized. Z-score 

standardization is represented in Eq. (6): 

z𝑖 =
𝑥𝑖 −𝜇

𝜎
   (6) 

where, z𝑖  means the standardized value of the original 
feature value 𝑥𝑖, 𝑥𝑖 means the original value of the feature for 

the 𝑖 𝑡ℎ  data point, 𝜇 is the mean of the feature across all samples 
in the dataset, 𝜎 is the standard deviation of the feature across 
all samples. 

Log-transform of IC50 values to stabilize variance is given 
in Eq. (7): 

𝑦 ′ = 𝑙𝑜𝑔(𝑦)   (7) 

where, 𝑦 is the original target variable, 𝑙𝑜𝑔(𝑦) is the natural 
logarithm of the IC50 value, 𝑦 ′ is transformed target variable. 

C. Graph Construction 

Patient-specific biological graphs are constructed as a result 
of preprocessing to provide a structured representation of the 
molecular and pharmacological information. Each graph is 
defined as Eq. (8): 

𝐺 = (𝑉, 𝐸, 𝑋)   (8) 

where, V denotes the set of nodes, E is the set of edges, and 
X denotes the node feature matrix. 

Nodes (𝑉) consist of genes and drugs. Gene expression 
value, binary mutation status, and numerical copy number 
variation (CNV) is annotated on each gene node. The chemical 
descriptors or pathway membership information are enriched in 
drug nodes. The node feature (X) is represented as Eq. (9): 

𝑋 = [𝑥1, 𝑥2 ,… . . , 𝑥𝑛] ∈ ℝ𝑛×𝑑  (9) 

where, n is the number of nodes and d denotes the feature 
dimension per node. 

Edges (𝐸) capture interactions based on biological 
databases: Gene-gene functional interactions of 
STRING/Reactome, drug-target interactions of DrugBank, and 
pathway membership. Local GNN encoders process information 
about neighborhoods, generating representations of graphs as 
shown in Eq. (10): 

ℎ𝐺 = 𝐺𝑁𝑁𝜃(𝑉, 𝐸, 𝑋),     𝑦̂ = 𝑔𝜙(ℎ𝐺) (10) 

where, ℎ𝐺  is the embedding for graph 𝐺, and 𝑦 represents 
the dose-recommended or predicted log-IC50 drug response. 
This is a graph representation that allows the incorporation of 
multi-omics and pharmacological background to learning. 

D. Local GNN Training 

A GNN model is locally trained at every participating 
institution using the built patient drug graphs. The goal is to 
learn embeddings that can represent both the interactions 
between molecules and drug responses with respect to privacy 
of patient-level information. For a given client 𝑘 expression of 
the forward propagation of the local GNN is shown in Eq. (11): 

ℎ𝐺𝑘
= 𝐺𝑁𝑁𝜃𝑘

(𝐺𝑘),     𝑦𝑘̂ = 𝑔𝜙𝑘
(ℎ𝐺𝑘

)     (11) 

where, ℎ𝐺𝑘
 is the learned graph encoding of the graph. 𝐺𝑘, 

𝜃𝑘 denotes local NN parameters, and 𝑔𝜙𝑘
 is a regression layer 

predicting the value of drug response 𝑦𝑘̂. 

Node embeddings are trained in a layer-wise manner; they 
are updated with aggregated neighborhood information as 
shown in Eq. (12): 

ℎ𝑣
(𝑙+1)

= 𝜎(𝑤(𝑙)′
.𝐴𝐺𝐺{ℎ𝑣

(𝑙),ℎ𝑢
(𝑙)|𝑢 ∈ Ν(𝑣)})         (12) 

where, ℎ𝑣
(𝑙)

 is the node presentation of node 𝑣 at layer 𝑙, 𝑁 
(𝑣) denotes its neighbors, 𝑊 (𝑙) is a training weight matrix, and 
𝜎 is a non-linear activation. 

The model is trained on the mean squared error (MSE) 
between the actual and predicted log-transformed IC50, as 
shown in Eq. (13): 

ℒ𝑘 =
1

𝑛𝑘
∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛𝑘
𝑖=1        (13) 

where, 𝑛𝑘 is the number of samples at client 𝑘.” 

