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Abstract—Virtual Learning Environments (VLEs) have 

emerged as a cornerstone of modern education, enabling large-

scale delivery of learning materials, assessments, and interactions 

in fully or partially online formats. The dynamic and self-paced 

nature of VLEs makes the early prediction of learner scores 

crucial for timely intervention and support. The existing 

frameworks either underperform in capturing complex, non-

linear relationships in heterogeneous educational data or lack 

interpretability mechanisms necessary for actionable 

interventions. This study proposes a TabNet–XGBoost hybrid 

model with SHAP-based interpretability for score range 

classification in VLE contexts, using the Open University 

Learning Analytics Dataset (OULAD). Data preprocessing 

involved cleaning, encoding, normalization, feature engineering, 

and score band derivation, producing an enriched feature matrix 

integrating demographic, assessment, and engagement indicators. 

TabNet’s sequential attentive feature selection extracted a latent 

representation of the most informative variables, which was 

subsequently refined by XGBoost to produce sharper decision 

boundaries for four distinct score ranges. SHAP values were 

computed post-prediction to identify domain-specific 

performance drivers, enabling alignment with a structured 

feedback module across seven predefined learning domains. 

Experimental results demonstrated a classification accuracy of 

98.8% on the test set, outperforming the baseline frameworks. The 

SHAP-driven feedback mechanism provided interpretable, 

domain-targeted insights, enhancing the model’s practical 

applicability for educators and academic support teams. By 

integrating high predictive accuracy with transparent reasoning 

and actionable feedback, the proposed framework addresses both 

the technical and pedagogical requirements of early performance 

prediction in online learning environments, offering a scalable 

solution for real-time academic monitoring and intervention. 

Keywords—Virtual learning environments; student performance 

prediction; TabNet; XGBoost; SHAP; feedback generation; quality 

education 

I. INTRODUCTION 

Virtual Learning Environments have transformed the 
educational landscape by enabling interactive, resource-rich, 
and quality education platforms where learners can access 
course materials, engage with peers, and receive instructional 
guidance regardless of physical location [1]. These digital 
ecosystems offer unprecedented flexibility, as students can 
customize learning pace and learning paths and integrate 
academic activities into diverse personal and professional 
schedules [2]. VLEs provide scalability for institutions, support 
diverse learning modalities, and facilitate continuous assessment 
opportunities. Despite these advantages, learner performance 
within such environments can vary significantly, influenced by 

factors such as digital engagement habits, self-directed learning 
skills, and adaptability to technology-mediated instruction [3]. 
A central challenge remains the consistent and accurate 
evaluation of learner progress, alongside the timely provision of 
constructive feedback [4]. Without proactive performance 
monitoring and targeted intervention, learners in VLEs may 
experience reduced motivation, disengagement, or even 
withdrawal from the course. 

Traditional approaches for performance assessment in VLEs 
often rely on periodic quizzes, assignment submissions, and 
final examinations. While these methods are administratively 
convenient and familiar to both educators and learners, they are 
predominantly retrospective, identifying performance gaps only 
after significant time has elapsed. Such delay limits the scope 
for early corrective action and diminishes the effectiveness of 
feedback, particularly in fast-paced or highly competitive 
academic contexts [5]. Moreover, these approaches tend to 
prioritize academic scores over other formative indicators such 
as participation in discussions, interaction with learning 
resources, or the quality of peer collaboration, all of which are 
vital for a holistic understanding of learner progress in virtual 
environments. 

The adoption of advanced analytics in VLEs, with machine 
learning (ML) and deep learning (DL) algorithms, predictive 
analytics, and learning dashboards, enables educators to track 
and forecast student performance using a wide array of 
behavioral and academic indicators [6]. However, existing 
implementations often fall short in adaptability, failing to 
dynamically adjust to evolving learner behaviors over time [7]. 
Some models focus narrowly on quantitative academic metrics, 
neglecting qualitative engagement data, while others operate as 
opaque “black boxes”, limiting their interpretability and 
diminishing trust among educators and stakeholders. This 
underscores the need for an integrated, transparent, and adaptive 
performance prediction framework tailored for VLEs. An ideal 
system should deliver early, accurate forecasts of learner 
performance, informed by both academic and behavioral data, 
while ensuring that feedback is specific, actionable, and timely. 

The primary objective and questions addressed in this study 
are mentioned below: 

• Development of a hybrid TabNet–XGBoost Framework 
that integrates TabNet’s attention-driven feature 
selection with XGBoost’s gradient-boosted decision 
refinement, optimized for score range classification in 
VLEs. 
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• Implementation of an interpretable feedback generation 
module that maps SHAP-based feature importance 
values to seven predefined learning domains, enabling 
personalized, domain-specific recommendations for 
academic performance improvement. 

The succeeding sections of the study are organized as 
follows: Section II offers a comprehensive analysis of the latest 
advances in student performance prediction in VLEs and 
highlights the current research constraints. Section III delineates 
the proposed methodology. The experimental results are 
highlighted in Section IV along with a comprehensive 
assessment of the model’s functionality. Finally, Section V 
completes the research by summarizing the main conclusions 
and highlighting the possible domains for future research. 

II. RELATED WORK 

Liu et al. [8] suggested the use of temporal engagement data 
collected from online learning platforms for student 
performance prediction. The OULAD, consisting of clickstream 
data from 5,341 distance learners across 12 different VLEs, was 
the source of the study. Two primary feature sets were designed 
based on the weekly and monthly aggregation of click counts, 
treating them as structured panel data. A number of classifiers, 
including Logistic Regression (LR), k-Nearest Neighbors 
(KNN), Random Forest (RF), Gradient Boosted Trees, 1D 
Convolutional Neural Networks (1D-CNN) and Long Short-
Term Memory networks (LSTM) were compared in the study. 
LSTM outperformed others with a maximum accuracy of 
90.25% and interactions with the homepage, subpages, content, 
and quizzes were identified as the most predictive behaviors in 
the feature importance analysis. As the framework failed to 
incorporate assessment performance or generate personalized 
feedback, its applicability in student score improvement was 
limited. 

Arashpour et al. [9] proposed hybridized ML models for 
student exam performance prediction utilizing OULAD. The 
hybrid models integrated Support Vector Machines (SVM) and 
Artificial Neural Networks (ANN) with a Teaching–Learning-
Based Optimizer (TLBO) for both classification and regression. 
TLBO performed feature selection and optimized the ANN 
structure in parallel, identifying the optimal subset of predictive 
input variables. The SVM model, with eight selected features, 
achieved a classification accuracy of 86.10%, while the ANN 
model achieved 84.94% on the test data. For regression, Support 
Vector Regression (SVR) outperformed ANN, achieving a 
correlation coefficient R > 0.7. Engagement, measured through 
clickstream behavior and performance in ongoing assessments, 
was identified as the most influential predictor. Heavy 
dependence on numerical engagement metrics, lacking semantic 
interpretation or personalized feedback mechanisms, hampered 
the practical use of the framework. 

