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Abstract—Mangrove ecosystems play an important role in 

maintaining coastal ecological balance, including as carbon sinks 

and natural protection from abrasion, but mangrove areas in 

Mempawah Regency have experienced significant degradation 

due to anthropogenic pressures. Therefore, this study aims to 

classify the health condition of mangroves using multi-temporal 

Sentinel-2 imagery with a hybrid machine learning (ML) 

approach and Genetic Algorithm (GA) optimization. We 

implemented GA optimization comparatively on four main ML 

models—Multilayer Perceptron (MLP), Decision Tree (DT), 

XGBoost, and Naïve Bayes (NB)—to adjust hyperparameters to 

improve accuracy and reduce overfitting. The results prove that 

GA optimization effectively improves classification performance, 

with the MLP-GA model providing the highest accuracy with an 

increase of up to 3.8% compared to the non-optimized baseline 

model, achieving a best performance value of ROC AUC 0.9730 

and reducing computation time by up to 60%. These findings 

indicate that the GA-MLP framework is highly reliable and 

efficient, providing a precise tool for strategic decision-making in 

the management of healthy mangrove ecosystems. 
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I. INTRODUCTION 

Mangrove forests cover only about 0.7% of the world's total 
tropical forests [1], but has the ability to store three to four times 
more carbon per unit area than other tropical forests, and in 
areas with carbonate and peat environments, their storage 
capacity can be 25 to 50% higher [2]. Globally, this ecosystem 
is spread across more than 118 countries with an area of 
approximately 152,000 km² [3]. Meanwhile, in Indonesia, 
mangroves are found throughout the archipelago. The largest 
distribution is in Irian Jaya, covering an area of 1,350,600 ha 
(38%), followed by Kalimantan with 978,200 ha (28%), and 
Sumatra with 673,300 ha (19%) [4][5]. Meanwhile, in other 
regions, mangroves generally grow optimally on coasts with 
large river estuaries and protected beaches. 

West Kalimantan is a province with a coastline stretching 
1,940 km, most of which is dominated by mangrove ecosystems 
[6][7]. The area of mangrove forests in this province is 
estimated to reach 119,327 ha, with a composition of around 
75% of the mangrove species found in Indonesia. On Padang 
Tikar Island, Batu Ampar District, Kubu Raya Regency, the 
mangrove ecosystem covers an area of 58,953 ha. Meanwhile, 

Mempawah Regency, which is also located on the coast of West 
Kalimantan, has a fairly high diversity of mangroves [8]. 
However, in the last 25 years, it has experienced degradation 
covering an area of 250.11 ha, so that in 2014, only about 
739.31 ha remained [9]. This condition indicates that the 
mangrove ecosystem in the study area not only has high 
ecological value but also faces serious threats, making remote 
sensing-based mangrove health monitoring urgently needed. 

Monitoring the health of mangrove ecosystems is crucial to 
support conservation and rehabilitation strategies. The use of 
remote sensing technology, particularly Sentinel-2 satellite 
imagery, offers great opportunities because it has sufficient 
spatial, temporal, and spectral resolution to map land cover 
conditions and detect vegetation health dynamics [10][11][12]. 
Several vegetation and water indices, such as NDVI 
(Normalized Difference Vegetation Index) [13][14], SAVI 
(Soil-Adjusted Vegetation Index) [15], NDWI (Normalized 
Difference Water Index) [16], and MNDWI (Modified 
Normalized Difference Water Index) [17], have proven 
effective in evaluating vegetation density, humidity, and coastal 
ecosystem conditions. However, challenges still arise in terms 
of classification accuracy and consistency due to the 
complexity of mangrove spectral characteristics, which often 
overlap with other vegetation. 

Previous studies have shown various approaches to 
mangrove mapping and monitoring. The XGBR-GA hybrid 
approach, which combines Extreme Gradient Boosting 
Regression and Genetic Algorithm for feature selection with 
multi-source data (Sentinel-2, Sentinel-1, ALOS-2 PALSAR-
2) and field data (105 plots), successfully estimated Above-
Ground Biomass (AGB) with good accuracy (R² = 0.683; 
RMSE = 25.08 Mg·ha⁻¹) [18]. Furthermore, the EIAGA-S 
(Elite Individual Adaptive Genetic Algorithm-Semantic 
Inference) method, combined with the new MEVI index, was 
able to perform semantic segmentation of mangroves without 
ground truth with high accuracy (mIoU = 0.92; F1 = 0.923) and 
multi-class classification. On the other hand, NDVI-based 
research in Tugu District, Semarang, shows that the mangrove 
area covers 113.93 ha with a health condition dominated by the 
“Good” category (57.1 ha), although the effectiveness of 
mangroves in mitigating coastal abrasion (970 m in 2017–2021) 
is still limited [19]. The three studies introduced the Elite 
Individual Adaptive Genetic Algorithm-Semantic Inference 
(EIAGA-S) method for semantic segmentation of mangroves 
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without requiring ground truth data. This method combines an 
adaptive genetic algorithm with an elite evolution strategy and 
develops the Mangrove Enhanced Vegetation Index (MEVI) to 
distinguish mangroves from other vegetation. Evaluation 
results on multi-source data show high performance with mIoU 
= 0.92 and F1-score = 0.923, surpassing traditional models such 
as K-means and SVM [20]. 

