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Abstract—Virtual Learning Environments (VLEs) have
emerged as a cornerstone of modern education, enabling large-
scale delivery of learning materials, assessments, and interactions
in fully or partially online formats. The dynamic and self-paced
nature of VLEs makes the early prediction of learner scores
crucial for timely intervention and support. The existing
frameworks either underperform in capturing complex, non-
linear relationships in heterogeneous educational data or lack
interpretability = mechanisms necessary for  actionable
interventions. This study proposes a TabNet—XGBoost hybrid
model with SHAP-based interpretability for score range
classification in VLE contexts, using the Open University
Learning Analytics Dataset (OULAD). Data preprocessing
involved cleaning, encoding, normalization, feature engineering,
and score band derivation, producing an enriched feature matrix
integrating demographic, assessment, and engagement indicators.
TabNet’s sequential attentive feature selection extracted a latent
representation of the most informative variables, which was
subsequently refined by XGBoost to produce sharper decision
boundaries for four distinct score ranges. SHAP values were
computed post-prediction to identify = domain-specific
performance drivers, enabling alignment with a structured
feedback module across seven predefined learning domains.
Experimental results demonstrated a classification accuracy of
98.8% on the testset, outperforming the baseline frameworks. The
SHAP-driven feedback mechanism provided interpretable,
domain-targeted insights, enhancing the model’s practical
applicability for educators and academic support teams. By
integrating high predictive accuracy with transparent reasoning
and actionable feedback, the proposed framework addresses both
the technical and pedagogical requirements of early performance
prediction in online learning environments, offering a scalable
solution for real-time academic monitoring and intervention.
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I.  INTRODUCTION

Virtual Learning Environments have transformed the
educational landscape by enabling interactive, resource-rich,
and quality education platforms where learners can access
course materials, engage with peers, and receive instructional
guidance regardless of physical location [1]. These digital
ecosystems offer unprecedented flexibility, as students can
customize learning pace and learning paths and integrate
academic activities into diverse personal and professional
schedules [2]. VLEs provide scalability for institutions, support
diverse learningmodalities, and facilitate continuous assessment
opportunities. Despite these advantages, learner performance
within such environments can vary significantly, influenced by

factors such as digital engagement habits, self-directed learning
skills, and adaptability to technology-mediated instruction [3].
A central challenge remains the consistent and accurate
evaluation of learner progress, alongside the timely provision of
constructive feedback [4]. Without proactive performance
monitoring and targeted intervention, learners in VLEs may
experience reduced motivation, disengagement, or even
withdrawal from the course.

Traditional approaches for performance assessment in VLEs
often rely on periodic quizzes, assignment submissions, and
final examinations. While these methods are administratively
convenientand familiar to both educators and leamers, they are
predominantly retrospective, identifying performance gaps only
after significant time has elapsed. Such delay limits the scope
for early corrective action and diminishes the effectiveness of
feedback, particularly in fast-paced or highly competitive
academic contexts [5]. Moreover, these approaches tend to
prioritize academic scores over other formative indicators such
as participation in discussions, interaction with learning
resources, or the quality of peer collaboration, all of which are
vital for a holistic understanding of learner progress in virtual
environments.

The adoption of advanced analytics in VLEs, with machine
learning (ML) and deep learning (DL) algorithms, predictive
analytics, and learning dashboards, enables educators to track
and forecast student performance using a wide array of
behavioral and academic indicators [6]. However, existing
implementations often fall short in adaptability, failing to
dynamically adjustto evolving leamner behaviors over time [7].
Some models focus narrowly on quantitative academic metrics,
neglecting qualitative engagement data, while others operate as
opaque “black boxes”, limiting their interpretability and
diminishing trust among educators and stakeholders. This
underscores the need for an integrated, transparent, and adaptive
performance prediction framework tailored for VLEs. An ideal
system should deliver early, accurate forecasts of leamer
performance, informed by both academic and behavioral data,
while ensuring that feedback is specific, actionable, and timely.

The primary objective and questions addressed in this study
are mentioned below:

e Development of a hybrid TabNet—XGBoost Framework
that integrates TabNet’s attention-driven feature
selection with XGBoost’s gradient-boosted decision
refinement, optimized for score range classification in
VLEs.
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e Implementation of aninterpretable feedback generation
module that maps SHAP-based feature importance
values to seven predefined learning domains, enabling
personalized, domain-specific recommendations for
academic performance improvement.

The succeeding sectionsof the study are organized as
follows: Section Il offers a comprehensive analysis of the latest
advances in student performance prediction in VLEs and
highlights the current research constraints. Section III delineates
the proposed methodology. The experimental results are
highlighted in Section IV along with a comprehensive
assessment of the model’s functionality. Finally, Section V
completes the research by summarizing the main conclusions
and highlighting the possible domains for future research.

II.  RELATED WORK

Liu et al. [8] suggested the use of temporal engagement data
collected from online learning platforms for student
performance prediction. The OULAD, consisting of clickstream
data from 5,341 distance learners across 12 different VLEs, was
the source of the study. Two primary feature sets were designed
based on the weekly and monthly aggregation of click counts,
treating them as structured panel data. A number of classifiers,
including Logistic Regression (LR), k-Nearest Neighbors
(KNN), Random Forest (RF), Gradient Boosted Trees, 1D
Convolutional Neural Networks (1D-CNN) and Long Short-
Term Memory networks (LSTM) were compared in the study.
LSTM outperformed others with a maximum accuracy of
90.25% and interactions with the homepage, subpages, content,
and quizzes were identified as the most predictive behaviors in
the feature importance analysis. As the framework failed to
incorporate assessment performance or generate personalized
feedback, its applicability in student score improvement was
limited.