Rao et al. [10] proposed DL models for early prediction of 
student academic performance utilizing log data obtained from 
academic systems. The dataset comprised log records from 108 
students enrolled in an “Information Science” course was 
utilized which captured sequential interactions with the learning 
environment. The architecture employed a Recurrent Neural 
Network (RNN) that processed sequential student interaction 
logs, capturing temporal dependencies in learning behavior 

patterns over the course timeline. The framework dynamically 
updated the internal state with each input sequence, enabling it 
to learn correlations between past engagement and future 
academic outcomes. The RNN framework with 84.3% accuracy 
outperformed the Decision Tree classifier and ensemble learning 
approaches. As there was no integration of time-based 
engagement trends or automated feedback generation, the 
deployment of the framework for continuous formative 
assessment and personalized academic support was constrained. 

Jawad et al. [11] proposed a Random Forest classifier, 
enhanced by the SMOTE oversampling technique, to predict 
student academic performance in VLE. The study utilized 
OULAD and constructed dynamic student profiles across six-
time intervals (120 to 260 days), integrating engagement 
patterns and assessment scores. The framework was retrained 
per time segment to simulate real-time academic monitoring, 
and the integration of SMOTE mitigated the impact of 
imbalanced class distributions. The model achieved its highest 
testing accuracy of 84.2% at 260 days, suggesting that richer 
late-term data boosts predictive strength. Additional 
benchmarking revealed that XGBoost and Logistic Regression 
achieved accuracies of 84.3% and 80.9%, respectively. The 
reliance on separate models across multiple time intervals 
introduced structural redundancy and limited scalability for real-
time deployment. 

Yu et al. [12] proposed a recurrent neural network (RNN) for 
student learning outcome prediction in an online Artificial 
Intelligence course, focusing on identifying at-risk students 
using a limited number of commonly available LMS features. A 
number of DL models: Simple Recurrent Network (SRN), 
LSTM, Gated Recurrent Unit (GRU), Multilayer Perceptron 
(MLP), and CNN, as well as ML frameworks:  LR, SVM, RF, 
and decision trees (DT), were compared. The SRN and CNN 
models achieved the highest overall accuracy (93%), while 
LSTM and GRU followed closely with 91% and 92%, 
respectively. Further week-wise performance analysis revealed 
that GRU showed the best predictive accuracy (87%) by the 18th 
week, followed by SRN (86%) and CNN (84%), outperforming 
all classical ML models. The rigid framework for all prediction 
weeks overlooked varying learning dynamics at different stages 
of the course, hampering adaptability to fluctuating student 
engagement patterns. 

Kusumawardani and Alfarozi [13] proposed a transformer 
encoder-based DL framework for early prediction of student 
performance using log activity data from learning management 
systems (LMS). The study utilized the OULAD and was 
designed for both daily and weekly prediction tasks for the early 
identification of at-risk students. The transformer architecture 
was fine-tuned by evaluating the effects of components of 
positional encoding, feature aggregation strategies and weighted 
loss functions. The framework performed best without 
positional encoding, and weekly feature aggregation yielded 
higher accuracy. For the withdrawn vs. pass-distinction task, an 
accuracy of 83.17% was observed at just 20% of the course 
duration, improving further to 90% accuracy by the end. Across 
all tasks, the transformer outperformed LSTM by 1-3% in 
accuracy and 3-7% in F1-score. The model complexity and 
resource-intensive architecture hindered deployment in real-
time or low-resource educational environments. 
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Chen et al. [14] proposed Explainable Student Performance 
Prediction (ESPP) for early detection of at-risk learners in VLEs. 
The data for the study was collected from a Digital 
Transformation course at Gadjah Mada University, Indonesia, 
comprising weekly student activity logs during online 
instruction. The hybrid deep learning framework integrated 
CNN and LSTM networks, alongside the hybrid SMOTE 
oversampling technique to balance class distributions. CNN 
layers extracted spatial patterns from temporal activity 
sequences, which were then passed through LSTM layers to 
model time-dependent engagement trends. Conv-LSTM model 
achieved the highest accuracy of 91%, followed by CNN-LSTM 
at 88%, outperforming LSTM (85%), SVM (80%) and LR 
(64%) on evaluation in the six-week. However, the 
computational complexity was a major drawback, hindering 
scalability or real-time deployment in low-resource educational 
platforms. 

Adnan et al. [15] suggested a predictive model to identify at-
risk students in VLEs, MOOCs, and LMS platforms using 
OULAD. A number of multiple ML and DL algorithms were 
evaluated, including RF, DT, SVM, LR, KNN, MLP, ANN, and 
Naive Bayes (NB). The study incorporated key variables such 
as assessment scores, clickstream data indicative of engagement 
intensity, and temporal indicators [15]. On evaluation, the RF 
classifier performed consistently across different stages of 
course progression and achieved 79% accuracy at 20% course 
completion, which further improved to 88% at 60% and peaked 
at 91% at 100% of the course length. The high dependence on 
feature engineering that did not generalize well across different 
online learning environments without significant adaptation 
constrained the potential of the study. 

Riestra-González et al. [16] proposed a course-agnostic 
framework to predict student performance from LMS log files 
in the early stages of course delivery. The study utilized data 
from 5,112 courses hosted on Moodle at the University of 
Oviedo, involving over 29,000 students across diverse 
disciplines. Multiple classification models were employed, such 
as DT, NB, LR, SVM, and MLP, to detect at-risk, failing, and 
exceptional students at different course phases. The MLP model 
achieved the highest accuracy, ranging from 80.1% at 10% of 
course length to 90.1% at 50%, while DT followed closely with 
accuracies ranging from 79.5% to 89.6% over the same 
intervals. A clustering technique was also applied to identify six 
consistent student interaction patterns, four of which were 
identified to be strongly correlated with student performance: 
early answering of quizzes, prompt viewing of LMS resources, 
early viewing of course assignments, and procrastination in 
viewing course content, which indicated a higher risk of failure. 
The reliance on static interaction patterns, without incorporating 
the temporal sequence or evolution of student behaviors over 
time, hampered the generalizability of the framework. 

