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Abstract—Personalized cancer treatment remains challenging
due to the complexity of genomic data and variability in drug
responses. Previous federated learning (FL) approaches handled
distributed patient data to preserve privacy but treated genomic
and pharmacological features as flat, tabular inputs, limiting the
ability to capture gene—drug interactions. In this study, we propose
a Graph Neural Network (GNN)-based framework,
FedGraphOnco, which models patient-specific gene—drug
interactions as structured graphs, enabling the network to learn
complex relational patterns that are difficult or impractical for
FL-only models. Attention mechanisms and SHapley Additive
exPlanations (SHAP) are incorporated to provide interpretable
insights into important genes, pathways, and drug interactions,
increasing clinical trust. Using the GDSC dataset with gene
expression, mutation status, copy number variation, and 1C50
drug responses, the model demonstrates high predictive accuracy
(Pearson correlation = 0.85, RMSE = 2.6, MAE = 1.9, dosage
deviation = 2.8%), robustness to noise and non-IID data, and
adaptive, personalized dosage recommendations. The approach
highlights the advantages of combining privacy-preserving FL,
GNNs, multi-omics data integration, explainability, and adaptive
dosing, offering a scalable and interpretable solution for precision
oncology.
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I.  INTRODUCTION

This system uses Al-based deep learning to customize
dosages of cancer drugs while also allowing the patient data to
remain in distributed healthcare systems to maintain their
privacy by not storing private information in one isolated
location. The use of artificial intelligence in organizing and
initiating personalized oncology trials will have a positive

impact on current challenges in the efficacious introduction of
newdrugs into oncology practice [1],[2],[3]. Using Altogether
with real-world data in precision medicine will also allow drug
development to target cancer cells that will be conducive to
complete and rapid drug development [4]. Precision medicine is
changing healthcare by giving personalized diagnostics and
treatments based on a patient’s DNA, living conditions and
behaviors [5]. The movement is aided by computer-based
science and methods such as machine learning and
bioinformatics which let us understand and solve drug response
and personalized medicine issues. Lung cancer remains one of
the leading causes of cancer-related deaths across the globe. It is
a heterogeneous disease with a complex genetic evolution [6],
[7]. Conventional treatment strategies often fail to improve
outcomes due to the variability of patients’ molecular profiles
and responses. Given this variability, personalized medicine
focusing on treatments based on individual and patient
population genetic and molecular characteristics has gained
widespreadattention[8],[9]. Advancesin genomictechnologies
and biomarker identification are supportingthe effort to develop
more effective, tailored treatment regimens, improve patient
treatment outcomes, and limit side effects [10]. Personalized
cancer treatment provides patient-specific therapies that
consider the genetic, molecular, and clinical features of the
patient. Although some significant strides have been made in the
treatment of cancer, the identification of the optimal therapeutic
regimens for the patient remains challenging [11]. Many orally
delivered anti-cancer medications, particularly the kinase
inhibitorsare typicallydosedat a standard fixed dose which may
not be appropriate for all patients, potentially leading to adverse
effects if the dose is too high, or therapeutic failure if the dose is
too low [12]. Lung cancer continues to be a principal cause of
cancer-related deaths globally but despite its heterogenicity and
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biological diversity, patients experience marked variations in
prognosis and treatment. Conventional prognostic models often
do not account for this complexity, leading to increased interest
in artificial intelligence as a personalized prognostic tool [13].
This study presents FedGraphOnco, a federated GNN that
represents genomic and pharmacological data as biological
graphs to predict the dosage of cancer drugs. It provides privacy
guarantees based on multi-layer security, handles non-IID
distributions with FedProx, and incorporates SHAP- and
attention-based explainability to provide accurate, secure, and
interpretable precision in oncology.

A. Research Motivation

The high pace of accuracy in oncology development
underscores the necessity of computational models that have the
capability of prescribing patient-specific dosages of drugs using
various genomic and pharmacological data. Nevertheless,
centralized learning methods have critical challenges such as
patient privacy, non-homogenous data distribution across
facilities, and the inability to interpret predictions. The current
reinforcement learning models or the use of vectors do not
always represent the complex network-based interactions of
cancer biology. It is againstthese gaps that this study is driven
to come up with a federated framework which is graph-based
and preserves privacy, is robust to non-IID data, and is offerable
to make a dosage recommendation that is interpretable to
advance safe and reliable personalized cancer treatment.

B. Significance of the Study

Personalized oncology is developed based on a patient-
specific GNN model to predict complex interactions between
genes and drugs with the help of multi-omics data.
Scientifically, it offers new information on the genomic factors
of drug response and emphasizes important molecular
characteristics that modulate the results of treatment. On a
clinical level, it aids in precision oncology, producing
interpretable and individualized dosage proposals, bolstering
clinicians, and minimizing the risks of adverse drugs. In
practice, the privacy-conserving FL method allows
collaborating with multiple institutions safely, enhances the
generalizability of the model, and can be applied in real life in
decentralized healthcare environments. In general, the study has
shown that it is possible to have a scalable, interpretable, and
accurate Al-driven adaptive cancer drug dosing.

C. Recent Innovation and Challenges

The recent developments in precision medicine contain
artificial intelligence in driving drug repurposing, FL
architecture to plan radiation, and multi-omics datasets and
treatmentto optimize personalized anticancer means [14]. The
discovery of new biomarkers is easier and allowing tailored
therapies to have more accurate and precise patient-outcomes.
Yet, a considerable amount of issues still need to be addressed,
including the heterogeneity of data across institutions, the
inaccessibility of large-scale validation of clinical data, and the
unreliability of the Al models’ interpretation [15]. As well, the
ability to reconcile high model performance with demanding
privacy requirements on patient data remains an important
obstacle to broader clinical usage.
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D. Key Contribution

e FedGraphOnco Framework for Drug Dosage Prediction:
Proposed a novel Federated Learning-enhanced GNN
architecture that enables decentralized, privacy-
preserving prediction of cancer drug dosages using
patient-specific biological graphs.

e Privacy-Preserving  Multi-Institutional ~ Learning
Enabled collaborative learning across simulated
healthcare nodes without sharing raw patient data, using
federated aggregation mechanisms to preserve privacy
and support scalability.

e Patient-specific graphs integrate multi-omics features
(gene expression, mutation, CNV) with drug
characteristics, capturing biologically meaningful gene—
gene, drug—target, and pathway interactions.

e Federated aggregation uses FedProx with encrypted and
noise-perturbed updates to handle non-IID genomic
distributions, ensuring privacy-preserving and stable
convergence across institutions.

e Attention mechanism identifies key genes and gene—
drug interactions, providing clinically interpretable
insights that guide personalized and accurate dosage
predictions.

