
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

799 | P a g e  
www.ijacsa.thesai.org 

Hybrid Vision Transformer and MLP-Mixer for 

Epileptic Seizure Detection in Intracranial EEG 

Thouraya Guesmi1, Abir Hadriche2, Nawel Jmail3 

Miracl Lab, Sfax University, Tunisia1, 3 
Gabes National Engineering School, Gabes University, Tunisia1 

Digital Research Center of Sfax, Tunisia2, 3 

Regim Lab-ENIS, Sfax University, Tunisia2 
 
 

Abstract—Accurate and timely seizure detection is essential for 

effective epilepsy management, and automated systems can play a 

valuable role in supporting clinical practice. In this study, we 

introduce a hybrid approach that uses time-frequency 

representations of Intracranial electroencephalography (iEEG) 

signals filtered at High-Frequency Oscillations (HFOs) bands as 

input to different convolutional neural network (CNN) backbones 

for feature extraction, followed by classification with either a 

Vision Transformer (ViT) or MLP-Mixer. This work establishes a 

systematic, comparative framework for benchmarking hybrid 

CNN-ViT against CNN-MLP-Mixer, providing a critical new 

reference for automated epileptic seizure detection within HFOs 

filtered iEEG signals. Extensive evaluation demonstrates that the 

ViT consistently achieves superior performance, with an 

EfficientNetB0-ViT model attaining remarkable accuracy 

(97.85%) and specificity (98.92%). Crucially, the MLP-Mixer 

emerges as a highly competitive alternative, exhibiting strong 

recall capabilities that make it suitable for applications where 

missing a seizure is not an option. Overall, our findings suggest 

that self-attention mechanisms in ViTs provide a distinct 

advantage for capturing complex seizure dynamics, yet MLP-

based models present a powerful, efficient option. 
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I. INTRODUCTION 

Epilepsy represents a major global health challenge, 
characterized by recurrent, unprovoked seizures that disrupt 
neural function and impose a significant burden on the quality 
of life for over fifty million individuals worldwide [1]. The 
clinical management of epilepsy, particularly drug-resistant 
forms, relies heavily on the precise identification and 
localization of seizure events [2]. Consequently, the 
development of accurate and reliable seizure detection systems 
is paramount for enabling timely intervention and improving 
patient outcomes [3][4]. 

Intracranial electroencephalography (iEEG) is commonly 
used to evaluate patients with refractory epilepsy before 
surgery. It offers detailed recordings from the brain's surface or 
deeper areas. Analyzing iEEG visually requires a significant 
amount of time for neurologists, which slows down clinical 
workflow. Automated detection algorithms that can accurately 
review long recordings are becoming increasingly popular due 
to the need for efficiency and precision. 

The evolution of these automated systems has progressed 
from traditional machine learning techniques, which depend on 
manually engineered features, to deep learning systems that 
learn discriminative patterns from raw or preprocessed data [5]. 
Among these, the ability to analyze time-frequency 
representations of iEEG signals has been demonstrated by 
Convolutional Neural Networks (CNNs). They demonstrated 
exceptional proficiency in analyzing time-frequency 
representations of iEEG signals, effectively identifying 
localized morphological patterns associated with seizure 
onset[6]. Despite their strengths, a fundamental constraint of 
CNNs is their limited receptive field, which can hinder their 
ability to model the long-range spatiotemporal dependencies 
that characterize the dynamic propagation of seizures through 
neural networks [7]. 

To address this limitation, Vision Transformers (ViT) have 
the ability to capture global contextual relationships across an 
entire input sequence through their self-attention mechanism, 
potentially offering a more nuanced understanding of complex 
ictal dynamics [8] [9]. 

In recent research, hybrid architectures have been explored 
that combine the local feature extraction capabilities of CNNs 
with the global contextual modeling of ViTs, which have 
resulted in significant gains in both accuracy and 
generalizability for seizure detection tasks.[10]. 

Parallel to these developments, the MLP-Mixer architecture 
presents a notably different approach. As articulated by 
Tolstikhin et al. (2021), "In contrast to ViT, which relies on 
self-attention, the MLP-Mixer proposes an architecture based 
solely on Multi-Layer Perceptrons (MLPs) for spatial and 
channel mixing, offering a competitive accuracy-efficiency 
trade-off [11]”. While MLP-Mixers have shown promise in 
other domains, their application to the specific challenge of 
detecting epileptic seizures from iEEG signals filtered in the 
high-frequency oscillation (HFO) bands remains a critical, 
largely unexplored research gap. 

This study addresses this gap by investigating the 
fundamental trade-offs between these novel sequence modeling 
approaches when applied to a highly sensitive biomarker: HFO-
filtered iEEG data. This leads to our core research question: 
What are the distinct performance, efficiency, and mechanism 
trade-offs between hybrid CNN-ViT and CNN-MLP-Mixer 
systematically benchmarked for automated epileptic seizure 
detection in the HFOs domain? 
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In summary, our contributions are as follows: We introduce 
a systematic and novel comparative framework for 
benchmarking the performance and mechanism trade-offs of 
hybrid CNN-Vision Transformer and CNN-MLP-Mixer 
architectures. 

