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Abstract—Mangrove ecosystems play an important role in
maintaining coastal ecological balance, including as carbon sinks
and natural protection from abrasion, but mangrove areas in
Mempawah Regency have experienced significant degradation
due to anthropogenic pressures. Therefore, this study aims to
classify the health condition of mangroves using multi-temporal
Sentinel-2 imagery with a hybrid machine learning (ML)
approach and Genetic Algorithm (GA) optimization. We
implemented GA optimization comparatively on four main ML
models—Multilayer Perceptron (MLP), Decision Tree (DT),
XGBoost, and Naive Bayes (NB)—to adjust hyperparameters to
improve accuracy and reduce overfitting. The results prove that
GA optimization effectively improves classification perfor mance,
with the MLP-GA model providing the highest accuracy with an
increase of up to 3.8% compared to the non-optimized baseline
model, achieving a best performance value of ROC AUC 0.9730
and reducing computation time by up to 60%. These findings
indicate that the GA-MLP framework is highly reliable and
efficient, providing a precise tool for strategic decision-making in
the management of healthy mangrove ecosystems.
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1.  INTRODUCTION

Mangrove forests cover only about 0.7% of the world's total
tropical forests [ 1], buthasthe ability to store three to four times
more carbon per unit area than other tropical forests, and in
areas with carbonate and peat environments, their storage
capacity canbe 25 to 50% higher [2]. Globally, this ecosystem
is spread across more than 118 countries with an area of
approximately 152,000 km? [3]. Meanwhile, in Indonesia,
mangroves are found throughout the archipelago. The largest
distribution is in Irian Jaya, covering an area of 1,350,600 ha
(38%), followed by Kalimantan with 978,200 ha (28%), and
Sumatra with 673,300 ha (19%) [4][5]. Meanwhile, in other
regions, mangroves generally grow optimally on coasts with
large river estuaries and protected beaches.

West Kalimantan is a province with a coastline stretching
1,940 km, mostof which is dominated by mangroveecosystems
[6][7]. The area of mangrove forests in this province is
estimated to reach 119,327 ha, with a composition of around
75% of the mangrove species found in Indonesia. On Padang
Tikar Island, Batu Ampar District, Kubu Raya Regency, the
mangrove ecosystem covers an area of 58,953 ha. Meanwhile,
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Mempawah Regency, whichis also located on the coast of West
Kalimantan, has a fairly high diversity of mangroves [8].
However, in the last 25 years, it has experienced degradation
covering an area of 250.11 ha, so that in 2014, only about
739.31 ha remained [9]. This condition indicates that the
mangrove ecosystem in the study area not only has high
ecological value but also faces serious threats, making remote
sensing-based mangrove health monitoring urgently needed.

Monitoring the health of mangrove ecosystems is crucial to
support conservation and rehabilitation strategies. The use of
remote sensing technology, particularly Sentinel-2 satellite
imagery, offers great opportunities because it has sufficient
spatial, temporal, and spectral resolution to map land cover
conditions and detect vegetation health dynamics [10][11][12].
Several vegetation and water indices, such as NDVI
(Normalized Difference Vegetation Index) [13][14], SAVI
(Soil-Adjusted Vegetation Index) [15], NDWI (Normalized
Difference Water Index) [16], and MNDWI (Modified
Normalized Difference Water Index) [17], have proven
effectivein evaluating vegetation density, humidity, and coastal
ecosystem conditions. However, challenges still arise in terms
of classification accuracy and consistency due to the
complexity of mangrove spectral characteristics, which often
overlap with other vegetation.

Previous studies have shown various approaches to
mangrove mapping and monitoring. The XGBR-GA hybrid
approach, which combines Extreme Gradient Boosting
Regression and Genetic Algorithm for feature selection with
multi-source data (Sentinel-2, Sentinel-1, ALOS-2 PALSAR-
2) and field data (105 plots), successfully estimated Above-
Ground Biomass (AGB) with good accuracy (R*? = 0.683;
RMSE = 25.08 Mg-ha™") [18]. Furthermore, the EIAGA-S
(Elite Individual Adaptive Genetic Algorithm-Semantic
Inference) method, combined with the new MEVI index, was
able to perform semantic segmentation of mangroves without
ground truth with high accuracy (mloU = 0.92; F1 =0.923) and
multi-class classification. On the other hand, NDVI-based
research in Tugu District, Semarang, shows that the mangrove
area covers 113.93 ha with a health condition dominated by the
“Good” category (57.1 ha), although the effectiveness of
mangrovesin mitigatingcoastalabrasion (970 min 2017-2021)
is still limited [19]. The three studies introduced the Elite
Individual Adaptive Genetic Algorithm-Semantic Inference
(EIAGA-S) method for semantic segmentation of mangroves
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without requiring ground truth data. This method combines an
adaptive genetic algorithm with an elite evolution strategy and
develops the Mangrove Enhanced Vegetation Index (MEVI) to
distinguish mangroves from other vegetation. Evaluation
results on multi-source data show high performance with mloU
=0.92and F1-score=0.923, surpassingtraditional modelssuch
as K-means and SVM [20].

The development of machine learning methods has opened
up new opportunities to improve the accuracy of land cover
classification. Algorithmssuchas Multilayer Perceptron (MLP)
excel at capturing nonlinear patterns [21], Extreme Gradient
Boosting (XGBoost) is powerful in processing complex data
[21], Easy-to-interpret Decision Tree [22], and Naive Bayes,
which is efficient for text data, has been widely used in satellite
image analysis, but its performance is greatly influenced by the
selection of complex hyperparameters [23]. To address these
challenges, this study integrates Genetic Algorithm (GA) as an
optimization method to improve accuracy while minimizing the
risk of overfitting, so that the resulting model is more reliable
in supporting coastal ecosystem monitoring [24][25].

Data processing was carried out using Sentinel-2 imagery
from the COPERNICUS/S2 HARMONIZED collection
accessed through Google Earth Engine (GEE), with the study
area focused on the coast of Mempawah Regency, West
Kalimantan, which is bounded by a polygon-shaped AOI. To
monitor the temporal dynamics of mangrove ecosystem health,
the images were analyzed over three time periods (20192021,
2021-2023,and 2023-2025), then several spectral indices such
asNDVI, SAVI, NDWI, and MNDWI were calculatedto assess
the condition of mangrove vegetation and detect changes in
land cover from year to year.

This study is expected to make a significant methodological
and practical contribution. The methodological contribution
lies in the comparative evaluation of Genetic Algorithm (GA)
optimization in four machine learning models for mangrove
health classification, which has rarely been explored in the
context of multi-temporal Sentinel-2 data. Quantitatively, this
study proves that GA can improve the accuracy of the best
model (MLP) by up to 3.8% compared to the non-optimized
base model, achieving the highest ROC AUC performance
value of 0.9730, while reducing hyperparameter computation
time by up to 60%. These precise data-based results are crucial
for supporting conservation and rehabilitation strategies.
Furthermore, this study aligns with the UN's 2030 Agenda,
particularly Sustainable Development Goal (SDG) 14.2 [26],
which emphasizes the protection and sustainable use of marine
and coastal ecosystems, making healthy mangrove
management key to supporting sustainable development.
Overall, this study provides recommendations that can be
directly applied in mangrove reforestation efforts, supporting
sustainable development (SDGs 2030) through more targeted
mangrove planting strategies to enhance ecological resilience
in coastal areas [27].

The remainder of this study is organized as follows:
Section Il presents a review of various related works,
highlighting the limitations of previous studies and explaining
how this research addresses these gaps. Section III details the
methods used, ranging from Sentinel-2 image processing,
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multi-index data preparation, and the implementation of
Genetic Algorithm (GA) optimization on four machine learning
models. Section IV presents the experimental results, and an in-
depth discussion of the optimized model performance
comparison is presented in Section V. Finally, Section VI
summarizes the main conclusions of this study and provides
directions for future work.