E. Research Questions

e How can a privacy-preserving federated GNN be
designed to collaboratively predict cancer drug response
using distributed genomic data without sharing sensitive
patient information?

e To what extent can the integration of GNNs, federated
learning, and privacy-enhancing mechanisms improve
the accuracy, robustness, and scalability of cancer drug
personalization compared to centralized approaches?

e How can explainable Al techniques, such as attention
mechanisms and SHAP-based feature interpretation,
enhance the transparency and clinical interpretability of
the proposed federated model in real-world oncology
applications?

F. Rest of the Section

The following sections of this study are structured as
follows: Section II provides an overview of existing literature.
Section III outlines the problem addressed in this work and
outlines the problem statement underlying the proposed
methodology. Section IV discusses the effectiveness of the
methodology. The results and discussion are presented in
Section V.Finally, Section VIconcludesand summarizes future
work.

II. RELATED WORKS

Ahmed et al. [16] aim to achieve the goals of personalized
cancer therapy more effectively by predicting how a patient will
respond to drugs using artificial intelligence Al-driven models
based on the patient's unique genetic profile. The study
introduces anoveldatafederationtechniqueto linkand combine
gene expression, gene mutations, and drug response,
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representing each cell line and allowing for better quality and a
larger amount of data. While studying the drug response, two
ML models such as SVM and LR using PCA for feature
reduction were derived along with a newly designed deep
learning approach. Using the data federation approach,
predictions were improved with a markedly 25% reduction in
prediction error. The Enhanced Deep-DR model produced
superior Pearson correlation with recent state-of-the-art models,
and the generated Al models supporting a safer and more
effective drug response prediction across various drugs in a
generalized way. This presented approach also responds to the
challenges of data scarcity and heterogeneity in personalized
medicine.

Lococoetal. [17] proposed to examine how Al, particularly
ML and DL, which improve personalized prognostic evaluation
in non-small-cell lung cancer, including staging, treatment
response, and recurrence assignment. It outlines a variety of Al
methods that assess integrated datasets, clinical, imaging, and
molecular, to generate personalized survival and progression
predictions based on specific datasets like radiological scans,
genomic profiles, and patient medical history. It examines some
of the challenges, including data heterogeneity, model
interpretability, and generalizability. The benefits of Al will
include more accurate staging, individualized therapies, and
providing better outcome predictions, hopefully improving the
treatment management of NSCLC.

S Herraiz-Gil etal. [ 18] propose the objective of applying Al
to drug discovery to mitigate the cost and time aspects, as well
as the possibility that the clinical trials may fail, which is even
more prevalent for complex diseases like cancer. It also
examines techniques that are Al-derived, such as machine
learning, deep learning, and evolutionary algorithms. In
practice, the Alapplications analyze biomedical, molecular, and
clinical datasets in evaluating or predicting molecular
interactions between drug targets and subsequently optimizing
drug candidates. Incorporating Al will also help in the
challenges with safety, efficacy, and heterogeneity. The overall
advantages will be decreased development time and cost,
improved precision, and supporting tailored medicine.

Jian et al. [19] proposed this research to propagate
personalized medication by the use of pharmaco metabolomics,
an area that is very promising, which takes genetic and
environmental factors together with pharmacological and
biological pathways to predict the effectiveness of drugs in
individuals. Here, employed the use of literature review and
pharmacokinetics analysis with the collection of metabolomics
data. The datasets are a collection of studies, published and
indexed in PubMed and Web of Science between 2006 and
2023. This approach avoids the limitations of previous methods,
such as pharmacogenomics and TDM, which provide a holistic
view. Benefits include and better prediction of drug metabolism,
identification of biomarkers and improved precision in drug
administration.

Elhaie et al. [20] explored the application of machine
learning techniques to improve precision in radiation dose
measurement and prediction across medical and technical
domains. The study addressed the limitations of traditional
methods by utilizing advanced approaches such as
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classification, regression, clustering, time series forecasting, and
generative modeling. These methods demonstrated significant
benefits in taskslike radiation source detection, continuous dose
monitoring, organ dose estimation, and predictive modeling,
leading to improved accuracy and efficiency. The findings
highlighted the potential for machine learing to optimize dose
management in medical treatments, nuclear facilities, and
emergency scenarios, supporting more personalized and real-
time radiation monitoring and protection.

Zhangetal. [21] suggested an FL discovery as a method of
knowledge-based planning in radiation therapy to overcome the
problem of inter-institutional data sharing. This approach
employed a gradient-boosting function with Federated
Averagingon ten distributed subsets of prostate 45 Gy plansand
demonstrated a similar prediction accuracy (MAE ~4.7%) as a
centralized one (~4.4%) and improved significantly over
individual site models (~6.5%). Results were consistent with
different numbers ofsites and imbalanced data factors. Although
the benefits of the study demonstrated a privacy-preserving
advantage, along with high-quality predictivity, it was also
limited in scope to one disease location and more or less a small
number of data to perform its task, thus would require multi-
institutional validation of predictions.