We establish a novel deep learning reference for the 
automated detection of epileptic seizures in the High-
Frequency Oscillation (HFO) domain of iEEG, addressing a 
major gap in the current literature. 

We provide a detailed performance analysis that contrasts 
the advantages of the self-attention mechanism versus the 
purely algebraic mixing of MLP-Mixer, highlighting critical 
considerations for clinical deployment. 

We systematically evaluate six widely used CNN 
backbones (VGG19, ResNet18, ResNet50, ResNet101, 
GoogleNet, EfficientNet-B0) to provide a comprehensive 
baseline for feature extraction in HFO analysis. 

This study is organized as follows: Following the 
introduction, a theoretical framework reviews relevant 
literature (Section II). Details on materials and methods are 
provided in Section III. The results are presented in Section IV, 
followed by a comprehensive discussion of the findings, their 
implications, and the limitations of the study  in Section V. The 
study concludes in Section VI. 

II. RELATED WORKS 

The pursuit of automated seizure detection has 
progressively shifted from reliance on manually crafted 
features to the use of deep learning models. Within this 
evolution, [12] showed that HFOs detected by neuromorphic 
neural networks are strong predictors of seizure prognosis 
across various recording modalities, including iEEG. This work 
demonstrates the clinical relevance of HFO-based detection but 
relies on hand-crafted feature engineering rather than end-to-
end deep learning. Other research works [13][14]  substantiate 
the strong correlation between HFOs and epileptogenic tissue, 
establishing a solid foundation for their use in automated 
prognosis systems. The strength of these studies lies in 
validating HFOs as critical biomarkers for seizure detection. 
However, a key weakness is the limited exploration of modern 
sequence modeling architectures (Transformers, MLP-Mixers) 
that could better capture the temporal dynamics of HFO 
patterns. The undesirable assumption often made is that 
traditional feature engineering is sufficient to capture the 
intricate, non-linear dynamics of HFOs. 

A critical step in applying modern deep learning 
architectures to signal data involves transforming one-
dimensional time series into a format that can be used with 
image-based models. In this context, Zhuohan Wang et al [15] 
demonstrated that transforming iEEG signals into scalograms 
facilitates the use of image-based deep learning models. This 
approach enables the model to simultaneously leverage 
temporal and spectral information. We build upon this 
foundation, using time-frequency transformation as the 
essential input for our Vision Transformer and MLP-Mixer 
models. 

In the context of iEEG analysis, CNNs have demonstrated 
superior performance in detecting epileptic seizures by learning 
local discriminative patterns in spectrograms, with variants 
such as ResNet, GoogLeNet and VGG being  widely used to 
extract meaningful features from biomedical signals [16]. 
While excellent at capturing features within a limited spatial 
context, they often struggle to integrate information across 
distant regions of a scalogram, which is crucial for 
understanding the full spatial-temporal propagation of a 
seizure. This limited and fixed receptive field is the core 
weakness of CNN-only approaches, limiting their ability to 
model global seizure connectivity. This inadequacy is precisely 
why we propose a hybrid framework, pairing the local 
robustness of CNNs with sequence models capable of global 
context aggregation. 

The MLP-Mixer architecture challenges the dominance of 
convolutions and self-attention by relying solely on a multilayer 
perceptron, applied separately to spatial (token-mixing) and 
channel (feature-mixing) dimensions [11]. Its simplicity and 
computational efficiency make it attractive for EEG-based 
applications. Recent studies have shown that MLP-Mixers, 
enhanced with attention mechanisms, can effectively decode 
EEG motor imagery tasks [17]. Despite this, the specific 
efficacy of the MLP-Mixer for the nuanced task of iEEG-based 
seizure detection, particularly when operating on HFOs, 
remains an open question. The current literature lacks a 
systematic comparison between the self-attention mechanism 
(ViT) and the purely algebraic mixing (MLP-Mixer) to 
determine which is inherently superior for modeling HFO 
dynamics. This forms the central motivation and unique 
contribution of our study. 

III. MATERIALS AND METHODS 

This section details the methodology adopted, from the 
preparation of raw data to the configuration of hybrid models. 
Our study proposes a systematic comparative framework for 
hybrid deep learning CNN-VIT and CNN-MLP-Mixer applied 
to epileptic seizure detection in iEEG filtered in HFO bands.  
This study proposes a hybrid pipeline for binary classification 
between ictal and interictal states. The core approach involves 
using Convolutional Neural Networks (CNNs) backbones 
(EfficientNetB0, ResNet18, ResNet50, ResNet101, GoogleNet 
and VGG19) to extract features from time-frequency images of 
iEEG signals, which are then classified by either a Vision 
Transformer (ViT) or an MLP-Mixer. The overall workflow is 
depicted in Fig. 1. 