Arashpour et al. [9] proposed hybridized ML models for
student exam performance prediction utilizing OULAD. The
hybrid models integrated Support Vector Machines (SVM) and
Artificial Neural Networks (ANN) with a Teaching—Learning-
Based Optimizer (TLBO) for both classification and regression.
TLBO performed feature selection and optimized the ANN
structure in parallel, identifying the optimal subset of predictive
input variables. The SVM model, with eight selected features,
achieved a classification accuracy of 86.10%, while the ANN
modelachieved 84.94% on thetest data. For regression, Support
Vector Regression (SVR) outperformed ANN, achieving a
correlation coefficient R > 0.7. Engagement, measured through
clickstream behavior and performance in ongoing assessments,
was identified as the most influential predictor. Heavy
dependence on numerical engagement metrics, lacking semantic
interpretation or personalized feedback mechanisms, hampered
the practical use of the framework.

Rao et al. [10] proposed DL models for early prediction of
student academic performance utilizing log data obtained from
academic systems. The dataset comprised log records from 108
students enrolled in an “Information Science” course was
utilized which captured sequential interactions with the learning
environment. The architecture employed a Recurrent Neural
Network (RNN) that processed sequential student interaction
logs, capturing temporal dependencies in learning behavior
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patterns over the course timeline. The framework dynamically
updated the internal state with each input sequence, enabling it
to learn correlations between past engagement and future
academic outcomes. The RNN framework with 84.3% accuracy
outperformed the Decision Tree classifierand ensemble learning
approaches. As there was no integration of time-based
engagement trends or automated feedback generation, the
deployment of the framework for continuous formative
assessment and personalized academic support was constrained.

Jawad et al. [11] proposed a Random Forest classifier,
enhanced by the SMOTE oversampling technique, to predict
student academic performance in VLE. The study utilized
OULAD and constructed dynamic student profiles across six-
time intervals (120 to 260 days), integrating engagement
patterns and assessment scores. The framework was retrained
per time segment to simulate real-time academic monitoring,
and the integration of SMOTE mitigated the impact of
imbalanced class distributions. The model achieved its highest
testing accuracy of 84.2% at 260 days, suggesting that richer
late-term data boosts predictive strength. Additional
benchmarking revealed that XGBoost and Logistic Regression
achieved accuracies of 84.3% and 80.9%, respectively. The
reliance on separate models across multiple time intervals
introduced structural redundancy and limited scalability forreal-
time deployment.

Yuetal.[12] proposedarecurrentneural network (RNN) for
student learning outcome prediction in an online Artificial
Intelligence course, focusing on identifying at-risk students
using a limited number of commonly available LMS features. A
number of DL models: Simple Recurrent Network (SRN),
LSTM, Gated Recurrent Unit (GRU), Multilayer Perceptron
(MLP), and CNN, as well as ML frameworks: LR, SVM, RF,
and decision trees (DT), were compared. The SRN and CNN
models achieved the highest overall accuracy (93%), while
LSTM and GRU followed closely with 91% and 92%,
respectively. Further week-wise performance analysis revealed
that GRU showedthe bestpredictiveaccuracy (87%)by the 18th
week, followed by SRN (86%) and CNN (84%), outperforming
all classical ML models. The rigid framework for all prediction
weeks overlooked varying learning dynamics at different stages
of the course, hampering adaptability to fluctuating student
engagement patterns.

Kusumawardani and Alfarozi [13] proposed a transformer
encoder-based DL framework for early prediction of student
performance using log activity data from learning management
systems (LMS). The study utilized the OULAD and was
designed for both daily and weekly prediction tasks for the early
identification of at-risk students. The transformer architecture
was fine-tuned by evaluating the effects of components of
positional encoding, feature aggregationstrategies and weighted
loss functions. The framework performed best without
positional encoding, and weekly feature aggregation yielded
higher accuracy. For the withdrawn vs. pass-distinction task, an
accuracy of 83.17% was observed at just 20% of the course
duration, improving further to 90% accuracy by the end. Across
all tasks, the transformer outperformed LSTM by 1-3% in
accuracy and 3-7% in Fl-score. The model complexity and
resource-intensive architecture hindered deployment in real-
time or low-resource educational environments.
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Chen et al. [14] proposed Explainable Student Performance
Prediction (ESPP) for early detection of at-risk learners in VLEs.
The data for the study was collected from a Digital
Transformation course at Gadjah Mada University, Indonesia,
comprising weekly student activity logs during online
instruction. The hybrid deep learning framework integrated
CNN and LSTM networks, alongside the hybrid SMOTE
oversampling technique to balance class distributions. CNN
layers extracted spatial patterns from temporal activity
sequences, which were then passed through LSTM layers to
model time-dependent engagement trends. Conv-LSTM model
achieved thehighestaccuracy of91%, followed by CNN-LSTM
at 88%, outperforming LSTM (85%), SVM (80%) and LR
(64%) on evaluation in the six-week. However, the
computational complexity was a major drawback, hindering
scalability or real-time deployment in low-resource educational
platforms.

Adnanetal.[15]suggested a predictive model to identify at-
risk students in VLEs, MOOCs, and LMS platforms using
OULAD. A number of multiple ML and DL algorithms were
evaluated, including RF, DT, SVM, LR, KNN, MLP, ANN, and
Naive Bayes (NB). The study incorporated key variables such
as assessment scores, clickstream data indicative of engagement
intensity, and temporal indicators [15]. On evaluation, the RF
classifier performed consistently across different stages of
course progression and achieved 79% accuracy at 20% course
completion, which further improved to 88% at 60% and peaked
at 91% at 100% of the course length. The high dependence on
feature engineering that did not generalize well across different
online learning environments without significant adaptation
constrained the potential of the study.