II. RELATED WORK

Remote sensing-based mangrove ecosystem monitoring
research has been conducted extensively using various
approaches. One ofthe most widely used methods is vegetation
indices, such as NDVI, SAVI, NDWI, and MNDWI, which
have proven effective in assessing vegetation density, moisture
conditions, and distinguishing between vegetative and non-
vegetative areas. For example, research in the Semarang area
successfully identified the extent of mangroves and classified
their health conditions with a reasonable degree of accuracy
[28]. However, the study was limited to a single observation
period, so it was not able to describe changes in mangrove
conditions over time.

With advances in data analysis technology, machine
learning algorithms are increasingly being applied to improve
the accuracy of satellite image classification. Various studies
have demonstrated the successofalgorithms such as Multilayer
Perceptron (MLP), Extreme Gradient Boosting (XGBoost),
Decision Tree, and Naive Bayes in land cover mapping and
vegetation identification. MLP is known to be effective in
capturing nonlinear patterns between spectral variables [29],
whereas XGBoost excels at handling complex data and is able
to overcome overfitting issues through its efficient gradient
boosting mechanism [30][31]. Decision Trees are often used
because they are easy to interpretand capable of displaying
transparent classification rules [32]. Meanwhile, Naive Bayes
has an advantage in computational efficiency for high-
dimensional data thanks to its simple yet effective assumption
of feature independence [33]. However, the performance of
these algorithms is highly dependent on the selection of
appropriate hyperparameters. Manual parameter tuning is often
inefficient and can reduce the accuracy and stability of the
model, especially with complex remote sensing data [34][35].

To overcome problems in hyperparameter tuning, various
studies have begun to apply metaheuristic-based optimization
algorithms such as the Genetic Algorithm (GA). One of these
studies was conducted by Tien Dat Pham et al. (2022), who
developed the XGBR-GA model for estimating above-ground
biomass (AGB) of mangroves. This model utilizes data from
Sentinel-1, Sentinel-2, ALOS-2 PALSAR-2, as well as field
data from 105 plots in the Red River Delta, Vietnam. The
results of the study show the best performance with an R? value
0f 0.683 and an RMSE 0f25.08 Mg-ha™', making the XGBR-
GA approach effective for monitoring mangrove ecosystems in
tropical regions [36]. In addition, research by Xinhong Li et al.
(2023)developed an explainable machine learning method for
Fractional Vegetation Cover (FVC) inversion in the alpine
grasslands of the Qinghai-Tibet Plateau. A combination of
Genetic Algorithm (GA), XGBoost, and Optuna (GA-OP) was
used for feature selection and hyperparameter tuning, resulting
in a Stacking model with the best performance (R? = 0.867;
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RMSE = 0.12). The SHAP method and NDVI-CV analysis
improved the interpretability and reliability of the results,
making this approach effective for estimating other ecological
parameters [37]. These results demonstrate the effectiveness of
GA in improving the accuracy, stability, and generalization
ability of machine learning models for large-scale remote
sensing data.

Although a number of previous studies have successfully
improved the accuracy of mangrove classification through the
application of machine learning algorithms and Genetic
Algorithm (GA)-based optimization, most of these studies still
have several important limitations. First, most previous studies
have focused on a single observation period, thus failing to
consider the temporal dynamics of mangrove ecosystems,
which are greatly influenced by seasonal factors and
anthropogenic activities. Second, the study areas tend to be
limited to small and homogeneous areas, so the results cannot
describe the complex spatial variations in larger tropical areas.
Third, some studies only rely on one or two vegetation indices
(such as NDVI or SAVI) without considering water indices
such as NDWIand MNDWI, even though these two indices are
important for assessing the interaction between mangrove
vegetation and the surrounding aquatic environment. Fourth,
the GA approach used is generally only applied to one machine
learning model, so there has been no discussion of the
effectiveness of multi-model or cross-algorithm optimization.

This study attempts to overcome these limitations through a
more comprehensive and adaptive approach to classifying
mangrove ecosystem health. First, a multi-temporal analysis
was conducted for the period 2019 to 2025 to describe the
dynamics of changes in mangrove health over time. Second, the
study area was focused on the coast of Mempawah Regency,
West Kalimantan—an area with high vegetation diversity and
real environmental pressures—so that it could represent more
diverse ecological conditions. Third, this study combined four
main indices (NDVI, SAVI, NDWI, and MNDWI) to provide a
more comprehensive spatial picture of vegetation and water
conditions. Fourth, the novelty of this study lies in the
application of GA across four machine learning algorithms
(MLP, XGBoost, Decision Tree, and Naive Bayes), which are
simultaneously optimized to improve the accuracy, stability,
and generalization ability of the model. Thus, this study not
only expands the spatial and temporal coverage but also
introduces methodological innovations in the application of GA
for more effective and scientific classification of mangrove
ecosystems.

III. METHODOLOGY

This research method consists of nine main stages for land
cover classification and mangrove health assessment based on
Sentinel-2 imagery. The stages include determining the study
area, acquiring Sentinel-2 Level-2A imagery, pre-processing
(cloud masking and extraction of six spectral bands), and
creatinga labeled dataset through pixel value extraction from
sample points. Five machine learning algorithms (MLP, Naive
Bayes, Decision Tree, and XGBoost) were applied with
parameter optimization using Genetic Algorithm. Model
evaluation was performed using accuracy, precision, recall, F1-
score, and Cohen's Kappa, then the best model was used to
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produce amangrove cover classification map and interpretation
of'its health condition. The overall research process flow, from
image acquisition to result interpretation, can be seen visually
in Fig. 1.
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Fig. 1. Research process flow.

A. Stage-1: Determination of AOI and Data Preparation

The initial stage of the study began with the determination
of the Area of Interest (AOI) located in the coastal area of
Mempawah, West Kalimantan. This AOI was defined using
polygon vector data with a two-dimensional geographic
coordinate system (Geographic 2D CRS: EPSG:4326 — WGS
84), covering an area with longitude coordinates ranging from
108.829975° to 109.043271° and latitude coordinates ranging
from 0.295701° to 0.565236°. The projection system used is
WGS 84 (World Geodetic System 1984) with an ellipsoidal
datum and Greenwich prime meridian. This shapefile data is
then used to determine sample points in the class labeling
process. The base image used is Sentinel-2 Level-2A, which
was collected through the Google Earth Engine (GEE) platform
and will be used in the spectral value extraction stage.

B. Stage-2: Sentinel-2 Image Processing

The Sentinel-2 images collected were then processed
through several stages, including masking the study area, cloud
filtering, and selecting the study area to produce a raster ready
for analysis. This study uses Sentinel-2 images from the
COPERNICUS/S2 HARMONIZED collection available on the
Google Earth Engine (GEE) platform
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(https://code.earthengine.google.com/), with a cloud cover
filter of less than 20%. The study area is focused on the coastal
region of Mempawah Regency, West Kalimantan, and is
bounded by a polygonal AOL

The image selection process was carried out for three time
periods,namely:2019t02021,2021t02023,and 2023 to 2025,
in order to monitor the dynamics of mangrove cover changes
over time. The selection of these three time periods aims to
monitor the temporal dynamics of changes in mangrove
ecosystem health, thereby providing an overview of
degradation and recovery trends from year to year.

Each image that meets the criteriais then calculated for its
spectral index value, such as NDVI, SAVI, MNDWI, and
NDWI, to identify the health level of mangrove vegetation. The
processing results are stored in TIFF format. AOI in the form
of a shapefile with the ID asset projects/mengrove-riset-
24/assets/AOl is accessed through the GEE API and converted
into FeatureCollection, with geometric information obtained
through the getInfo() method.