E. Privacy-Preserving Mechanisms 

The FedGraphOnco framework highly focuses on the 
protection of patient information when training is being carried 
out through collaboration. As the system uses three extremely 
sensitive types of data: genomic profiles (gene expression levels, 
somatic mutation status and copy number variations), 
pharmacological responses (drug sensitivity results like IC50 
values), and clinical metadata (cancer type, tissue of origin and 
identifiers), then strict privacy control mechanisms are 
necessary. These types of data cannot only be personally 
identified but also have possible ethical, clinical, and 
institutional risks in case of exposure. 

To counter these risks, raw patient data are always stored in 
each participating institution. Rather than transferring direct 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

791 | P a g e  
www.ijacsa.thesai.org 

genomic or clinical histories, institutions only transfer model 
parameters based on local training. Three-layers of protection 
are used prior to transmission. Gradient clipping makes sure that 
updates are bounded thus avoiding the effect of extreme values 
and minimizing the threat of indirect information leakage. 
Differential privacy, to give the parameter updates additional 
privacy, introduces controllable random noise to them. This 
methodology makes sure that the contributions of individual 
patients are not recognizable in an aggregate model, even in 
adversarial analysis. Lastly, homomorphic encryption enhances 
the process of encryption by permitting the use of encrypted 
updates that can be transmitted and combined without having to 
be decrypted by the server. 

Combined, these approaches will ensure that FL can be 
effective and, at the same time, that privacy is preserved. 
FedGraphOnco offers a trusted and ethically sound modeling 
framework that we are able to offer by ensuring the protection 
of genomic, pharmacological, and clinical data throughout the 
pipeline, and balances the model development with the utmost 
patient confidentiality. 

F. Federated Aggregation 

Federated aggregation within the FedGraphOnco framework 
is important in the combination of knowledge in more than one 
healthcare institutions without compromising on the 
confidentiality of the local datasets. Raw genomic, 
pharmacological, or clinical data is not shared by institutions 
after each round of local training. They instead send encrypted 
model parameters based on their locally trained GNNs. These 
parameters learn the patterns based on institutional data without 
revealing the sensitive level of patients. To manage the non-IID 
of the genomic and clinical distributions across the institutions, 
FedGraphOnco uses a proximal-based aggregation (FedProx) in 
the central server, as shown in Eq. (14): 

𝜃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡+1 = ∑

𝑛𝑘

𝑛

𝐾
𝑘=1 (𝜃𝑘

𝑡 − 𝜇(𝜃𝑘
𝑡 − 𝜃𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 ))    (14) 

where, 𝜃𝑔𝑙𝑜𝑏𝑎𝑙
𝑡  is the global model at communication round 

𝑡, 𝑛𝑘 is the number of samples at client 𝑘, 𝑛=∑ 𝑛𝑘
𝐾
𝑘=1  represents 

the number of samples across all clients. The visual 
representation is shown in Fig. 2.

 
Fig. 2. Federated aggregation process in the FedGraphOnco framework.

All the participating sites provide their encrypted updates to 
the central server, which carries out aggregation to build a better 
global model. FedGraphOnco uses a proximal-based 
aggregation approach as opposed to simple averaging, which 
may be volatile in situations where the data distributions in 
various institutions may differ. The method guarantees that 
information of various hospitals is unified, even though the 
genomic and clinical nature of their patients might be quite 
diverse. The framework counters the problems associated with 
non-identically distributed (non-IID) datasets that are prevalent 

in real-world healthcare settings by using stabilization 
mechanisms. 

The global model is once again re-distributed back to the 
clients once it has been aggregated. The model is adjusted to 
each institution on their local data enabling them to personalize 
it but at the same time enjoy the global knowledge. This process 
is repeated in several communication rounds consisting of local 
training, secure transmission of parameters, aggregation and 
redistribution until convergence. 
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By this federated consolidation, FedGraphOnco will balance 
the global collaboration with local specialization. The model 
gets stronger after every cycle, and it allows the correct, 
adaptive, and privacy-sensitive dosage proposal of cancer drugs 
in decentralized healthcare networks. 