Patietal. [22] suggested a (FL) systembased on boundaries-
level rare cancer, which can collect data at scale using 71
institutions and prevent the exchange of sensitive MRI
information. The research combined FL and up-to-date deep
learning segmentationtechnique to jointly train modelson 6,314
patients and 25,256 scans. The findings demonstrated that the
accuracy of FL-trained models is similarto or higher than that
of centrally trained models, and FL-learned models maintain
high accuracy and privacy security on data, along with
robustness to overcome the heterogeneity of data sources. The
two main pitfalls observed were the issue of complexity of
standardization between institutions and limited interpretability
that creates dilemmas in clinical translation and large-scale
deployment.

Caoectal.[23] havereleased FedBCa,a multicentric, bladder
cancer MRI dataset with 275 3D T2-weighted MRI scans
obtained in four hospitals and expert-labeled tumor
segmentation and staging. The authors benchmarked few FL
algorithms to show its usefulness such as FedAvg, FedProx,
FedBN, and SiloBN regarding diagnostic and segmentations
where the benchmarking was doneusinga controlled location of
many GPUs in a localization like localized supervised / semi-
supervised learning task. The obtained results showed higher
generalizability of federated models than single-site training to
be promising on accuracy and to guarantee cross-institution
privacy.

III. PROBLEM STATEMENT

Among the significant concermns related to the efficient
coordination of patient-specific genomic and clinical data
between decentralized healthcare networks, substantial deficits
still remain in the realm of Al-based oncology. As an example,
[16] emphasize the heterogeneity of data and its scarcity as
constraints to predictive models of drug response
generalizability. Likewise, Zhang et al. [21] highlights the
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challenge of maintaining privacy, when training a multi-
institutional model, limitingthe scalability of knowledge-based
treatment planning. The application of individual dosing of
cancer drugs is still problematic because of the heterogeneity of
the data, privacy factors and constraints of the current Al
techniques. Real cancer data, e.g. GDSC, is highly
heterogeneous: there are many more samples of lung cancer
than of leukemia, genes, mutations, and copy number variation
(CNV) are widely differentiated across patient samples. This
non-identically distributed (non-IID) data makes it difficult to
generalize a model across institutions. Moreover, privacy laws
(e.g. HIPAA, GDPR) do not allow sharing of genomic,
pharmacological and clinical data directly, so centralized
training on models across multiple institutions is not possible,
and not all training samples are easily available. Earlier Al and
FL methods either use a simple tabular design and lack any
sophisticated representation of non-IID distributions and
combined gene-drug interactions, or utilize more advanced
versions that can fail to attain the predictive accuracy and
interpretability of the others. To combat such gaps, the
proposed framework will merge patient-specific graph-
modeling, attention-based interpretability, and FedProx
aggregation to allow robust, privacy-preserving, and clinically
meaningful cancer drug dosing predictions.

IV. PRIVACY-PRESERVING FEDERATED GNN APPROACH
FOR CANCER DRUG PERSONALIZATION

The FedGraphOnco framework proposed is based on FL
implemented with GNNs, whichprovides personalized, privacy-
aware, and interpretable predictions of cancer drug dosage. In
comparisonwith the traditional reinforcingmethods oflearning,
FedGraphOnco takes into account the network-based
characteristics of cancer biology by modeling genomic and
pharmacological data in the form of structured graphs. GDSC
data contains values of drug responses (IC50), gene expression,
somatic mutations, copy number changes, and drug
characteristics. Missing-value imputation, feature encoding,
correlation filtering, variance thresholding, Z-score
normalization, and IC50 log transformation are used in data
preprocessing. After preprocessing, every sample of patients is
turned into a graph, with the nodesbeing genes and drugs, the
node properties being the molecular features, and the edges
being the gene-gene or drug-target interactions. GNNs are
trained in local institutions and generate graph embeddings that
predict doses through regression layers. Gradients are then
clipped, encrypted and perturbed with differential privacy to
transmit sensitive data. FedProx-based aggregationis doneat the
central server, which is robust to non-IID distribution of clients.
The distributed international model is reallocated and locally
optimized during repeated communication rounds until
convergence. Lastly, explainability is reached by SHAP values
and attention scores, with emphasis made on important genes
and drug interactions that provide recommendations. This
ensures adjustive, safe,andclinically interpretive dosage results.
The proposed FedGraphOnco framework depicts this well-
structured workflow, which is illustrated in Fig. 1.
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Fig. 1. Workflow for privacy-preserving cancer drug personalization.

A. Data Collection

The study utilizes the Genomics of Drug Sensitivity in
Cancer (GDSC) dataset, which is a large-scale
pharmacogenomic database constructed in partnership between
the Wellcome Sanger Institute and the Massachusetts General
Hospital Cancer Center [24]. The reason why GDSC was chosen
is the large-scale, well-curated multi-omics data and wide-
ranged drug response profiles available in the data, which
proved to be extremely appropriate in modeling personalized
cancer drugresponses. The data setcomprises of more than 1000
genetically characterized human cancer cell lines and drug
sensitivity values in the form of IC50 againstabout 250 to 300
anticancer drugs. Genomic characteristics consist of the levels
of gene expression, their somatic mutation status, and copy
number variations (CNVs) that enable the incorporation of
multi-omics data into patient-specific graphs. The data is
representative of different types of cancer, such as Lung, Breast,
Colon, and Leukemia. The GDSC information can be accessed
publicly on the GDSC site and Kaggle to be data-mined and is
thus transparent and reproducible. This is the best option to
develop and test the proposed FedGraphOnco framework on
predicting the dose of different drugs personally and without
invasion of privacy because of its extensive architecture and
well-developed feature set.

B. Data Preprocessing

1) Data cleaning: Handling missing or corrupted values in
genomic data is essential to maintain dataset integrity and
model accuracy. Numerical missing values are imputed with
statistical methods while categorical missing values are filled
using the most frequent category or biological domain
knowledge, that is given in Eq. (1),

(imp) _ 1N
X =g L= M
where, xi(mlp) means imputed value, N represents numberof

observed values, x; means observed data points.