C. Stage-3: Spectral Band Extraction

The initial Sentinel-2 image was extracted using six
important bands, namely Red, Green, Blue, NIR, SWIR1, and
SWIR2. These bands were selected because they are relevant
for detecting vegetation and plant health, especially in
mangrove ecosystems.

TABLE I VEGETATION AND WATER INDICES FROM SENTINEL-2 IMAGES
Vegetation Indices Formula Sources

Blue B2 -
Green B3 -
Red B4 -
NIR B8 -
SWIR-1 B11 -
SWIR-2 B2 -
NDVI (Normalized (NIR -Red) / (NIR + [38]
Difference Vegetation Index) | Red)
SAVI (Soil-Adjusted ((NIR - Red)/ (NIR + [39]
Vegetation Index) Red+ L)) *(1+L)
MNDWI (Modified (Green - SWIR1) / (Green 40
Differential Water Index) + SWIR1) [40]
NDWI (Normalized (Green - NIR) / (Green + 41
Difference Water Index) NIR) [41]

As presented in Table I, various vegetation and water
indices were calculated from a combination of Sentinel-2
spectral bands to assess vegetation cover and water conditions.
Four main indices were used in this study, namely NDVI,
SAVI, NDWI, and MNDWI. NDVI is widely used to measure
vegetation density and greenness, makingita relevant indicator
of mangrove health. SAVI was developed to minimize the
influence of soil background, making it more accurate in areas
with sparse or uneven vegetation cover, including mangrove
ecosystems in coastal areas. Meanwhile, NDWI and MNDWI
are used to detect vegetation moisture and distinguish water
areas from dry or built-up land—important parameters in
mangrove ecosystems that are highly influenced by tidal and
water conditions. Thus, the combination of these indices
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provides a more comprehensive spatial picture of mangrove
health status.

D. Stage-4: Sample Labeling

Sample labeling was carried out using points from a
shapefile that had been prepared beforehand. These points
represent land cover classes and mangrove health conditions
that were determined manually through visual interpretation
and field verification. In this study, 1,250 sample points were
used, divided evenly into five land use classes, each with 250
points, namely: 1) Water Body, 2) Non-Mangrove Vegetation,
3) Mangrove, 4) Built-up Land, and 5) Open Land. Each point
represents one image pixel with a specific class label and will
be used as training data and test data in the machine learning
classification process. As shown in Fig. 2, this sample point
map illustrates the distribution of mangrove samples in the
Mempawah Regency area, which forms the basis for model
classification validation and training.

MANGROVE SAMPLE POINT MAPPING IN
MEMPAWAH AREA

0 0,75 1,5 km

Legend

J () water Body

. | @ Mon-Mangrove Vegetation
" | @ Mangrove

. Built-up Land

() open Land

Fig.2. Mangrove sample point mapping in the Mempawah area.

E. Stage-5: Pixel Value Extraction

At this stage, the shapefile data containing the sample points
is loaded using the GeoPandas library, while the raster file of
the composite spectral index image in GeoTIFF format is
opened for extraction. The pixel values from the raster image
are extracted based on the geometric coordinates of the sample
points using the pixel extraction function in the Python
programming language. This process produces a dataset in the
form of feature and label pairs (X, y), where each row
represents the spectral value of one sample point. NaN values
that appear due to spatial incompatibility or cloud cover are
removed to maintain data quality. This extracted dataset is then
used to calculate the sample distribution per class and is
prepared for the classification model training stage.

F. Stage-6: Labeled Dataset Formation

The labeled dataset consisting of features (X) and class
targets (y) resulting from pixel extraction is then prepared for
the classification model training and testing process. This data
is divided using the train-test split method with a ratio of 80:20,
where 80% of the data is used for training and 20% for testing
[42][43][44]. After division, the training data has the form
X train (1000, 12) and y_train(1000,), while the test data has
the form X test (250, 12) and y_test (250,). Each row
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represents one sample point with 12 spectral features and
vegetation indices, as well as one class label as the target.

G. Stage-7: Model Training and Optimization

This stage is the core of the land cover classification process
and mangrove health assessment using a machine learning
approach. This study proposes a new approach by integrating
Genetic Algorithm (GA) as a hyperparameter optimization
method across four main algorithms, namely Multilayer
Perceptron (MLP), Extreme Gradient Boosting (XGBoost),
Naive Bayes, and Decision Tree. This cross-model approach is
one of the novel aspects of this study, as most previous studies
only applied GA to a single algorithm.

Before optimization, each model was first run using default
parameters commonly used in the initial implementation stage.
Next, the optimization process was carried out using GA to
determine the best parameter combination adaptively. GA was
chosen for its ability to explore the parameter space globally
and efficiently, making it superior in finding optimal solutions
compared to conventional approaches such as grid search or
random search.

In addition, this study also presents another novel aspect,
namely the application of GA in multi-temporal analysis (2019
t0 2021,2021t02023,and 2023 to 2025) combined with four
main spectral indices— NDVI, SAVI, NDWI, and MNDWI—
to describe the spatial and temporal variations in mangrove
ecosystem health. This integration provides a more
comprehensive understanding of changes in vegetation cover
and mangrove health over time.

Through this optimization process, the search for the best
parameter combination for each algorithm is carried out
systematically so as to improve the accuracy, precision, and
stability of the model. This approach is expected to produce a
classification model that is more reliable and adaptive to the
complex characteristics of satellite imagery and the ecological
conditions of mangroves in the study area.

Algorithm 1 Multilayer Perceptron (MLP)
Step 1: Input Layer
e Input: 12 features (e.g., vegetation index, water
index, and spectral variables from Sentinel-2
images).
e Qutput: Input vector of size (n_samples, 12)
ready to be passed to Hidden Layer 1.
Step 2: Hidden Layer 1
e  Process:
o Number of neurons: 50
o Calculation: z®W =X - w® + pM
o Activation: tanh
e Output: Vector of size (n_samples, 50) resulting
from tanh activation.
Step 3: Hidden Layer 2
e  Process:
o Number of neurons: 25
o Calculation: z®® = a® . W®@ 4 p2
o Activation: tanh
e Qutput: Vector sized (n_samples, 25) resulting
from tanh activation.
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Step 4: Output Layer
e Process:
o Number of neurons: 5 (corresponding to
the number of target classes)
o Activation: softmax to convert values into
probabilities for each class.
e OQOutput: A probability vector (n_samples, 5) that
sums to 1.
Step 5: Class Prediction
e Input: Probabilities from the output layer.
e Process: argmax — selects the class with the
highest probability.

Algorithm 2 Extreme Gradient Boosting (XGBoost)

Step 1: Input Layer
e Input: 12 features — derived from vegetation
indices (NDVI, SAVI, EVI, LAI), water indices
(NDWI, MNDWTI), and Sentinel-2 spectral
variables.
e Dimension: (n_samples, 12)
e  OQutput: Feature data ready to be processed into
the XGBoost model.
Step 2: Base Learner (CART)
e Base model: Decision Tree (Classification and
Regression Tree).
e Process: The split process is calculated using an
objective function (loss + regularization).
n

0bj = Y 1390+ £,G)) + O
i=1
o [l =loss function (e.g., log-loss for

classification)
o Q(f)=yT+ %AZW]-Z = (regularization,
prevents overfitting)
e  Output: The first tree is formed (initial
prediction).
Step 3: Ensemble of Trees (Boosting Process)
e Residual is calculated from the derivative of loss
(gradient):
~(t-1 ~(t-1
P75 WGl 7 /40
' oy, 097

e Node split is selected with the largest gain:
Gain = 1 Qi 9)° | Cier i)’
ain = = +
2 YieLhi + 4 ier hi2+ A
_ Qierur 99 1-y
Yierurhi + 4
e Learningrate(n): adjusts the contribution of each
tree.
e  Output: a collection of hierarchical trees that
improve the error.
Step 4: Output Layer (Softmax for Multi-class)
e The final prediction for each sample is a class
probability.
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eYk
Py=klx)=—%—
eVi
j=1
Dimension: (n_samples, 5)
Class Prediction
From the softmax probabilities — select the class
with the highest argmax value.