G. Explainability Layer 

The lack of interpretability is also a significant issue when it 
comes to the application of artificial intelligence to oncology, as 
it may inhibit clinical trust and adoption. To overcome this, the 
FedGraphOnco framework will have an explainability layer, 
which will offer a transparent view of the dosage 
recommendations. The model uses SHapley Additive 
exPlanations (SHAP) and attention processes in the GNN to 
indicate major genomic and pharmacological variables in 
predictions. 

SHAP values are a mathematical indicator of the amount of 
contribution made by each input feature (for example, a single 
gene mutation or an expression level) to the overall prediction. 
This allows clinicians to determine which molecular changes 
contributed the most towards the establishment of a 
recommended drug dose. Simultaneously, the attention system 
of graph layers determines the relative significance of edges and 
nodes in patient-drug graphs. The model gives greater attention 
weights to important gene-gene/drug-target interactions, which 
is biologically relevant, and therefore, highlights biologically 
important pathways. 

The combination of both complementary methods will make 
sure that the prediction of doses will not only be accurate but 
also have a clinical interpretation. Oncologists will be able to 
check that the reasoning of the model is consistent with the 
known facts in medicine and become more confident in its 
suggestions. Therefore, the explainability layer can be viewed as 
the intermediary between higher-order computational modeling 
and feasibility in personalized cancer treatment. 

H. Deployment 

After a series of communication rounds during the federated 
training process, the FedGraphOnco global model converges, 
which proves its stability and strong predictive performance 
using heterogeneous clinical data. The resulting aggregated 
model is then re-distilled to individual participating institutions, 
and fine-tuning on site-specific genomic and clinical data is then 
done. This makes sure that although the model will use global 
knowledge, it will also be tailored to the special features of the 
hospital population of patients. 

The implemented model has some essential benefits. First, it 
offers predictive and patient-adjusted drug dosage, which allows 
precision oncology by customizing treatment in response to 
personal molecular profiles and anticipated responses to specific 
drugs. Second, it ensures a high level of privacy, since the 
sensitive genomic, pharmacological, and clinical data is kept 
locally and only encrypted and noise-perturbed updates are 
exchanged during training. Third, it provides clinically 
interpretable results in the form of SHAP-based explanations 
and attention mechanisms of the GNN and identifies impactful 
genes, pathways and drug-target interaction that affect dosage 
decision making. 

The FedGraphOnco implementation offers a combination of 
adaptability, privacy, and interpretability to provide that more 
advanced AI-based drug personalization can be safely and 
successfully embedded into the operation of actual clinical 
oncology settings, contributing to the evidence-based decision-
making and preserving the confidentiality of the patient. 

Algorithm 1: FedGraphOnco–Privacy-Preserving Adaptive 
Cancer Drug Dosing 

Input: Local datasets 𝐷𝑘 for each client k∈{1,…,K} 

Learning rate α, number of communication rounds R 

Output: Personalized GNN-based drug dosing model at each 
client 

Begin 

    Initialize global model 𝜃_𝑔𝑙𝑜𝑏𝑎𝑙 

    For round r = 1 to R do 

        For each client k in parallel do 

            Preprocess Dk: 

                - Data cleaning 

                - Feature encoding 

                - Feature selection 

                - Normalization 

            Initialize local model 𝜃_𝑘 ←  𝜃_𝑔𝑙𝑜𝑏𝑎𝑙 

Construct patient-specific graphs 𝐺𝑘 = (𝑉, 𝐸, 𝑋) 

Initialize local model 𝜃𝑘 ← 𝜃𝑔𝑙𝑜𝑏𝑎𝑙  

Train local GNN: 

                Forward propagation: ℎ𝐺𝑘 = 𝐺𝑁𝑁𝜃𝑘 (𝑉, 𝐸, 𝑋) 