Yağcı [17] proposed a machine learning-based predictive 
framework for predicting students’ final exam grades using 
minimal yet impactful academic indicators. The dataset for the 
study comprised midterm grades, faculty affiliation, and 
departmental information of 1,854 undergraduate students 
enrolled in the Turkish Language-I course at a public university 
in Turkey. Six ML models: RF, SVM, LR, NB, KNN, and 
Neural Network (NN) were evaluated in the study. The 

framework extracted predictive insights from numerical 
academic features without incorporating behavioral or 
interaction data. On evaluation, RF and NN achieved the highest 
classification accuracy, both reaching 74.6%, followed by SVM 
with 73.5%, LR at 71.7%, NB at 71.3% and kNN at 69.9%. The 
sole focus on academic variables without the incorporation of 
behavioral or engagement-related features limited the study. 

Chen et al. [18] proposed an Attention-Based ANN (Attn-
ANN) model for early prediction of at-risk students by 
integrating attention mechanisms across both time and feature 
dimensions. Data for the study were collected from the M2B 
system at Kyushu University, which included LMS-based 
records such as attendance, report submissions, and course 
access. The framework employed dual attention layers: on the 
temporal dimension to identify important weeks and on the 
feature dimension to prioritize learning activities. The attention 
weights are integrated directly into a standard artificial neural 
network, enabling it to dynamically adjust the influence of each 
time step and feature during the learning process. The Attn-
ANN achieved an accuracy of 64.3% in the Programming 
Techniques (PT) course and up to 89.5% in the Digital Signal 
Processing (DSP) course, outperforming conventional models 
like MLP, LSTM, and GRU in both early and progressive 
weeks. The sensitivity of attention weight calibration required 
manual adjustment or retraining across different course 
structures and educational settings. 

Hakkal and Ait Lahcen [19] suggested integration of 
XGBoost with logistic regression-based models for learner 
performance prediction within Intelligent Tutoring Systems 
(ITS). Three regression models were utilized: Item Response 
Theory (IRT), Performance Factor Analysis (PFA), and 
DAS3H. Eight real-world datasets from varied sources, 
including four ASSISTments skill-builder math datasets, two 
KDD Cup Algebra datasets, the Statics engineering dataset, and 
a new Moodle-Morocco dataset, were employed in the study. 
The framework analyzed historical ITS interaction logs and 
estimated the probability of a learner answering future questions 
correctly. The XGBoost-enhanced PFA outperformed standard 
PFA in seven datasets, DAS3H also improved on the 
ASSISTments17 dataset, while IRT’s performance remained 
stable across datasets, indicating less benefit from XGBoost 
integration. The highest accuracy value of 84.9% was observed 
for DAS3H-LR on Bridge-Algebra06, followed by 84.3% by 
PFA-XGBOOST on the Bridge-Algebra06 dataset. The worst 
accuracy of 68.1% was exhibited by IRT-XGBOOST on the 
Assistments09 dataset. However, XGBoost consumed a long 
execution time for large datasets and required advanced 
hyperparameter tuning and specialized feature encoding, 
hampering the scalability in real-world scenarios. 

Iatrellis et al. [20] proposed a two-phase machine learning 
approach combining unsupervised and supervised learning in 
student outcome prediction. Data from the Computer Science 
Department at the University of Thessaly, Greece, was utilized 
in the study to forecast degree completion time and the 
likelihood of student enrollment. The first phase employed the 
K-Means algorithm to cluster students based on educational 
factors and metrics, which identified three coherent student 
groups. The prediction models were developed for each cluster 
in the second phase for customized predictions. The clustering-
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guided model outperformed non-clustering models, achieving 
an accuracy of 80.5%, compared to 75.5% in the non-clustering 
approach.  As the student grouping was solely from a data-
driven perspective, the faculty insights or academic advisor 
evaluations were overlooked in the study, hampering the content 
relevance of the predicted outcomes. 

A. Research Gap 

Despite significant advancements in predictive modeling for 
student performance, several research gaps persist. Many 
existing approaches, including DL architectures like BiLSTM, 
CNN, and LSTM, as well as ML models such as RF, SVM, and 
hybrid optimization-based methods, have demonstrated high 
accuracy using datasets such as OULAD, LMS logs, or 
Intelligent Tutoring Systems [8] [14] [22]. However, a recurring 
limitation is the narrow scope of input features; most 
frameworks rely heavily on clickstream data, assessment scores, 
or basic academic records, overlooking rich contextual, socio-
cultural, and behavioral attributes that could improve model 
generalization [15] [17]. Furthermore, temporal modeling has 
often been static or rigid, failing to adapt to evolving 
engagement patterns across course stages [12]. While certain 
methods incorporate early prediction capabilities, few integrate 
automated personalized feedback or intervention strategies to 
translate predictions into actionable academic support [10]. 
Scalability is also a challenge; resource-intensive architectures 
like transformers and CNN-LSTM struggle in low-resource 
educational settings, while approaches with segmented time-
based retraining introduce redundancy. Lastly, class imbalance 
handling techniques like SMOTE improve accuracy but may 
reduce real-world applicability where such balancing is 
infeasible, highlighting the need for models that maintain 
robustness in naturally imbalanced datasets [11]. This calls for a 
novel model that could predict the student performance in VLEs 
with high accuracy and tailor feedback for academic 
improvements while considering both academic and behavioral 
attributes. 

III. MATERIALS AND METHODS 

The proposed study integrates TabNet and XGBoost for 
enhanced student performance prediction in VLEs. The hybrid 
architecture leverages TabNet’s sequential decision-step feature 
selection and representation learning capabilities, coupled with 
XGBoost’s robust non-linear modeling, to generate precise 
score range classifications. The OULAD serves as the primary 
data source and SHAP was employed for the customized 
feedback generation. Fig. 1 represents the basic architecture of 
the proposed model. 

A. Dataset Description 

The proposed study employs the publicly available Open 
University Learning Analytics Dataset (OULAD) from Kaggle, 
a comprehensive real-world dataset sourced from the VLE of the 
Open University, the largest distance-learning institution in the 
United Kingdom [21]. The dataset comprises records from seven 
distinct modules delivered across multiple academic years, with 
presentations denoted for the first and second semesters. It 
integrates three major data categories: student demographic 
attributes, assessment-related data, and VLE interaction logs. 
The student demographic attributes include age band, gender, 

geographic location, disability status, prior education level, and 
Index of Multiple Deprivation (IMD) band. 

 
Fig. 1. Basic architecture of the proposed model. 