Riestra-Gonzalez et al. [16] proposed a course-agnostic
framework to predict student performance from LMS log files
in the early stages of course delivery. The study utilized data
from 5,112 courses hosted on Moodle at the University of
Oviedo, involving over 29,000 students across diverse
disciplines. Multiple classification models were employed, such
as DT, NB, LR, SVM, and MLP, to detectat-risk, failing, and
exceptional students at different course phases. The MLP model
achieved the highest accuracy, ranging from 80.1% at 10% of
course length to 90.1% at 50%, while DT followed closely with
accuracies ranging from 79.5% to 89.6% over the same
intervals. A clustering technique was also applied to identify six
consistent student interaction patterns, four of which were
identified to be strongly correlated with student performance:
early answering of quizzes, prompt viewing of LMS resources,
early viewing of course assignments, and procrastination in
viewing course content, which indicated a higher risk of failure.
The reliance on static interaction patterns, without incorporating
the temporal sequence or evolution of student behaviors over
time, hampered the generalizability of the framework.

Yagc1 [17] proposed a machine learning-based predictive
framework for predicting students’ final exam grades using
minimal yet impactful academic indicators. The dataset for the
study comprised midterm grades, faculty affiliation, and
departmental information of 1,854 undergraduate students
enrolled in the Turkish Language-I course at a public university
in Turkey. Six ML models: RF, SVM, LR, NB, KNN, and
Neural Network (NN) were evaluated in the study. The

Vol. 16, No. 10, 2025

framework extracted predictive insights from numerical
academic features without incorporating behavioral or
interaction data. On evaluation, RFand NN achievedthe highest
classification accuracy, both reaching 74.6%, followed by SVM
with 73.5%, LR at 71.7%, NB at 71.3% and kNN at 69.9%. The
sole focus on academic variables without the incorporation of
behavioral or engagement-related features limited the study.

Chen et al. [18] proposed an Attention-Based ANN (Attn-
ANN) model for early prediction of at-risk students by
integrating attention mechanisms across both time and feature
dimensions. Data for the study were collected from the M2B
system at Kyushu University, which included LMS-based
records such as attendance, report submissions, and course
access. The framework employed dual attention layers: on the
temporal dimension to identify important weeks and on the
feature dimension to prioritize learning activities. The attention
weights are integrated directly into a standard artificial neural
network, enabling it to dynamically adjust the influence of each
time step and feature during the learning process. The Attn-
ANN achieved an accuracy of 64.3% in the Programming
Techniques (PT) courseand up to 89.5% in the Digital Signal
Processing (DSP) course, outperforming conventional models
like MLP, LSTM, and GRU in both early and progressive
weeks. The sensitivity of attention weight calibration required
manual adjustment or retraining across different course
structures and educational settings.

Hakkal and Ait Lahcen [19] suggested integration of
XGBoost with logistic regression-based models for learner
performance prediction within Intelligent Tutoring Systems
(ITS). Three regression models were utilized: Item Response
Theory (IRT), Performance Factor Analysis (PFA), and
DAS3H. Eight real-world datasets from varied sources,
including four ASSISTments skill-builder math datasets, two
KDD Cup Algebra datasets, the Statics engineering dataset, and
a new Moodle-Morocco dataset, were employed in the study.
The framework analyzed historical ITS interaction logs and
estimated the probability ofa learner answering future questions
correctly. The XGBoost-enhanced PFA outperformed standard
PFA in seven datasets, DAS3H also improved on the
ASSISTments17 dataset, while IRT’s performance remained
stable across datasets, indicating less benefit from XGBoost
integration. The highest accuracy value of 84.9% was observed
for DAS3H-LR on Bridge-Algebra06, followed by 84.3% by
PFA-XGBOOST on the Bridge-Algebra06 dataset. The worst
accuracy of 68.1% was exhibited by IRT-XGBOOST on the
Assistments09 dataset. However, XGBoost consumed a long
execution time for large datasets and required advanced
hyperparameter tuning and specialized feature encoding,
hampering the scalability in real-world scenarios.

latrellis et al. [20] proposed a two-phase machine learning
approach combining unsupervised and supervised learning in
student outcome prediction. Data from the Computer Science
Department at the University of Thessaly, Greece, was utilized
in the study to forecast degree completion time and the
likelihood of student enrollment. The first phase employed the
K-Means algorithm to cluster students based on educational
factors and metrics, which identified three coherent student
groups. The prediction models were developed for each cluster
in the second phase for customized predictions. The clustering-
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guided model outperformed non-clustering models, achieving
an accuracy of 80.5%, compared to 75.5% in the non-clustering
approach. As the student grouping was solely from a data-
driven perspective, the faculty insights or academic advisor
evaluations were overlooked in the study, hampering the content
relevance of the predicted outcomes.