                Predict drug response: 𝑦^𝑘 = 𝑔𝜙𝑘(ℎ𝐺𝑘 )\ℎ𝑎𝑡{𝑦}_𝑘 

                Compute loss: 𝐿𝑘 = 1𝑛𝑘∑𝑖(𝑦^𝑖 − 𝑦𝑖)2𝐿_𝑘  

               Update 𝜃𝑘 via backpropagation 

        Apply privacy-preserving mechanisms: 

           Gradient clipping 

     Differential privacy noise 

      Homomorphic encryption of model updates 

Send encrypted 𝜃𝑘 to central server 

Server aggregation: 

                 Check convergence; if met, break 

            Else 

                Send 𝜃_𝑔𝑙𝑜𝑏𝑎𝑙 back to all clients 

            End If 

    End For 

    For each client k do 

        Fine-tune 𝜃_𝑔𝑙𝑜𝑏𝑎𝑙 on Dk 

        Deploy personalized policy 𝜋𝜃_𝑘 for adaptive cancer drug 
dosing 

    End For 

End 

FedGraphOnco algorithm (see Algorithm 1) is used to do 
privacy-preserving, adaptive dosing of cancer drugs based on a 
FL system with GNNs. Every involved institution preprocesses 
local genomic, pharmacological, and clinical data, builds 
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patient-specific graphs, and fits a local GNN to make predictions 
of the log-transformed IC50 drug reactions. Privacy is ensured 
by gradient clipping, differential privacy, and homomorphic 
encryption and sending the model updates to the central device. 
To deal with non-IID distributions, the server uses 
FederatedProx, which leads to the creation of a global model that 
is redistributed to clients. Lastly, the global model is customized 
to fit each client with SHAP and attention mechanisms offering 
access to the interpretation of clinical decision-making. 

V. RESULTS AND DISCUSSION 

The results of the application FedGraphOnco framework are 
given, with its performance being emphasized in different 
experimental conditions. This section looks at parameters of 
simulation, preprocessing effect, model behavior, scalability and 
interpretability. Besides, it addresses the issue of performance 
evaluation, ablation studies, and comparative analysis to 
confirm the strength and effectiveness of the proposed approach. 
The simulation parameter is shown in Table I. 

TABLE I.  SIMULATION PARAMETER AND HARDWARE SETUP 

Parameter Value 

Dataset GDSC (Genomics of Drug Sensitivity in  

Cancer) 

Local Training Epochs 10 

Number of Drugs ~250–300 

Graph Nodes Genes, Drugs 

Node Features Expression, Mutation, CNV, Drug 

descriptors 

Edge Sources STRING/Reactome (gene-gene), DrugBank 

(drug-target) 

Graph Size 2000–5000 nodes per patient graph 

Optimizer Adam (learning rate = 0.001) 

Batch Size  32–64 

Local Epochs per Round 5–10 

Clients 5–10 simulated institutions 

Communication Rounds 50–100 

Aggregation Method FedProx (μ = 0.01) 

Data Distribution Non-IID 

Encryption Homomorphic encryption 

Interpretability SHAP values, Attention weights 

Software & Hardware 

Setup 

Python, Intel Core i7 Processor, 16 GB 

RAM, NVIDIA RTX 3060 GPU, Ubuntu 

20.04 OS 

Fig. 3 shows the effect of preprocessing methods on gene 
expression and IC50 values. The first panel on the left hand side 
is entitled Gene Expression Normalization Effect, which 
measures the gene expression levels pre and post normalization. 
The raw data has initial values that are widely distributed with 
high variability and huge outliers, which denotes the lack of 
scales consistency across samples. Upon normalization, the 
values are concentrated around zero and it can be argued that 
normalization is effective in bringing variability to a minimum 

and making the data comparable among genes and samples. The 
right panel with the title of IC50 Transformation Effect shows 
the distribution of the values of IC50 before and after 
transformation. 

 
Fig. 3. Normalization and transformation effects on gene expression and 

IC50 values. 

 
Fig. 4. Cancer type distribution. 

