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Abstract—Accurate and timely seizure detection is essential for
effective epilepsy management, and automated systems can play a
valuable role in supporting clinical practice. In this study, we
introduce a hybrid approach that uses time-frequency
representations of Intracranial electroencephalography (iEEG)
signals filtered at High-Frequency Oscillations (HFOs) bands as
input to different convolutional neural network (CNN) backbones
for feature extraction, followed by classification with either a
Vision Transformer (ViT) or MLP-Mixer. This work establishes a
systematic, comparative framework for benchmarking hybrid
CNN-VIiT against CNN-MLP-Mixer, providing a critical new
reference for automated epileptic seizure detection within HFOs
filtered iEEG signals. Extensive evaluation demonstrates that the
ViT consistently achieves superior performance, with an
EfficientNetB0-ViT model attaining remarkable accuracy
(97.85%) and specificity (98.92%). Crucially, the MLP-Mixer
emerges as a highly competitive alternative, exhibiting strong
recall capabilities that make it suitable for applications where
missing a seizure is not an option. Overall, our findings suggest
that self-attention mechanisms in ViTs provide a distinct
advantage for capturing complex seizure dynamics, yet MLP-
based models present a powerful, efficient option.

Keywords—YVision transformer; MLP-Mixer; iEEG; HFOs;
ResNet; GoogleNet; EfficientNetB0

I.  INTRODUCTION

Epilepsy represents a major global health challenge,
characterized by recurrent, unprovoked seizures that disrupt
neural function and impose a significant burden on the quality
of life for over fifty million individuals worldwide [1]. The
clinical management of epilepsy, particularly drug-resistant
forms, relies heavily on the precise identification and
localization of seizure events [2]. Consequently, the
development of accurate and reliable seizure detection systems
is paramount for enabling timely intervention and improving
patient outcomes [3][4].

Intracranial electroencephalography (iEEG) is commonly
used to evaluate patients with refractory epilepsy before
surgery. It offers detailed recordings from the brain's surface or
deeper areas. Analyzing iEEG visually requires a significant
amount of time for neurologists, which slows down clinical
workflow. Automated detection algorithms that can accurately
review long recordings are becoming increasingly popular due
to the need for efficiency and precision.

The evolution of these automated systems has progressed
from traditional machine learning techniques, which depend on
manually engineered features, to deep learning systems that
learn discriminative patterns from raw or preprocesseddata[5].
Among these, the ability to analyze time-frequency
representations of iEEG signals has been demonstrated by
Convolutional Neural Networks (CNNs). They demonstrated
exceptional proficiency in analyzing time-frequency
representations of iEEG signals, effectively identifying
localized morphological patterns associated with seizure
onset[6]. Despite their strengths, a fundamental constraint of
CNNes is their limited receptive field, which can hinder their
ability to model the long-range spatiotemporal dependencies
that characterize the dynamic propagation of seizures through
neural networks [7].

To address this limitation, Vision Transformers (ViT) have
the ability to capture global contextual relationships across an
entire input sequence through their self-attention mechanism,
potentially offering a more nuanced understanding of complex
ictal dynamics [8] [9].

In recent research, hybrid architectures have been explored
that combine the local feature extraction capabilities of CNNs
with the global contextual modeling of ViTs, which have
resulted in significant gains in both accuracy and
generalizability for seizure detection tasks.[10].

Parallel to these developments, the MLP-Mixer architecture
presents a notably different approach. As articulated by
Tolstikhin et al. (2021), "In contrast to ViT, which relies on
self-attention, the MLP-Mixer proposes an architecture based
solely on Multi-Layer Perceptrons (MLPs) for spatial and
channel mixing, offering a competitive accuracy-efficiency
trade-off[11]”. While MLP-Mixers have shown promise in
other domains, their application to the specific challenge of
detecting epileptic seizures from iEEG signals filtered in the
high-frequency oscillation (HFO) bands remains a critical,
largely unexplored research gap.

This study addresses this gap by investigating the
fundamental trade-offs between thesenovel sequence modeling
approaches when applied to a highly sensitive biomarker: HFO-
filtered iEEG data. This leads to our core research question:
What are the distinct performance, efficiency, and mechanism
trade-offs between hybrid CNN-ViT and CNN-MLP-Mixer
systematically benchmarked for automated epileptic seizure
detection in the HFOs domain?
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In summary, our contributions are as follows: We introduce
a systematic and novel comparative framework for
benchmarking the performance and mechanism trade-offs of
hybrid CNN-Vision Transformer and CNN-MLP-Mixer
architectures.

We establish a novel deep learning reference for the
automated detection of epileptic seizures in the High-
Frequency Oscillation (HFO) domain of iEEG, addressing a
major gap in the current literature.

We provide a detailed performance analysis that contrasts
the advantages of the self-attention mechanism versus the
purely algebraic mixing of MLP-Mixer, highlighting critical
considerations for clinical deployment.

We systematically evaluate six widely used CNN
backbones (VGG19, ResNetl8, ResNet50, ResNetl0l,
GoogleNet, EfficientNet-B0) to provide a comprehensive
baseline for feature extraction in HFO analysis.

This study is organized as follows: Following the
introduction, a theoretical framework reviews relevant
literature (Section II). Details on materials and methods are
providedin Section III. The results are presented in Section IV,
followed by a comprehensive discussion of the findings, their
implications, and the limitations of the study in Section V. The
study concludes in Section VI.