A. Research Gap

Despite significant advancements in predictive modeling for
student performance, several research gaps persist. Many
existing approaches, including DL architectures like BiLSTM,
CNN, and LSTM, as well as ML models such as RF, SVM, and
hybrid optimization-based methods, have demonstrated high
accuracy using datasets such as OULAD, LMS logs, or
Intelligent Tutoring Systems [8][14][22]. However, a recurring
limitation is the narrow scope of input features; most
frameworks rely heavily on clickstream data, assessment scores,
or basic academic records, overlooking rich contextual, socio-
cultural, and behavioral attributes that could improve model
generalization [15] [17]. Furthermore, temporal modeling has
often been static or rigid, failing to adapt to evolving
engagement patterns across course stages [12]. While certain
methods incorporate early prediction capabilities, few integrate
automated personalized feedback or intervention strategies to
translate predictions into actionable academic support [10].
Scalability is also a challenge; resource-intensive architectures
like transformers and CNN-LSTM struggle in low-resource
educational settings, while approaches with segmented time-
based retraining introduce redundancy. Lastly, class imbalance
handling techniques like SMOTE improve accuracy but may
reduce real-world applicability where such balancing is
infeasible, highlighting the need for models that maintain
robustness in naturally imbalanced datasets [ 11]. This calls for a
novel model that could predict the student performance in VLEs
with high accuracy and tailor feedback for academic
improvements while considering both academic and behavioral
attributes.

III. MATERIALS AND METHODS

The proposed study integrates TabNet and XGBoost for
enhanced student performance predictionin VLEs. The hybrid
architecture leverages TabNet’s sequential decision-step feature
selection and representation learning capabilities, coupled with
XGBoost’s robust non-linear modeling, to generate precise
score range classifications. The OULAD serves as the primary
data source and SHAP was employed for the customized
feedback generation. Fig. 1 represents the basic architecture of
the proposed model.

A. Dataset Description

The proposed study employs the publicly available Open
University Learning Analytics Dataset (OULAD) from Kaggle,
a comprehensivereal-world dataset sourced fromthe VLE of the
Open University, the largest distance-learning institution in the
United Kingdom[21]. The datasetcomprisesrecords fromseven
distinctmodules delivered across multiple academic years, with
presentations denoted for the first and second semesters. It
integrates three major data categories: student demographic
attributes, assessment-related data, and VLE interaction logs.
The student demographic attributes include age band, gender,
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geographic location, disability status, prior education level, and
Index of Multiple Deprivation (IMD) band.
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Fig. 1. Basic architecture of the proposed model.

The assessment-related data contains marks, submission
dates, and completion status for assignments, quizzes, and final
examinations. The VLE interaction logs include time -stamped
clickstream data capturing student engagement patterns,
including content access, forum participation, and quiz activity.
The dataset’s multimodal nature, combining demographic,
behavioral, and performance indicators, aligns closely with the
proposed model architecture, enabling both sequential learning
through historical interactions and explainability through
feature-level attribution. Given its richness, scale, and diversity,
OULAD provides an ideal foundation for developing high-
accuracy predictive models with actionable, domain-specific
feedback to improve student performance outcomes

B. Exploratory Data Analysis

Exploratory Data Analysis (EDA) is performed for the
systematic examination of the structural composition and
statistical properties of the dataset, enabling the identification of
underlying patterns, distributions, and relationships between
variables. The process is crucial for the detection of anomalies,
missing values, and potential data imbalances, while also
highlighting key behavioral and demographic trends relevant to
student performance. Insights from the EDA informed both
engineering decisions and the subsequent design of the
predictive modelling framework.

The distribution of results across individual modules
illustrated in Fig. 2, reveals substantial variation in student
performance pattems, offering critical insights for targeted
academic interventions.

As depicted, certain modules, such as BBB and FFF (as
named in the dataset), exhibit the highest overall enrolmentsand
are characterized by a comparatively large proportion of
withdrawn students, suggesting potential structural or delivery-
related challenges. Conversely, modules like AAA and EEE
display lower participation volumes but notable failure rates,
which may indicate concentrated difficulties among smaller
cohorts. The presence of distinctions is relatively modest across
all modules, with only minor variation between courses, while
pass rates remain the most frequent positive outcome. This
module-level stratification provides a more nuanced
understanding than aggregate performance statistics, enabling
the identification of courses where tailored pedagogical
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strategies or enhanced learning support may yield the most
significant improvements. Such granularity aligns directly with
the proposed model’s capacity to generate module-specific
performance predictions and customized feedback, thereby
facilitating informed decision-making for educators and
administrators aiming to reduce attrition and improve academic
success rates.

Final Results of Students in Each Module

8000 Final Result
- D on
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2000

o l | |
g g 8 ] H g

Module

Fig.2. Final results of students in each module.

Fig. 3 represents the distribution of key learning activity
features, segmented by students’ final results.

Distribution by class (by feature)

Fig.3. Distribution of key leaming activity features.

Each subplot corresponds to a specific feature from the
OULAD dataset with kernel density estimations illustrating the
relative frequency of values for each outcomeclass. Across most
activity metrics, students who passed tend to show higher
engagement levels, as indicated by a broader spread and higher
density in the upper value ranges compared to their failing
counterparts. Notably, features like quiz and mean score day
demonstrate a clear separation between the two classes,
indicating strong predictive value. Conversely, some variables,
such as oucollaborate and ouwiki, exhibit overlapping
distributions, implying limited discriminative power. The
skewed patterns in the number of previous attempts and studied
credits suggest that prior academic history and course load may
influence performance outcomes.

Fig. 4 compares the average submission dates between B
Semesters and J Semesters (for the second and first semesters,
respectively) expressed in days from the start of the academic
term. The results show that on average, students in the second
semesterssubmittheir work earlier comparedto thosein the first
semesters. This difference of nearly 10 days suggests possible
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variations in course scheduling, assessment deadlines or student
pacing between the two semester types. Such temporal patterns
can inform predictive modeling by highlighting semester-
specific behaviors that may influence engagement and
performance outcomes.