Fig. 4 shows the sample distribution of four significant types 
of cancer: Lung, Breast, Colon, and Leukemia. These include 
Lung cancer, with the biggest representation of about 120 
samples, and will dominate the data. Breast cancer comes 
second with around 80 samples after which Colon cancer has 
nearly 60. Leukemia has the fewest representation with a 
contribution of approximately 40 samples. Such uneven 
distribution can be seen as the difference in the composition of 
the datasets and show the imbalance between the categories of 
cancer. This imbalance may affect the workings of predictive 
models in that predictive models become biased towards the 
type of cancer with bigger sample size like Lung cancer, 
whereas smaller types like Leukemia are underrepresented. 

Fig. 5 shows the share of the types of nodes in the graph that 
have been created, but with emphasis on the relative number of 
genes and drugs. The findings show that gene nodes are the 
dominant nodes in the graph with a total of 120 nodes, since 
there are only 30 drug nodes. This is not surprising, since the 
number of genes generally is much higher in comparison with 
therapeutic compounds in biological networks. The increased 
number of gene nodes highlights the importance of genetic 
interaction in defining the structure and complexity of the graph, 
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whereas the drug node is a significant target of intervention that 
has a connection to a particular target. 

 
Fig. 5. Node type counts. 

 
Fig. 6. Global model loss vs. Communication rounds. 

Fig. 6 shows the comparison of global model loss variation 
of embedded communication rounds in FedAvg and FedProx 
aggregation techniques. The FedAvg is showing more 
oscillations because of the difficulty in having non-IID client 
distributions, implying fluctuating convergence behavior. 
Conversely, FedProx has a smoother loss reduction, confirming 
its capability to stabilize training through the addition of a 
proximal term which curbs divergence concerns. The downward 
patterns in loss per round indicate an improving trend in the 
model and FedProx is performing more reliably. 

Fig. 7 represents the correlation among the estimated and 
measured IC50 values of several patient subgroups (Breast, 
Colon, Leukemia and Lung cancer types). A different color is 
assigned to each subgroup, which enables the clear distinction 
of the performance in the heterogeneous groups of patients. The 
dotted line is the optimal fit where forecasted values would be 
equal to the real ones. The majority of the data points are close 
to this reference line, which means that the predictive model is 
highly accurate when predicting the values of IC50. The fact that 
the points cluster around the diagonal also indicates that the 
model will be applicable to a great range of cancer subgroups as 
opposed to having an affinity towards one type of cancer. 

 
Fig. 7. Predicted vs. Actual IC50 across patient subgroups. 

 
Fig. 8. Dosage recommendation across cancer types. 

Fig. 8 shows the dosage recommendations distribution 
among four types of cancers: Lung, Breast, Colon and 
Leukemia. These dosages will be divided into three dosage 
levels, which would be Low, Medium, and High with blue, 
orange and green color bars respectively. The number of dosage 
recommendations is the highest in the case of lung cancer 
patients with a visible balance in the range of all three dosage 
levels, especially the high and low doses, denoting the varying 
volume of therapeutic needs. The number of patients with breast 
cancer is moderate with the majority relying on lower and 
medium dosages as opposed to high doses. The colon cancer has 
a lower number of patients, and low dose is most frequent, then 
the medium dose and the minimal high dose that implies more 
conservative treatment measures. The lowest number of patients 
is observed in leukemia, as only low dosage recommendations 
are documented, which demonstrates a narrow spectrum of the 
treatment intensity of this type of cancer. This illustration clearly 
communicates the different dosage plans of various types of 
cancers. 
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Fig. 9. Attention Heatmap. 

Fig. 9 introduces an Attention Heatmap of Patient Graph 
Nodes and depicts the strengths of interaction of particular genes 
and drugs in terms of attention weights. The nodes of both axes 
consist of five important genes (TP53, BRCA1, EGFR, KRAS, 
PIK3CA) and three medications (DrugA, DrugB, DrugC). The 
intensity of the colour of each cell shows the weight of attention 
between two nodes which is high in darker colour (deep blue) 
and lower in lighter colour (yellow). The scale on the right of 
the color is used in interpreting the values with 0 (low) and 1 
(high). This heatmap probably stems out of a GNN model run 
on biomedical data, and it is used to determine the important 
interactions between genes and drugs. Interestingly, between 
BRCA1 and DrugC, between TP53 and BRCA1, it can be noted 
that high attention weights are established, which indicates the 
presence of important interactions or regulatory effects. Such 
visualization can help to comprehend the significance of nodes 
and may be used to focus individualized medicine therapy or 
studies. 