II. RELATED WORKS

The pursuit of automated seizure detection has
progressively shifted from reliance on manually crafted
features to the use of deep learning models. Within this
evolution, [12] showed that HFOs detected by neuromorphic
neural networks are strong predictors of seizure prognosis
across variousrecordingmodalities, includingiEEG. This work
demonstrates the clinical relevance of HFO-based detection but
relies on hand-crafted feature engineering rather than end-to-
end deep learning. Other research works [13][14] substantiate
the strong correlation between HFOs and epileptogenic tissue,
establishing a solid foundation for their use in automated
prognosis systems. The strength of these studies lies in
validating HFOs as critical biomarkers for seizure detection.
However, a key weakness is the limited exploration of modem
sequence modeling architectures (Transformers, MLP-Mixers)
that could better capture the temporal dynamics of HFO
patterns. The undesirable assumption often made is that
traditional feature engineering is sufficient to capture the
intricate, non-linear dynamics of HFOs.

A critical step in applying modern deep leaming
architectures to signal data involves transforming one-
dimensional time series into a format that can be used with
image-based models. In this context, Zhuohan Wanget al [15]
demonstrated that transforming iEEG signals into scalograms
facilitates the use of image-based deep learning models. This
approach enables the model to simultaneously leverage
temporal and spectral information. We build upon this
foundation, using time-frequency transformation as the
essential input for our Vision Transformer and MLP-Mixer
models.
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In the context of iEEG analysis, CNNs have demonstrated
superior performance in detectingepilepticseizures by learning
local discriminative patterns in spectrograms, with variants
such as ResNet, GoogleNet and VGG being widely used to
extract meaningful features from biomedical signals [16].
While excellent at capturing features within a limited spatial
context, they often struggle to integrate information across
distant regions of a scalogram, which is crucial for
understanding the full spatial-temporal propagation of a
seizure. This limited and fixed receptive field is the core
weakness of CNN-only approaches, limiting their ability to
model global seizure connectivity . This inadequacy is precisely
why we propose a hybrid framework, pairing the local
robustness of CNNs with sequence models capable of global
context aggregation.

The MLP-Mixer architecture challenges the dominance of
convolutionsandself-attentionby relyingsolely ona multilayer
perceptron, applied separately to spatial (token-mixing) and
channel (feature-mixing) dimensions [11]. Its simplicity and
computational efficiency make it attractive for EEG-based
applications. Recent studies have shown that MLP-Mixers,
enhanced with attention mechanisms, can effectively decode
EEG motor imagery tasks [17]. Despite this, the specific
efficacy ofthe MLP-Mixer forthe nuanced task of iEEG-based
seizure detection, particularly when operating on HFOs,
remains an open question. The current literature lacks a
systematic comparison between the self-attention mechanism
(ViT) and the purely algebraic mixing (MLP-Mixer) to
determine which is inherently superior for modeling HFO
dynamics. This forms the central motivation and unique
contribution of our study.

III.  MATERIALS AND METHODS

This section details the methodology adopted, from the
preparation of raw data to the configuration of hybrid models.
Our study proposes a systematic comparative framework for
hybrid deep learning CNN-VIT and CNN-MLP-Mixer applied
to epileptic seizure detection in iEEG filtered in HFO bands.
This study proposes a hybrid pipeline for binary classification
between ictal and interictal states. The core approach involves
using Convolutional Neural Networks (CNNs) backbones
(EfficientNetB0, ResNet18, ResNet50, ResNet101, GoogleNet
and VGG19) to extract features from time-frequency images of
iEEG signals, which are then classified by either a Vision
Transformer (ViT) or an MLP-Mixer. The overall workflow is

depicted in Fig. 1.
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Fig. 1. Workflow of the proposed method.
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A. Data Description

This study utilized a subset of the publicly available HUP
iIEEG dataset [18], which comprises intracranial EEG
recordings from patients undergoing evaluation for drug-
resistant epilepsy at the Hospital of the University of
Pennsylvania. From the original cohort of 58 subjects, we
selected 21 patients whose recordings were sampled at 1024
Hz, a frequency sufficient for the reliable analysis of High-
Frequency Oscillations (HFOs). The dataset includes ictal and
interictal recordings, to precise annotations marking the
beginning (onset) and end (offset) of seizure events, allowing
for clear identification of ictal periods.

B. Data Processing

The iEEG data preprocessing pipeline consisted of three
main stages: segmentation, filtering/re-referencing, and time-
frequency transformation.

Segmentation and labeling were performed for the binary
classification task of distinguishing ictal from interictal states.
The continuous iIEEGrecordings were segmented into 1 -second
epochs. Ictal segments were extracted from annotated seizure
intervals (onset to offset). Each segment was assigned a binary
label (ictal=1, interictal=0), defining the classification target as

y € {0,1}.

Channels marked as artifactual in the original dataset
metadata were discarded. The signals were then re-referenced
using a Common Average Reference (CAR) filter computed
from all remaining valid channels, a crucial step for reducing
common-mode noise. Subsequently, a zero-phase finite
impulse response (FIR) filter was applied to isolate the High-
Frequency Oscillation (HFO) band of interest (80-250 Hz).