Average Submission Date by Semester
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) Semesters
Semester

Fig. 4. Average submission date by semester.

1o Assessment Weight

Impact of Submission Lateness on Performance

Fig. 5. Student score analysis.

Fig. 5 presents scatter plot analyses exploring the
relationships between student scores and multiple engagement
or temporal features in the dataset. The Student Scores to
Overall Clicksreveal a positive association between total VLE
clicks and student scores, suggesting that higher engagement
levelsare generally linked to better academic performance. The
Student Scores to Assessment Weight indicates that most
assessments have lower weightings, with a dense concentration
ofpointsnear zeroweightandminimal variationin scores across
higher weights. The Student Scores to Day Submitted shows a
weak negative trend, suggesting that later submission dates may
be modestly associated with lower scores, though the
relationship appears minimal. The Impact of Submission
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Lateness on Performance illustrates a clearer negative
relationship, where increased lateness correlates with lower
scores, as captured by the downward-sloping regression line.
Collectively, these plots highlight that engagement intensity is a
strong positive predictor, while lateness is a notable negative
factor influencing student performance, whereas assessment
weight and submission timing exhibit weaker or more diffuse
relationships.

C. Data Preprocessing

The data preprocessing is a critical stage in predictive
modeling, ensuring that raw educational datais transformed into
a structured, consistent, and analytically suitable format. This
process involves cleaning and standardizing heterogeneous data
sources, handling missing or inconsistent values, and encoding
variables to align with the input requirements of advanced deep
learning architectures.

Data cleaning is performed first to remove noise,
inconsistencies,and missing values from the dataset. For theraw
dataset = {x;,y;}",_, ,where x; is the feature vectorand y;, the
corresponding label for the i " student, the missing values in a
numerical feature f; are replaced using mean imputation, as in

Eq. (1):

N
v _ Zic1 fij

f]' - N]t?bs (1)

where, N j"bs represents the number of observations without
missing values for feature f; , and f;* is the imputed value. For

categorical variables, the missing entries were replaced by the
mode, as in Eq. (2):

. max count (c)
fr=ag" 5 @
where, (; is the set of possible categories for f;. Outliersin

continuous variables are detected using the z-score method, as
in Eq. (3):

f. i—Ui
z;j = % 3)

where, ¢ ; and ; denote the mean and standard deviation of
feature f; , respectively. Instances with |zl- j| > 3 are flagged for
removal or transformation. Following data cleaning, feature
engineering is performed to transform the dataset into a
structured form compatible with the model. Categorical
variables such as gender, region, and highest education were
encoded using one-hot encoding, producing binary indicator
vectors for each observation. For a categorical feature f; with
K; distinct categories, each observation i is represented, as in
Eq. (4):
(k) 1;if observation i belongs to category k
AR . vk €
LJ 0; otherwise
[LK;]| )

Numerical attributes, including click counts, assessment
scores, and time-on-task, were normalized to a uniform scale to
ensure balanced gradient updates during model training. The
min—max transformation is applied, as in Eq. (5):
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flo= fi j—min (fj)
LI max(f;)-min (f;)

(&)

where, f; is the normalized value for feature f; in
observation i. To capture engagement dynamics, temporal VLE

logs were aggregated into weekly indicators of student activity.
The weekly engagement score for student i in week w was

computed, as in Eq. (6):
E. = Ytewclicks; ¢ (6)

Lw At,,
where, clicks;, is the total VLE interactions at timestampt
and At,, is the number of active days in week w.In addition,
assessment-related features were derived by computing the
weighted average of scores, as in Eq. (7):

Zf— Wi "Mk
A =274 7
@ K Q)

where, m ;) denotes the mark of student i in assessmentk
and wy, is its respective weight. Temporal score change was
measured, as in Eq. (8), capturing improvement or decline
between consecutive assessments.

AAgpy = M —M(oq) (8)

The final engineered feature matrix X* integrates
demographic encodings, normalized continuous attributes,
weekly engagement profiles, and assessment-based indicators,
providing a comprehensive, multi-view representation of each
learner. For the score range prediction task, continuous marks
were discretized into performance bands to align with the
feedback generation module. The score band for student i is as
in Eq. (9):
0;if 0<S; <40
1;if40<S; <60 9
2;if 60 <S; <80 ©)
3;if80<S;, <100

where, S; denotes the final computed score from all
available assessments. These engineered features form the input
vector X; for subsequent representation learning in the proposed
framework. Feature selection is further performed to retain
critical informative predictors and reduce model complexity.
The mutual information criterion is applied between each
feature f; and the target variable y, as in Eq. (10):

p(f;y)

MI(f;y) =2szyp(fj,}’)logm (10)

Band; =

where, p(f]-,y) isthe joint probability distribution of feature
fj and target y and p(f;), p(y) are the respective marginal
probabilities. Features with M1 ( f}y) < tare discarded, where
7 is the data-driven threshold. The processed dataset X * is then
split into training and testing subsets in the ratio 80:20. Class
imbalance handling is applied only to the training set to prevent
information leakage. Using the Synthetic Minority
Oversampling Technique (SMOTE), new synthetic samples are
generated, as in Eq. (11):

Xpew =X+ 4 - (xnn_xi) (11)
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where, x; is a minority class sample, x,,,, is one of its KNN
and A € [0,1] is a random interpolation factor. Finally, the
balanced training set is structured for the proposed architecture,
with each observation X; represented, as in Eq. (12):

X; = [X_demo X_eng Xgsses XFemp] (12)

where, X#¢™° contains demographic encodings, X" with
weekly engagement scores, assessment-derived rnetrlcs in
Xgsses and X/°™ contains temporal change indicators to
facilitate multi-view input compatibility with the hierarchical
attention encoder.