The assessment-related data contains marks, submission 
dates, and completion status for assignments, quizzes, and final 
examinations. The VLE interaction logs include time-stamped 
clickstream data capturing student engagement patterns, 
including content access, forum participation, and quiz activity. 
The dataset’s multimodal nature, combining demographic, 
behavioral, and performance indicators, aligns closely with the 
proposed model architecture, enabling both sequential learning 
through historical interactions and explainability through 
feature-level attribution. Given its richness, scale, and diversity, 
OULAD provides an ideal foundation for developing high-
accuracy predictive models with actionable, domain-specific 
feedback to improve student performance outcomes 

B. Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is performed for the 
systematic examination of the structural composition and 
statistical properties of the dataset, enabling the identification of 
underlying patterns, distributions, and relationships between 
variables. The process is crucial for the detection of anomalies, 
missing values, and potential data imbalances, while also 
highlighting key behavioral and demographic trends relevant to 
student performance. Insights from the EDA informed both 
engineering decisions and the subsequent design of the 
predictive modelling framework. 

The distribution of results across individual modules 
illustrated in Fig. 2, reveals substantial variation in student 
performance patterns, offering critical insights for targeted 
academic interventions. 

As depicted, certain modules, such as BBB and FFF (as 
named in the dataset), exhibit the highest overall enrolments and 
are characterized by a comparatively large proportion of 
withdrawn students, suggesting potential structural or delivery-
related challenges. Conversely, modules like AAA and EEE 
display lower participation volumes but notable failure rates, 
which may indicate concentrated difficulties among smaller 
cohorts. The presence of distinctions is relatively modest across 
all modules, with only minor variation between courses, while 
pass rates remain the most frequent positive outcome. This 
module-level stratification provides a more nuanced 
understanding than aggregate performance statistics, enabling 
the identification of courses where tailored pedagogical 
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strategies or enhanced learning support may yield the most 
significant improvements. Such granularity aligns directly with 
the proposed model’s capacity to generate module-specific 
performance predictions and customized feedback, thereby 
facilitating informed decision-making for educators and 
administrators aiming to reduce attrition and improve academic 
success rates. 

 
Fig. 2. Final results of students in each module. 

Fig. 3 represents the distribution of key learning activity 
features, segmented by students’ final results. 

 
Fig. 3. Distribution of key learning activity features. 

Each subplot corresponds to a specific feature from the 
OULAD dataset with kernel density estimations illustrating the 
relative frequency of values for each outcome class. Across most 
activity metrics, students who passed tend to show higher 
engagement levels, as indicated by a broader spread and higher 
density in the upper value ranges compared to their failing 
counterparts. Notably, features like quiz and mean score day 
demonstrate a clear separation between the two classes, 
indicating strong predictive value. Conversely, some variables, 
such as oucollaborate and ouwiki, exhibit overlapping 
distributions, implying limited discriminative power. The 
skewed patterns in the number of previous attempts and studied 
credits suggest that prior academic history and course load may 
influence performance outcomes. 

Fig. 4 compares the average submission dates between B 
Semesters and J Semesters (for the second and first semesters, 
respectively) expressed in days from the start of the academic 
term. The results show that on average, students in the second 
semesters submit their work earlier compared to those in the first 
semesters. This difference of nearly 10 days suggests possible 

variations in course scheduling, assessment deadlines or student 
pacing between the two semester types. Such temporal patterns 
can inform predictive modeling by highlighting semester-
specific behaviors that may influence engagement and 
performance outcomes. 

 
Fig. 4. Average submission date by semester. 

 
Fig. 5. Student score analysis. 

Fig. 5 presents scatter plot analyses exploring the 
relationships between student scores and multiple engagement 
or temporal features in the dataset. The Student Scores to 
Overall Clicks reveal a positive association between total VLE 
clicks and student scores, suggesting that higher engagement 
levels are generally linked to better academic performance. The 
Student Scores to Assessment Weight indicates that most 
assessments have lower weightings, with a dense concentration 
of points near zero weight and minimal variation in scores across 
higher weights. The Student Scores to Day Submitted shows a 
weak negative trend, suggesting that later submission dates may 
be modestly associated with lower scores, though the 
relationship appears minimal. The Impact of Submission 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

74 | P a g e  
www.ijacsa.thesai.org 

Lateness on Performance illustrates a clearer negative 
relationship, where increased lateness correlates with lower 
scores, as captured by the downward-sloping regression line. 
Collectively, these plots highlight that engagement intensity is a 
strong positive predictor, while lateness is a notable negative 
factor influencing student performance, whereas assessment 
weight and submission timing exhibit weaker or more diffuse 
relationships. 

C. Data Preprocessing 

The data preprocessing is a critical stage in predictive 
modeling, ensuring that raw educational data is transformed into 
a structured, consistent, and analytically suitable format. This 
process involves cleaning and standardizing heterogeneous data 
sources, handling missing or inconsistent values, and encoding 
variables to align with the input requirements of advanced deep 
learning architectures. 

Data cleaning is performed first to remove noise, 
inconsistencies, and missing values from the dataset. For the raw 
dataset = {𝑥𝑖,𝑦𝑖}

𝑁
𝑖=1

 , where 𝑥𝑖 is the feature vector and 𝑦𝑖, the 

corresponding label for the 𝑖 𝑡ℎ student, the missing values in a 
numerical feature 𝑓𝑗 are replaced using mean imputation, as in 

Eq. (1): 

𝑓𝑗
∗ =

∑ 𝑓𝑖𝑗
𝑁
𝑖=1

𝑁𝑗
𝑜𝑏𝑠                                       (1) 

where, 𝑁𝑗
𝑜𝑏𝑠 represents the number of observations without 

missing values for feature 𝑓𝑗 , and 𝑓𝑗
∗ is the imputed value. For 

categorical variables, the missing entries were replaced by the 
mode, as in Eq. (2): 

 𝑓𝑗
∗ = 𝑎𝑟𝑔

𝑚𝑎𝑥 𝑐𝑜𝑢𝑛𝑡 (𝑐)
𝑐 ∈ 𝐶𝑗

                    (2) 

where, 𝐶𝑗 is the set of possible categories for 𝑓𝑗. Outliers in 

continuous variables are detected using the z-score method, as 
in Eq. (3): 

 𝑧𝑖𝑗 =
𝑓𝑖𝑗−𝜇𝑗

𝜎𝑗
                                   (3) 

where, 𝜇𝑗 and 𝜎𝑗 denote the mean and standard deviation of 

feature 𝑓𝑗 , respectively. Instances with |𝑧𝑖𝑗| > 3 are flagged for 

removal or transformation. Following data cleaning, feature 
engineering is performed to transform the dataset into a 
structured form compatible with the model. Categorical 
variables such as gender, region, and highest education were 
encoded using one-hot encoding, producing binary indicator 
vectors for each observation. For a categorical feature 𝑓𝑗    with 