 
Fig. 1. Workflow of the proposed method. 
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A. Data Description 

This study utilized a subset of the publicly available HUP 
iEEG dataset [18], which comprises intracranial EEG 
recordings from patients undergoing evaluation for drug-
resistant epilepsy at the Hospital of the University of 
Pennsylvania. From the original cohort of 58 subjects, we 
selected 21 patients whose recordings were sampled at 1024 
Hz, a frequency sufficient for the reliable analysis of High-
Frequency Oscillations (HFOs). The dataset includes ictal and 
interictal recordings, to precise annotations marking the 
beginning (onset) and end (offset) of seizure events, allowing 
for clear identification of ictal periods. 

B. Data Processing 

The iEEG data preprocessing pipeline consisted of three 
main stages: segmentation, filtering/re-referencing, and time-
frequency transformation. 

Segmentation and labeling were performed for the binary 
classification task of distinguishing ictal from interictal states. 
The continuous iEEG recordings were segmented into 1-second 
epochs. Ictal segments were extracted from annotated seizure 
intervals (onset to offset). Each segment was assigned a binary 
label (ictal=1, interictal=0), defining the classification target as 
𝑦 ∈  {0,1}. 

Channels marked as artifactual in the original dataset 
metadata were discarded. The signals were then re-referenced 
using a Common Average Reference (CAR) filter computed 
from all remaining valid channels, a crucial step for reducing 
common-mode noise. Subsequently, a zero-phase finite 
impulse response (FIR) filter was applied to isolate the High-
Frequency Oscillation (HFO) band of interest (80-250 Hz). 

To leverage image-based deep learning models, each 1-
second HFO-filtered segment was converted into a 2D time-
frequency (TF) (see Fig. 2) representation using the Continuous 
Wavelet Transform (CWT) with a complex Morlet wavelet. 
The wavelet function is defined as: 

φ(t) = Cσπ
−1

4⁄ e
−t2

2⁄ eiσt   (1) 

where, 𝐶𝜎 is the normalization constant and 𝜎 is the central 
frequency parameter. The 2D representation results were scaled 
to dimensions of 224 × 224 × 3 pixels as input images for the 
proposed model. The final dataset comprised 4092 samples, 
which were partitioned into training (80%), validation (10%), 
and test (10%) sets. 

 
Fig. 2. Transformation of signal into 2D representation: (A) ictal 

representation in time, (B) ictal representation in TF, (C) interictal 

representation in time, (D) interictal representation in TF. 

C. Model Development 

1) CNN backbones: Resnet (Residual Network): Resnet is 

a fundamental contribution to deep learning, specifically 

addressing the problem of performance degradation when 

training extremely deep convolutional neural networks 

(CNNs). Its main innovation lies in the introduction of residual 

blocks, which enable the learning of residual mapping functions 

via skip connections. In the ResNet architecture, the 

fundamental residual connection in ResNet consists of 

summing the original input x with the learned transformation 

F(x) to produce the block's output, according to the following 

equation: 

𝑦 = 𝐹(𝑥𝑤𝑖) + 𝑥   (2) 

ResNet50: This architecture comprises 50 layers, and its 
structure incorporates batch normalization layers and ReLU 
activations to stabilize training. Features are extracted from the 
avgpool layer, resulting in a 2048-dimensional vector. 

ResNet18: With 18 layers, its skip connections between 
convolutional layers, effectively solve the vanishing gradient 
problem. Although less deep. 

ResNet101: This deep architecture has 101 layers and 
optimizes residual learning between the inputs and outputs of 
convolutional blocks, enabling richer feature extraction. 

VGG19: It is characterized by its fixed depth of 19 layers 
and its uniform architecture using exclusively 3×3 
convolutions. 

GoogleNet (Inception): It has a 22-layer architecture 
optimized for multi-scale feature extraction via its Inception 
modules, which incorporate Inception blocks that use parallel 
multi-kernel convolutions. This design enables the model to 
identify patterns across various spatial scales. 

EfficientNet-B0: It is an architecture optimized via 
compound scaling that balances depth, width, and resolution. 
The model uses MBConv blocks with expansion-reduction 
mechanisms and channel attention (SE modules). 

For each CNN, the fully connected classification layer is 
removed. Consequently, the feature extraction configuration 
for each model is detailed in Table I, which shows the 
dimensions of the final feature maps extracted from the CNN 
backbones for an input image size of 224×224×3. 

TABLE I. DIMENSIONS OF THE FINAL FEATURE MAPS OF THE CNN 

BACKBONES 

Backbone Feature Map [B, C, H, W] 

ResNet18  [B, 512, 7, 7] 

ResNet50 [B, 2048, 7, 7] 

ResNet101 [B, 2048, 7, 7] 

VGG19 [B, 512, 7, 7] 

GoogleNet [B, 1024, 7, 7] 

EffecientNet-B0 [B, 1280, 7, 7] 

A B C D 
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B = batch size. 

C = number of channels (feature dimension). 

H, W = spatial dimensions (here 7×7 for input 224×224). 

2) Vision transformer: Transformers are an important 

advancement in deep learning. They were first created for 

natural language processing [19] but now help solve many 

sequence modeling problems. Because they can handle 

complex, long-range relationships, they are useful in areas like 

computer vision [19] and biomedical data analysis [20]. 