To leverage image-based deep learming models, each 1-
second HFO-filtered segment was converted into a 2D time-
frequency (TF) (see Fig. 2) representation using the Continuous
Wavelet Transform (CWT) with a complex Morlet wavelet.
The wavelet function is defined as:

o) = C(,Tr_l/‘te_tz/zei"t (1)

where, C; is the normalization constant and o is the central
frequency parameter. The 2D representationresults were scaled
to dimensions of 224 x 224 x 3 pixelsas input images for the
proposed model. The final dataset comprised 4092 samples,
which were partitioned into training (80%), validation (10%),
and test (10%) sets.
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Fig.2. Transformation of signalinto 2D representation: (A) ictal
representation in time, (B) ictal representation in TF, (C) interictal
representation in time, (D) interictal representation in TF.
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C. Model Development

1) CNN backbones: Resnet(Residual Network): Resnetis
a fundamental contribution to deep learning, specifically
addressing the problem of performance degradation when
training extremely deep convolutional neural networks
(CNN ). Its main innovation lies in the introduction of residual
blocks, which enablethe learning of residual mapping functions
via skip connections. In the ResNet architecture, the
fundamental residual connection in ResNet consists of
summing the original input x with the learned transformation
F(x) to produce the block's output, according to the following
equation:
y =F(xw;) +x (2)

ResNet50: This architecture comprises 50 layers, and its
structure incorporates batch normalization layers and ReLU
activations to stabilize training. Features are extracted from the
avgpool layer, resulting in a 2048-dimensional vector.

ResNet18: With 18 layers, its skip connections between
convolutional layers, effectively solve the vanishing gradient
problem. Although less deep.

ResNet101: This deep architecture has 101 layers and
optimizes residual learning between the inputs and outputs of
convolutional blocks, enabling richer feature extraction.

VGGI19: 1t is characterized by its fixed depth of 19 layers
and its uniform architecture using exclusively 3x3
convolutions.

GoogleNet (Inception): It has a 22-layer architecture
optimized for multi-scale feature extraction via its Inception
modules, which incorporate Inception blocks that use parallel
multi-kernel convolutions. This design enables the model to
identify patterns across various spatial scales.

EfficientNet-BO: It is an architecture optimized via
compound scaling that balances depth, width, and resolution.
The model uses MBConv blocks with expansion-reduction
mechanisms and channel attention (SE modules).

For each CNN, the fully connected classification layer is
removed. Consequently, the feature extraction configuration
for each model is detailed in Table I, which shows the
dimensions of the final feature maps extracted from the CNN
backbones for an input image size of 224x224x3.

TABLE I. DIMENSIONS OF THE FINAL FEATURE MAPS OF THE CNN
BACKBONES
Backbone Feature Map [B, C, H, W]

ResNet18 [B,512,7,7]

ResNet50 [B, 2048,7,7]

ResNet101 [B, 2048,7,7]

VGG19 [B,512,7,7]

GoogleNet [B, 1024,7,7]

EffecientNet-B0 [B, 1280,7,7]
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B = batch size.
C = number of channels (feature dimension).
H, W = spatial dimensions (here 7x7 for input 224x224).

2) Vision transformer. Transformers are an important
advancement in deep learning. They were first created for
natural language processing [19] but now help solve many
sequence modeling problems. Because they can handle
complex, long-range relationships, they are useful in areas like
computer vision [19] and biomedical data analysis [20].
Specifically, The Vision Transformer (ViT) is a transformer
that has been adapted for image inputs. It works by dividing
images into patches, which are then embedded linearly. Each
patch vector is then enriched with a position embedding to
preserve spatial information. The embeddings are then
subjected to a series of Transformer blocks. The blocks that
make it up include Multi-Head Self-Attention (MHSA), Layer
Normalization (LN), and Feed-Forward Network (FFN). The
Multi-Head Self-Attention (MSA) calculates the interactions
between all tokens in the sequence. For each head, linear
projections generate the matrices query (Q), key (K), and value
(V) vectors, as shown in the following equations:

Q=XWQ?, K=XWK,V=xw" (3)

Let WO WX, and WV denote the parameter weight
matrices. Then, the attention mechanism computes a weighted
sumofthe values, where attention coefficients are derived from
a normalized query-key similarity as represented in the
following equation:

T
Attention(Q,K,V) =softmax(?/id_k) %4 %)
inwhich,normalizationby / d, aims to stabilize gradients
during learning. Subsequently, the output of the attention layer
was subjected to Layer Normalization (LN), a process that has

been demonstrated to stabilize the training process (see
equation below).

LN(z) =

\/—V +B (%)

The input’s meaning and standard deviation are ¢t and
while y + [ are acquired parameters. A non-linear GELU
activation separates two linear layers in a Feed-Forward
Network (FFN):

FFN(z) = W,.GELU(W,.z +b,) +b, (6)

With the b being biases and W representing weight
matrices.

3) Proposed CNN-Vision Transformer hybrid model: This
proposed hybrid model combines the strength of CNNs in
extracting features, which are subsequently converted into
tokens and processed by a Transformer encoder. This fusion
skillfully leverages CNNs for capturing detailed local features
and the Transformer for global context modeling via the self-
attention mechanism, the architecture proceeds as follows:

Vol. 16, No. 10, 2025

Feature extraction by CNN: Let an input image
(spectrogram) be denoted as I € R2?2#*224%3 which is
processed by a pre-trained CNN network(ReNet18, ResNet50,
ResNet101, VGG19, GoogleNet, EfficientNet-B0), producing
a feature map F € R7"X(an whose final convolutional
outputs are 7x7 spatial maps for 224x224 inputs, the output of
each CNN is detailedin  Table I where C,,,, represents the
number of output channels.