𝐾𝑗 distinct categories, each observation 𝑖  is represented, as in 

Eq. (4): 

𝑓𝑖,𝑗
(𝑘)

= {
1 ; 𝑖𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘
0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        

  ∀𝑘 ∈

[1, 𝐾𝑗]    (4) 

Numerical attributes, including click counts, assessment 
scores, and time-on-task, were normalized to a uniform scale to 
ensure balanced gradient updates during model training. The 
min–max transformation is applied, as in Eq. (5): 

𝑓𝑖,𝑗
′ =

𝑓𝑖 ,𝑗−𝑚𝑖𝑛 (𝑓𝑗)

𝑚𝑎𝑥(𝑓𝑗 )−𝑚𝑖𝑛 (𝑓𝑗)
                             (5) 

where, 𝑓𝑖,𝑗
′  is the normalized value for feature 𝑓𝑗  in 

observation 𝑖. To capture engagement dynamics, temporal VLE 
logs were aggregated into weekly indicators of student activity. 
The weekly engagement score for student 𝑖  in week 𝑤 was 
computed, as in Eq. (6): 

𝐸𝑖,𝑤 =
∑ 𝑐𝑙𝑖𝑐𝑘𝑠𝑖,𝑡𝑡∈𝑤

∆𝑡𝑤
                           (6) 

where, 𝑐𝑙𝑖𝑐𝑘𝑠𝑖,𝑡  is the total VLE interactions at timestamp 𝑡 
and ∆𝑡𝑤 is the number of active days in week 𝑤 .In addition, 
assessment-related features were derived by computing the 
weighted average of scores, as in Eq. (7): 

𝐴(𝑖) =
∑ 𝑤𝑘 ∙𝑚(𝑖,𝑘)

𝐾
𝑘=1

∑ 𝑤𝑘
𝐾
𝑘=1

                          (7) 

where, 𝑚(𝑖,𝑘) denotes the mark of student 𝑖 in assessment 𝑘 

and 𝑤𝑘 is its respective weight. Temporal score change was 
measured, as in Eq. (8), capturing improvement or decline 
between consecutive assessments. 

𝛥𝐴(𝑖,𝑡) = 𝑚(𝑖,𝑡) − 𝑚(𝑖,𝑡−1)                        (8) 

The final engineered feature matrix 𝑋∗  integrates 
demographic encodings, normalized continuous attributes, 
weekly engagement profiles, and assessment-based indicators, 
providing a comprehensive, multi-view representation of each 
learner. For the score range prediction task, continuous marks 
were discretized into performance bands to align with the 
feedback generation module. The score band for student 𝑖 is as 
in Eq. (9): 

𝐵𝑎𝑛𝑑𝑖 = {

0 ; 𝑖𝑓 0 ≤ 𝑆𝑖 < 40   
1 ; 𝑖𝑓 40 ≤ 𝑆𝑖 < 60 
2 ; 𝑖𝑓 60 ≤ 𝑆𝑖 < 80 
3 ;𝑖𝑓 80 ≤ 𝑆𝑖 ≤ 100

                (9) 

where, 𝑆𝑖  denotes the final computed score from all 
available assessments. These engineered features form the input 
vector 𝑋𝑖 for subsequent representation learning in the proposed 
framework. Feature selection is further performed to retain 
critical informative predictors and reduce model complexity. 
The mutual information criterion is applied between each 

feature 𝑓𝑗 and the target variable 𝑦, as in Eq. (10): 

𝑀𝐼(𝑓𝑗 ,𝑦) = ∑ ∑ 𝑝(𝑓𝑗 ,𝑦)𝑦 𝑙𝑜𝑔
𝑝(𝑓𝑗 ,𝑦)

𝑝(𝑓𝑗) 𝑝(𝑦)𝑓𝑗
           (10) 

where, 𝑝(𝑓𝑗 ,𝑦) is the joint probability distribution of feature 

𝑓𝑗  and target 𝑦  and 𝑝(𝑓𝑗), 𝑝(𝑦)  are the respective marginal 

probabilities. Features with 𝑀𝐼(𝑓𝑗 ,𝑦) < 𝜏 are discarded, where 

τ is the data-driven threshold. The processed dataset 𝑋∗ is then 
split into training and testing subsets in the ratio 80:20. Class 
imbalance handling is applied only to the training set to prevent 
information leakage. Using the Synthetic Minority 
Oversampling Technique (SMOTE), new synthetic samples are 
generated, as in Eq. (11): 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆 ∙  (𝑥𝑛𝑛 − 𝑥𝑖)                  (11) 
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where, 𝑥𝑖 is a minority class sample, 𝑥𝑛𝑛 is one of its KNN 
and 𝜆 ∈  [0,1]  is a random interpolation factor. Finally, the 
balanced training set is structured for the proposed architecture, 
with each observation 𝑋𝑖  represented, as in Eq. (12): 

𝑋𝑖 = [𝑋𝑖
𝑑𝑒𝑚𝑜,𝑋𝑖

𝑒𝑛𝑔,𝑋𝑖
𝑎𝑠𝑠𝑒𝑠, 𝑋𝑖

𝑡𝑒𝑚𝑝  ]               (12) 

where, 𝑋𝑖
𝑑𝑒𝑚𝑜 contains demographic encodings, 𝑋𝑖

𝑒𝑛𝑔
 with 

weekly engagement scores, assessment-derived metrics in 

𝑋𝑖
𝑎𝑠𝑠𝑒𝑠  and 𝑋𝑖

𝑡𝑒𝑚𝑝
 contains temporal change indicators to 

facilitate multi-view input compatibility with the hierarchical 
attention encoder. 

D. Model Deployment 

1) TabNet architecture: TabNet is a DL architecture 

designed specifically for tabular data, combining the 

interpretability of DTs with the representational power of NNs 

[24]. The model processes data in multiple sequential decision 

steps, where at each step a subset of the most relevant features 

is selected through an attentive feature-masking mechanism. 