Specifically, The Vision Transformer (ViT) is a transformer 

that has been adapted for image inputs. It works by dividing 

images into patches, which are then embedded linearly. Each 

patch vector is then enriched with a position embedding to 

preserve spatial information. The embeddings are then 

subjected to a series of Transformer blocks. The blocks that 

make it up include Multi-Head Self-Attention (MHSA), Layer 

Normalization (LN), and Feed-Forward Network (FFN). The 

Multi-Head Self-Attention (MSA) calculates the interactions 

between all tokens in the sequence. For each head, linear 

projections generate the matrices query (𝑄), key (𝐾), and value 

(𝑉) vectors, as shown in the following equations:  

Q=XWQ ,  𝐾 = 𝑋𝑊𝐾  , 𝑉 = 𝑋𝑊𝑉    (3) 

Let 𝑊𝑄, 𝑊𝐾 ,  and 𝑊𝑉 denote the parameter weight 
matrices. Then, the attention mechanism computes a weighted 
sum of the values, where attention coefficients are derived from 
a normalized query-key similarity as represented in the 
following equation: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =softmax(
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉      (4) 

in which, normalization by √𝑑𝑘 aims to stabilize gradients 

during learning. Subsequently, the output of the attention layer 
was subjected to Layer Normalization (LN), a process that has 
been demonstrated to stabilize the training process (see 
equation below). 

𝐿𝑁(𝑧) =
𝑧−𝜇

√𝜎2+𝜖
. 𝛾 + 𝛽          (5) 

The input’s meaning and standard deviation are 𝜇 and  , 
while 𝛾 + 𝛽  are acquired parameters. A non-linear GELU 
activation separates two linear layers in a Feed-Forward 
Network (FFN): 

𝐹𝐹𝑁(𝑧) = W2.𝐺𝐸𝐿𝑈(W1 .𝑧 + b1) + b2       (6) 

With the b being biases and W representing weight 
matrices. 

3) Proposed CNN-Vision Transformer hybrid model: This 

proposed hybrid model combines the strength of CNNs in 

extracting features, which are subsequently converted into 

tokens and processed by a Transformer encoder. This fusion 

skillfully leverages CNNs for capturing detailed local features 

and the Transformer for global context modeling via the self-

attention mechanism, the architecture proceeds as follows: 

Feature extraction by CNN: Let an input image 
(spectrogram) be denoted as 𝐼 ∈  ℝ224×224×3  which is 
processed by a pre-trained CNN network(ReNet18, ResNet50, 
ResNet101, VGG19, GoogleNet, EfficientNet-B0),  producing 
a feature map 𝐹 ∈  ℝ7×7×𝐶𝑛𝑛  whose final convolutional 
outputs are 7×7 spatial maps for 224×224 inputs, the output of 
each CNN is detailed in   Table I where 𝐶𝑛𝑛 represents the 
number of output channels. 

The transition to the ViT: The resulting feature maps for 
each CNN are linearly projected to embedding dimension  𝐷 =
768  using 2D (1 × 1)  conventional with (padding=’same’) 
followed by reshaping to obtain (7 × 7 ,768). Consequently, 
𝑁 = 7 × 7 = 49  tokens. This embedding dimension (D=768) 
is adopted from the ViT-Base specification, which balances 
model capacity with computational efficiency for sequences of 
moderate length. Then, a learnable [CLS]  token is prepended 
to the token sequence. Learnable positional embedding 𝐸 =
49 + 1 = 50 is added to preserve spatial information. 

Transformer Encoder: processes the input sequence through 
twelve encoder layers, where each layer helps the model 
understand context and share information between tokens. The 
model can focus on multiple parts of the input sequence 
simultaneously by using a multi-head self-attention mechanism 
in each encoder layer that has twelve attention heads.  

Classification: Each encoder layer also has an MLP block 
with 3072 dimensions (3072 = 4×768 to provide sufficient non-
linear transformation capacity) and uses GELU activation. 
Following the encoder layers, the final state of the classification 
token is extracted, layer-normalized, and processed by a 
multilayer perceptron (MLP) classification head to produce the 
final class predictions, where the classification token gathers 
information from all tokens using self-attention. The final 
prediction is obtained through a sigmoid activation function: 

𝑀𝐿𝑃 − 𝐻𝑒𝑎𝑑(𝑧𝑐𝑙𝑠) = 𝑊2 . 𝐺𝐸𝐿𝑈(𝑊1. 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧𝑐𝑙𝑠) +
𝑏1) + 𝑏2 (7) 

𝑦 = 𝜎(𝑊𝑐𝑙𝑎𝑠𝑠 . 𝑀𝐿𝑃 − 𝐻𝑒𝑎𝑑(𝑧𝑐𝑙𝑠) + 𝑏𝑐𝑙𝑎𝑠𝑠)           (8) 

where, 𝑧𝑐𝑙𝑠 ∈ ℝ768 is the final cls token, 𝑊1 ∈  ℝ3072×768 , 
𝑊1  ∈  ℝ768×3072  and 𝜎  is the sigmoid function for binary 
classification. We use Transformer-related parameters 
including an embedding dimension of 768, 12 encoder layers, 
12 attention heads, and an MLP hidden size of 3072 following 
the standard ViT-Base configuration. This ensures consistency 
with well-established architecture and allows our hybrid model 
to benefit from proven practices for effective global context 
modeling. The complete architecture is illustrated in Fig. 3 and 
the detailed algorithm for the model is 
given below (see Algorithm 1). 