2) Data cleaning: Converts categorical genomic features
such as mutation status or cancer type into numerical forms
usable by machine learning algorithms. Mutation statuses are
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encoded as binary variables while other categorical features are
one-hot encoded to avoid false ordinal implications, that is
represented in Eq. (2),

M, = {1, mutated

0, wild — type )

One-hotencoding for a categorical feature with k categories,
which is represented in Eq. (3),

1!

3) Feature selection: Reduces dimensionality and removes
noise by filtering out redundant or non-informative genomic
features, which improves model efficiency and accuracy.

4) Correlation filtering is given in Eq. (4):

|corr(x;,x)| > pen (4)

If true, one of the features x;, x; is dropped.

if sample i belongs to category j
otherwise

3)

Variance thresholding is given in Eq. (5),
of <e ©)

5) Normalization: Standardizes feature scales to enhance
model convergence and performance. Both gene expression
features and drug response targets are normalized. Z-score
standardization is represented in Eq. (6):

2, =2t (6)

where, z; means the standardized value of the original
feature value x;, x; means the original value of the feature for

the i*" datapoint, u isthe mean ofthe feature across allsamples
in the dataset, o is the standard deviation of the feature across

all samples.

Log-transform of IC50 values to stabilize variance is given
in Eq. (7):

y' =log(y) (7

where, y is the original target variable, log () is the natural
logarithm of the IC50 value, y’ is transformed target variable.

C. Graph Construction
Patient-specific biological graphs are constructed as a result
of preprocessing to provide a structured representation of the

molecular and pharmacological information. Each graph is
defined as Eq. (8):

G={,EX) ®)

where, V denotes the setof nodes, E is the set of edges, and
X denotes the node feature matrix.

Nodes (V) consist of genes and drugs. Gene expression
value, binary mutation status, and numerical copy number
variation (CNV) is annotated on each gene node. The chemical
descriptors or pathway membership information are enriched in
drug nodes. The node feature (X) is represented as Eq. (9):

X =[x, Xp, eer ., X, ] € R?XE 9)

Vol. 16, No. 10, 2025

where, n is the number of nodes and d denotes the feature
dimension per node.

Edges (E) capture interactions based on biological
databases: =~ Gene-gene  functional interactions  of
STRING/Reactome, drug-target interactions of DrugBank, and
pathway membership. Local GNN encoders process information
about neighborhoods, generating representations of graphs as
shown in Eq. (10):

he = GNNy(V,E,X), 9= gs(he) (10)

where, h; is the embedding for graph G, and y represents
the dose-recommended or predicted log-IC50 drug response.
This is a graph representation that allows the incorporation of
multi-omics and pharmacological background to learning.

D. Local GNN Training

A GNN model is locally trained at every participating
institution using the built patient drug graphs. The goal is to
learn embeddings that can represent both the interactions
between molecules and drug responses with respect to privacy
of patient-level information. For a given client k expression of
the forward propagation of the local GNN is shown in Eq. (11):

hg, = GNNg, (Gi), Vi = 9g, (hs,) an

where, hg, is the leamned graph encoding of the graph. Gy,
8 denotes local NN parameters, and g, is a regression layer
predicting the value of drug response V.

Node embeddings are trained in a layer-wise manner; they
are updated with aggregated neighborhood information as
shown in Eq. (12):

K = o(w® . AGGRP, P lue N} (12)

where, hi(,l) is the node presentation of node vat layer [, N
(v) denotesits neighbors, W (1) is a training weight matrix, and
o is a non-linear activation.

The model is trained on the mean squared error (MSE)
between the actual and predicted log-transformed IC50, as
shown in Eq. (13):

1 -
L= -850y (13)
where, n, is the number of samples at client k.”

E. Privacy-Preserving Mechanisms

The FedGraphOnco framework highly focuses on the
protection of patient information when training is being carried
out through collaboration. As the system uses three extremely
sensitive types ofdata: genomicprofiles (gene expression levels,
somatic mutation status and copy number variations),
pharmacological responses (drug sensitivity results like IC50
values), and clinical metadata (cancer type, tissue of origin and
identifiers), then strict privacy control mechanisms are
necessary. These types of data cannot only be personally
identified but also have possible ethical, clinical, and
institutional risks in case of exposure.

To counter these risks, raw patient data are always stored in
each participating institution. Rather than transferring direct
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genomic or clinical histories, institutions only transfer model
parameters based on local training. Three-layers of protection
are used prior to transmission. Gradient clipping makes sure that
updates are bounded thus avoiding the effect of extreme values
and minimizing the threat of indirect information leakage.
Differential privacy, to give the parameter updates additional
privacy, introduces controllable random noise to them. This
methodology makes sure that the contributions of individual
patients are not recognizable in an aggregate model, even in
adversarial analysis. Lastly, homomorphic encryption enhances
the process of encryption by permitting the use of encrypted
updates that can be transmitted and combined without having to
be decrypted by the server.

Combined, these approaches will ensure that FL can be
effective and, at the same time, that privacy is preserved.
FedGraphOnco offers a trusted and ethically sound modeling
framework that we are able to offer by ensuring the protection
of genomic, pharmacological, and clinical data throughout the
pipeline, and balances the model development with the utmost
patient confidentiality.

Vol. 16, No. 10, 2025

F. Federated Aggregation

Federatedaggregation within the Fed GraphOnco framework
is important in the combination of knowledge in more than one
healthcare institutions without compromising on the
confidentiality of the local datasets. Raw genomic,
pharmacological, or clinical data is not shared by institutions
after eachround of local training. They instead send encrypted
model parameters based on their locally trained GNNs. These
parameters learn the patterns based on institutional data without
revealing the sensitive level of patients. To manage the non-IID
of'the genomic and clinical distributions across the institutions,
FedGraphOnco uses a proximal-based aggregation (FedProx) in
the central server, as shown in Eq. (14):

Obtobar = Th=1"E (O — u(Bf — Ofiopa)) ~ (14)

where, 65,4 is the global model at communication round

t, ny is thenumber of samples at client k, n=Y X_, n, represents
the number of samples across all clients. The visual
representation is shown in Fig. 2.