The process begins with an input vector Xi ∈ ℝd for student i, 
which is first normalized and passed through a shared feature 

transformer network FTshared(⋅) . The initial hidden 

representation is as in Eq. (13): 

𝐻𝑖
(0)

= 𝐹𝑇𝑠ℎ𝑎𝑟𝑒𝑑(𝑋𝑖;𝑊𝑓)                       (13) 

where, 𝑊𝑓  are learnable weights of the shared feature 
transformer block. At each decision step 𝑡 ∈ {1,2, … , 𝑇} , 

TabNet computes an attention mask 𝑀(𝑡) over the features using 
an Attentive Transformer. The mask is modulated by a prior 
scale vector 𝑃(𝑡) ∈ [0,1]𝑑  which controls feature reuse and is 

initialized as 𝑃(𝑡) = 1  for 𝑡 = 1 . The mask is given as in 
Eq. (14): 

𝑀𝑖
(𝑡)

= 𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥(𝑃(𝑡) ⊙ 𝐴𝑇(𝑡)(𝐻𝑖
(𝑡−1)

;𝑊𝑎)       (14) 

where, 𝑊𝑎  is the attention weight matrix, ⊙  denotes 
element-wise multiplication, and the sparsemax activation 
ensures that only a subset of features receive non-zero weights, 
enhancing interpretability. The masked feature vector is 
obtained as in Eq. (15) and passed through the decision step 
network as in Eq. (16): 

𝐻𝑖
(𝑡)

= 𝑀𝑖
(𝑡)

⊙ 𝐻𝑖
(𝑡−1)

                      (15) 

 (𝐷𝑖
(𝑡)

,𝐻𝑖
(𝑡)

) = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐵𝑙𝑜𝑐𝑘(𝑡)(𝐻̌𝑖
(𝑡)

 ;𝑊𝑑)       (16) 

where, 𝐷𝑖
(𝑡)

∈ ℝ𝑘 is the decision output contributing directly 

to the prediction and 𝐻𝑖
(𝑡)

 is the transformed feature 

representation for the current step. The prior scale vector for the 
next step is updated to reduce the weight of features already 
selected, allowing partial reuse via the relaxation parameter 𝛾 >
1 as in Eq. (17): 

𝑃(𝑡+1) = 𝑃(𝑡) ⊙ (𝛾 − 𝑀𝑖
(𝑡)

)                  (17) 

The final prediction is the sum of decision outputs across all 
𝑇 steps as in Eq. (18): 

𝑦𝑖 = ∑ 𝐷𝑖
(𝑡)𝑇

𝑡=1                        (18) 

In the proposed framework, however, instead of using only 
𝑦𝑖 from the aggregated decision outputs, a latent representation 
is formed by concatenating the transformed hidden vectors from 
all decision steps as in Eq. (19): 

𝑍𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻(1),𝐻(2),… , 𝐻(𝑇))               (19) 

The enriched feature vector 𝑍𝑖 is then fed into the XGBoost 
model that refines the prediction of the student’s score range and 
enables sharper decision boundaries. The basic architecture of 
TabNet is depicted in Fig. 6. 

 
Fig. 6.  Basic architecture of TabNet. 

2) XGBoost Regressor: Extreme Gradient Boosting 

(XGBoost) is an optimized implementation of the gradient 

boosting framework designed for scalability, efficiency, and 

high predictive accuracy on structured data [23]. The algorithm 

builds an ensemble of decision trees sequentially, where each 

new tree 𝑓𝑡  is trained to minimize the residual errors of the 

previous trees. For the dataset {(𝑋𝑖, 𝑦𝑖)}𝑖=1
𝑛

, the model 

prediction at iteration 𝑡 is as in Eq. (20): 

𝑦𝑖 = 𝑦𝑖
(𝑡−1)

+ 𝜂𝑓𝑡 (𝑍𝑖)                            (20) 

where, 𝜂 is the learning rate and 𝑓𝑡  represents the freshly 
added regression tree. The optimization process minimizes 
regularized objective function, as shown in Eq. (21): 

𝐿(𝜙) = ∑ 𝑙(𝑦𝑖, 𝑦𝑖)
𝑛
𝑖=1 + ∑ 𝛺(𝑓𝑡)𝑇

𝑡=1                   (21) 

where, 𝑙(𝑦𝑖, 𝑦𝑖) is the differentiable loss function and Ω(𝑓𝑡) 
is the regularization term defined, as shown in Eq. (22): 

𝛺(𝑓𝑡) = 𝛾𝑇 +
1

2
 𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1                     (22) 

where, 𝑇 is the number of leaves in tree 𝑓𝑡  , 𝑤𝑗  is the weight 
assigned to leaf 𝑗, 𝛾 penalizes the creation of excessive leaves to 
control the model complexity, and 𝜆 controls L2 regularization 
on leaf weights. 

Fig. 7 represents the basic architecture of XGBoost improves 
traditional gradient boosting through features such as 
parallelized tree construction, sparsity-aware split finding and 
weighted quantile sketch for efficient handling of missing 
values.  Its ability to model complex, non-linear relationships 
makes it highly effective for educational datasets where 
interactions between demographic, engagement and assessment 
features can strongly influence performance predictions. 
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Fig. 7. Basic architecture of XGBoost Regressor. 

3) Proposed TabNet-XGBoost hybrid model: In the 

proposed TabNet-XGBoost architecture, TabNet serves as the 

representation learning module, extracting a compact yet 

information-rich latent feature vector from the pre-processed 

student data. The output of the TabNet module, the concatenated 

vector 𝑍𝑖, captures both global and stepwise feature importance 

patterns, effectively encoding demographic, engagement and 

assessment-related information into a single high-dimensional 

embedding. This enriched feature vector 𝑍𝑖 is then passed into 

the XGBoost Regressor, which acts as the final prediction layer. 

In regression mode, XGBoost iteratively builds trees to refine 

the score prediction. After convergence, the continuous score 

prediction  is discretized into four score bands representing 

performance ranges. This integration allows TabNet to perform 

interpretable and sparsity-driven feature selection, while 

XGBoost captures non-linear relationships and sharpens class 

separation boundaries. The combination results in a robust 

hybrid model capable of predicting students’ score ranges with 

high precision while retaining interpretability for SHAP-based 

feedback generation in later stages. 