D. Model Deployment

1) TabNet architecture: TabNet is a DL architecture
designed specifically for tabular data, combining the
interpretability of DTs with the representational power of NNs
[24]. The model processes data in multiple sequential decision
steps, where at each step a subset of the most relevant features
is selected through an attentive feature-masking mechanism.
The process begins with an input vector X; € RY for student i,
which is first normalized and passed through a shared feature
transformer network FTg..eq() . The initial hidden
representation is as in Eq. (13):

H® = FTgarea(XsWy) (13)

where, Wy are learnable weights of the shared feature
transformer block. At each decision step t € {1,2,...,T},
TabNet computesan attention mask M® overthe featuresusmg
an Attentive Transformer. The mask is modulated by a prior
scale vector P € [0,1]¢ which controls feature reuse and is
initialized as P® =1 for t = 1. The mask is given as in
Eq. (14):

Mi(t) — sparsemax(P(t) QAT(t)(Hi(t—l);M/a) (14)

where, W, is the attention weight matrix, © denotes
element-wise multiplication, and the sparsemax activation
ensures that only a subset of features receive non-zero weights,
enhancing interpretability. The masked feature vector is
obtained as in Eq. (15) and passed through the decision step
network as in Eq. (16):

H® =m® @ HV (15)
(D®P,H®) = DecisionBlock® (H® ;w,)  (16)

where, Di(t) € R¥ isthe decision outputcontributing directly

to the prediction and H i(t) is the transformed feature
representation for the current step. The prior scale vector for the
next step is updated to reduce the weight of features already
selected, allowing partial reuse via the relaxation parametery >
lasin Eq. (17):

P(t+1) — P(t) 0} (]/_ Mft)) (17)

The final prediction is the sum of decision outputs across all
T steps as in Eq. (18):

9 =Y, D (18)
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In the proposed framework, however, instead of using only
¥, fromthe aggregated decision outputs, a latent representation
is formed by concatenating the transformed hidden vectors from
all decision steps as in Eq. (19):

Z;= Concat(H®W,H?,...,HD) (19)

The enriched feature vector Z; is then fed into the XGBoost
model that refines the predictionofthe student’s score range and
enables sharper decision boundaries. The basic architecture of
TabNet is depicted in Fig. 6.

...... | sgorep |

- !’}-

Fig. 6. Basic architecture of TabNet.

2) XGBoost Regressor: Extreme Gradient Boosting
(XGBoost) is an optimized implementation of the gradient
boosting framework designed for scalability, efficiency, and
high predictive accuracy on structured data [23]. The algorithm
builds an ensemble of decision trees sequentially, where each
new tree f; is trained to minimize the residual errors of the
previous trees. For the dataset {(X;,y,)},.;", the model
prediction at iteration t is as in Eq. (20):

9 =9V + 0 @) (20)

where, 77 is the learning rate and f; represents the freshly
added regression tree. The optimization process minimizes
regularized objective function, as shown in Eq. (21):

L(¢) = X1 1y 9) + Xi=12(f) (21)

where, l(y;, 9;) is the differentiable loss function and Q(f;)
is the regularization term defined, as shown in Eq. (22):

Q) = yT +3 AXT-w} (22)

where, T is the number of leaves in tree f; , w; is the weight
assignedto leafj, y penalizes the creation of excessiveleaves to
control the model complexity, and A controls L2 regularization
on leaf weights.

Fig. 7 representsthe basic architecture of XGBoost improves
traditional gradient boosting through features such as
parallelized tree construction, sparsity-aware split finding and
weighted quantile sketch for efficient handling of missing
values. Its ability to model complex, non-linear relationships
makes it highly effective for educational datasets where
interactions between demographic, engagement and assessment
features can strongly influence performance predictions.
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Fig. 7. Basic architecture of XGBoost Regressor.
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3) Proposed TabNet-XGBoost hybrid model: In the
proposed TabNet-XGBoost architecture, TabNet serves as the
representation learning module, extracting a compact yet
information-rich latent feature vector from the pre-processed
student data. The output of the TabNet module, the concatenated
vector Z;, captures both global and stepwise feature importance
pattemns, effectively encoding demographic, engagement and
assessment-related information into a single high-dimensional
embedding. This enriched feature vector Z; is then passed into
the XGBoostRegressor, which acts as the final prediction layer.
In regression mode, XGBoost iteratively builds trees to refine
the score prediction. After convergence, the continuous score
prediction is discretized into four score bands representing
performance ranges. This integration allows TabNet to perform
interpretable and sparsity-driven feature selection, while
XGBoost captures non-linear relationships and sharpens class
separation boundaries. The combination results in a robust
hybrid model capable of predicting students’ score ranges with
high precision while retaining interpretability for SHAP-based
feedback generation in later stages.

Following score band prediction, the model incorporates
SHapley Additive exPlanations (SHAP) to ensure
interpretability and to support the customized feedback
generation module. SHAP, grounded in cooperative game
theory, assigns each feature a Shapley value ¢ ; representing its
average marginal contribution to the model’s prediction across
all possible feature subsets. For a given student i with a feature
set F and model prediction f (X;) theShapley value for feature j
s computed as in Eq. (23):

ISIt(FI=IS[=1)!