 
Fig. 10. Model scalability. 

Fig. 10 illustrates the scaling of FedGraphOnco model with 
the increase in the number of clients who participated in the 
program. The x-axis presents the clients in the report of 2-10 and 
the y axis vectors the Pearson Correlation Coefficient. The 
results show that, there is an upward trend being experienced, 
whereby accuracy commences with 0.83, 2 clients, increases to 
0.84, 4 clients, and then to 0.85, 6-8 clients, and culminates to 

0.86, 10 clients. This trend indicates that FedGraphOnco has the 
advantage of the data diversity and increased volume of several 
clients. The framework is highly accurate, as it is scalable and 
adaptive and effective to use in decentralized healthcare settings. 

 
Fig. 11. SHAP feature importance for top Genes/Drugs. 

Fig. 11 shows the amount of SHAP (SHapley Additive 
exPlanations) values of the top genes and drugs that explain 
model predictions. SHAP values are interpretable in that they 
can indicate the degree of effect of each feature on the output of 
a machine learning model. Then, genetic markers, as well as 
drug-related variables, have been examined in this instance to 
comprehend their comparative significance in forecasting 
results. Among the genetic factors, TP53 is the most important 
feature, which obtains the largest SHAP, which means that it has 
a great impact on model decisions. This is in tandem with 
available biomedical information, as TP53 mutation is usually 
linked with cancer development and reaction to treatment. 
BRCA1 comes next, and it serves to stress the importance of 
genetic predisposition regarding therapeutic efficiency once 
again. The contributions of other genes, including EGFR, KRAS 
and PIK3CA are also significant in nature as they have been 
established to play a role in tumorigenesis and outcomes of 
targeted therapy. There is a high impact on the drug side with 
Drug A showing high impact, almost equal to TP53, showing its 
centrality in treatment prediction. Drug B and Drug C also play 
an important role and it implies that their efficacy is affected or 
interacts with genetic variables. In general, SHAP analysis 
proves that genetic mutations and therapeutic drugs are 
important components of the predictive model, which allows 
personalized medicine using interpretable information. 

A. Performance Metrics 

One of the most important aspects in creating an exact 
machine learning model is analyzing its performance. For 
assessing the performance or quality of the model, various 
metrics are employed, and such metrics are referred to as 
performance metrics or evaluation metrics. 

1) Dosage deviation: Measures the average percentage 

difference between predicted and actual drug dosages. It 

reflects how accurately the model predicts personalized 

dosages, with lower values indicating safer and more precise 

dosing, that is given in Eq. (15): 

𝐷𝑜𝑠𝑎𝑔𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
1

𝑁
∑ |

𝑦𝑖 −𝑦𝑖̂

𝑦𝑖
| × 100𝑛

𝑖=1        (15) 
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where, 𝑦𝑖  means Actual dosage for the 𝑖 𝑡ℎ  patient, 𝑦𝑖̂  is 
Predicted dosage for the 𝑖𝑡ℎ  patient, 𝑁  is Number of dosage 
samples. 

2) Root mean squared error: This is the square root of the 

mean-square differences between dosages that were predicted 

and dosages that were actual. Lower RMSE values mean 

dosages were predicted more accurately, as larger errors 

incurred greater penalties, as given in Eq. (16): 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   (16) 

where, 𝑦𝑖 is the Actual dosage for the 𝑖 𝑡ℎ patient, 𝑦𝑖̂ is the 
Predicted dosage for the 𝑖𝑡ℎ patient, 𝑛 is the Number of dosage 
samples. 

3) Mean absolute error: Measures the average magnitude 

of errors between predicted dosages and actual dosages, 

although directional errors are not considered. Smaller MAE is 

indicative of better prediction accuracy and consistency is 

shown in Eq. (17): 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1        (17) 

where, 𝑦𝑖 is the Actual dosage for the 𝑖 𝑡ℎ patient, 𝑦𝑖̂ means 
Predicted dosage for the 𝑖𝑡ℎ  patient, 𝑛  is Number of dosage 
samples. 