The development of machine learning methods has opened 
up new opportunities to improve the accuracy of land cover 
classification. Algorithms such as Multilayer Perceptron (MLP) 
excel at capturing nonlinear patterns [21], Extreme Gradient 
Boosting (XGBoost) is powerful in processing complex data 
[21], Easy-to-interpret Decision Tree [22], and Naïve Bayes, 
which is efficient for text data, has been widely used in satellite 
image analysis, but its performance is greatly influenced by the 
selection of complex hyperparameters [23]. To address these 
challenges, this study integrates Genetic Algorithm (GA) as an 
optimization method to improve accuracy while minimizing the 
risk of overfitting, so that the resulting model is more reliable 
in supporting coastal ecosystem monitoring [24][25]. 

Data processing was carried out using Sentinel-2 imagery 
from the COPERNICUS/S2 HARMONIZED collection 
accessed through Google Earth Engine (GEE), with the study 
area focused on the coast of Mempawah Regency, West 
Kalimantan, which is bounded by a polygon-shaped AOI. To 
monitor the temporal dynamics of mangrove ecosystem health, 
the images were analyzed over three time periods (2019–2021, 
2021–2023, and 2023–2025), then several spectral indices such 
as NDVI, SAVI, NDWI, and MNDWI were calculated to assess 
the condition of mangrove vegetation and detect changes in 
land cover from year to year. 

This study is expected to make a significant methodological 
and practical contribution. The methodological contribution 
lies in the comparative evaluation of Genetic Algorithm (GA) 
optimization in four machine learning models for mangrove 
health classification, which has rarely been explored in the 
context of multi-temporal Sentinel-2 data. Quantitatively, this 
study proves that GA can improve the accuracy of the best 
model (MLP) by up to 3.8% compared to the non-optimized 
base model, achieving the highest ROC AUC performance 
value of 0.9730, while reducing hyperparameter computation 
time by up to 60%. These precise data-based results are crucial 
for supporting conservation and rehabilitation strategies. 
Furthermore, this study aligns with the UN's 2030 Agenda, 
particularly Sustainable Development Goal (SDG) 14.2 [26], 
which emphasizes the protection and sustainable use of marine 
and coastal ecosystems, making healthy mangrove 
management key to supporting sustainable development. 
Overall, this study provides recommendations that can be 
directly applied in mangrove reforestation efforts, supporting 
sustainable development (SDGs 2030) through more targeted 
mangrove planting strategies to enhance ecological resilience 
in coastal areas [27]. 

The remainder of this study is organized as follows: 
Section II presents a review of various related works, 
highlighting the limitations of previous studies and explaining 
how this research addresses these gaps. Section III details the 
methods used, ranging from Sentinel-2 image processing, 

multi-index data preparation, and the implementation of 
Genetic Algorithm (GA) optimization on four machine learning 
models. Section IV presents the experimental results, and an in-
depth discussion of the optimized model performance 
comparison is presented in Section V. Finally, Section VI 
summarizes the main conclusions of this study and provides 
directions for future work. 

II. RELATED WORK 

Remote sensing-based mangrove ecosystem monitoring 
research has been conducted extensively using various 
approaches. One of the most widely used methods is vegetation 
indices, such as NDVI, SAVI, NDWI, and MNDWI, which 
have proven effective in assessing vegetation density, moisture 
conditions, and distinguishing between vegetative and non-
vegetative areas. For example, research in the Semarang area 
successfully identified the extent of mangroves and classified 
their health conditions with a reasonable degree of accuracy 
[28]. However, the study was limited to a single observation 
period, so it was not able to describe changes in mangrove 
conditions over time. 

With advances in data analysis technology, machine 
learning algorithms are increasingly being applied to improve 
the accuracy of satellite image classification. Various studies 
have demonstrated the success of algorithms such as Multilayer 
Perceptron (MLP), Extreme Gradient Boosting (XGBoost), 
Decision Tree, and Naïve Bayes in land cover mapping and 
vegetation identification. MLP is known to be effective in 
capturing nonlinear patterns between spectral variables [29], 
whereas XGBoost excels at handling complex data and is able 
to overcome overfitting issues through its efficient gradient 
boosting mechanism [30][31]. Decision Trees are often used 
because they are easy to interpret and capable of displaying 
transparent classification rules [32]. Meanwhile, Naïve Bayes 
has an advantage in computational efficiency for high-
dimensional data thanks to its simple yet effective assumption 
of feature independence [33]. However, the performance of 
these algorithms is highly dependent on the selection of 
appropriate hyperparameters. Manual parameter tuning is often 
inefficient and can reduce the accuracy and stability of the 
model, especially with complex remote sensing data [34][35]. 