Following score band prediction, the model incorporates 
SHapley Additive exPlanations (SHAP) to ensure 
interpretability and to support the customized feedback 
generation module. SHAP, grounded in cooperative game 
theory, assigns each feature a Shapley value 𝜙𝑗 representing its 

average marginal contribution to the model’s prediction across 
all possible feature subsets. For a given student 𝑖 with a feature 
set 𝐹 and model prediction 𝑓(𝑋𝑖) the Shapley value for feature 𝑗 
s computed as in Eq. (23): 

𝜙𝑗 =  ∑
|𝑆|! (|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹{𝑗}  [𝑓𝑆∪{𝑗}(𝑋𝑖) − 𝑓𝑠(𝑋𝑖)]       (23) 

where, 𝑆 is a subset of features excluding 𝑗, 𝑓𝑆∪{𝑗}(𝑋𝑖) is the 

model output when 𝑗  is included and 𝑓𝑠(𝑋𝑖)  is the output 
without 𝑗. This ensures a fair and coherent measure of feature 
importance, regardless of ordering or correlation. In the 
proposed hybrid framework, SHAP is applied after the XGBoost 
stage, taking the enriched latent vector 𝑍𝑖 as the feature input 
and the XGBoost model’s predicted score range as the target for 
explanation [24]. Following SHAP analysis, the feature 
importance values for each individual student are mapped onto 

seven pre-defined feedback domains: Engagement, Assessment 
Preparedness, Time Management, Learning Resource 
Utilization, Interaction Frequency, Content Comprehension and 
Consistency of Effort. For each domain 𝑑 , the mean SHAP 
value 𝑠𝑖,𝑑  is computed by averaging SHAP contributions of 

features belonging to that domain as in Eq. (24): 

𝑠𝑖,𝑑 =
1

|𝐹𝑑  |
∑ 𝑆𝐻𝐴𝑃𝑖,𝑓𝑓 ∈𝐹𝑑

                    (24) 

where, 𝐹𝑑  is the set of features assigned to the domain 𝑑. 
Domains with high positive SHAP values indicate areas that 
most contributed to predicted high performance, while high 
negative SHAP values signal weaknesses requiring intervention. 
A feedback table is then generated for each student, with rows 
representing the domains and columns indicating performance 
status along with the recommendations. This integration ensures 
that the system not only predicts student performance with high 
accuracy but also delivers interpretable, actionable and 
structured recommendations to improve learning outcomes. The 
algorithm for the proposed model is as shown below (see 
Algorithm 1). 

Algorithm 1: TabNet-XGBoost hybrid model for Student 

performance prediction and customized feedback 

Input:  

▪ OULAD dataset 𝐷 = {(𝑋𝑖 , 𝑦𝑖)}𝑖=1
𝑁  

▪ Y: Label vector corresponding to X 
▪ Label vector ∈ {0,1,2,3} , each value for different 

score range 

Output: 

▪ Predicted class label 𝑌 ∈ {0,1,2,3} and customized 
feedback 

Begin: 

Data collection 

• Load OULAD dataset 

• Extract feature matrix 𝑋 and label vector 𝑌 

Data Preprocessing and Feature extraction 

• Missing values imputation: 

𝑓𝑗
∗ =

∑ 𝑓𝑖𝑗
𝑁
𝑖=1

𝑁𝑗
𝑜𝑏𝑠  

• Outliner detection and handling: 

𝑧𝑖𝑗 =
𝑓𝑖𝑗 − 𝜇𝑗

𝜎𝑗
, 𝑟𝑒𝑚𝑜𝑣𝑒 𝑖𝑓 |𝑧𝑖𝑗| > 3 

• One hot encoding for categorical features: 

𝑓𝑖,𝑗
(𝑘)

= {
1 ; 𝑖𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦  𝑘
0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        

   

• Normalization: 

𝑓𝑖 ,𝑗
′ =

𝑓𝑖,𝑗 − min (𝑓𝑗 )

max(𝑓𝑗) − min (𝑓𝑗)
 

• Various score computations 

Weekly engagement score,𝐸𝑖,𝑤 =
∑ 𝑐𝑙𝑖𝑐𝑘𝑠𝑖,𝑡𝑡∈𝑤

∆𝑡𝑤
 

Weighted Assessment Score, 𝐴(𝑖) =
∑ 𝑤𝑘  ∙𝑚(𝑖,𝑘)

𝐾
𝑘=1

∑ 𝑤𝑘
𝐾
𝑘= 1

 

Temporal score change, 𝛥𝐴(𝑖,𝑡) = 𝑚(𝑖,𝑡) − 𝑚(𝑖,𝑡−1) 

• Discretize score into performance bands 

𝐵𝑎𝑛𝑑𝑖 = {

0 ; 𝑖𝑓 0 ≤ 𝑆𝑖 < 40   

1 ; 𝑖𝑓 40 ≤ 𝑆𝑖 < 60 

2 ; 𝑖𝑓 60 ≤ 𝑆𝑖 < 80 
3 ; 𝑖𝑓 80 ≤ 𝑆𝑖 ≤ 100
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• Train-Test Split: Split into 80:20 ratio 
𝑋𝑡𝑟𝑎𝑖𝑛,𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑟𝑎𝑖𝑛,𝑌𝑡𝑒𝑠𝑡 = 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡(𝑋, 𝑌, 𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒 = 0.2) 

TabNet  

• Transform input: 

𝐻𝑖

(0)
= 𝐹𝑇𝑠ℎ𝑎𝑟𝑒𝑑(𝑋𝑖; 𝑊𝑓) 

• For each decision step t: 

a. Compute attention mask, 𝑀𝑖

(𝑡)
=

𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥 (𝑃(𝑡) ⊙ 𝐴𝑇(𝑡) (𝐻𝑖

(𝑡−1)
;𝑊𝑎) 

b. Apply mask and process through decision 

block,  (𝐷𝑖

(𝑡)
,𝐻𝑖

(𝑡)
) =

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐵𝑙𝑜𝑐𝑘(𝑡) (𝐻𝑖

(𝑡)
 ; 𝑊𝑑) 

c. Update the prior scale, 𝑃(𝑡+1) = 𝑃(𝑡) ⊙

(𝛾 − 𝑀𝑖

(𝑡)
) 

• Concatenate hidden states: 

𝑍𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻(1), 𝐻(2), … , 𝐻(𝑇)) 

XGBoost prediction 

• Initialize Predictions, 𝑦̂𝑖

(0)
= 0 

• For 𝑡 = 1 𝑡𝑜 𝑇 

a. Fit tree 𝑓𝑡  to residuals 
b. Update prediction: 

𝑦̂𝑖 = 𝑦̂𝑖

(𝑡−1)
+ η𝑓𝑡(𝑍𝑖) 

• Optimize regularized objective 

𝐿(𝜙) = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑡)

𝑇

𝑡=1

 

SHAP based interpretation 

• Apply SHAP to 𝑍𝑖  and 𝑦̂𝑖  to compute per 
dpomain feature importance values 

𝜙𝑗 =  ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆F{j}

 [𝑓𝑆∪{𝑗}(𝑋𝑖) − 𝑓𝑠 (𝑋𝑖)] 

Feedback Generation 

 