 
Fig. 3. Architecture of CNN vision transformer. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

803 | P a g e  
www.ijacsa.thesai.org 

Algorithm 1 : Hybrid CNN-Vision Transformer 

Input: 

Time frequency (TF) image 𝐼 ∈  ℝ224×224×3  

Target yi ∈  [0 1]  1=ictal; 0=interictal 

Output: 

Predicted class probability ŷ ∈  [0 1]   

Begin: 

Data selection 

        IEEG data 

  Pre-processing  

       filtering/re-referencing 

       Segmentation 

       2D transformation using CWT 

       Resize image to 224×224 

      Labelling 𝑦 = {
1: 𝑖𝑐𝑡𝑎𝑙 

0: 𝑖𝑛𝑡𝑒𝑟𝑖𝑐𝑡𝑎𝑙
 

Step1: CNN Features Extraction  

              F_cnn = CNN(I)   𝐹 ∈  ℝ7×7×𝐶𝑛𝑛 

Step2 Token Projection 

       Conv2D (1 × 1 ) (padding= same); (7,7,768) 

              Reshape (7*7,768) 

              Z_flat = Reshape (Conv2D(F_cnn)); Z_flat ∈ ℝ49×768  

              Z = Concat([CLS], Z_flat) + Positional Embedding 

               Z ∈ ℝ50×768  

Step3: Transformer Encoder  

for layer = 1 to 12: 

   -Head Self-Attention 

          Z_norm = Layer Norm(Z) 

          𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =softmax(
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

            Z_att = MultiHead (Attention) + Z 

    -Forward Network 

FFN(z) = W2. GELU(W1. z + b1) + b2 

Step4: MLP Classification Head 

𝑀𝐿𝑃 − 𝐻𝑒𝑎𝑑(𝑧𝑐𝑙𝑠) = 𝑊2 . 𝐺𝐸𝐿𝑈 (𝑊1 . 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧𝑐𝑙𝑠𝑏1) + 𝑏2      

 

𝑦̂ = 𝜎(𝑊𝑐𝑙𝑎𝑠𝑠. 𝑀𝐿𝑃 − 𝐻𝑒𝑎𝑑(𝑧𝑐𝑙𝑠) + 𝑏𝑐𝑙𝑎𝑠𝑠)   

Trainnig 

          Loss= binary cross entropy  

       Train model  model.fit(X_train, y_train) 

Evaluation  

       model.evaluate(X_test, y_test) 

End 

4) Proposed CNN MLP-Mixer hybrid model: The MLP-

Mixer approach eliminates both convolution and attention 

operations, in contrast to the transformer architecture, by 

employing multilayer perception (MLPs) organized into token-

mixing and channel-mixing layers. This architecture offers a 

conceptually simpler alternative to self-attention while 

maintaining competitive performance through pure algebraic 

mixing operations [11]. 

For an input matrix 𝑋 ∈  ℝ𝑆×𝐷, where 𝑆 is the number of 
tokens and D is the number of feature dimensions; the 
fundamental operations of the MLP-Mixer are defined as 
follows: 

Token mixing (modelling spatial relationships): 

𝑈∗,𝑖 = 𝑋∗,𝑖 + 𝑊2𝜎 (𝑊1𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋)∗,𝑖)    (9) 

for 𝑖 = 1, . . 𝐷 

σ is the GELU activation function. 

𝑋∗,𝑖 : all tokens for a channel i (the i-th column of 𝑋). 

𝑊 : Weight of MLP mixing tokens (for 𝑊1 ∈ ℝ𝑆′×𝑆  ,  

𝑊2 ∈ ℝ𝑆×𝑆′
 with 𝑆′ being the intermediate dimension. 

Channel mixing (modelling relationships between 
characteristics): 

𝑌𝑗,∗ = 𝑈j,∗ + 𝑊4𝜎 (𝑊3𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑈)𝑗,∗)      (10) 

for 𝑗 = 1, … . . , 𝑆 

𝑈∗,𝑖 : all tokens for channel 𝑗 (the jth column of 𝑈). 

𝑊 : Weights of the MLPs of channel mixing (for 𝑊3 ∈

 ℝ𝐷′×𝐷  ,  𝑊4 ∈ ℝ𝐷×𝐷′
  with 𝐷′  being the intermediate 

dimension).LayerNorm refers to layer normalization. 

For the final classification a Global average pooling is           
applied followed by a linear classifier: 

𝑦 = 𝜎(𝑊𝑐𝑙𝑎𝑠𝑠 . 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑟𝑒𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑌) + 𝑏𝑐𝑙𝑎𝑠𝑠) (11) 

Architectural Configuration: (The feature extraction step is 
described in the previous section), to configure the model 
architecture, the following approach was adopted a hidden 
dimension of D = 192, which aligns with Base-type models and 
strikes a balance between expressiveness and computational 
limits [11]. Eight layers (L=8) are stacked to reduce overfitting 
and handle dependencies in sequences of moderate length. 