Algorithm 3 Naive Bayes

Step 1:

Step 4:

Step 5:

Input Layer (Input Data)

Input: 12 features — : vegetation indices (NDVI,
SAVI, EVI, LAI), water indices (NDWI,
MNDWI), and Sentinel-2 spectral variables.
Dimension: (n_samples, 12).

Output: Feature data ready for modeling.

Data Normalization

Scaler: StandardScaler is used to standardize
features (mean=0, std=1).

Output: Training and test data in standard scale.
Naive Bayes Model (GaussianNB)
Assumption: Each feature in a class follows a
Gaussian (normal) distribution.

Parameters calculated for each class k

n
1
PG 1Cy) = | | exp (~
\ 2mo};

i=1
Where:
® u,;=mean of the Ith feature in class k
e 02 = varians fitur ke — i pada kelas k
Output: Gaussian Naive Bayes model with mean
and variance parameter estimates per class.
Bayes Classification

Class probabilities are calculated using Bayes'
rule:

(x; — Mki)z
207,

)

P(x | C)P(Cy)

P(x)
Final class prediction = class with the highest
probability (argmax).
Output: Predicted label for each sample (0—4).
Output Layer (Multi-class Probabilities)

Function: predict proba() generates the probability
of each class.

Format: (n_samples, 5).

Output: Probability distribution for all classes.

P(C,lx) =

Algorithm 4 Decision Tree

Step 1:

Input Layer (Data Features)

Input: 12 features (NDVI, SAVI, EVI, LAI,
NDWI, MNDWI, and other Sentinel-2 bands).
Dimensions:(n_samples,12) .
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e  Output: Feature dataready to be processed into a

decision tree.
Step 2: Attribute Selection (Splitting Criteria)

e The algorithm selects the best attribute to split the
data.

e  Criteria: Gini Index or Entropy (Information
Gain).

e Gini Index Formula:

K
Gini(D) =1— Z p?
i=1

Where:p; the proportion of class-i in the dataset D

e Information Gain (IG) Formula:
1G(D,A) = Entropy(D)

| D, |
| DI

vEValues(A)
k

Entropy(D) = — Z pilog »(py)

i=1
The attribute with the largest IG value (or smallest
Gini) is selected as the splitting node.
Step 3: Recursive Splitting (Building the Tree)

e The process of selecting the best attribute is
performed repeatedly (recursively) for the data
subset.

e The tree will be formed until the stopping criteria
is met, for example:

o Maximum depth is reached (max_depth).
o The number of samples in the node is less
than min_samples_split.
o Thenodeis already "pure" (contains only
1 class).
Step 4: Leaf Node (Output Node)

e Ifthe stoppingcriteria are met, the node becomes
a leaf.

e The leaf contains the class distribution, and the
label is selected based on the majority class.

Step 5: Class Prediction

e Foreach test data, features are checked following
the tree's condition path.

e Data stops at the leaf node — class prediction
result.

X Entropy(D,,)

1) Parameter optimization using genetic algorithm (GA):
Parameter optimization was performed using Genetic
Algorithm (GA) to improve the performance of mangrove
health classification. GA mimics natural selection by treating
parameter combinations as individuals and model performance
as fitness values, enabling it to explore a wide parameter space
to find the best configuration [45],[46].

In this study, GA was applied to optimize four algorithms,
namely Multilayer Perceptron (MLP), Extreme Gradient
Boosting (XGBoost), Naive Bayes, and Decision Tree (see
Algorithm 1 to Algorithm 4). GA adjusted important
parameters such as network architecture, activation function,
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learningrate,and regulation in MLP; number of estimators, tree
depth, learning rate, and regularization in XGBoost; variance
smoothingin Naive Bayes; and tree depth and minimum sample
size in Decision Tree. This approach ensures that each model
uses optimal parameters, improving accuracy and
generalization ability [47][48].

Previous studies have also shown that GA integration can
significantly improve accuracy in image and ecosystem
analysis. However, this study is novel in that it applies GA
across algorithms (multi-model optimization) to four different
models simultaneously, rather than just one algorithm as in
previous studies. In addition, GA was implemented in multi-
temporal analysis (2019-2025) by combining four main
spectral indices—NDVI, SAVI, NDWI, and MNDWI—to
evaluate the spatial and temporal dynamics of mangrove health
in Mempawah Regency. This approach contributes new
insights into GA-based optimization for comprehensive and
adaptive monitoring of mangrove ecosystems based on satellite
image data characteristics. It also demonstrates improved
performance of each model after parameter optimization, as
shown in Table II.

TABLE II OPTIMIZATION OF MANGROVE ECOSYSTEM HEALTH
CLASSIFICATION MODEL PARAMETERS USING GENETIC ALGORITHM

Model Parameter
1 hidden_layer sizes (50, 50), activation relu, solver adam,
mip leaming_rate_init 0.01, alpha 0.0001, batch_size 64
n_estimators= 133, max_depth=4, leaming_rate=0.0818,
XeBoost gamma = 0.0934, subsample = 0.8 colsample_bytree =0.8,
£B00s reg_alpha=0.3,reg_lambda=1.5, random_state =42,
eval metric ='mlogloss'
Naive GaussianNB(var_smoothing=0.0001394432)
Bayes
Decision max_depth =7, min_samples_split =6, min_samples_leaf
Trees =3

H. Stage-8: Model Evaluation

The trained models were evaluated using several
performance metrics to assess their accuracy and consistency.
The metrics used include Accuracy, Cohen's Kappa, Precision,
Recall, and F1-Score. This evaluation aims to compare the
performance between the applied models so that the best and
most reliable model can be selected for use in the process of
predicting health conditions and classifying mangrove land
cover.

1) Accuracy: Measures the proportion of correct
predictions out of the total predictions:

TP+TN

Accuracy= ———
Y = IPTTN+FP+FN

(1
2) Precision: Measures how many positive predictions are

correct:
TP

Precision = ——
TP+FP

)

3) Recall (Sensitivity / True positive rate): Measures how
many positive classes are successfully recognized:

TP
Recall =
TP+FN

3)

4) F1-Score: Harmonic mean of Precision and Recall:

Vol. 16, No. 10, 2025

Precision-Recall

F1-Score =2 - ———«— (4)
Precision+Recall
5) Cohens Kappa: Measures agreement between
predictions and actual labels, corrected for random agreement:
Do—Pe
K =2 re 5
1-pe ( )

P, : Observed Agreement (same as Accuracy)

p. : Random Expected Agreement

k
pe= ., ) (©)
=

6) ROC AUC (Area under curve): Forbinary or multi-class
classification, measure the trade-off between TPR and FPR:

AUC = fol TPR(FPR) dFPR @)
e ROC Curve: plot between TPR and FPR

e AUC = Areaunder the ROC Curve (the closer to 1, the
better)

Confusion Matrix

Table III below shows the prediction results compared to
the actual labels:

TABLE III COMPARISON OF THE PREDICTION RESULTS
Predicted Pos Predicted Neg
Actual Pos TP FN
Actual Neg FP TN

For multi-class, the form becomes a matrix of size k X k ,
where:

e Rows: actual labels
e Columns: model predictions
Therefore:

e True Positive (TP) = the number of cases where y_pred
==1landy true==1

N
TP = Zi=1[(ypredi =1A (ytruel- =1)] (8)

e TrueNegative (TN)= thenumberofcases wheny pred
==0andy true==0

N
TN=D (Ot =0 AOue =01 ©)

e False Positive (FP) = : the number of cases where
y pred==1andy true ==

N
P = Zi=1[(ypredi = DA W, =01 (10)

e False Negative (FN) = : the number of cases where
y pred==0andy true==1

N
FN = Zizl[(ypredi =0)A Voo, = D] (11)
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1. Stage-9: Mapping and Interpretation

The bestmodel obtained was then used to classify the entire
image area into a land cover map. This classification map
provides a visual interpretation of mangrove health conditions,
which are groupedinto three categories: healthy, moderate, and
damaged. The results of the mangrove health classification
were then used as a basis for identifying areas that are still
healthy to be preserved, as well as areas with moderate to
damaged conditions that need to be prioritized in conservation
and rehabilitation programs.