K
Aggregation Z ﬂ 0t < Update

Ll n k <

k=1

Server

Initialization

For the first round
0,

Clients

Fig. 2.

All the participating sites provide their encrypted updates to
the central server, which carries out aggregation to build a better
global model. FedGraphOnco uses a proximal-based
aggregation approach as opposed to simple averaging, which
may be volatile in situations where the data distributions in
various institutions may differ. The method guarantees that
information of various hospitals is unified, even though the
genomic and clinical nature of their patients might be quite
diverse. The framework counters the problems associated with
non-identically distributed (non-1ID) datasets that are prevalent

Federated aggregation process in the FedGraphOnco framework.

in real-world healthcare settings by using stabilization
mechanisms.

The global model is once again re-distributed back to the
clients once it has been aggregated. The model is adjusted to
each institution on their local data enabling them to personalize
it but at the same time enjoy the global knowledge. This process
is repeated in several communication rounds consisting of local
training, secure transmission of parameters, aggregation and
redistribution until convergence.
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By this federated consolidation, Fed GraphOnco will balance
the global collaboration with local specialization. The model
gets stronger after every cycle, and it allows the correct,
adaptive, and privacy-sensitive dosage proposal of cancer drugs
in decentralized healthcare networks.

G. Explainability Layer

The lack of interpretability is also a significant issue when it
comes to the application of artificial intelligence to oncology, as
it may inhibit clinical trust and adoption. To overcome this, the
FedGraphOnco framework will have an explainability layer,
which will offer a transparent view of the dosage
recommendations. The model uses SHapley Additive
exPlanations (SHAP) and attention processes in the GNN to
indicate major genomic and pharmacological variables in
predictions.

SHAP values are a mathematical indicator of the amount of
contribution made by each input feature (for example, a single
gene mutation or an expression level) to the overall prediction.
This allows clinicians to determine which molecular changes
contributed the most towards the establishment of a
recommended drug dose. Simultaneously, the attention system
of graph layers determines the relative significance of edges and
nodes in patient-drug graphs. The model gives greater attention
weights to important gene-gene/drug-target interactions, which
is biologically relevant, and therefore, highlights biologically
important pathways.

The combination of both complementary methods will make
sure that the prediction of doses will not only be accurate but
also have a clinical interpretation. Oncologists will be able to
check that the reasoning of the model is consistent with the
known facts in medicine and become more confident in its
suggestions. Therefore, the explainability layer can be viewed as
the intermediary between higher-order computational modeling
and feasibility in personalized cancer treatment.

H. Deployment

After a series of communication rounds during the federated
training process, the FedGraphOnco global model converges,
which proves its stability and strong predictive performance
using heterogeneous clinical data. The resulting aggregated
model is then re-distilled to individual participating institutions,
and fine-tuning on site-specific genomic and clinical data is then
done. This makes sure that although the model will use global
knowledge, it will also be tailored to the special features of the
hospital population of patients.

The implemented model has some essential benefits. First, it
offers predictive and patient-adjusted drugdosage, whichallows
precision oncology by customizing treatment in response to
personal molecularprofiles andanticipated responses to specific
drugs. Second, it ensures a high level of privacy, since the
sensitive genomic, pharmacological, and clinical data is kept
locally and only encrypted and noise-perturbed updates are
exchanged during training. Third, it provides clinically
interpretable results in the form of SHAP-based explanations
and attention mechanisms of the GNN and identifies impactful
genes, pathways and drug-target interaction that affect dosage
decision making.

Vol. 16, No. 10, 2025

The FedGraphOnco implementation offers a combination of
adaptability, privacy, and interpretability to provide that more
advanced Al-based drug personalization can be safely and
successfully embedded into the operation of actual clinical
oncology settings, contributing to the evidence-based decision-
making and preserving the confidentiality of the patient.

Algorithm 1: FedGraphOnco—Privacy-Preserving Adaptive
Cancer Drug Dosing

Input: Local datasets Dy, for each client ke{1,...,K}
Learning rate o, number of communication rounds R

Output: Personalized GNN-based drug dosing model at each
client

Begin
Initialize global model 8_global
Forroundr=1 to R do
For each client k in parallel do
Preprocess Dk:
- Data cleaning
- Feature encoding
- Feature selection
- Normalization
Initialize local model 8_k « 6_global
Construct patient-specific graphs Gk = (V, E,X)
Initialize local model 6k « 6global
Train local GNN:
Forward propagation: hGk = GNNOk (V,E, X)
Predict drug response: y*k = gk (hGk)\hat{y}_k
Compute loss: Lk = InkYi(y"i —yi)2L_k
Update 0k via backpropagation
Apply privacy-preserving mechanisms:
Gradient clipping
Differential privacy noise
Homomorphic encryption of model updates
Send encrypted Ok to central server
Server aggregation:
Check convergence; if met, break
Else
Send 6_global back to all clients
End If
End For
For each client k do
Fine-tune 6_global on Dk

Deploy personalized policy m8_k for adaptive cancer drug
dosing

End For
End

FedGraphOnco algorithm (see Algorithm 1) is used to do
privacy-preserving, adaptive dosing of cancer drugs based on a
FL system with GNNs. Every involved institution preprocesses
local genomic, pharmacological, and clinical data, builds
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patient-specific graphs,and fits alocal GNN to make predictions
of the log-transformed IC50 drug reactions. Privacy is ensured
by gradient clipping, differential privacy, and homomorphic
encryption and sending the model updates to the central device.
To deal with non-IID distributions, the server uses
FederatedProx, which leads to the creation of a globalmodel that
isredistributed to clients. Lastly, the global model is customized
to fit each client with SHAP and attention mechanisms offering
access to the interpretation of clinical decision-making.

V. RESULTS AND DISCUSSION

The results of the application FedGraphOnco framework are
given, with its performance being emphasized in different
experimental conditions. This section looks at parameters of
simulation, preprocessing effect, model behavior, scalability and
interpretability. Besides, it addresses the issue of performance
evaluation, ablation studies, and comparative analysis to
confirmthe strength and effectiveness of the proposed approach.
The simulation parameter is shown in Table 1.