The transition to the ViT: The resulting feature maps for
each CNN are linearly projected to embedding dimension D =
768 using 2D (1 X 1) conventional with (padding=’same’)
followed by reshaping to obtain (7 X 7,768). Consequently,
N =7 x 7 =49 tokens. This embedding dimension (D=768)
is adopted from the ViT-Base specification, which balances
model capacity with computational efficiency for sequences of
moderate length. Then, a learnable [CLS] token is prepended
to the token sequence. Learnable positional embedding E =
49 + 1 = 50 is added to preserve spatial information.

Transformer Encoder: processes the input sequence through
twelve encoder layers, where each layer helps the model
understand context and share information between tokens. The
model can focus on multiple parts of the input sequence
simultaneously by using a multi-head self-attention mechanism
in each encoder layer that has twelve attention heads.

Classification: Each encoder layeralso has an MLP block
with 3072 dimensions (3072 =4x768 to provide sufficientnon-
linear transformation capacity) and uses GELU activation.
Followingthe encoder layers, the final state of the classification
token is extracted, layer-normalized, and processed by a
multilayer perceptron (MLP) classification head to produce the
final class predictions, where the classification token gathers
information from all tokens using self-attention. The final
prediction is obtained through a sigmoid activation function:

MLP — Head(z.;) = W,. GELU(W,.LayerNorm(z,;) +
by)+ b, (7)

¥ =W, 4ss- MLP — Head (z,;s) + bgjgss) (8)

where, z.;; € R7%8is the final clstoken, W, € R3072%768
W, € R7%8%3072 gnd ¢ is the sigmoid function for binary
classification. We use Transformer-related parameters
including an embedding dimension of 768, 12 encoder layers,
12 attention heads, and an MLP hidden size of 3072 following
the standard ViT-Base configuration. This ensures consistency
with well-established architecture and allows our hybrid model
to benefit from proven practices for effective global context
modeling. The complete architecture is illustrated in Fig. 3 and
the detailed  algorithm  for  the  model is
given below (see Algorithm 1).

50,768
i '.l i
50,768
224,224.3 17 G 7x7768

lctal Intarictal

Fig.3. Architecture of CNN vision transformer.
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Algorithm 1 : Hybrid CNN-Vision Transformer

Input:

Time frequency (TF) image [ € R?24x224%3
Targety; € [0 1] 1=ictal; O=interictal
Output:

Predicted class probability § € [0 1]

Begin:
Data selection

IEEG data

Pre-processing
filtering/re-referencing
Segmentation
2D transformation using CWT
Resize image to 224x224

1:ictal

Labelling y = {0: interictal

Step1l: CNN Features Extraction
F cnn =CNN({I) F € R7X7%Cnn

Step2 Token Projection
Conv2D (1 x 1) (padding=same); (7,7,768)

Reshape (7*7,768)

Z flat=Reshape (Conv2D(F _cnn)); Z flat € R*9%x768
Z = Concat([CLS], Z_flat) + Positional Embedding

7 € R50X768

Step3: Transformer Encoder
for layer=1to 12:

-Head Self-Attention

Z_norm = Layer Norm(Z)

T
Attention(Q,K,V) =softmax(?/—1;_k> %4

Z_att =MultiHead (Attention) +Z
-Forward Network
FFN(z) = W,.GELU(W;.z + by) + b,
Step4: MLP Classification Head
MLP — Head (z.;5) = W,.GELU (W;.LayerNorm(z.sb1) + by
Y =0(W,1qss- MLP — Head (z¢15) + beiass)
Trainnig
Loss=binary cross entropy
Train model model.fit(X_train, y_train)
Evaluation

model.evaluate(X_test, y_test)

End

Vol. 16, No. 10, 2025

4) Proposed CNN MLP-Mixer hybrid model. The MLP-
Mixer approach eliminates both convolution and attention
operations, in contrast to the transformer architecture, by
employing multilayer perception (MLPs) organized into token-
mixing and channel-mixing layers. This architecture offers a
conceptually simpler alternative to self-attention while
maintaining competitive performance through pure algebraic
mixing operations [11].

For an input matrix X € RS*P,where S is the number of
tokens and D is the number of feature dimensions; the
fundamental operations of the MLP-Mixer are defined as
follows:

Token mixing (modelling spatial relationships):
U,;=X,; + W,o(W,LayerNorm(X), ) 9)

fori=1,..D

o is the GELU activation function.

X,; : all tokens for a channel i (the i-th column of X).

W : Weight of MLP mixing tokens (for W, € RS'*S |
W, € RS*S with S’ being the intermediate dimension.

Channel mixing (modelling relationships between
characteristics):

YV, =Uj, + Wy (W3LayerNorm(U)j_*) (10)
forj=1,....,S
U,; : all tokens for channel j (the jth column of U).

W : Weights of the MLPs of channel mixing (for W; €
RP>*P W, € RP*P"  with D' being the intermediate
dimension).LayerNorm refers to layer normalization.

For the final classification a Global average pooling is
applied followed by a linear classifier:

¥ = 0(W_4ss- GlobalAvreagePooling(Y) + byss) (11)

Architectural Configuration: (The feature extraction step is
described in the previous section), to configure the model
architecture, the following approach was adopted a hidden
dimension of D= 192, which aligns with Base-type models and
strikes a balance between expressiveness and computational
limits [11]. Eight layers (L=8) are stacked to reduce overfitting
and handle dependencies in sequences of moderate length.