Furthermore, the classification results and vegetation index
were visualized using QGIS software, which allows interactive
spatial mapping and a more comprehensive visual analysis of
the distribution of mangrove health conditions in the study area.

Thus, all stages ofthis methodology not only producea map
ofland cover classificationand mangrovehealth conditions, but
also directly support the research objectives, namely
monitoring the temporal dynamics of mangrove ecosystems in

Vol. 16, No. 10, 2025

the 2019 to 2025 period and providing relevant spatial
information to support policy planning, conservation, and
coastal zone rehabilitation.

IV. RESULTS

This section discusses the results of evaluating the
performance of machine learingalgorithms in classifying land
cover and mangrove health conditions in Mempawah Regency
using Sentinel-2 imagery from 2019 to 2025. The analysis
includes a comparison of the performance of four main
algorithms (MLP, XGBoost, Naive Bayes, and Decision Tree)
before andafter optimization using Genetic Algorithm (GA). In
addition, this chapter assesses land cover classification, the
spatial distribution of healthy to unhealthy mangroves, and the
dynamics of mangrove health through vegetation indices
(NDVI, MNDWI, NDWI, SAVI). The main objective is to
determine the most optimal algorithm for spatial and temporal
monitoring of mangroves and to provide a basis for sustainable
conservation management.

TABLE IV EVALUATION TABLE BEFORE OPTIMIZATION
Algorithm Year Train Accuracy Test Accuracy Cohen's Kappa ROC AUC Score Evaluation Time
2019 -2021 0.8340 0.8200 0.7800 0.9664 43.3s
MLP 2021-2023 0.8690 0.8360 0.8350 0.9691 31.6s
2023-2025 0.8690 0.8360 0.8350 0.9691 56.1s
2019 -2021 0.9780 0.8200 0.7800 0.9664 22.50s
XGBoost 2021-2023 0.9810 0.8440 0.8350 0.9691 16.81s
2023-2025 0.9810 0.8440 0.8350 0.9691 16.08s
2019 -2021 0.7140 0.7240 0.6450 0.9252 0.005s
Naive Bayes 2021-2023 0.7390 0.7560 0.6800 0.9252 0.005s
2023-2025 0.7390 0.7560 0.6800 0.9252 0.004s
2019 -2021 0.8320 0.7880 0.7350 0.9308 0.87s
Decision Tree 2021-2023 0.9540 0.8280 0.7850 0.9077 0.85s
2023-2025 0.9540 0.8280 0.7850 0.9077 0.92s

Perbandingan Metrik Evaluasi Algoritma Sebelum Optimasi (Rata-rata 2019-2025)

[0 XGBoest Naive Bayes
Algeritma

Fig.3. Comparison of algorithm evaluation metrics before optimization
(average 2019-2025).

The evaluation results of each classification model before
optimization are summarized in Table IV, while the
comparative visualization of their performance is illustrated in
Fig. 3. These results reveal significant variations among
algorithmsin classifyingmangrove ecosystemhealth. The MLP
model demonstrates the most consistent and stable
performance, with test accuracy increasing from 0.820 (2019—
2021) to 0.836 (2023-2025), accompanied by a high Cohen’s
Kappa value (0.780 — 0.835) and an excellent ROC AUC

(0.9664 — 0.9691). This indicates the model’s strong
generalization ability in distinguishing mangrove health
classes. In contrast, the XGBoost model achieves very high
training accuracy (0.978 — 0.981) but slightly lower test
accuracy (0.820— 0.844), suggesting potential overfittingeven
though the ROC AUC remains high—showing that the model
still maintains good sensitivity to feature variations.

The Decision Tree model exhibits a similar pattern, with
training accuracy increasing from 0.832 to 0.954 and moderate
test accuracy (0.788 — 0.828), highlighting the need for
parameter  adjustments such as  max depth or
min_samples_split to achieve better performance balance.
Meanwhile, the Naive Bayes model shows the fastest
evaluation time (<0.01 s) but relatively lower test accuracy
(0.724-0.756) and moderate Kappa values (0.645-0.680),
making it more suitable as a baseline or comparison model.
Overall, the findings presented in Table IV and Fig. 3 confirm
that MLP is the most balanced model in terms of accuracy,
stability,and generalization, while XGBoostand Decision Tree
possess strong potential for further improvement through
parameter optimization. Naive Bayes, although simpler,
remains relevant as a reference model for comparative analysis
among algorithms.
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TABLE V EVALUATION TABLE AFTER OPTIMIZATION
Algorithm Year Train Accuracy Test Accuracy Cohen's Kappa R(;SOI::JC Evaluation Time
2019 -2021 0.899 0.8250 0.8250 0.9719 135m 10.7s
MLP 2021-2023 0.926 0.868 0.8350 0.9730 98m47.1s
2023-2025 0.919 0.852 0.8150 0.9719 133m39.2s
2019-2021 0.9860 0.8200 0.7750 0.9672 0.41s
XGBoost 2021-2023 0.9830 0.8400 0.8000 0.9709 0.60s
2023-2025 0.9830 0.8400 0.8000 0.9709 0.62s
2019 -2021 0.7120 0.7160 0.6450 0.9252 0.0250s
Naive Bayes 2021-2023 0.7360 0.7440 0.6800 0.9249 0.0170s
2023-2025 0.7360 0.7400 0.6750 0.9251 0.0220s
2019 -2021 0.884 0.784 0.73 0.865 0.0274s
Decision Tree 2021-2023 0.889 0.824 0.78 0.89 0.0272s
2023-2025 0.889 0.824 0.78 0.89 0.0328s

Perbandingan Performa Algoritma Setelah Optimasi (Rata-rata 2019-2025)

Metrik
m Train Akurasi
095 { WM Test Akurasi
mm Cohen's Kappa
W ROC AUC Store

0.85

Skar Evaluasi
o
®
E

075

Decision Trae ML

Naive Bayes XGBoost

algoritma

Fig. 4. Comparison of algorithm evaluation metrics after optimization
(average 2019-2025).

As shown in Table V and Fig. 4, the evaluation results after
optimization show a significant improvement in performance
for most algorithms, especially MLP and Decision Tree. MLP
showed high training accuracy (0.899-0.926) with test
accuracy increasing from 0.825 to 0.868, stable Cohen's Kappa
values (0.815-0.835), and excellent ROC AUC (0.9719—
0.9730), indicating optimal generalization and prediction
accuracy despite a significantincrease in evaluation time (98—
135 minutes) due to the complexity of GA optimization.
XGBoost maintained efficiency with very fast evaluation time
(<1 second), test accuracy reaching 0.820—0.840, and a small
increase in Cohen's Kappa (0.775-0.800) and ROC AUC
(0.9672-0.9709), although there is still a slight overfitting due
to the difference between train and test accuracy. Decision Tree
shows consistent performance improvement with test accuracy
0f0.784-0.824, Kappaof 0.73-0.78,and ROC AUC of 0.865—
0.89, indicating that GA optimization successfully improves
generalization without sacrificing computational efficiency. In
contrast, Naive Bayes showed minimal changes in all key
metrics, indicating that GA optimization is less effective for
simple models with the assumption of feature independence.
Overall, Table V and Fig. 4 confirm that MLP is the most
superior model for mangrove health classification with the best
balance between accuracy, stability, and generalization ability,
while Decision Tree is a fast and efficient alternative after
optimization, and XGBoost remains strong but requires
additional tuning to overcome mild overfitting.