TABLE II.  PERFORMANCE METRICS 

Metric Value 

Dosage Deviation (%) 2.8 

RMSE 2.6 

MAE 1.9 

Table II summarizes the performance of the proposed 
FedGraphOnco model. The variance of the dosage is highly 
reduced to 2.8% which makes it precise and safe in dosing. The 
model indicates a smaller range of errors and reliability with 
RMSE of 2.6 and MAE of 1.9. Such has been its success in 
overcoming its promise to pinpoint specific drug 
recommendations, with the support of anonymity, better than 
traditional ways. FedGraphOnco performance metrics are also 
demonstrated in Fig. 12. 

 
Fig. 12. Performance metrics. 

B. Ablation Study 

A FedGraphOnco ablation study was performed to evaluate 
the role of each individual component of the framework. 
Performance was shown to vary by sequentially eliminating 
federated aggregation, privacy-preserving mechanisms and 
reinforcement learning modules. Findings indicate that all the 
parts play a significant role towards accuracy, convergence, and 
robustness. The full model consistently performed better than all 
the variants, indicating that all the modules are necessary to the 
outcomes of an optimal, privacy-preserving, and reliable drug 
dosage prediction system. 

TABLE III.  ABLATION STUDY RESULTS OF THE FEDGRAPHONCO 

FRAMEWORK 

Model Variant 
Dosage 

Deviation (%) 
RMSE MAE 

Full FedGraphOnco (Proposed) 2.8 2.6 1.9 

w/o Federated Aggregation 4.6 3.9 3.2 

w/o Privacy-Preserving 

Mechanism 

3.9 3.5 2.8 

w/o Reinforcement Learning 

Module 

6.2 5.1 4.3 

Centralized DRL  5.2 4.7 4.1 

Table III shows the results of the ablation study of the 
FedGraphOnco framework. The deletion of an essential element 
like federated aggregation, privacy-preserving structures, or 
reinforcement learning had a substantial impact on performance. 
The full model produced the best deviation, RMSE, and MAE, 
which agree that a complete integration is the method that 
guarantees the maximum precision, stability and performance. 

C. Comparative Performance Analysis 

The effectiveness of FedGraphOnco framework was 
validated by comparing its performance to typical strategies, 
including (DTR) and traditional FL. Based on RMSE and MAE 
as the evaluation measures, the findings showcase the high level 
of predictive precision by the FedGraphOnco as well as the 
lower error rate and stability in the individual dosage 
calculation. 

Table IV and Fig. 13 demonstrate the relative effectiveness 
of various models in the prediction of drug dosage based on 
RMSE and MAE measures. Conventional methods such as LR, 
DNN and DTR have more errors and FL shows moderate 
improvement. All base models are outperformed by the 
suggested FedGraphOnco in its RMSE and MAE results, which 
are the lowest of them all. 

TABLE IV.  COMPARATIVE ANALYSIS 

Method RMSE MAE 

Linear Regression (LR) [16] 8.4 6.7 

Deep Neural Network (DNN) [18] 6.8 5.5 

Decision Tree Regression (DTR) [25] 7.1 5.2 

FL [21] 5.2 4.7 

FedGraphOnco (Proposed Method) 2.6 1.9 
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Fig. 13. Comparative performance of different methods. 