The architecture features an intentional imbalance in its
MLP dimensions. For processing spatial information (token-
mixing), a bottleneck of 96 units is employed to promote
efficiency. For transforming feature information (channel-
mixing), a wide network of 768 units is used to facilitate richer
representations. This asymmetric design reflects the
observation that channel-wise feature interactions typically
require higher capacity than spatial token interactions for time-
frequency representations. The detailed algorithm for the model
is given in Algorithm 2, and the architecture is illustrated in
Fig. 4.

803 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

, 192 o

2242243 7.7, Cp
Connected

AN
N

Ictal Interictal

Fig. 4. Architecture of CNN MLP-Mixer.
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Trainnig
Loss= binary cross entropy
Train model model.fit(X train, y_train)
Evaluation
model.evaluate(X_test, y test)

End

Algorithm 2: Hybrid CNN-MLP-Mixer

Input:

Time frequency (TF) image [ € R?24%224%3
Targety; € [0 1] 1=ictal; O=interictal
Output:

Predicted class probability ¥ € [0 1]

5) Simulation Map: All models were implemented in
Python 3.9 using PyTorch 2.0.1. Experiments were conducted
on Google Colab using GPU acceleration. The following
Table I shows the different hyperparameters used in the study.

TABLE II. CONFIGURATION OF TRAINING HYPERPARAMETERS

Hyperparameters

Value

Begin:
Data selection

IEEG data

Pre-processing
filtering/re-referencing
Segmentation
2D transformation using CWT
Resize image to 224x224

1:ictal
0:interictal
Stepl: CNN Features Extraction

F cnn=CNN() F € R7X7XCan

Labelling y = {

Step2 Features Projection
Conv2D (1 X 1) (padding=same); (7,7,192)
Reshape (7*%7,192)
Z = Reshape (Conv2D(F_cnn)); Z € R49%192
Step 3: MLP-Mixer Layers (8 blocks)
Token-Mixing MLP (spatial)
U_norm = LayerNorm(Z)
fori=1 to 192: Per-channel processing
U.i = X.; + Woe (W LayerNorm(X). ;)
W, € R9%49 W, € R49%9%
for j=1 to 49: Per-token processing
Yj. = Uj, + Wye (WsLayerNorm (U) ;.)
W, € R768%192 W, € R192x768
Step 4: Classification
x_pool = GlobalAveragePooling(Y) ; x_pool € R°?
9 = a(x_pool X Weigss: +bciass) Weiass € RO

Optimizer

ADAM

Loss function

Binary cross entropy (BCE)

Batch Size 32
Epochs 80(early stopping with patience=10
Leaming Rate le-4
Dropout 0.1
IV. RESULTS

The models were evaluated using standard binary
classification metrics: accuracy, precision, recall (sensitivity),
specificity, F1-score (see Table IIl) and the area under the
receiver operating characteristic curve (AUC-ROC). These
metrics were derived fromthe counts of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN)
in the predictions.

TABLEIII. EVALUATION METRICS

Metrics Equations
TP+ TN
Accuracy(ACC) _—_—
TP+ FP +FN + TN
.. TP
Precision (Pr) _
TP+ FP
TP
Recall (Se) E =
TP+ FN
Specificity (Sp) L
FP +TN
2xXTP

Fl -Score Fl — =
SCOT¢ = X TP + FP + FN)

Table IV and Table V present the comprehensive
performanceevaluation of Vision Transformer (ViT) and MLP-
Mixer classifiers across six CNN backbones. The results reveal
a consistent performance hierarchy, with the EfficientNetB0-
ViT configuration achieving the highest overall scores
(Accuracy: 97.85%, Specificity: 98.92%). GoogleNet was also
consistent, performing well with both classifiers (96.45% with
ViT and 95.20% with MLP-Mixer) and stood out in recall
metrics. However, the results obtained with VGG19 are the
least optimal.

804 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLEIV. PERFORMANCE COMPARISON OF CNN-VISION TRANSFORMER
Model ACC% | Pr% | Se% sp% | F! 'f/“’re
0
EfficientNETBO- 97.85 9832 96.88 98.92 97.59
ViT
ResNet18-ViT 9535 94.90 92.70 9595 93.78
ResNet50-ViT 94.80 95.42 93.25 96.35 94.32
RfesNetIOI 9525 95.05 95.50 95.00 95.27
ViT
GoogleNet 96.45 9715 95.20 97.85 96.16
VIT
VGG19 VIT 93.20 93.65 91.85 94.70 92.74
TABLE V. PERFORMANCE COMPARISON OF CNN MLP-MIXER
Fl1-
Model ACC% | Pr% Se% Sp% score
%
Eff1c1entNETBOMLP— 97.08 96.55 94 45 97.35 95.48
Mixer
ResNet18 9425 | 91.55 92.78
MLP-Mixer 92.90 91.35
Re.SNCtSO—MLP- 9325 93 85 91.55 | 95.05 92.68
Mixer
ResNet101 95.10 | 92.50 93.76
MLP-Mixer 93.80 92.45
GoogleNet 96.75 | 93.65 95.76
MLP-Mixer 95.20 94.80
VGG19 90.15 | 93.55 91.16
MLP-Mixer 91.75 92.20

This comparative analysis provides a foundation for further
investigation of operational characteristics, such as ROC
curves. As illustrated in Fig. 5, the comparative ROC curves
demonstrate the discriminatory power of the various models.
The EfficientBO-ViT model demonstrates a remarkable
performance with an Area Under the Curve (AUC) of 0.979,
the subsequent models are GoogleNet-ViT (AUC = 0.968) and
EfficientBO-MLP (AUC = 0.963). The ViT curves have been
shown to demonstrate a systematic superiority that confirms
and substantiates its efficacy in differentiating between ictal
and interictal states.