To overcome problems in hyperparameter tuning, various 
studies have begun to apply metaheuristic-based optimization 
algorithms such as the Genetic Algorithm (GA). One of these 
studies was conducted by Tien Dat Pham et al. (2022), who 
developed the XGBR-GA model for estimating above-ground 
biomass (AGB) of mangroves. This model utilizes data from 
Sentinel-1, Sentinel-2, ALOS-2 PALSAR-2, as well as field 
data from 105 plots in the Red River Delta, Vietnam. The 
results of the study show the best performance with an R² value 
of 0.683 and an RMSE of 25.08 Mg·ha⁻¹, making the XGBR-
GA approach effective for monitoring mangrove ecosystems in 
tropical regions [36]. In addition, research by Xinhong Li et al. 
(2023) developed an explainable machine learning method for 
Fractional Vegetation Cover (FVC) inversion in the alpine 
grasslands of the Qinghai-Tibet Plateau. A combination of 
Genetic Algorithm (GA), XGBoost, and Optuna (GA-OP) was 
used for feature selection and hyperparameter tuning, resulting 
in a Stacking model with the best performance (R² = 0.867; 
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RMSE = 0.12). The SHAP method and NDVI-CV analysis 
improved the interpretability and reliability of the results, 
making this approach effective for estimating other ecological 
parameters [37]. These results demonstrate the effectiveness of 
GA in improving the accuracy, stability, and generalization 
ability of machine learning models for large-scale remote 
sensing data. 

Although a number of previous studies have successfully 
improved the accuracy of mangrove classification through the 
application of machine learning algorithms and Genetic 
Algorithm (GA)-based optimization, most of these studies still 
have several important limitations. First, most previous studies 
have focused on a single observation period, thus failing to 
consider the temporal dynamics of mangrove ecosystems, 
which are greatly influenced by seasonal factors and 
anthropogenic activities. Second, the study areas tend to be 
limited to small and homogeneous areas, so the results cannot 
describe the complex spatial variations in larger tropical areas. 
Third, some studies only rely on one or two vegetation indices 
(such as NDVI or SAVI) without considering water indices 
such as NDWI and MNDWI, even though these two indices are 
important for assessing the interaction between mangrove 
vegetation and the surrounding aquatic environment. Fourth, 
the GA approach used is generally only applied to one machine 
learning model, so there has been no discussion of the 
effectiveness of multi-model or cross-algorithm optimization. 

This study attempts to overcome these limitations through a 
more comprehensive and adaptive approach to classifying 
mangrove ecosystem health. First, a multi-temporal analysis 
was conducted for the period 2019 to 2025 to describe the 
dynamics of changes in mangrove health over time. Second, the 
study area was focused on the coast of Mempawah Regency, 
West Kalimantan—an area with high vegetation diversity and 
real environmental pressures—so that it could represent more 
diverse ecological conditions. Third, this study combined four 
main indices (NDVI, SAVI, NDWI, and MNDWI) to provide a 
more comprehensive spatial picture of vegetation and water 
conditions. Fourth, the novelty of this study lies in the 
application of GA across four machine learning algorithms 
(MLP, XGBoost, Decision Tree, and Naïve Bayes), which are 
simultaneously optimized to improve the accuracy, stability, 
and generalization ability of the model. Thus, this study not 
only expands the spatial and temporal coverage but also 
introduces methodological innovations in the application of GA 
for more effective and scientific classification of mangrove 
ecosystems. 

III. METHODOLOGY 

This research method consists of nine main stages for land 
cover classification and mangrove health assessment based on 
Sentinel-2 imagery. The stages include determining the study 
area, acquiring Sentinel-2 Level-2A imagery, pre-processing 
(cloud masking and extraction of six spectral bands), and 
creating a labeled dataset through pixel value extraction from 
sample points. Five machine learning algorithms (MLP, Naive 
Bayes, Decision Tree, and XGBoost) were applied with 
parameter optimization using Genetic Algorithm. Model 
evaluation was performed using accuracy, precision, recall, F1-
score, and Cohen's Kappa, then the best model was used to 

produce a mangrove cover classification map and interpretation 
of its health condition. The overall research process flow, from 
image acquisition to result interpretation, can be seen visually 
in Fig. 1. 

 

Fig. 1. Research process flow. 

A. Stage-1: Determination of AOI and Data Preparation  

The initial stage of the study began with the determination 
of the Area of Interest (AOI) located in the coastal area of 
Mempawah, West Kalimantan. This AOI was defined using 
polygon vector data with a two-dimensional geographic 
coordinate system (Geographic 2D CRS: EPSG:4326 – WGS 
84), covering an area with longitude coordinates ranging from 
108.829975° to 109.043271° and latitude coordinates ranging 
from 0.295701° to 0.565236°. The projection system used is 
WGS 84 (World Geodetic System 1984) with an ellipsoidal 
datum and Greenwich prime meridian. This shapefile data is 
then used to determine sample points in the class labeling 
process. The base image used is Sentinel-2 Level-2A, which 
was collected through the Google Earth Engine (GEE) platform 
and will be used in the spectral value extraction stage. 