D. Discussion 

The suggested framework of FedGraphOnco helps to 
overcome the key constraints of personalized cancer treatment, 
including modeling complex relationships between gene and 
drugs without centralized information and without 
reinforcement learning. These interactions are subtle and can be 
missed by linear or tree-based regressors, but they are captured 
by the model by building biologically meaningful graphs out of 
genomic features. The GDSC dataset allows the capturing of 
deep coverage of drug sensitivity in a variety of cancer types, 
but subtype bias (e.g., lung cancer bias) may appear. The model 
prediction is reflected by performance measures (RMSE of 2.6, 
MAE of 1.9, and dosage deviation of 2.8). The GNN is always 
able to produce lower error rates and high correlation in 
comparison with the baseline models, such as Linear Regression 
and Decision Tree Regression. Integration of SHAP and 
attention mechanisms offers interpretation, which enables 
clinicians to comprehend the genomic factors that contribute to 
dose prediction. To estimate the impact of the algorithm 
parameters, the sensitivity analysis was performed with the key 
hyperparameters varied in the framework of the proposed 
FedGraphOnco. The findings obtained found that a learning rate 
of 0.001 was the most stable learned rate, whereas higher rates 
produced oscillations and decreased accuracy. Enhancing the 
number of federated communication rounds enhanced model 
synchronization at the cost of more computation. A batch size of 
32 gave the optimal convergence rate and generalization. The 
amount of graph convolution layers had a substantial influence 
on representation learning; three layers represented perfect 
feature relations, and those that were deeper resulted in 
overfitting. A large value of FedProx (0.05) stabilized training 
in the non-IID case, and a more moderate privacy budget ( 0.5) 
kept both training accuracy high and guaranteed difference 
privacy. In general, the parameter tuning has shown that 
balanced settings provide the most effective performance in the 
terms of accuracy (RMSE = 2.6), robustness and preserving the 
privacy. The high resilience of the model to noises and non-IID 
information is also a strong benefit as it is essential to be 
deployed to the real world. Nevertheless, scalability to 
institutions and tuning of dosage to adapt with time might be 
necessary in the future because of the lack of federated or 
reinforcement learning. However, the existing GNN-based 

strategy provides an interesting balance of accuracy, 
interpretability, and simplicity. 

VI. CONCLUSION AND FUTURE WORKS 

This study introduces a FedGraphOnco model of a 
personalized cancer drug dosage prediction based on genomic 
data of the GDSC dataset. The system incorporates complexity 
in gene-drug interactions by modeling patients as biological 
networks and provides dosage advice at the level of high 
accuracy and understanding. The model has been implemented 
in Python with PyTorch Geometric with high performance 
metrics and sensitivity to data noise and heterogeneity. The 
simplicity of the framework also makes it computationally 
efficient and less challenging to implement in clinical 
environments. Its influence on clinical trust through the 
interpretation of SHAP and attention increases the chances of 
adoption in precision oncology, which is a crucial component. 
The proposed framework provides personalized oncology with 
the help of patient-specific GNNs to predict a complex 
interaction between genes and drugs using multi-omics data. It 
gives interpretable predictions by use of attention mechanisms 
and SHAP values, making it feasible to give accurate, 
personalized drug dosing, and FL that preserves privacy makes 
it possible to collaborate across institutions. Scientifically, it 
reveals important genomic determinants of drug response; 
clinically, it increases precision oncology and clinician 
confidence; practically, it can be deployed scalably in 
decentralized health care environments. Although the 
FedGraphOnco framework has performed well in the proposed 
study, this study is also limited in a number of ways. First, it uses 
only GDSC dataset and this can be limited to generalization to 
other datasets or real-life patient populations. Second, the data 
used in the model is preclinical and the simulated federated 
setting could limit the applicability of the model to clinical 
settings. Lastly, simplifications in the graph modeling and 
federated implementation, such as fixed interactions between 
genes and drugs and a small number of simulated institutions, 
are not necessarily the simplified view of the complexity of 
cancer biology and clinical processes today. The next generation 
of work will be to confirm the framework using more datasets, 
including longitudinal patient data, and augment graph and 
federated modeling to increase clinical usefulness. 

Further research will involve increasing the number of 
balanced cancer subtypes in the dataset and incorporation of 
multi-drug interaction modeling. Prediction of dosages could be 
further enhanced by adding real time physiology and 
longitudinal patient data. To support cross-institutional learning 
without privacy breaches, future implementations can consider 
federated GNNs. Besides, the ability to improve model 
explainability by visualizing graph attention and incorporating 
clinician feedback loops will also have a high priority. Finally, 
this FedGraphOnco provides the foundations towards scalable, 
interpretable, and effective AI-directed cancer treatment 
methods, and closes the gap between the complexity of genomes 
and clinical decision-making. 
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