¢j = ZSQF{J'} [F|! [fSU{j}(Xi) _fs(Xi)] (23)

where, S is a subset of features excluding j, fSU{j}(Xi) is the
model output when j is included and f;(X;) is the output
without . This ensures a fair and coherent measure of feature
importance, regardless of ordering or correlation. In the
proposed hybrid framework, SHAP is applied after the XGBoost
stage, taking the enriched latent vector Z; as the feature input
and the XGBoost model’s predicted score range as the target for
explanation [24]. Following SHAP analysis, the feature
importance values for each individual student are mapped onto
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seven pre-defined feedback domains: Engagement, Assessment
Preparedness, Time Management, Learning Resource
Utilization, Interaction Frequency, Content Comprehension and
Consistency of Effort. For each domain d, the mean SHAP
value s; 4 is computed by averaging SHAP contributions of
features belonging to that domain as in Eq. (24):

Sia = (5 L er, SHAPyg (24)

where, F; is the set of features assigned to the domain d.
Domains with high positive SHAP values indicate areas that
most contributed to predicted high performance, while high
negative SHAP values signal weaknessesrequiring intervention.
A feedback tableis then generated for each student, with rows
representing the domains and columns indicating performance
status along with the recommendations. This integration ensures
that the system not only predicts student performance with high
accuracy but also delivers interpretable, actionable and
structured recommendations to improve learning outcomes. The
algorithm for the proposed model is as shown below (see
Algorithm 1).

Algorithm 1: TabNet-XGBoost hybrid model for Student
performance prediction and customized feedback

Input:
*  QULAD dataset D = {(X;, y; )},
= Y: Label vector corresponding to X
= Label vector€ {0,1,2,3}, each value for different
score range
Output:
= Predicted class label Y € {0,1,2,3} and customized
feedback
Begin:

Data collection

e Load OULAD dataset

e Extract feature matrix X and label vector Y
Data Preprocessing and Feature extraction

e Missing values imputation:

N
fr= 2i=1 fij
Jj = obs
N
. Outliner detection and handling:
fij =
zjj = LI ,remove Lflzul >3

gj
e One hot encoding for categorical features:
;if observation i belongs to category k
0; otherwise
e Normalization:
oo fi,j — min (f]-)
= max(fj) — min (f})
e Various score computations
Yrewclicksi,
Aty
Thea Wi Mg
25:1‘”"
Temporal score change, AA(;ry = M(ir) — M(it-1)

f<k) _ {

Weekly engagement score,E;, =

Weighted Assessment Score, Ay =

e Discretize score into performance bands
0;if0<5;<40

1;if 40 <5; <60

2;if 60 <S; <80
3;if80< S, <100

Band; =
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o Train-Test Split: Split into 80:20 ratio
XerainXtest) Yerain, Yeest = train_test(X,Y, tests,e = 0.2)
TabNet
o Transform input:
H = FToparea(Xi; Wy)
i - shared\Ai» VVf
o For each decision step t:
mask,

a. Compute  attention Mi(t)=

sparsemax (P® O AT® (Hi(t_l);Wa)
b.  Apply mask and process through decision
block, (0.1 =
DecisionBlock® (Hi(t) ; Wd)
c.  Update the prior scale, P(t+D) = p()
t
v - M)
e Concatenate hidden states:
Z;= Concat(H(l),H(z), ...,H(T))
XGBoost prediction
e [nitialize Predictions, ﬁi(o) =0
e Fort=1toT

a. Fittree f; to residuals
b.  Update prediction:

N A (t-1
Y=y THnfe(Z)
e Optimize regularized objective

n T
L@) = ) 10090+ ) 0(f)
i=1 t=1

SHAP based interpretation
o Apply SHAP to Z; and J; to compute per
dpomain feature importance values
ISt (IF|— 1S — 1)!
¢ = ( T 2 oot - £
SCF{j}
Feedback Generation

o For each domain d, map the SHAP score to

feedback category
1
id =T SHAP;
Sid |Fd I Z iLf
fEF

Model Compilation and Training
o Compile model with loss = sparse categorical
crossentropy, learning rate = 0.001, optimizer
= Adam, Epochs =50
o Train model: model fit (X train, y_train)

Evaluation and Model Saving
e Evaluate model: model. evaluate (X test,
Y test)
o Tune hyperparameters
e Save the model
End

E. Simulation Setup

The proposed TabNet-XGBoost hybrid model was
implemented using a high-performance computational
environment. The system configuration included an Intel Core
i7 processor, an NVIDIA GeForce GTX 1080Ti GPU and 32
GB of RAM that collectively ensured efficient handling of the
intensive training and evaluation processes involved in IoT
security anomaly identification and classification. To develop
the model, Keras API built on TensorFlow and python was
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selected as the programming language. Google Colaboratory
(Colab) was used for model training and testing, taking
advantage of its free access to powerful GPUs and cloud-based
execution environment that improved the study’s accessibility
and reproducibility. The hyperparameters that affect the model
behavior significantly are manually selected before training and
have a direct impact on the framework’s rate of convergence,
generalization capability and ultimate classification
performance. The full list of hyperparameters and training
settings employed in the study is summarized in Table 1.

TABLE . HYPERPARAMETER SPECIFICATIONS
Hyperparameters Values
Epochs 50
Dropout 0.2
Activation function ReLU
Optimizer ADAM

Loss function Sparse categorical cross entropy

Batch size 32

Leaming Rate 0.001

IV. RESULTS AND DISCUSSION

A set of standard evaluation metrics has been employed to
evaluate the performance of the proposed model, as illustrated
in Eq. (25) to Eq. (28). These measures are mathematically
computed using the core elements of the confusion matrix: True
Positives (TP), False Positives (FP), True Negatives (TN) and
False Negatives (FN). Accuracy indicates the overall
correctness while recall and precision highlight the framework’s
effectiveness in the prediction of score ranges without many
misses or false alarms.