B. Stage-2: Sentinel-2 Image Processing 

The Sentinel-2 images collected were then processed 
through several stages, including masking the study area, cloud 
filtering, and selecting the study area to produce a raster ready 
for analysis. This study uses Sentinel-2 images from the 
COPERNICUS/S2 HARMONIZED collection available on the 
Google Earth Engine (GEE) platform 
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(https://code.earthengine.google.com/), with a cloud cover 
filter of less than 20%. The study area is focused on the coastal 
region of Mempawah Regency, West Kalimantan, and is 
bounded by a polygonal AOI. 

The image selection process was carried out for three time 
periods, namely: 2019 to 2021, 2021 to 2023, and 2023 to 2025, 
in order to monitor the dynamics of mangrove cover changes 
over time. The selection of these three time periods aims to 
monitor the temporal dynamics of changes in mangrove 
ecosystem health, thereby providing an overview of 
degradation and recovery trends from year to year. 

Each image that meets the criteria is then calculated for its 
spectral index value, such as NDVI, SAVI, MNDWI, and 
NDWI, to identify the health level of mangrove vegetation. The 
processing results are stored in TIFF format. AOI in the form 
of a shapefile with the ID asset projects/mengrove-riset-
24/assets/AOI is accessed through the GEE API and converted 
into FeatureCollection, with geometric information obtained 
through the getInfo() method. 

C. Stage-3: Spectral Band Extraction 

The initial Sentinel-2 image was extracted using six 
important bands, namely Red, Green, Blue, NIR, SWIR1, and 
SWIR2. These bands were selected because they are relevant 
for detecting vegetation and plant health, especially in 
mangrove ecosystems. 

TABLE I  VEGETATION AND WATER INDICES FROM SENTINEL-2 IMAGES 

Vegetation Indices Formula Sources 

Blue B2 - 

Green B3 - 

Red B4 - 

NIR B8 - 

SWIR-1 B11 - 

SWIR-2 B2 - 

NDVI (Normalized 

Difference Vegetation Index) 

(NIR - Red) / (NIR + 

Red) 
[38] 

SAVI (Soil-Adjusted 

Vegetation Index) 

((NIR - Red) / (NIR + 

Red + L)) * (1 + L) 
[39] 

MNDWI (Modified 

Differential Water Index) 

(Green - SWIR1) / (Green 

+ SWIR1) 
[40] 

NDWI (Normalized 

Difference Water Index) 

(Green - NIR) / (Green + 

NIR) 
[41] 

As presented in Table I, various vegetation and water 
indices were calculated from a combination of Sentinel-2 
spectral bands to assess vegetation cover and water conditions. 
Four main indices were used in this study, namely NDVI, 
SAVI, NDWI, and MNDWI. NDVI is widely used to measure 
vegetation density and greenness, making it a relevant indicator 
of mangrove health. SAVI was developed to minimize the 
influence of soil background, making it more accurate in areas 
with sparse or uneven vegetation cover, including mangrove 
ecosystems in coastal areas. Meanwhile, NDWI and MNDWI 
are used to detect vegetation moisture and distinguish water 
areas from dry or built-up land—important parameters in 
mangrove ecosystems that are highly influenced by tidal and 
water conditions. Thus, the combination of these indices 

provides a more comprehensive spatial picture of mangrove 
health status. 

D. Stage-4: Sample Labeling 

Sample labeling was carried out using points from a 
shapefile that had been prepared beforehand. These points 
represent land cover classes and mangrove health conditions 
that were determined manually through visual interpretation 
and field verification. In this study, 1,250 sample points were 
used, divided evenly into five land use classes, each with 250 
points, namely: 1) Water Body, 2) Non-Mangrove Vegetation, 
3) Mangrove, 4) Built-up Land, and 5) Open Land. Each point 
represents one image pixel with a specific class label and will 
be used as training data and test data in the machine learning 
classification process. As shown in Fig. 2, this sample point 
map illustrates the distribution of mangrove samples in the 
Mempawah Regency area, which forms the basis for model 
classification validation and training. 

 

Fig. 2. Mangrove sample point mapping in the Mempawah area. 

E. Stage-5: Pixel Value Extraction 

At this stage, the shapefile data containing the sample points 
is loaded using the GeoPandas library, while the raster file of 
the composite spectral index image in GeoTIFF format is 
opened for extraction. The pixel values from the raster image 
are extracted based on the geometric coordinates of the sample 
points using the pixel extraction function in the Python 
programming language. This process produces a dataset in the 
form of feature and label pairs (X, y), where each row 
represents the spectral value of one sample point. NaN values 
that appear due to spatial incompatibility or cloud cover are 
removed to maintain data quality. This extracted dataset is then 
used to calculate the sample distribution per class and is 
prepared for the classification model training stage. 