TABLEI. SIMULATION PARAMETER AND HARDWARE SETUP
Parameter Value

Dataset GDSC (Genomics of Drug Sensitivity in
Cancer)

Local Training Epochs 10

Number of Drugs ~250-300

Graph Nodes Genes, Drugs

Node Features Expression,  Mutation, CNV, Drug
descriptors

Edge Sources STRING/Reactome (gene-gene), DrugBank
(drug-target)

Graph Size 2000-5000 nodes per patient graph

Optimizer Adam (learning rate =0.001)

Batch Size 32-64

Local Epochs per Round 5-10

Clients 5-10 simulated institutions

Communication Rounds 50-100

Aggregation Method FedProx (u=0.01)

Data Distribution Non-IID

Encryption Homomorphic encryption

Interpretability SHAP values, Attention weights

Software & Hardware | Python, Intel Core i7 Processor, 16 GB
Setup RAM, NVIDIA RTX 3060 GPU, Ubuntu
20.04 OS

Fig. 3 shows the effect of preprocessing methods on gene
expression and IC50 values. The first panel on the left hand side
is entitled Gene Expression Normalization Effect, which
measures the gene expression levels pre and post normalization.
The raw data has initial values that are widely distributed with
high variability and huge outliers, which denotes the lack of
scales consistency across samples. Upon normalization, the
values are concentrated around zero and it can be argued that
normalization is effective in bringing variability to a minimum
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and making the data comparable among genes and samples. The
right panel with the title of IC50 Transformation Effect shows
the distribution of the values of IC50 before and after
transformation.

Gene Expression Normalization Effect IC50 Transformation Effect

o

co
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80

60

61
40 [J 44
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24

GeneExpr Before GeneExpr After IC50 Before IC50 After

Fig.3. Normalization and transformation effects on gene expression and

1C50 values.
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Fig. 4. Cancer type distribution.

Fig. 4 shows the sample distribution of four significant types
of cancer: Lung, Breast, Colon, and Leukemia. These include
Lung cancer, with the biggest representation of about 120
samples, and will dominate the data. Breast cancer comes
second with around 80 samples after which Colon cancer has
nearly 60. Leukemia has the fewest representation with a
contribution of approximately 40 samples. Such uneven
distribution can be seen as the difference in the composition of
the datasets and show the imbalance between the categories of
cancer. This imbalance may affect the workings of predictive
models in that predictive models become biased towards the
type of cancer with bigger sample size like Lung cancer,
whereas smaller types like Leukemia are underrepresented.

Fig. 5 shows the share of the types of nodes in the graph that
have been created, but with emphasis on the relative number of
genes and drugs. The findings show that gene nodes are the
dominant nodes in the graph with a total of 120 nodes, since
there are only 30 drug nodes. This is not surprising, since the
number of genes generally is much higher in comparison with
therapeutic compounds in biological networks. The increased
number of gene nodes highlights the importance of genetic
interaction in defining the structure and complexity of the graph,
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whereas the drug node is a significant target of intervention that
has a connection to a particular target.

Node Type Counts

Count

Drug
Node Type

Fig. 5. Node type counts.

Global Model Loss vs Communication Rounds

104

o
@

Global Model Loss
°
S

o
S

0.2 4

0.0 4

Communication Rounds

Fig. 6. Global model loss vs. Communication rounds.

Fig. 6 shows the comparison of global model loss variation
of embedded communication rounds in FedAvg and FedProx
aggregation techniques. The FedAvg is showing more
oscillations because of the difficulty in having non-IID client
distributions, implying fluctuating convergence behavior.
Conversely, FedProx has a smoother loss reduction, confirming
its capability to stabilize training through the addition of a
proximal term which curbs divergence concerns. The downward
pattemns in loss per round indicate an improving trend in the
model and FedProx is performing more reliably.

Fig. 7 represents the correlation among the estimated and
measured IC50 values of several patient subgroups (Breast,
Colon, Leukemiaand Lung cancer types). A different color is
assigned to each subgroup, which enables the clear distinction
of the performance in the heterogeneous groups of patients. The
dotted line is the optimal fit where forecasted values would be
equal to the real ones. The majority of the data points are close
to this reference line, which means that the predictive model is
highly accurate whenpredictingthe values of IC50. The factthat
the points cluster around the diagonal also indicates that the
model will be applicable to a great range of cancer subgroups as
opposed to having an affinity towards one type of cancer.
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Predicted vs Actual IC50 Across Patient Subgroups
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Fig. 7. Predicted vs. Actual IC50 across patient subgroups.
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Fig. 8. Dosage recommendation across cancer types.

Fig. 8 shows the dosage recommendations distribution
among four types of cancers: Lung, Breast, Colon and
Leukemia. These dosages will be divided into three dosage
levels, which would be Low, Medium, and High with blue,
orange and green color bars respectively. The number of dosage
recommendations is the highest in the case of lung cancer
patients with a visible balance in the range of all three dosage
levels, especially the high and low doses, denoting the varying
volume of therapeutic needs. The number of patients with breast
cancer is moderate with the majority relying on lower and
mediumdosages as opposed to high doses. The colon cancer has
a lower number of patients, and low dose is most frequent, then
the medium dose and the minimal high dose that implies more
conservative treatment measures. The lowest number of patients
is observed in leukemia, as only low dosage recommendations
are documented, which demonstrates a narrow spectrum of the
treatmentintensity of this type ofcancer. This illustration clearly
communicates the different dosage plans of various types of
cancers.
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Attention Heatmap for Patient Graph Nodes
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Fig.9. Attention Heatmap.