The architecture features an intentional imbalance in its 
MLP dimensions. For processing spatial information (token-
mixing), a bottleneck of 96 units is employed to promote 
efficiency. For transforming feature information (channel-
mixing), a wide network of 768 units is used to facilitate richer 
representations. This asymmetric design reflects the 
observation that channel-wise feature interactions typically 
require higher capacity than spatial token interactions for time-
frequency representations. The detailed algorithm for the model 
is given in Algorithm 2, and the architecture is illustrated in 
Fig. 4. 
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Fig. 4. Architecture of CNN MLP-Mixer. 

Algorithm 2: Hybrid CNN-MLP-Mixer 

Input: 

Time frequency (TF) image 𝐼 ∈  ℝ224×224×3  

Target yi ∈  [0 1]  1=ictal; 0=interictal 

Output: 

Predicted class probability ŷ ∈  [0 1]   

 

Begin: 

Data selection 

        IEEG data 

  Pre-processing  

       filtering/re-referencing 

       Segmentation 

       2D transformation using CWT 

       Resize image to 224×224 

      Labelling 𝑦 = {
1: 𝑖𝑐𝑡𝑎𝑙 

0: 𝑖𝑛𝑡𝑒𝑟𝑖𝑐𝑡𝑎𝑙
 

Step1: CNN Features Extraction  

              F_cnn = CNN(I)   𝐹 ∈  ℝ7×7×𝐶𝑛𝑛  

Step2 Features Projection 

       Conv2D (1 × 1 ) (padding= same); (7,7,192) 

              Reshape (7*7,192) 

              Z = Reshape (Conv2D(F_cnn)); Z ∈ ℝ49×192 

Step 3: MLP-Mixer Layers (8 blocks) 

        Token-Mixing MLP (spatial) 

      U_norm = LayerNorm(Z) 

         for i = 1 to 192: Per-channel processing 

𝑈∗,𝑖 = 𝑋∗,𝑖 + 𝑊2𝜎 (𝑊1 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋)∗,𝑖) 

W1 ∈ ℝ96×49      W3  ∈ ℝ49×96 

               for j= 1 to 49: Per-token processing 

𝑌𝑗,∗ = 𝑈j,∗ + 𝑊4𝜎 (𝑊3𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑈)𝑗,∗) 

W3 ∈ ℝ768×192      W4  ∈ ℝ192×768  

Step 4: Classification   

x_pool = GlobalAveragePooling(Y)  ;   x_pool ∈  ℝ192  

𝑦̂ = 𝜎(x_pool × 𝑊𝑐𝑙𝑎𝑠𝑠. +𝑏𝑐𝑙𝑎𝑠𝑠)   𝑊𝑐𝑙𝑎𝑠𝑠 ∈ ℝ(1,192)  

Trainnig 

          Loss= binary cross entropy  

       Train model  model.fit(X_train, y_train) 

Evaluation  

       model.evaluate(X_test, y_test) 

End 

5) Simulation Map: All models were implemented in 

Python 3.9 using PyTorch 2.0.1. Experiments were conducted 

on Google Colab using GPU acceleration. The following 

Table II shows the different hyperparameters used in the study. 

TABLE II. CONFIGURATION OF TRAINING HYPERPARAMETERS 

Hyperparameters Value  

Optimizer ADAM 

Loss function Binary cross entropy (BCE) 

Batch Size 32 

Epochs 80(early stopping with patience=10 

Learning Rate 1e-4 

Dropout 0.1 

IV. RESULTS 

The models were evaluated using standard binary 
classification metrics: accuracy, precision, recall (sensitivity), 
specificity, F1-score (see Table III) and the area under the 
receiver operating characteristic curve (AUC-ROC). These 
metrics were derived from the counts of true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN) 
in the predictions. 

TABLE III. EVALUATION METRICS 

Metrics Equations 

Accuracy(ACC) 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Precision (Pr) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

Recall (Se) 𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity (Sp) 1 −
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

F1-score 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

(2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

Table IV and Table V present the comprehensive 
performance evaluation of Vision Transformer (ViT) and MLP-
Mixer classifiers across six CNN backbones. The results reveal 
a consistent performance hierarchy, with the EfficientNetB0-
ViT configuration achieving the highest overall scores 
(Accuracy: 97.85%, Specificity: 98.92%). GoogleNet was also 
consistent, performing well with both classifiers (96.45% with 
ViT and 95.20% with MLP-Mixer) and stood out in recall 
metrics. However, the results obtained with VGG19 are the 
least optimal. 
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TABLE IV. PERFORMANCE COMPARISON OF CNN-VISION TRANSFORMER 