Comparative ROC Curves - Vision Transformer Comparative ROC Curves - MLP-Mixer

/" — EfficientNETB0=0.9590
— GaogleNet=0.9520
== ResNet18=0.9260
== ResNet101=0.9380

" | EMicientNETBO=0.9790
— GuogleNet=0.9653
v — - Reshetla-0.9433
a2 — = ResNet101-0.9525 oz
i ResNet50-0.9480
+es V619208328

True Positive Rate
True Positive Rate

ResNet50=0.9330
VGG19-0.9185
Random Classifier (AUC = 0.5

-~ Random Classifier (AUC = 0.5)
o — a0k

A B

Fig.5. Comparative ROC Curve: (A) Curve Roc VIT, (B) Curve ROC
MLP-mixer.

To understand the impact of the model's performance, we
analyzed normalized confusion matrices. These matrices,
showninFig. 6, reveal each architecture's specific error profile,
particularly their trade-offs between false positives and false
negatives in distinguishing ictal from interictal states.
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Fig. 6. Normalized confusion matrices for the three best-performing models:
(A) EfficientNetBO0-ViT, (B) GoogleNet-MLP, (C) GoogleNet-VIT.

A detailed analysis of the error profiles, provided by the
confusion matrices in Fig. 6, offers crucial insights for clinical
application. The primary strength of EfficientBO-ViT [see
Fig. 6(A)] shows only 3.1% false negatives and 1.1% false
positives. This reliability makesitideal for clinical deployment,
where the cost of a false alarm (false positive). Interestingly,
the GoogleNet-MLP Mixer [see Fig. 6(B)] model has the best
recall rate (96.8%). However, it has a higher rate of false
positives (6.3%) compared to false negatives (3.2%), which is
important for minimizing false negatives (missed seizures).
Meanwhile, GoogleNet-ViT [see Fig. 6(C)] offers balanced
performance with moderate error rates (false negatives at 4.8%
and false positives at 2.1%).

Fig. 7 provides a direct comparative analysis of the
performance differential between Vision Transformer and
MLP-Mixer architectures. The histogram quantifies the
percentage point advantage of ViT over MLP-Mixer for the
EfficientNetB0 backbone.

(A) Global Accuracy Comparison (B) Recall Advantage Analysis

100

= Vision Transformer
— MLP-Mixer

wr
3 +2.4%

12,0

+12%

Accuracy (%)

Recall Advantage (ViT - MLP-Mixer, %)

Fig.7. Performance gain.

Fig. 7 presents the performance differential between Vision
Transformer and MLP-Mixer architectures when paired with
the EfficientNetBO backbone. The results demonstrate a
consistent advantage for the ViT model across all evaluation
metrics, with particularly notable margins in recall and
accuracy. However, the MLP-Mixer maintains competitive
performance, trailingby less than 2.5 % points in all categories.
This narrow performance gap, especially in specificity where
both architecturesexcel,underscores the MLP-Mixer's viability
as an efficient alternative to attention-based models for seizure
detection tasks.

The findings confirm that while the self-attention
mechanism in ViT yields superior overall performance, the
MLP-Mixer achieves remarkably close results. This suggests
context-dependent applicability: ViT for maximum diagnostic
precision versus MLP-Mixer for scenarios prioritizing
computational efficiency alongside strong detection capability.
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The superior performance of the proposed EfficientNetB0-
ViT model is evident when benchmarked against recent
literature, as summarized in Table VI. Our method establishes
a new accuracy of 97.9%, representing a significant
improvement over previous approaches for similar seizure
detection challenges.

TABLE VI.  COMPARISON OF PREVIOUS WORKS
Authors Year Methods Accuracy%
SRoy etal[21] 2019 ChronoNet 90.60
RaviPrakash et | 5920 ID-CNN-LTSM 8973
al[22]
Priya et al.[23] 2022 ResNet50 82.80
Ruksharet al. [24] 2023 Vision Transformer | 8907

Gupta etal[25] FUPTBSVM(hybrid | 88.66

2024

model)
Qietal[26] 2025 Vision Transformer | 93.65
OURS EfficientNet-B0 97.9
ViT

V. DISCUSSION

The experimental results provide a clear answer to the
primary research question: Vision Transformer (ViT)
classifiers consistently outperform MLP-Mixer counterparts
when integrated with CNN backbones for iIEEG-based seizure
detection. The superior performance of the EfficientNetB0-ViT
model (97.85% accuracy, 98.92% specificity) establishes the
effectiveness of self-attention mechanisms for capturing the
spatiotemporal dynamics of epileptic seizures. This advantage
can be theoretically explained by the ViT’s ability to model
global dependencies across the full time—frequency
representation, a capability that aligns well with the distributed
neural networks underlying seizure propagation. The observed
performance gap between ViT and MLP-Mixer models
provides valuable insight into the architectural requirements for
effective seizure detection. The consistent advantage of ViT
across multiple metrics suggests that the ability to dynamically
weightdifferent regions of the time-frequency representation (a
core property of self-attention mechanisms) provides
significant value for this task. This is particularly relevant for
seizures that manifest as evolving patterns across both time and
frequency domains. Our results for the MLP-Mixer architecture
align with findings from computer vision (Tolstikhin et al.,
2021), where MLP-based models have demonstrated
competitive performance despite their conceptual simplicity.
Extending this observation to biomedical signal analysis, our
findings demonstrate that MLP-Mixers constitute a viable
alternative to attention-based architectures for time-series
classification, offering a balance between interpretability and
efficiency. The strong correlation between CNN backbone
quality and final performance (evidenced by EfficientNetB0's
superior results across both classifiers) underscores the
continued importance of effective feature extraction. Indeed,
the identification of dominant patterns is critical for
characterizing neurological disorders [27]. Even highly
expressive classification heads such as ViT cannot compensate
for suboptimal convolutional representations, confirming the
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hierarchical dependency between feature extraction and global
context modeling in hybrid deep-learning architectures.