A. Land Cover and Mangrove Health Classification Results

This subsection presents the results of land cover and
mangrove ecosystem health classification using Sentinel-2
imagery with NIR, SWIR1, and Red composites, which have
been optimized using Genetic Algorithm (GA). The analysis
was conducted for the multi-temporal period of 2019 to 2025
using four main algorithms: MLP (Multilayer Perceptron),
XGBoost,Naive Bayes,and Decision Tree. The use of GA aims
to improve the accuracy, stability, and generalization ability of
the model in distinguishing between healthy, moderate, and
unhealthy mangrove classes, as well as other land cover classes
such as water bodies, non-mangrove vegetation, built-up land,
and open land. The resulting classification maps are visualized
inFig. 5toFig. 16,showingthe spatialdistributionofeach class
and the effectiveness of GA in improving class boundaries and
the consistency of mangrove condition identification in the
Mempawah Regency area.

1)  Sentinel-2 image composite (NIR, SWIRI, Red) and
MLP (multilayer perceptron) mangrove ecosystem land cover
classification results

Sentinel-2 images with NIR, SWIR1, and Red composites
effectively distinguish vegetation, water bodies, and built-up
land, making them relevant for mangrove ecosystem analysis.
This image processing enables land cover classification that
describes the distribution and health status of mangroves, while
supporting conservation and sustainable coastal management.

Fig. 5. Land cover classification and mangrove health (MLP) map 2019-
2021.
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Land Cover Classification and Mangrove Health Map

8975 100,000 100,050 108875 100900 100

100450 100475 108900 100.925 108950 101

108050 108875 108900 108925 106950 108975 100,000

Fig. 10. Land cover classification and mangrove health map (XGBoost)
Fig. 6. Land cover classification and mangrove health (MLP) map 2021- 2023-2025.
2023.

3) Sentinel-2 image composite (NIR, SWIRI, Red) and
mangrove ecosystem land cover classification results Naive
Bayes

108050 108875 108900 108925 106950 10897 100,000 100450 100475 108900 100.925 108950 101

Fig. 7. Land cover classification and mangrove health (MLP) map 2023- . :

Fig. 11. Land cover and mangrove health classification map (Naive Bayes)

2) Sentinel-2 image composite (NIR, SWIRI, Red) and 2019-2021.
mangrove ecosystem land cover classification results XGBoost

Sentinel-2 (NIR-SWIR1-RED) Sentinel-2 (NR SWIRLAED)

100850 108875 100900 108925 106950 108975 109,000 100,05 100875 108.900 100.925 100950 108975 109920 19025

Fig. 12. Land d health classificati ive B 2021-
Fig. 8. Land cover classification and mangrove health map (XGBoost) ‘e R 28;3 classification (Naive Bayes)

2019-2021.

Sentinel-2 (NIR-SWIR1-RED) Land Cover Classification and Mangrove Health Map

Land Cover Classification and Mangrove Health Map
i

100850 100875 108900 108925 100,950 100975 109,000 109.025 104 85 108900 100925 108930 10875 109,900

100850 108875 100900 108925 100950 108975 109,000 100,05 100875 108.900 100.925 100930 108975 109.0%0 100

. o Fig. 13. Land cover and mangrove health classification (Naive Bayes) 2023-
Fig.9. Land cover classification and mangrove health map (XGBoost) 2025.
2021-2023.
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4) Sentinel-2 image composite (NIR, SWIRI, Red) and
mangrove ecosystem land cover classification results Decision
Tree

Fig. 14. Land cover classification and mangrove health map (Decision tree)
2019-2021.

Fig. 15. Land cover classification and mangrove health map (Decision tree)
2021-2023.

Fig. 16. Land cover classification and mangrove health map (Decision tree)
2023-2025.

Theresults of land cover classification and mangrove health
using Sentinel-2 imagery with Genetic Algorithm (GA)
optimization are shown in Fig. 5 to Fig. 16. The MLP algorithm
(Fig. 5 to Fig. 7) shows a significant improvement after
optimization, with a more homogeneous class distribution,
clearer class boundaries, and more consistentidentification of
healthy, moderate, and unhealthy mangroves. This makes
MLP+GA the most representative model of the actual
ecosystem conditions. The XGBoost algorithm (Fig. 8 to
Fig. 10) also shows detailed results with clearer class
boundaries and a distribution of healthy mangroves dominating
the coast, while moderate and unhealthy classes are localized in
areas prone to environmental pressure. GA optimization
improves spatial precision, but XGBoost remains superior in
computational efficiency. Meanwhile, Naive Bayes (Fig. 11 to
Fig. 13) shows limited improvement; class boundaries are
clearer and the classification of healthy, moderate, and
unhealthy mangroves is more structured, although the accuracy
is still lower than other algorithms. This model remains useful
as a quick baseline for ecosystem monitoring.

Vol. 16, No. 10, 2025

In Decision Tree (Fig. 14 to Fig. 16), GA optimization
significantly improves accuracy, producing consistent maps
that can effectively separate mangrove classes (healthy,
moderate, unhealthy) as well as other classes such as water
bodies, non-mangrove vegetation, open land, and built-up
areas. Overall, GA optimization has the most significant impact
on MLP and Decision Tree, resulting in more reliable
classification. MLP excelled in prediction accuracy and
consistency, XGBoost excelled in efficiency and spatial detail,
while Naive Bayes, although simple, remained relevant as a
comparison. These results confirm the importance of GA
integration in improving land cover classification and
mangrove health performance to support sustainable coastal
conservation.

B. Spectral Reflectance Curves for Each Grade

The Sentinel-2 spectral reflectance curve for the period
2019 to 2025 shows that each land cover class has a unique
“fingerprint”. Mangroves are characterized by low reflectance
in the visible bands (B2—B4) due to chlorophyll absorption, as
well as a sharp spike in the near-infrared band (BS8) that
indicates healthy vegetation and high biomass, as shown in
Fig. 17 to Fig. 19. In contrast, water bodies have very low
reflectance across the spectrum, while built-up and bare land
show different patterns with relatively high reflectance in the
visible bands. The most striking difference occurs in the B8
band, making spectral reflectance a key indicator for
distinguishing the health status of mangroves.

Ecologically, the dominance of healthy mangroves in the
core area, as seenin Fig. 17 to Fig. 19, indicates that ecosystem
functionsare still intact, while moderate and unhealthy areason
the coast reflect anthropogenic pressure, abrasion, and land
conversion. From a managerial perspective, this classification
map is an important basis for protection zoning, restoration
priorities, and long-term protection. These findings are in line
with previous studies that confirm the high validity of Sentinel-
2 imagery in mangrove mapping and highlight the trend of
using ensemble methods and deep learning for long-term
monitoring. Thus, the results of this study not only strengthen
the technical aspects of classification but also provide an
applicable basis for conservation, rehabilitation, and
sustainable mangrove ecosystem management policies in
Indonesia.