Fig. 9 introduces an Attention Heatmap of Patient Graph
Nodesanddepictsthe strengths of interaction of particular genes
and drugs in terms of attention weights. The nodes of both axes
consist of five important genes (TP53, BRCA1, EGFR, KRAS,
PIK3CA) and three medications (DrugA, DrugB, DrugC). The
intensity ofthe colour ofeach cell shows the weight of attention
between two nodes which is high in darker colour (deep blue)
and lower in lighter colour (yellow). The scale on the right of
the color is used in interpreting the values with 0 (low) and 1
(high). This heatmap probably stems out of a GNN model run
on biomedical data, and it is used to determine the important
interactions between genes and drugs. Interestingly, between
BRCAL1 and DrugC, between TP53 and BRCAL, it can be noted
that high attention weights are established, which indicates the
presence of important interactions or regulatory effects. Such
visualization can help to comprehend the significance of nodes
and may be used to focus individualized medicine therapy or
studies.
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Fig. 10. Model scalability.

Fig. 10 illustrates the scaling of FedGraphOnco model with
the increase in the number of clients who participated in the
program. The x-axis presents the clients in thereport of2-10and
the y axis vectors the Pearson Correlation Coefficient. The
results show that, there is an upward trend being experienced,
whereby accuracy commences with 0.83, 2 clients, increases to
0.84, 4 clients, and then to 0.85, 6-8 clients, and culminates to
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0.86, 10 clients. This trend indicates that FedGraphOnco has the
advantage of the data diversity and increased volume of several
clients. The framework is highly accurate, as it is scalable and
adaptive and effectiveto use indecentralized healthcare settings.

SHAP Feature Importance for Top Genes/Drugs
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Fig. 11. SHAP feature importance for top Genes/Drugs.

Fig. 11 shows the amount of SHAP (SHapley Additive
exPlanations) values of the top genes and drugs that explain
model predictions. SHAP values are interpretable in that they
can indicate the degree of effect of each feature on the output of
a machine learning model. Then, genetic markers, as well as
drug-related variables, have been examined in this instance to
comprehend their comparative significance in forecasting
results. Among the genetic factors, TP53 is the most important
feature, which obtains the largest SHAP, which means that it has
a great impact on model decisions. This is in tandem with
available biomedical information, as TP53 mutation is usually
linked with cancer development and reaction to treatment.
BRCAT1 comes next, and it serves to stress the importance of
genetic predisposition regarding therapeutic efficiency once
again. The contributions of other genes, including EGFR, KRAS
and PIK3CA are also significant in nature as they have been
established to play a role in tumorigenesis and outcomes of
targeted therapy. There is a high impact on the drugside with
DrugA showinghigh impact, almost equal to TP53, showingits
centrality in treatment prediction. Drug B and Drug C also play
an important role and it implies that their efficacy is affected or
interacts with genetic variables. In general, SHAP analysis
proves that genetic mutations and therapeutic drugs are
important components of the predictive model, which allows
personalized medicine using interpretable information.

A. Performance Metrics

One of the most important aspects in creating an exact
machine learning model is analyzing its performance. For
assessing the performance or quality of the model, various
metrics are employed, and such metrics are referred to as
performance metrics or evaluation metrics.

1) Dosage deviation: Measures the average percentage
difference between predicted and actual drug dosages. It
reflects how accurately the model predicts personalized
dosages, with lower values indicating safer and more precise
dosing, that is given in Eq. (15):

P 1
Dosage Deviation = 5 Zi=1

n |%7|><100 (15)
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where, y; means Actual dosage for the i*" patient, 7, is
Predicted dosage for the i*" patient, N is Number of dosage
samples.

2) Root mean squared error: This is the square root of the
mean-square differences between dosages that were predicted
and dosages that were actual. Lower RMSE values mean
dosages were predicted more accurately, as larger errors
incurred greater penalties, as given in Eq. (16):

1 ~
RMSE = /; =1V = 3)? (16)

where, y; is the Actual dosage for the i patient, ¥, is the
Predicted dosage for the i*" patient, n is the Number of dosage
samples.

3) Mean absolute error: Measures the average magnitude
of errors between predicted dosages and actual dosages,
although directional errors are not considered. Smaller MAE is
indicative of better prediction accuracy and consistency is
shown in Eq. (17):

MAE = 3111y, = 3] (17)

n
where, y; is the Actual dosage for the i*" patient, §, means
Predicted dosage for the i*" patient, n is Number of dosage
samples.

TABLEII. PERFORMANCE METRICS
Metric Value
Dosage Deviation (%) 2.8
RMSE 2.6
MAE 1.9

Table II summarizes the performance of the proposed
FedGraphOnco model. The variance of the dosage is highly
reduced to 2.8% which makes it precise and safe in dosing. The
model indicates a smaller range of errors and reliability with
RMSE of 2.6 and MAE of 1.9. Such has been its success in
overcoming its promise to pinpoint specific drug
recommendations, with the support of anonymity, better than
traditional ways. FedGraphOnco performance metrics are also
demonstrated in Fig. 12.

Performance Metrics of Federated Oncology
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Dosage Deviation (%) RMSE MAE

Fig. 12. Performance metrics.
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B. Ablation Study

A FedGraphOnco ablation study was performed to evaluate
the role of each individual component of the framework.
Performance was shown to vary by sequentially eliminating
federated aggregation, privacy-preserving mechanisms and
reinforcement learning modules. Findings indicate that all the
parts play a significant role towards accuracy, convergence, and
robustness. The full model consistently performedbetter than all
the variants, indicating that all the modules are necessary to the
outcomes of an optimal, privacy-preserving, and reliable drug
dosage prediction system.

TABLE III. ABLATION STUDY RESULTS OF THE FEDGRAPHONCO
FRAMEWORK
. Dosage
Model Variant Deviation (%) RMSE MAE

Full FedGraphOnco (Proposed) 2.8 2.6 1.9
w/o Federated Aggregation 4.6 39 32
w/o Privacy-Preserving 39 35 2.8
Mechanism

w/o  Reinforcement Learning 6.2 5.1 43
Module

Centralized DRL 52 4.7 4.1

Table Il shows the results of the ablation study of the
FedGraphOnco framework. The deletion of an essential element
like federated aggregation, privacy-preserving structures, or
reinforcement learninghad a substantial impact on performance.
The full model produced the bestdeviation, RMSE, and MAE,
which agree that a complete integration is the method that
guarantees the maximum precision, stability and performance.