• For each domain d, map the SHAP score  to 
feedback category 

𝑠𝑖,𝑑 =
1

|𝐹𝑑 |
∑ 𝑆𝐻𝐴𝑃𝑖,𝑓

𝑓 ∈𝐹𝑑

 

Model Compilation and Training 

• Compile model with loss = sparse categorical 
crossentropy, learning rate = 0.001, optimizer 
= Adam, Epochs =50 

• Train model: model.fit (X_train, y_train) 
 

Evaluation and Model Saving 

• Evaluate model: model. evaluate (X_test, 
Y_test) 

• Tune hyperparameters  

• Save the model 

End 

E. Simulation Setup 

The proposed TabNet-XGBoost hybrid model was 
implemented using a high-performance computational 
environment. The system configuration included an Intel Core 
i7 processor, an NVIDIA GeForce GTX 1080Ti GPU and 32 
GB of RAM that collectively ensured efficient handling of the 
intensive training and evaluation processes involved in IoT 
security anomaly identification and classification. To develop 
the model, Keras API built on TensorFlow and python was 

selected as the programming language. Google Colaboratory 
(Colab) was used for model training and testing, taking 
advantage of its free access to powerful GPUs and cloud-based 
execution environment that improved the study’s accessibility 
and reproducibility. The hyperparameters that affect the model 
behavior significantly are manually selected before training and 
have a direct impact on the framework’s rate of convergence, 
generalization capability and ultimate classification 
performance. The full list of hyperparameters and training 
settings employed in the study is summarized in Table I. 

TABLE I.  HYPERPARAMETER SPECIFICATIONS 

Hyperparameters Values 

Epochs 50 

Dropout 0.2 

Activation function ReLU 

Optimizer ADAM 

Loss function Sparse categorical cross entropy 

Batch size 32 

Learning Rate 0.001 

IV. RESULTS AND DISCUSSION 

A set of standard evaluation metrics has been employed to 
evaluate the performance of the proposed model, as illustrated 
in Eq. (25) to Eq. (28). These measures are mathematically 
computed using the core elements of the confusion matrix: True 
Positives (TP), False Positives (FP), True Negatives (TN) and 
False Negatives (FN). Accuracy indicates the overall 
correctness while recall and precision highlight the framework’s 
effectiveness in the prediction of score ranges without many 
misses or false alarms. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
                   (25) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (26) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         (27) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (28) 

Accuracy visualizes a model’s learning progress across 
training epochs, showing how well the model is fitting the data. 
The accuracy plot indicates improvements in predictive 
performance over time, while the loss plot reflects the model’s 
error reduction. Comparing training and validation curves helps 
identify overfitting, underfitting or stable convergence. These 
insights guide hyperparameter tuning, regularization 
adjustments and architecture refinements to improve model 
generalization and performance. 

The accuracy plot in Fig. 8 demonstrates a consistent 
improvement in both training and validation accuracy over the 
50 epochs, starting from around 0.90 and 0.87, respectively. 
Both curves rise steadily, with validation accuracy closely 
tracking training accuracy, peaking at approximately 0.989 for 
training and 0.988 for validation. 
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Fig. 8. Accuracy plot. 

The minimal gap between the curves suggests that the hybrid 
architecture generalizes well to unseen data and refrains from 
significant overfitting. This strong and parallel upward trend 
indicates that the chosen architecture and hyperparameters are 
effective in progressively improving classification performance 
throughout training. 

Fig. 9 illustrates the confusion matrix that indicates the 
proposed model’s remarkable classification performance across 
all four score bands. Misclassifications are minimal and 
primarily occur between adjacent score bands, such as 0–Less 
than 40 and 40–Less than 60, suggesting occasional boundary 
overlap in predicted scores. Overall, the distribution reflects 
both high accuracy and stability in multi-class categorization. 

 
Fig. 9. Confusion matrix. 

The metric evaluation results in Fig. 10 demonstrate the 
robustness and effectiveness of the TabNet-XGBoost hybrid 
model across all performance indicators. 

An accuracy of 98.79%, indicated that the vast majority of 
predictions correctly matched the actual class labels across the 
four score bands. The precision value of 98.54% reflects the 
model’s ability to minimize FPs, guaranteeing that most of the 
predicted instances for each class were indeed correct. The recall 
score of 98.89% shows the correct identification of true 
instances across all classes, with very few false negatives. 

The F1-score of 98.71%, harmonically balances precision 
and recall, confirms the framework’s consistent performance in 
both detecting true cases and avoiding misclassifications. 
Collectively, these findings highlight that the TabNet-XGBoost 
architecture maintains a balanced trade-off between precision 
and recall while achieving excellent overall classification 
performance. 

 
Fig. 10. Metric evaluation values. 

Deep learning architectures such as LSTM, RNN and Conv-
LSTM improve temporal dependency modeling, achieving 
accuracy levels exceeding 90%, but these models tend to suffer 
from high computational costs, longer training times and limited 
interpretability. Transformer-based and attention-augmented 
models address feature importance explicitly, yet still struggle 
with optimizing for structured tabular data, where sparsity and 
heterogeneous feature types prevail. In contrast, the proposed 
TabNet–XGBoost hybrid model leverages TabNet’s 
interpretable feature selection capabilities with XGBoost’s 
powerful non-linear decision boundaries, achieving an accuracy 
of 98.8%. This not only surpasses the performance of prior 
models but also offers enhanced interpretability and adaptability 
to varied educational datasets, making it a robust choice for real-
world deployment. Fig. 11 represents graphical representation 
of the accuracy comparison. 
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Fig. 11. Accuracy comparison. 

V. CONCLUSION 

This study presented a hybrid TabNet–XGBoost framework 
for predicting student performance and providing targeted 
feedback, demonstrating the potential of combining deep 
learning-based feature selection with powerful gradient boosting 
techniques for educational data mining. By integrating TabNet’s 
attentive feature-masking mechanism, the model efficiently 
identified and utilized the most informative attributes from the 
OULAD, while XGBoost refined the latent feature 
representations to enhance score range classification accuracy 
The incorporation of SHAP enabled model interpretability by 
quantifying the contribution of each feature to individual 
predictions, facilitating the development of a feedback module 
tailored to seven pedagogical domains. The proposed 
architecture achieved an accuracy of 98.8%, significantly 
outperforming conventional ML and DL baselines. 
Furthermore, the interpretability offered by SHAP ensured that 
predictions were not only highly accurate but also actionable, 
aligning predictive analytics and instructional decision-making. 
Future works may focus on expanding the feature space to 
incorporate additional behavioral, social and temporal 
engagement indicators, as well as validating the framework 
across multiple institutions. 
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