Model ACC% Pr % Se% Sp% 
F1-score 

% 

EfficientNETB0-

ViT 
97.85 98.32 

96.88 98.92 97.59 

ResNet18-ViT 
95.35 94.90 92.70 95.95 93.78 

ResNet50-ViT 94.80 95.42 93.25 96.35 94.32 

ResNet101 

ViT 
95.25 95.05 

95.50 95.00 95.27 

GoogleNet 

VIT 
96.45 97.15 

95.20 97.85 96.16 

VGG19 VIT 93.20 93.65 91.85 94.70 92.74 

TABLE V. PERFORMANCE COMPARISON OF CNN MLP-MIXER 

Model ACC% Pr % Se% Sp% 

F1-

score 

% 

EfficientNETB0MLP-

Mixer 
97.08 96.55 

94.45 97.35 95.48 

ResNet18 

MLP-Mixer 
92.90 91.35 

94.25 91.55 92.78 

ResNet50- MLP-

Mixer 
93.25 93.85 

91.55 95.05 92.68 

ResNet101 

MLP-Mixer 
93.80 92.45 

95.10 92.50 93.76 

GoogleNet 

MLP-Mixer 
95.20 94.80 

96.75 93.65 95.76 

VGG19 

MLP-Mixer 
91.75 92.20 

90.15 93.55 91.16 

This comparative analysis provides a foundation for further 
investigation of operational characteristics, such as ROC 
curves. As illustrated in Fig. 5, the comparative ROC curves 
demonstrate the discriminatory power of the various models. 
The EfficientB0-ViT model demonstrates a remarkable 
performance with an Area Under the Curve (AUC) of 0.979, 
the subsequent models are GoogleNet-ViT (AUC = 0.968) and 
EfficientB0-MLP (AUC = 0.963). The ViT curves have been 
shown to demonstrate a systematic superiority that confirms 
and substantiates its efficacy in differentiating between ictal 
and interictal states. 

 
Fig. 5. Comparative ROC Curve: (A) Curve Roc VIT, (B) Curve ROC 

MLP-mixer. 

To understand the impact of the model's performance, we 
analyzed normalized confusion matrices. These matrices, 
shown in Fig. 6, reveal each architecture's specific error profile, 
particularly their trade-offs between false positives and false 
negatives in distinguishing ictal from interictal states. 

 
Fig. 6. Normalized confusion matrices for the three best-performing models: 

(A) EfficientNetB0-ViT, (B) GoogleNet-MLP, (C) GoogleNet-VIT. 

A detailed analysis of the error profiles, provided by the 
confusion matrices in Fig. 6, offers crucial insights for clinical 
application. The primary strength of EfficientB0-ViT [see 
Fig. 6(A)] shows only 3.1% false negatives and 1.1% false 
positives. This reliability makes it ideal for clinical deployment, 
where the cost of a false alarm (false positive). Interestingly, 
the GoogleNet-MLP Mixer [see Fig. 6(B)] model has the best 
recall rate (96.8%). However, it has a higher rate of false 
positives (6.3%) compared to false negatives (3.2%), which is 
important for minimizing false negatives (missed seizures). 
Meanwhile, GoogleNet-ViT [see Fig. 6(C)] offers balanced 
performance with moderate error rates (false negatives at 4.8% 
and false positives at 2.1%). 

Fig. 7 provides a direct comparative analysis of the 
performance differential between Vision Transformer and 
MLP-Mixer architectures. The histogram quantifies the 
percentage point advantage of ViT over MLP-Mixer for the 
EfficientNetB0 backbone. 

 
Fig. 7. Performance gain. 

Fig. 7 presents the performance differential between Vision 
Transformer and MLP-Mixer architectures when paired with 
the EfficientNetB0 backbone. The results demonstrate a 
consistent advantage for the ViT model across all evaluation 
metrics, with particularly notable margins in recall and 
accuracy. However, the MLP-Mixer maintains competitive 
performance, trailing by less than 2.5 % points in all categories. 
This narrow performance gap, especially in specificity where 
both architectures excel, underscores the MLP-Mixer's viability 
as an efficient alternative to attention-based models for seizure 
detection tasks. 

The findings confirm that while the self-attention 
mechanism in ViT yields superior overall performance, the 
MLP-Mixer achieves remarkably close results. This suggests 
context-dependent applicability: ViT for maximum diagnostic 
precision versus MLP-Mixer for scenarios prioritizing 
computational efficiency alongside strong detection capability. 

 
                      A                                             B 
 

https://www.google.com/search?sca_esv=7a3965c0a183f446&rlz=1C1CHZN_frTN981TN981&q=EfficientNET&sa=X&ved=2ahUKEwjaqfbRzu2PAxXmh_0HHQIXG5kQ7xYoAHoECAoQAQ
https://www.google.com/search?sca_esv=7a3965c0a183f446&rlz=1C1CHZN_frTN981TN981&q=EfficientNET&sa=X&ved=2ahUKEwjaqfbRzu2PAxXmh_0HHQIXG5kQ7xYoAHoECAoQAQ
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The superior performance of the proposed EfficientNetB0-
ViT model is evident when benchmarked against recent 
literature, as summarized in Table VI. Our method establishes 
a new accuracy of 97.9%, representing a significant 
improvement over previous approaches for similar seizure 
detection challenges. 