F. Stage-6: Labeled Dataset Formation 

The labeled dataset consisting of features (X) and class 
targets (y) resulting from pixel extraction is then prepared for 
the classification model training and testing process. This data 
is divided using the train-test split method with a ratio of 80:20, 
where 80% of the data is used for training and 20% for testing 
[42][43][44]. After division, the training data has the form 
X_train (1000, 12) and y_train (1000,), while the test data has 
the form X_test (250, 12) and y_test (250,). Each row 
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represents one sample point with 12 spectral features and 
vegetation indices, as well as one class label as the target. 

G. Stage-7: Model Training and Optimization  

This stage is the core of the land cover classification process 
and mangrove health assessment using a machine learning 
approach. This study proposes a new approach by integrating 
Genetic Algorithm (GA) as a hyperparameter optimization 
method across four main algorithms, namely Multilayer 
Perceptron (MLP), Extreme Gradient Boosting (XGBoost), 
Naïve Bayes, and Decision Tree. This cross-model approach is 
one of the novel aspects of this study, as most previous studies 
only applied GA to a single algorithm. 

Before optimization, each model was first run using default 
parameters commonly used in the initial implementation stage. 
Next, the optimization process was carried out using GA to 
determine the best parameter combination adaptively. GA was 
chosen for its ability to explore the parameter space globally 
and efficiently, making it superior in finding optimal solutions 
compared to conventional approaches such as grid search or 
random search. 

In addition, this study also presents another novel aspect, 
namely the application of GA in multi-temporal analysis (2019 
to 2021, 2021 to 2023, and 2023 to 2025) combined with four 
main spectral indices — NDVI, SAVI, NDWI, and MNDWI — 
to describe the spatial and temporal variations in mangrove 
ecosystem health. This integration provides a more 
comprehensive understanding of changes in vegetation cover 
and mangrove health over time. 

Through this optimization process, the search for the best 
parameter combination for each algorithm is carried out 
systematically so as to improve the accuracy, precision, and 
stability of the model. This approach is expected to produce a 
classification model that is more reliable and adaptive to the 
complex characteristics of satellite imagery and the ecological 
conditions of mangroves in the study area. 

Algorithm 1 Multilayer Perceptron (MLP) 

Step 1: Input Layer 

• Input: 12 features (e.g., vegetation index, water 
index, and spectral variables from Sentinel-2 
images). 

• Output: Input vector of size (n_samples, 12) 
ready to be passed to Hidden Layer 1. 

Step 2: Hidden Layer 1 

• Process: 
o Number of neurons: 50 

o Calculation: 𝑧(1) = 𝑋 ⋅ 𝑊(1)+ 𝑏(1) 
o Activation: tanh 

• Output: Vector of size (n_samples, 50) resulting 
from tanh activation. 

Step 3: Hidden Layer 2 

• Process: 
o Number of neurons: 25 

o Calculation: 𝑧(2) = 𝑎(1) ⋅ 𝑊(2) + 𝑏(2) 
o Activation: tanh 

• Output: Vector sized (n_samples, 25) resulting 
from tanh activation. 

Step 4: Output Layer 

• Process: 
o Number of neurons: 5 (corresponding to 

the number of target classes) 

o Activation: softmax to convert values into 
probabilities for each class. 

• Output: A probability vector (n_samples, 5) that 
sums to 1. 

Step 5: Class Prediction 

• Input: Probabilities from the output layer. 

• Process: argmax → selects the class with the 
highest probability. 

 

Algorithm 2 Extreme Gradient Boosting (XGBoost)  

Step 1: Input Layer 

• Input: 12 features → derived from vegetation 
indices (NDVI, SAVI, EVI, LAI), water indices 

(NDWI, MNDWI), and Sentinel-2 spectral 
variables. 

• Dimension: (𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 12) 
• Output: Feature data ready to be processed into 

the XGBoost model. 
Step 2: Base Learner (CART) 

• Base model: Decision Tree (Classification and 
Regression Tree). 

• Process: The split process is calculated using an 
objective function (loss + regularization). 

𝑂𝑏𝑗 =∑𝑙(𝑦𝑖, 𝑦𝑖
(𝑡−1)+ 𝑓𝑡(𝑥𝑖))+ Ω(𝑓𝑡)

𝑛

𝑖=1

 

o 𝑙 = loss function (e.g., log-loss for 
classification) 

o Ω(𝑓𝑡) = 𝛾𝑇+
1

2
𝜆∑𝑤𝑗

2 = (regularization, 

prevents overfitting) 

• Output: The first tree is formed (initial 
prediction). 