C. Comparative Performance Analysis

The effectiveness of FedGraphOnco framework was
validated by comparing its performance to typical strategies,
including (DTR) and traditional FL. Based on RMSE and MAE
as the evaluation measures, the findings showcase the high level
of predictive precision by the FedGraphOnco as well as the
lower error rate and stability in the individual dosage
calculation.

Table IV and Fig. 13 demonstrate the relative effectiveness
of various models in the prediction of drug dosage based on
RMSE and MAE measures. Conventional methods such as LR,
DNN and DTR have more errors and FL. shows moderate
improvement. All base models are outperformed by the
suggested FedGraphOnco in its RMSE and MAE results, which
are the lowest of them all.

TABLEIV. COMPARATIVE ANALYSIS
Method RMSE MAE
Linear Regression (LR) [16] 8.4 6.7
Deep Neural Network (DNN) [18] 6.8 5.5
Decision Tree Regression (DTR) [25] 7.1 52
FL [21] 5.2 4.7
FedGraphOnco (Proposed Method) 2.6 1.9
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Comparison of Methods based on RMSE and MAE

Error Value

LR DNN DTR FL
Methods

Proposed Method

Fig. 13. Comparative performance of different methods.

D. Discussion

The suggested framework of FedGraphOnco helps to
overcome the key constraints of personalized cancer treatment,
including modeling complex relationships between gene and
drugs without centralized information and without
reinforcement learning. These interactions are subtle and can be
missed by linear or tree-based regressors, butthey are captured
by the model by building biologically meaningful graphs out of
genomic features. The GDSC dataset allows the capturing of
deep coverage of drug sensitivity in a variety of cancer types,
but subtypebias (e.g., lung cancer bias) may appear. The model
prediction is reflected by performance measures (RMSE of 2.6,
MAE of 1.9, and dosage deviation of 2.8). The GNN is always
able to produce lower error rates and high correlation in
comparisonwith the baseline models, such as Linear Regression
and Decision Tree Regression. Integration of SHAP and
attention mechanisms offers interpretation, which enables
clinicians to comprehend the genomic factors that contribute to
dose prediction. To estimate the impact of the algorithm
parameters, the sensitivity analysis was performed with the key
hyperparameters varied in the framework of the proposed
FedGraphOnco. The findings obtained found that a learning rate
of 0.001 was the most stable learned rate, whereas higher rates
produced oscillations and decreased accuracy. Enhancing the
number of federated communication rounds enhanced model
synchronization atthe cost of more computation. A batch size of
32 gave the optimal convergence rate and generalization. The
amount of graph convolution layers had a substantial influence
on representation learning; three layers represented perfect
feature relations, and those that were deeper resulted in
overfitting. A large value of FedProx (0.05) stabilized training
in the non-IID case, and a more moderate privacy budget ( 0.5)
kept both training accuracy high and guaranteed difference
privacy. In general, the parameter tuning has shown that
balanced settings provide the most effective performance in the
terms of accuracy (RMSE = 2.6), robustness and preserving the
privacy. The high resilience of the model to noises and non-IID
information is also a strong benefit as it is essential to be
deployed to the real world. Nevertheless, scalability to
institutions and tuning of dosage to adapt with time might be
necessary in the future because of the lack of federated or
reinforcement learning. However, the existing GNN-based
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strategy provides an interesting balance of accuracy,
interpretability, and simplicity.

VI. CONCLUSION AND FUTURE WORKS

This study introduces a FedGraphOnco model of a
personalized cancer drug dosage prediction based on genomic
data of the GDSC dataset. The system incorporates complexity
in gene-drug interactions by modeling patients as biological
networks and provides dosage advice at the level of high
accuracy and understanding. The model has been implemented
in Python with PyTorch Geometric with high performance
metrics and sensitivity to data noise and heterogeneity. The
simplicity of the framework also makes it computationally
efficient and less challenging to implement in clinical
environments. Its influence on clinical trust through the
interpretation of SHAP and attention increases the chances of
adoption in precision oncology, which is a crucial component.
The proposed framework provides personalized oncology with
the help of patient-specific GNNs to predict a complex
interaction between genes and drugs using multi-omics data. It
gives interpretable predictions by use of attention mechanisms
and SHAP values, making it feasible to give accurate,
personalized drug dosing, and FL that preserves privacy makes
it possible to collaborate across institutions. Scientifically, it
reveals important genomic determinants of drug response;
clinically, it increases precision oncology and clinician
confidence; practically, it can be deployed scalably in
decentralized health care environments. Although the
FedGraphOnco framework has performed well in the proposed
study, this study is also limited in anumber of ways. First, it uses
only GDSC dataset and this can be limited to generalization to
other datasets or real-life patient populations. Second, the data
used in the model is preclinical and the simulated federated
setting could limit the applicability of the model to clinical
settings. Lastly, simplifications in the graph modeling and
federated implementation, such as fixed interactions between
genes and drugs and a small number of simulated institutions,
are not necessarily the simplified view of the complexity of
cancer biology and clinical processes today. The next generation
of work will be to confirmthe framework using more datasets,
including longitudinal patient data, and augment graph and
federated modeling to increase clinical usefulness.

Further research will involve increasing the number of
balanced cancer subtypes in the dataset and incorporation of
multi-drug interaction modeling. Prediction of dosages could be
further enhanced by adding real time physiology and
longitudinal patient data. To support cross-institutional learning
withoutprivacy breaches, future implementations can consider
federated GNNs. Besides, the ability to improve model
explainability by visualizing graph attention and incorporating
clinician feedback loops will also have a high priority. Finally,
this FedGraphOnco provides the foundations towards scalable,
interpretable, and effective Al-directed cancer treatment
methods,and closes the gap between the complexity of genomes
and clinical decision-making.
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