TABLE VI. COMPARISON OF PREVIOUS WORKS 

Authors Year Methods Accuracy% 

S.Roy et al.[21] 2019 ChronoNet 90.60 

RaviPrakash et 

al.[22] 
2020 1D-CNN-LTSM 

89.73 

Priya et al.[23] 2022 ResNet50 82.80 

Rukshar et al. [24] 
2023 Vision Transformer 89.07 

Gupta et al.[25] 
2024 

FUPTBSVM(hybrid 

model) 

88.66 

Qi et al.[26] 2025 Vision Transformer 93.65 

OURS 
 

EfficientNet-B0 

ViT 

97.9 

V. DISCUSSION 

The experimental results provide a clear answer to the 
primary research question: Vision Transformer (ViT) 
classifiers consistently outperform MLP-Mixer counterparts 
when integrated with CNN backbones for iEEG-based seizure 
detection. The superior performance of the EfficientNetB0-ViT 
model (97.85% accuracy, 98.92% specificity) establishes the 
effectiveness of self-attention mechanisms for capturing the 
spatiotemporal dynamics of epileptic seizures. This advantage 
can be theoretically explained by the ViT’s ability to model 
global dependencies across the full time–frequency 
representation, a capability that aligns well with the distributed 
neural networks underlying seizure propagation. The observed 
performance gap between ViT and MLP-Mixer models 
provides valuable insight into the architectural requirements for 
effective seizure detection. The consistent advantage of ViT 
across multiple metrics suggests that the ability to dynamically 
weight different regions of the time-frequency representation (a 
core property of self-attention mechanisms) provides 
significant value for this task. This is particularly relevant for 
seizures that manifest as evolving patterns across both time and 
frequency domains. Our results for the MLP-Mixer architecture 
align with findings from computer vision (Tolstikhin et al., 
2021), where MLP-based models have demonstrated 
competitive performance despite their conceptual simplicity. 
Extending this observation to biomedical signal analysis, our 
findings demonstrate that MLP-Mixers constitute a viable 
alternative to attention-based architectures for time-series 
classification, offering a balance between interpretability and 
efficiency. The strong correlation between CNN backbone 
quality and final performance (evidenced by EfficientNetB0's 
superior results across both classifiers) underscores the 
continued importance of effective feature extraction. Indeed, 
the identification of dominant patterns is critical for 
characterizing neurological disorders [27]. Even highly 
expressive classification heads such as ViT cannot compensate 
for suboptimal convolutional representations, confirming the 

hierarchical dependency between feature extraction and global 
context modeling in hybrid deep-learning architectures. 

VI. CONCLUSION 

This study presented a systematic and novel comparative 
framework for the automated detection of epileptic seizures 
from intracranial EEG (iEEG) signals filtered in the High-
Frequency Oscillation (HFO) band. By integrating 
convolutional feature extractors with advanced sequence-
modeling architectures Vision Transformer (ViT) and MLP-
Mixer we established a comprehensive evaluation of hybrid 
deep-learning approaches for seizure detection. 

The proposed benchmarking protocol represents a novel 
and systematic comparison between CNN-ViT and CNN-MLP-
Mixer models specifically tailored to HFO-based iEEG 
analysis. Across multiple CNN backbones, the ViT consistently 
outperformed the Mixer counterpart, with the EfficientNetB0-
ViT achieving the highest overall accuracy of 97.85 % and 
specificity of 98.92 %. This performance highlights the ability 
of self-attention mechanisms to capture the complex 
spatiotemporal dynamics of seizure propagation. The MLP-
Mixer, on the other hand, demonstrated strong recall (up to 
96.75 % with GoogleNet-MLP-Mixer), confirming its 
suitability for scenarios where sensitivity is clinically 
prioritized, such as continuous monitoring or early-warning 
systems. 

The comparative trends observed in this work have direct 
practical value: ViT-based hybrids are better suited for high-
specificity diagnostic contexts, such as pre-surgical assessment 
where false positives must be minimized, whereas Mixer-based 
hybrids provide a high-recall solution ideal for long-term 
monitoring. These insights contribute to a deeper understanding 
of how architectural design choices in hybrid deep learning can 
be aligned with distinct clinical objectives. Moreover, the 
consistent superiority of ViT across architectures suggests that 
self-attention represents a robust modeling paradigm for the 
non-linear, high-frequency dynamics of epileptic activity 
extending its relevance beyond computer vision to 
neurophysiological signal analysis. 

While the proposed framework demonstrates strong 
performance, its generalizability should be validated on larger, 
multi-center datasets including diverse patient populations. In 
addition, the focus on high-frequency oscillations, though 
biologically motivated, may have excluded complementary 
low-frequency information (e.g., delta or theta bands) relevant 
to seizure onset and propagation. Addressing these limitations 
will strengthen the translational impact of the approach. 

Future research will extend the current binary framework to 
multi-class classification, encompassing different HFO 
subtypes and pre-ictal phases. Another direction will involve 
integrating explainability techniques such as Grad-CAM or 
LIME to visualize discriminative regions in the time-frequency 
maps, thereby enhancing clinical interpretability and trust. 
Finally, incorporating multimodal spectral inputs and transfer-
learning strategies will further improve robustness and pave the 
way for deployment in real-world clinical environments. 
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