Step 3: Ensemble of Trees (Boosting Process) 

• Residual is calculated from the derivative of loss 
(gradient): 

𝑔𝑖 =
∂𝑙(𝑦𝑖, 𝑦𝑖

(𝑡−1)
)

∂𝑦𝑖
, ℎ𝑖 =

∂2𝑙(𝑦𝑖, 𝑦𝑖
(𝑡−1)

)

∂𝑦𝑖
2

 

 

• Node split is selected with the largest gain: 

𝐺𝑎𝑖𝑛 =
1

2
[
(∑ 𝑔𝑖𝑖∈𝐿 )2

∑ ℎ𝑖𝑖∈𝐿 + 𝜆
+
(∑ 𝑔𝑖𝑖∈𝑅 )2

∑ ℎ𝑖𝑖∈𝑅 + 𝜆

−
(∑ 𝑔𝑖𝑖∈𝐿∪𝑅 )2

∑ ℎ𝑖𝑖∈𝐿∪𝑅 + 𝜆
] − 𝛾 

• Learning rate (𝜂 ): adjusts the contribution of each 
tree. 

• Output: a collection of hierarchical trees that 

improve the error. 
Step 4: Output Layer (Softmax for Multi-class) 

• The final prediction for each sample is a class 
probability.  

https://www.google.com/search?sca_esv=3a6ec10a24ff1f4b&sxsrf=AE3TifNZ3UJ132x7ppOr3NKW8WooXCxwiQ%3A1757859062514&q=Extreme+Gradient+Boosting&sa=X&ved=2ahUKEwjd4PGnt9iPAxVNzTgGHcNYAGsQxccNegQIJhAB&mstk=AUtExfConnw8S5QHDt_xvAl45qyoh6uxfpeWqaPezjv0i2kBWNlL_c4C5MeYJ5w6W02l-iSa2DtBypUjsiREGa5t8j8_s3CxcXmqZVfR5_0IvW6XJLC9JlPxuEFYKr-h0n5mWk-MRJn0ZeFBueLKjV6g_frxGbRKm0Q1MsYvU6pTAjjWEYYJirh8qf2vgKiGaPNyqL9pNiorIGvVxpGqfSaaHX8vA5tME5hmKtNCaw_MHTJvhkoyKxbQyJSWfLQPHQYb56LPD8BluZ5jv7mODoEq1VON&csui=3
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𝑃(𝑦 = 𝑘 ∣ 𝑥) =
𝑒𝑦𝑘

∑ 𝑒𝑦𝑗
𝐾

𝑗=1

 

• Dimension: (𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 5) 
Step 5: Class Prediction 

• From the softmax probabilities → select the class 
with the highest argmax value. 

 

Algorithm 3 Naive Bayes 

Step 1: Input Layer (Input Data) 

• Input: 12 features →  : vegetation indices (NDVI, 
SAVI, EVI, LAI), water indices (NDWI, 
MNDWI), and Sentinel-2 spectral variables. 

• Dimension: (n_samples, 12). 

• Output: Feature data ready for modeling. 
Step 2: Data Normalization 

• Scaler: StandardScaler is used to standardize 
features (mean=0, std=1). 

• Output: Training and test data in standard scale. 
Step 3: Naive Bayes Model (GaussianNB) 

• Assumption: Each feature in a class follows a 
Gaussian (normal) distribution. 

• Parameters calculated for each class 𝑘 

𝑃(𝑥 ∣ 𝐶𝑘) =∏
1

√2𝜋𝜎𝑘𝑖
2

𝑛

𝑖=1

exp⁡(−
(𝑥𝑖− 𝜇𝑘𝑖)

2

2𝜎𝑘𝑖
2 ) 

Where: 

• 𝜇𝑘𝑖 = mean of the Ith feature in class 𝑘 

• 𝜎𝑘𝑖
2 ⁡= ⁡𝑣𝑎𝑟𝑖𝑎𝑛𝑠⁡𝑓𝑖𝑡𝑢𝑟⁡𝑘𝑒− 𝑖⁡𝑝𝑎𝑑𝑎⁡𝑘𝑒𝑙𝑎𝑠⁡𝑘 

• Output: Gaussian Naive Bayes model with mean 
and variance parameter estimates per class. 

Step 4: Bayes Classification 

• Class probabilities are calculated using Bayes' 
rule: 

𝑃(𝐶𝑘 ∣ 𝑥) =
𝑃(𝑥 ∣ 𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑥)
 

• Final class prediction = class with the highest 
probability (argmax). 

• Output: Predicted label for each sample (0–4). 
Step 5: Output Layer (Multi-class Probabilities) 

• Function: predict_proba() generates the probability 
of each class. 

• Format: (n_samples, 5). 

• Output: Probability distribution for all classes. 

 

Algorithm 4 Decision Tree 

Step 1: Input Layer (Data Features) 

• Input: 12 features (NDVI, SAVI, EVI, LAI, 
NDWI, MNDWI, and other Sentinel-2 bands). 

• Dimensions:(𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 12) . 

• Output: Feature data ready to be processed into a 
decision tree. 