VI. CONCLUSION

This study presented a systematic and novel comparative
framework for the automated detection of epileptic seizures
from intracranial EEG (iEEG) signals filtered in the High-
Frequency Oscillation (HFO) band. By integrating
convolutional feature extractors with advanced sequence-
modeling architectures Vision Transformer (ViT) and MLP-
Mixer we established a comprehensive evaluation of hybrid
deep-learning approaches for seizure detection.

The proposed benchmarking protocol represents a novel
and systematic comparison between CNN-ViT and CNN-MLP-
Mixer models specifically tailored to HFO-based iEEG
analysis. Across multiple CNN backbones, the ViT consistently
outperformed the Mixer counterpart, with the EfficientNetB0-
ViT achieving the highest overall accuracy of 97.85 % and
specificity of 98.92 %. This performance highlights the ability
of self-attention mechanisms to capture the complex
spatiotemporal dynamics of seizure propagation. The MLP-
Mixer, on the other hand, demonstrated strong recall (up to
96.75 % with GoogleNet-MLP-Mixer), confirming its
suitability for scenarios where sensitivity is clinically
prioritized, such as continuous monitoring or early-warning
systems.

The comparative trends observed in this work have direct
practical value: ViT-based hybrids are better suited for high-
specificity diagnostic contexts, such as pre-surgical assessment
where false positives must be minimized, whereas Mixer-based
hybrids provide a high-recall solution ideal for long-term
monitoring. These insights contribute to a deeper understanding
of how architectural design choices in hybrid deep learning can
be aligned with distinct clinical objectives. Moreover, the
consistent superiority of ViT across architectures suggests that
self-attention represents a robust modeling paradigm for the
non-linear, high-frequency dynamics of epileptic activity
extending its relevance beyond computer vision to
neurophysiological signal analysis.

While the proposed framework demonstrates strong
performance, its generalizability should be validated on larger,
multi-center datasets including diverse patient populations. In
addition, the focus on high-frequency oscillations, though
biologically motivated, may have excluded complementary
low-frequency information (e.g., delta or theta bands) relevant
to seizure onsetand propagation. Addressing these limitations
will strengthen the translational impact of the approach.

Future research will extend the current binary framework to
multi-class classification, encompassing different HFO
subtypes and pre-ictal phases. Another direction will involve
integrating explainability techniques such as Grad-CAM or
LIME to visualize discriminative regions in the time-frequency
maps, thereby enhancing clinical interpretability and trust.
Finally, incorporating multimodal spectral inputs and transfer-
learningstrategies will further improve robustness and pave the
way for deployment in real-world clinical environments.

806 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

ACKNOWLEDGMENT

The authors are grateful to the investigators who shared

their iEEG data.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[2

—

[13]

REFERENCES

N. Jmail et al,, “Separation between spikes and oscillation by stationary
wavelet transform implemented on an embedded architecture,” Journal of
the Neurological  Sciences, Volume 381, 542.2017. doi:
10.1016/j.jns.2017.08.3735.

A. Hadriche, I. Behy, A. Necibi, A. Kachouri,C. Ben Amar,and N. Jmail,
“Assessment of Effective Network Connectivity among MEG None
Contaminated Epileptic Transitory Events,” Comput. Math. Methods
Med., vol. 2021,2021, doi: 10.1155/2021/6406362.

Hadriche, I. EIBehy, A. Hajjej,and N. Jmail, “Evaluation of Techniques
for Predicting a Build Up of a Seizure,” Lect. Notes Networks Syst., vol.
418 LNNS, no. 1, pp. 816827, 2022, doi: 10.1007/978-3-030-96308-
8_76.

Abir Hadriche,Nawel Jmail “Clinical Images and Medical Case Reports
A build up of seizure prediction and detection Software : Areview, J Clin
Images Med Case Rep.2021,2 (2):1087.

Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J.
Faubert, “Deep leaming-based electroencephalography analysis: a
systematic review.,” J. Neural Eng., vol. 16, no. 5, p. 51001, Aug. 2019,
doi: 10.1088/1741-2552/ab260c.

R. Hussein, H. Palangi, R. Ward, and Z. J. Wang, “Epileptic Seizure
Detection: A Deep Learning Approach,” pp. 1-12, 2018, [Online].
Available: http://arxiv.org/abs/1803.09848

X. Wu, Z. Yang, T. Zhang,L. Zhang,and L. Qiao, “An end-to-end seizure
prediction approach using long short-term memory network,” Front.
Hum. Neurosci, vol. 17, no. May, pp. 1-10, 2023, doi:
10.3389/fnhum.2023.1187794.

K. Mohiuddin et al., “Retention Is All You Need,” Int. Conf. Inf. Knowl.
Manag.  Proc., mno. Nips, pp. 4752-4758, 2023, doi:
10.1145/3583780.3615497.