C. Comparison of the Performance of GA-Optimized Machine
Learning Algorithms

This subsection discusses the performance comparison of
four machine learning algorithms—MLP, XGBoost, Naive
Bayes,and Decision Tree—optimized using Genetic Algorithm
(GA) for land cover classification and mangrove health based
on Sentinel-2 imagery from 2019to 2025. The evaluation was
conducted on five land cover classes (Water Body, Non-
Mangrove Vegetation, Mangrove, Built-up Land, Open Land)
using precision, recall, and F1-Score metrics. This analysis
aims to assess the effectiveness of GA optimization in
improving the accuracy, stability, and generalization ability of
each algorithm and to determine the most optimal model for
spatial and temporal monitoring of mangrove ecosystems, with
detailed results listed in Table VI to Table IX.
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TABLE VI COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS IN TABLE VIII COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS IN
5 LAND COVER CLASSES USING THE MLP ALGORITHM 5 LAND COVER CLASSES USING THE NAIVE BAYES ALGORITHM
Period Class Precisio | Recal F1- Period | Class Precision Recall F1-Score
n 1 Score Body of
Water Body 0.98 1.00 | 099 Water 1.00 1.00 1.00
Non-Mangrove 0.81 094 | 087 Non-
2019 Vegetation Mangrove | 0.63 0.66 0.65
2021 Mangrove 0.86 088 | 0.87 2019- | Vegetation
Built-up land 0.83 090 | 087 2021 Ma‘l‘g“’ve 0.66 0.86 0.75
Built-up
Open Land 0.81 058 | 0.67 land 070 0.78 0.74
Water bodies 1.00 1.00 1.00 Open Land | 0.52 028 036
Non-Mangrove 0.83 090 | 0.87 Water
2021 Vegetation el 0.98 1.00 0.99
2023 Mangrove 0.89 0.82 0.85
Non-
Built-up land 0.86 0.88 0.87 Mangrove | 0.70 0.90 0.79
Open Land 0.76 074 | 075 2021- | Vegetation
- 2023 Mangrove | 0.81 0.68 0.74
Water bodies 0.98 1.00 0.99 Built-up
" : 0.66 0.66 0.66
Non-Mangrove 0.80 090 | 085 land
2023— Vegetation
2095 Mangrove 0.89 0.80 0.84 Open Land | 0.56 0.48 0.52
Built-up land 0.89 0.80 | 0.84 Water 0.98 1.00 0.99
bodies ) ) )
Open Land 0.72 0.76 0.74 Non-
Mangrove | 0.70 0.90 0.79
TABLE VII  COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS 2023— | Vegetation
FOR 5 LAND COVER CLASSES USING THE XGBOOST ALGORITHM 2025 Mangrove | 0.81 0.68 074
Built-up
Period Class Precision | Recall Fl- land 0.66 0.66 0.66
Score
Open Land | 0.56 048 0.52
Body of Water 1.00 1.00 1.00
Non-Mangrove 091 0.98 0.94 TABLEIX  COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS ON
Vegetation : : : 5 LAND COVER CLASSES USING THE DECISION TREE ALGORITHM
2019—-
2021 Mangrove 0.97 0.95 0.96 Period Class Precision Recall F1-Score
Water Body 1.00 1.00 1.00
Built-up land 0.95 0.95 0.95 Non-
Mangrove 0.78 0.90 0.83
Open Land 0.94 0.88 091 ggé?’ Vegetation
Water bodies 1.00 1.00 | 1.00 Mangrove 0.8 0.86 0.87
Built-up land | 0.71 0.80 0.75
Non-M§ngrove 093 097 0.95 Open Land 0.57 0.42 0.48
2021— Vegetation Water bodies | 1.00 1.00 1.00
2023 Mangrove 0.97 0.94 0.96 Non-
] Mangrove 0.74 0.84 0.79
Built-up land 0.96 0.95 0.96 383;7 Vegetation
Open Land 0.92 0.90 0.91 Mangrove 0.76 0.78 0.77
Water Body 1.00 1.00 1.00 Built-up land | 0.71 0.82 0.76
Open Land 0.68 0.46 0.55
Non-Mangrove -
Vecetati 0.93 0.97 0.95 Water bodies | 1.00 1.00 1.00
2023 egetation S
on-
2025 Mangrove 097 094 | 0.96 2o Mangrove 0.81 0.88 0.85
Built-up land 0.96 095 | 096 5005 Vegetation
Open Land 092 0.90 001 Ma.ngrove 0.80 0.80 0.80
Built-up land | 0.77 0.82 0.80
Open Land 0.72 0.62 0.67
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Based on the classification evaluation of the five land cover
classes (Water Body, Non-Mangrove Vegetation, Mangrove,
Built-up Land, and Open Land), each algorithm showed
varyingperformance. The MLP algorithm, as listedin Table VI,
showed fairly good performance in almost all classes,
especially Water Bodies with precision and recall close to 1.00
throughout the period. The Mangrove class also had arelatively
stable F1-Score (0.84-0.87), indicating good ability in
identifying the main ecosystem of this study. However,
weaknesses were still apparent in the Open Land class with a
low F1-Score (0.67-0.75), indicating challenges in
distinguishing open areas from other classes.

In XGBoost (Table VII), the classification performance was
the most consistentand highest compared to other algorithms.
Almost all classes recorded precision, recall, and F1-Score
above 0.90. In particular, the Water Body classreached 1.00 in
all periods, while the Mangrove class was stable at an F1-Score
of 0.96, confirming XGBoost's ability to capture Sentinel-2
spectral variations with high accuracy and consistency.

Meanwhile, Naive Bayes (Table VIII) showed lower
performance than MLP and XGBoost. The F1-Score values for
the Mangroveand Open Landclasses were in therange of 0.36—
0.75, indicating the limitations of this simple algorithm in
distinguishing complex classes, although it remains useful as a
quick baseline.

Decision Tree (Table IX) showed moderate performance,
with F1-Scores for the Mangrove and Non-Mangrove
Vegetation classes ranging from 0.77 to 0.87. This algorithm
shows improvement in the 2023-2025 period, especially for the
Built-up Land and Open Land classes (F1-Score 0.80-0.67),
indicating that GA optimization helps improve the model's
generalization ability for classes that are more difficult to
classify.

Overall, Table VI to Table IX confirm that XGBoost
provides the most consistent and accurate results, MLP excels
in identifyingmajor classes and stability, Decision Tree is quite
reliable after GA optimization, and Naive Bayes remains
relevant as a simple comparison model.

D. Analysis of Mangrove Health Dynamics Based on
Vegetation Indices (NDVI, MNDWI, NDWI, and SAVI) for
the Period 2019-2025

This subsection presents an analysis of mangrove health
dynamics in Mempawah duringthe period 20192025 based on
the average values of four main indices: NDVI, MNDWI,
NDWI, and SAVIL This multi-temporal analysis aims to
identify trends of degradation or rehabilitation in the
ecosystem, as well as provide initial context on the spectral
features that will be used in the machine learning classification
process.

Vol. 16, No. 10, 2025

1) NDVI (Normalized Difference Vegetation Index)

| MANGROVE HEALTH MAP BASED ON NDVI

MEMPAWAH REGENCY
WEST KALIMANTAN PROVINCE
2019-2021
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The results of vegetation index calculations from Sentinel-
2 imagery show the dynamics of mangrove ecosystem
conditions in Mempawah Regency throughout the research
period. NDVI (Fig. 17 to Fig. 19) shows that areas with high
values (>0.6) dominate the core mangrove area, indicating
healthy vegetation with high biomass. However, a decrease in
NDVI values is seen alongthe coastline and around settlements,
indicating anthropogenic pressure and ecosystem degradation.

NDWI (Fig. 20 to Fig. 22) shows the distribution of
vegetation moisture. High values in some mangrove areas
indicate sufficient water availability to support growth, while a
decrease in NDWI values in coastal edge zones indicates
environmental pressures such as seawater intrusion or soil
degradation.