Step 2: Attribute Selection (Splitting Criteria) 

• The algorithm selects the best attribute to split the 
data. 

• Criteria: Gini Index or Entropy (Information 
Gain). 

• Gini Index Formula: 

𝐺𝑖𝑛𝑖(𝐷) = 1 −∑𝑝𝑖
2

𝑘

𝑖=1

 

Where:𝑝𝑖⁡ the proportion of class-𝑖 in the dataset 𝐷 

• Information Gain (IG) Formula: 
𝐼𝐺(𝐷,𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷)

− ∑
∣ 𝐷𝑣 ∣

∣ 𝐷 ∣
×

𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑣) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = −∑𝑝𝑖log⁡2(𝑝𝑖)

𝑘

𝑖=1

 

The attribute with the largest IG value (or smallest 

Gini) is selected as the splitting node. 

Step 3: Recursive Splitting (Building the Tree) 

• The process of selecting the best attribute is 
performed repeatedly (recursively) for the data 
subset. 

• The tree will be formed until the stopping criteria 
is met, for example: 

o Maximum depth is reached (max_depth). 
o The number of samples in the node is less 

than min_samples_split. 

o The node is already "pure" (contains only 
1 class). 

Step 4: Leaf Node (Output Node) 

• If the stopping criteria are met, the node becomes 
a leaf. 

• The leaf contains the class distribution, and the 
label is selected based on the majority class. 

Step 5: Class Prediction 

• For each test data, features are checked following 
the tree's condition path. 

• Data stops at the leaf node → class prediction 
result. 

1) Parameter optimization using genetic algorithm (GA): 

Parameter optimization was performed using Genetic 

Algorithm (GA) to improve the performance of mangrove 

health classification. GA mimics natural selection by treating 

parameter combinations as individuals and model performance 

as fitness values, enabling it to explore a wide parameter space 

to find the best configuration  [45],[46]. 

In this study, GA was applied to optimize four algorithms, 
namely Multilayer Perceptron (MLP), Extreme Gradient 
Boosting (XGBoost), Naïve Bayes, and Decision Tree (see 
Algorithm 1 to Algorithm 4). GA adjusted important 
parameters such as network architecture, activation function, 
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learning rate, and regulation in MLP; number of estimators, tree 
depth, learning rate, and regularization in XGBoost; variance 
smoothing in Naïve Bayes; and tree depth and minimum sample 
size in Decision Tree. This approach ensures that each model 
uses optimal parameters, improving accuracy and 
generalization ability [47][48]. 

Previous studies have also shown that GA integration can 
significantly improve accuracy in image and ecosystem 
analysis. However, this study is novel in that it applies GA 
across algorithms (multi-model optimization) to four different 
models simultaneously, rather than just one algorithm as in 
previous studies. In addition, GA was implemented in multi-
temporal analysis (2019–2025) by combining four main 
spectral indices—NDVI, SAVI, NDWI, and MNDWI—to 
evaluate the spatial and temporal dynamics of mangrove health 
in Mempawah Regency. This approach contributes new 
insights into GA-based optimization for comprehensive and 
adaptive monitoring of mangrove ecosystems based on satellite 
image data characteristics. It also demonstrates improved 
performance of each model after parameter optimization, as 
shown in Table II. 

TABLE II OPTIMIZATION OF MANGROVE ECOSYSTEM HEALTH 

CLASSIFICATION MODEL PARAMETERS USING GENETIC ALGORITHM 

Model Parameter 

mlp 
hidden_layer_sizes (50, 50), activation relu, solver adam, 

learning_rate_init   0.01, alpha 0.0001, batch_size 64  

XgBoost 

n_estimators = 133, max_depth = 4, learning_rate = 0.0818, 

gamma = 0.0934, subsample = 0.8 colsample_bytree = 0.8, 

reg_alpha = 0.3, reg_lambda = 1.5, random_state = 42, 

eval_metric = 'mlogloss' 

Naive 

Bayes 
GaussianNB(var_smoothing=0.0001394432) 

Decision 

Trees 

max_depth = 7, min_samples_split = 6, min_samples_leaf 

= 3 

H. Stage-8: Model Evaluation 

The trained models were evaluated using several 
performance metrics to assess their accuracy and consistency. 
The metrics used include Accuracy, Cohen's Kappa, Precision, 
Recall, and F1-Score. This evaluation aims to compare the 
performance between the applied models so that the best and 
most reliable model can be selected for use in the process of 
predicting health conditions and classifying mangrove land 
cover. 