S. Yuan, K. Yan, S. Wang, J. X. Liu, andJ. Wang, “EEG-Based Seizure
Prediction Using Hybrid DenseNet—ViT Network with Attention Fusion,”
Brain Sci., vol. 14, no. 8,2024, doi: 10.3390/brainscil4080839.

Q. Li, W. Cao, and A. Zhang, “Multi-stream feature fusion of vision
transformer and CNN for precise epileptic seizure detection from EEG
signals,” J. Transl. Med., vol. 23, no. 1,2025, doi: 10.1186/s12967-025-
06862-z.

Tolstikhin et al., “MLP-Mixer: An all-MLP Architecture for Vision,”
Adv. Neural Inf. Process. Syst., vol. 29, pp. 24261-24272,2021.
Burelo, M. Sharifshazileh, G. Indiveri, and J. Sarnthein, “Automatic
Detection of High-Frequency Oscillations With Neuromorphic Spiking
Neural Networks,” Front. Neurosci., vol. 16, no. June, pp. 1-17, 2022,
doi: 10.3389/fnins.2022.861480.

T. Guesmi, A. Hadriche, and N. Jmail, “Effective connectivity of high-
frequency oscillations ( HFOs ) using different source localization
techniques,” ISDA 2022, doi: 10.1007/978-3-031-35507-3_36.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[27]

Vol. 16, No. 10, 2025

T. Guesmi, A. Hadriche, N. Jmail, and C. Ben Amar, “Evaluation of
Stationary Wavelet Transforms in Reconstruction of Pure High
Frequency Oscillations (HFOs),” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12157
LNCS, no. 80200, pp. 357-363,2020, doi: 10.1007/978-3-030-51517-
1_32.

Z. Wanget al., “EEG-Based Seizure Detection Using Dual-Branch CNN-
ViT Network Integrating Phase and Power Spectrograms,” Brain Sci., vol.
15,n0.5, pp. 1-24,2025, doi: 10.3390/brainscil 5050509.

Zayneb Sadek, “An Efficient CNN and RNN Hybrid Model for the
Detection of Epileptic Seizures in EEG Signals,” in IEEE Symposium on
Bioinformatics and Bioengineering (BIBE), 2024.

M. Bashar, O. Monjur, S. Islam, M. G. Shams,and N. Quader, “Exploring
Synergistic Ensemble Learning: Uniting CNNs, MLP-Mixers, and Vision
Transformers to Enhance Image Classification,” 2025, [Online].
Available: http://arxiv.org/abs/2504.09076.

and B.L. John M. Bemabei, Adam Li, Andrew Y. Revell, RachelJ. Smith,
Kristin M. Gunnarsdottir, lan Z. Ong, Kathryn A. Davis, Nishant Sinha,
Sridevi Sarma, “HUP iEEG Epilepsy Dataset. OpenNeuro. [Dataset],”
2023, doi: doi: doi:10.18112/openneuro.ds004100.v1.1.3.

A. Dosovitskiy et al., “an Image Is Worth 16X16 Words: Transformers
for Image Recognition At Scale,” ICLR 2021 - 9th Int. Conf. Leam.
Represent., 2021.

M. Ott, S. Edunov, D. Grangier, and M. Auli, “Scaling Neural Machine
Translation,” WMT 2018 - 3rd Conf. Mach. Transl. Proc. Conf., vol. 1,
pp- 1-9,2018, doi: 10.18653/v1/w18-6301.

S. Roy, I. Kiral-Kornek, and S. Harrer, “Chrononet: A deep recurrent
neural network for abnormal EEG identification,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 11526 LNAI, pp.47-56,2019,doi: 10.1007/978-3-
030-21642-9 8.

H.RaviPrakashetal, “Deep Leamning Provides Exceptional Accuracy to
ECoG-Based Functional Language Mapping for Epilepsy Surgery,”
Front. Neurosci, vol. 14, no. May, pp. 1-14, 2020, doi:
10.3389/fnins.2020.00409.

S. S. Priya and N. J. Nalini, “Eeg Signal Analysis for Epileptic Seizure
Using Scaleogram Based Transfer Learning,” J. Pharm. Negat. Results,
vol. 13,no0.7, pp. 2825-2834,2022,doi: 10.47750/pnr.2022.13.507.376.

S. Rukhsarand A. K. Tiwari, “Lightweight convolution transformer for
cross-patient seizure detection in multi-channel EEG signals,” Comput.
Methods Programs Biomed., vol. 242, pp. 1-13, 2023, doi:
10.1016/j.cmpb.2023.107856.

D. Gupta, “Functionaliterative approach foruniversum-based primaltwin
bounded support vector machine to eeg classification (fuptbsvm),”
Multimed. Tools Appl., vol. 83(8), 221,2024.

Q. Li, T. Zhang, Y. Song, and M. Sun, “Transformer-based spatial-
temporalfeature learning for P300,” 2022 16th ICME Int. Conf. Complex
Med. Eng. C. 2022,  pp. 310-313, 2022, doi:
10.1109/CMES55444.2022.10063297.

Abir Hadriche, Nawel Jmail, Jean-Luc Blanc, Laurent Pezard. "Using
centrality measures to extract core pattern of brain dynamics during the

resting state" Computer Methods and Programs in Biomedicine, vol. 179.
2019,104985.d01:10.1016/j.cmpb.2019.104985.

807 |Page

www.ijacsa.thesai.org