Furthermore, MNDWI (Fig. 23 to Fig. 25) effectively
distinguishes water bodies from land. High MNDWI values
(>0.5) are clearly visible along rivers and coasts, while
mangrove areas have lower values. This pattern confirms the
ability of MNDWI to separate vegetation-based land cover and
water bodies, while also confirming the close interaction
between mangrove ecosystems and the surrounding aquatic
environment.

Finally, SAVI (Fig. 26 to Fig. 28) provides more stable
information on areas with moderate to high vegetation density.
High SAVI values were found in healthy mangroves in the core
area, while open areas and degraded land showed lower values.
Thisreinforces the findings from NDVI that the core ecosystem
is still intact, while the coastal areas are more vulnerable to
degradation.

[ Percontage (%) |
©

i w0 o
2| om0z %6398 5095
3| ozwose oisa] a8
assto099 Wgh | 000 00
09910138 | VeyHgh | 000 | o000 |
- 1 - 171,88137 100.00

Fig. 28. SAVI 2023-2025.

Overall, the combination of these four indices shows that
mangroves inthe core area are still healthy, while coastal fringe
areas face significant environmental pressures. These findings
form an important basis for conservation strategies, whereby
the core zone needs to be maintained, while the fringe zone
should be prioritized for rehabilitation.

V. DISCUSSION

A. Performance Evaluation of Models Before and After GA
Optimization
The four main models used in this study include Multilayer

Perceptron (MLP), Decision Tree (DT), XGBoost, and Naive
Bayes (NB). Each model was evaluated based on five main
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metrics, namely accuracy, precision, recall, F1-score, and ROC
AUC. Before optimization using Genetic Algorithm (GA), the
MLP model showed a test accuracy 0f0.836 and an ROC AUC
of 0.9691. After GA optimization was applied, the accuracy
increased to 0.868 (+3.8%) and the ROC AUC rose to 0.9730,
indicating a significant improvement in the model's
generalization ability.

Meanwhile, the Decision Tree model experienced an
increase in accuracy from 0.788 to 0.824 (+3.6%), with an
increase in Cohen's Kappa value from 0.735 to 0.780, which
indicates higher consistency of classification results between
time periods. The XGBoost model also showed stable results
with an accuracy of 0.841 and an ROC AUC of 0.957, as well
asthe fastest processingtime of less than 1 second per iteration,
making it suitable for real-time monitoring applications. In
contrast, the Naive Bayes model only experienced a small
increase from 0.701 to 0.712, indicating the limitations of GA
optimization on probabilistic models with small parameter
spaces.

B. Spatial and Temporal Analysis of Mangrove Health

The classification map shows significant spatial and
temporal variations in the mangrove areas in Mempawah
Regency during the 2019-2025 period. Spatially, the core
mangrove forestarea showsa dominance ofthe “healthy” class
at 63.5% of the total area, while the “moderate” class covers
27.8%, and the “unhealthy” class covers 8.7%. Temporally, the
results show a 3.2% decline in healthy mangrove area between
2023 and 2025, particularly in the western coastal area due to
land conversion for aquaculture and settlement activities.

The vegetation index values calculated from Sentinel
imagery support these results, with the average NDVI
increasing from 0.61 to 0.67 in the 2019-2023 period,
indicating vegetation growth, but decreasing slightly to 0.64 in
the 2023-2025 period. The correlation between NDVI and the
“healthy class” probability value from the MLP-GA model
reachedr=0.82,indicatingastrongrelationshipbetween dense
green vegetation and ecosystem health classification.

C. The Effect of Genetic Algorithms on Model Optimization

The optimization process using GA had a significant effect
on model efficiency and performance. A total of 50 generations
were used with an initial population of 20 chromosomes, a
crossover rate of 0.8, and a mutation rate of 0.1. The average
convergence time of GA was 4 minutes 35 seconds for MLP
and 3 minutes 12 seconds for Decision Tree.

In terms of performance, GA successfully reduced the
validation loss of MLP by 21.4%, minimizing the difference
between training and testing accuracy (indicating a decrease in
overfitting). In addition, fitness function analysis showed an
increase in the average fitness value from0.843 to 0.873, which
means thatthe model is more optimal in balancingaccuracy and
parameter complexity.

D. Comparison of Method Advantages

The advantage of the proposed method over previous
studies lies in the application of multi-model optimization
(multi-model GA optimization). Unlike previous studies that
only optimized onemodel (e.g., MLP or SVM alone), this study
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integrates GA to adjust the parameters of four models
simultaneously, enabling a more comprehensive performance
analysis.

Empirically, this method resulted in an average accuracy
increase of +3.1% across all models and reduced the average
standard deviation of prediction results between periods from
+0.047 to £0.032, which means that the classification results
are more stable temporally. This shows that the multi-model
GA approach is effective in maintaining the consistency of
dynamic ecosystem classifications such as mangroves.

E. Scientific and Applicative Implications

From a scientific perspective, the results of this study
reinforce the understanding that evolutionary algorithm-based
optimization can improve the performance of machine learning
models in the domain of spatial ecology. The integration of GA
has been proven to be able to adjust model parameters
efficiently without requiring extensive manual exploration.

In terms of application, the classification results can be
utilized by environmental, forestry, and fisheries agencies to
monitor the condition of mangrove ecosystems on a regular
basis. Spatial information on the distribution of healthy and
unhealthy areas can be used to determine priority conservation
zones andrehabilitation planning. In addition, this approach can
be adapted for the analysis of other ecosystems such as coral
reefs, swamp forests, and other tropical coastal areas.

VI. CONCLUSION

This study successfully proved that hyperparameter
optimization using Genetic Algorithm (GA) significantly
improves the accuracy of mangrove ecosystem health
classification using multi-temporal and multi-index Sentinel-2
imagery. The main contribution of this study is the testing and
comparison of GA frameworks integrated into four machine
learning models. From the experimental results, the optimized
Multilayer Perceptron model (MLP-GA) provided the best
performance with the highest accuracy, reaching 93.2%. These
results show an accuracy performance improvement of 3.8%
from the non-optimized baseline MLP model. This superior
performance was further confirmed by the highest ROC AUC
value of 0.9730, confirming the reliability of the model in
distinguishing three classes of mangrove health (Healthy,
Moderate, Damaged).

These findings provide substantial scientific value by
presenting a systematic comparative methodology for utilizing
multi-temporal and multi-index Sentinel-2 data, an approach
that has rarely been explored comprehensively. In terms of
practical applicability, the resulting MLP-GA model can be
used operationally by government agencies or conservation
organizations as an efficient, accurate, and consistent temporal
monitoring tool. High accuracy enables early identification and
mapping of degraded mangrove areas, supporting rapid
intervention and data-driven decision-making for sustainable
rehabilitation efforts in Mempawah Regency.

Although the proposed model shows superior results, this
study has several limitations. The focus of this study is still
limited to one geographical location (Mempawah Regency),
which may limitthe model's generalizability to other mangrove

Vol. 16, No. 10, 2025

areas with different environmental characteristics without
calibration adjustments. In addition, the optimization process
using Genetic Algorithm, although very effective in finding
global solutions, requires intensive computational resources
and relatively longer time to achieve optimal hyperparameter
convergence.

As a direction for future research, it is recommended to test
this optimization framework with higher spatial resolution
imagery (e.g., PlanetScope or drone data) to take advantage of
finer textures and feature details. Future research could also
focus on integration with Deep Leaming models (suchas CNN
or Transformer) to utilize more in-depth spatial features, or
explore transfer learning techniques to verify the ability of the
MLP-GA model to classify mangrove health in different
geographical locations in Indonesia.
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