TP+TN
Accuracy = —— (25)
TP+TN+FP+FN
- TP
Precision = (26)
TP+FP
TP
Recall = 27
TP+FN
recisionxRecall
F1 — score = 2 x EE22 20 (28)
Precision+Recall

Accuracy visualizes a model’s learning progress across
training epochs, showing how well the model is fitting the data.
The accuracy plot indicates improvements in predictive
performance over time, while the loss plotreflects the model’s
error reduction. Comparing training and validation curves helps
identify overfitting, underfitting or stable convergence. These
insights guide hyperparameter tuning, regularization
adjustments and architecture refinements to improve model
generalization and performance.

The accuracy plot in Fig. 8 demonstrates a consistent
improvement in both training and validation accuracy over the
50 epochs, starting from around 0.90 and 0.87, respectively.
Both curves rise steadily, with validation accuracy closely
tracking training accuracy, peaking at approximately 0.989 for
training and 0.988 for validation.
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Model Accuracy

—— Train Accuracy
—— Validation Accuracy

0.98

0.96

0.90 4

0.88 -

T
0 10 20 30 40
Epoch

Fig. 8. Accuracy plot.

The minimal gap betweenthe curves suggests that the hybrid
architecture generalizes well to unseen data and refrains from
significant overfitting. This strong and parallel upward trend
indicates that the chosen architecture and hyperparameters are
effective in progressively improving classification performance
throughout training.

Fig. 9 illustrates the confusion matrix that indicates the
proposed model’s remarkable classification performance across
all four score bands. Misclassifications are minimal and
primarily occur between adjacent score bands, such as 0—Less
than 40 and 40—Less than 60, suggesting occasional boundary
overlap in predicted scores. Overall, the distribution reflects
both high accuracy and stability in multi-class categorization.

1979 21 9 6

10

True Label
60 -Less than 80 40-Less than60 0-Less than40

17

1085

80-100

0-Less than 40 40-Less than60 60-Less than 80

80-100

Predicted Label

Fig. 9. Confusion matrix.
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The metric evaluation results in Fig. 10 demonstrate the
robustness and effectiveness of the TabNet-XGBoost hybrid
model across all performance indicators.

An accuracy of 98.79%, indicated that the vast majority of
predictions correctly matched the actual class labels across the
four score bands. The precision value of 98.54% reflects the
model’s ability to minimize FPs, guaranteeing that most of the
predictedinstances foreach class were indeed correct. The recall
score of 98.89% shows the correct identification of true
instances across all classes, with very few false negatives.

The Fl-score of 98.71%, harmonically balances precision
and recall, confirms the framework’s consistent performance in
both detecting true cases and avoiding misclassifications.
Collectively, these findings highlight that the TabNet-XGBoost
architecture maintains a balanced trade-off between precision
and recall while achieving excellent overall classification
performance.

Metric Evaluation values of
the proposed Model

99 98.89

989 9879

98.8 98.71
g 98.7
& 986 98.54
g 98.5
& 984

98.3

98.2

98.1

98

Accuracy  Precision Recall F1-score

Evaluation Metrics

Fig. 10. Metric evaluation values.

Deep learning architectures such as LSTM, RNN and Conv-
LSTM improve temporal dependency modeling, achieving
accuracy levels exceeding 90%, but these models tend to suffer
fromhigh computational costs, longer training times and limited
interpretability. Transformer-based and attention-augmented
models address feature importance explicitly, yet still struggle
with optimizing for structured tabular data, where sparsity and
heterogeneous feature types prevail. In contrast, the proposed
TabNet—XGBoost hybrid model leverages TabNet’s
interpretable feature selection capabilities with XGBoost’s
powerful non-linear decision boundaries, achieving an accuracy
of 98.8%. This not only surpasses the performance of prior
models butalso offers enhanced interpretability and adaptability
to varied educational datasets, makingitarobust choice for real-
world deployment. Fig. 11 represents graphical representation
of the accuracy comparison.
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Accuracy Comparison of Proposed
Model with Existing Methods

e 74.6
Clustering-guided ML [ ——— S0.5
— 343
RNN e 34.3
e 840
SVM e 86.1
. 805
Transformer Encoder ) 90
90.1
Attention-based BILSTM ——)  90.16
e 90.25
KNN /SVC /LR /RF/ GB (————— 91
. O]
Conv-LSTM ey O]
e O3
Proposed Model [ 088

Models

50 60 70 80 90 100

H Accuracy (%)

Fig. 11. Accuracy comparison.

V. CONCLUSION

This study presented a hybrid TabNet—XGBoost framework
for predicting student performance and providing targeted
feedback, demonstrating the potential of combining deep
learning-based feature selection with powerful gradient boosting
techniques foreducational datamining. By integrating TabNet’s
attentive feature-masking mechanism, the model efficiently
identified and utilized the most informative attributes from the
OULAD, while XGBoost refined the Ilatent feature
representations to enhance score range classification accuracy
The incorporation of SHAP enabled model interpretability by
quantifying the contribution of each feature to individual
predictions, facilitating the development of a feedback module
tailored to seven pedagogical domains. The proposed
architecture achieved an accuracy of 98.8%, significantly
outperforming conventional ML and DL baselines.
Furthermore, the interpretability offered by SHAP ensured that
predictions were not only highly accurate but also actionable,
aligning predictive analytics and instructional decision-making,
Future works may focus on expanding the feature space to
incorporate additional behavioral, social and temporal
engagement indicators, as well as validating the framework
across multiple institutions.
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