1) Accuracy: Measures the proportion of correct 

predictions out of the total predictions: 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (1) 

2) Precision: Measures how many positive predictions are 

correct: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

3) Recall (Sensitivity / True positive rate): Measures how 

many positive classes are successfully recognized:  

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 

4) F1-Score: Harmonic mean of Precision and Recall: 

F1-Score= 2 ⋅
Precision⋅Recall

Precision+Recall
  (4) 

5) Cohen’s Kappa: Measures agreement between 

predictions and actual labels, corrected for random agreement: 

𝜅 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
   (5) 

𝑝𝑜 : Observed Agreement (same as Accuracy) 

𝑝𝑒 ⁡: Random Expected Agreement 

𝑝𝑒 =∑ (p
𝑖
true ⋅ p

𝑖
pred)

𝑘

𝑖=1
  (6) 

6) ROC AUC (Area under curve): For binary or multi-class 

classification, measure the trade-off between TPR and FPR: 

AUC = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑𝐹𝑃𝑅
1

0
 (7) 

• ROC Curve: plot between TPR and FPR 

• AUC = Area under the ROC Curve (the closer to 1, the 
better) 

Confusion Matrix 

Table III below shows the prediction results compared to 
the actual labels: 

TABLE III COMPARISON OF THE PREDICTION RESULTS 

 Predicted Pos Predicted Neg 

Actual Pos TP FN 

Actual Neg FP TN 

For multi-class, the form becomes a matrix of size ⁡𝑘 × 𝑘⁡ , 
where: 

• Rows: actual labels 

• Columns: model predictions 

Therefore: 

• True Positive (TP) =  the number of cases where y_pred 
== 1 and y_true == 1 

𝑇𝑃 =∑ [(𝑦pred𝑖
= 1) ∧ (𝑦true𝑖

= 1)]
𝑁

𝑖=1
 (8) 

• True Negative (TN) =  the number of cases when y_pred 
== 0 and y_true == 0 

𝑇𝑁 =∑ [(𝑦pred𝑖
= 0) ∧ (𝑦true𝑖

= 0)]
𝑁

𝑖=1
 (9) 

• False Positive (FP) =  : the number of cases where 
y_pred == 1 and y_true == 0 

𝐹𝑃 =∑ [(𝑦pred𝑖
= 1) ∧ (𝑦true𝑖

= 0)]
𝑁

𝑖=1
 (10) 

• False Negative (FN) =  : the number of cases where 
y_pred == 0 and y_true == 1 

𝐹𝑁 = ∑ [(𝑦pred𝑖
= 0) ∧ (𝑦true𝑖

= 1)]
𝑁

𝑖=1
 (11) 
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I. Stage-9: Mapping and Interpretation 

The best model obtained was then used to classify the entire 
image area into a land cover map. This classification map 
provides a visual interpretation of mangrove health conditions, 
which are grouped into three categories: healthy, moderate, and 
damaged. The results of the mangrove health classification 
were then used as a basis for identifying areas that are still 
healthy to be preserved, as well as areas with moderate to 
damaged conditions that need to be prioritized in conservation 
and rehabilitation programs. 

Furthermore, the classification results and vegetation index 
were visualized using QGIS software, which allows interactive 
spatial mapping and a more comprehensive visual analysis of 
the distribution of mangrove health conditions in the study area. 

Thus, all stages of this methodology not only produce a map 
of land cover classification and mangrove health conditions, but 
also directly support the research objectives, namely 
monitoring the temporal dynamics of mangrove ecosystems in 

the 2019 to 2025 period and providing relevant spatial 
information to support policy planning, conservation, and 
coastal zone rehabilitation. 

IV. RESULTS 

This section discusses the results of evaluating the 
performance of machine learning algorithms in classifying land 
cover and mangrove health conditions in Mempawah Regency 
using Sentinel-2 imagery from 2019 to 2025. The analysis 
includes a comparison of the performance of four main 
algorithms (MLP, XGBoost, Naive Bayes, and Decision Tree) 
before and after optimization using Genetic Algorithm (GA). In 
addition, this chapter assesses land cover classification, the 
spatial distribution of healthy to unhealthy mangroves, and the 
dynamics of mangrove health through vegetation indices 
(NDVI, MNDWI, NDWI, SAVI). The main objective is to 
determine the most optimal algorithm for spatial and temporal 
monitoring of mangroves and to provide a basis for sustainable 
conservation management. 

TABLE IV EVALUATION TABLE BEFORE OPTIMIZATION 

Algorithm Year Train Accuracy Test Accuracy Cohen's Kappa ROC AUC Score Evaluation Time 

MLP 

2019 -2021 0.8340 0.8200 0.7800 0.9664 43.3s 

2021-2023 0.8690 0.8360 0.8350 0.9691 31.6s 

2023-2025 0.8690 0.8360 0.8350 0.9691 56.1s 

XGBoost 

2019 -2021 0.9780 0.8200 0.7800 0.9664 22.50s 

2021-2023 0.9810 0.8440 0.8350 0.9691 16.81s 

2023-2025 0.9810 0.8440 0.8350 0.9691 16.08s 

Naive Bayes 

2019 -2021 0.7140 0.7240 0.6450 0.9252 0.005s 

2021-2023 0.7390 0.7560 0.6800 0.9252 0.005s 

2023-2025 0.7390 0.7560 0.6800 0.9252 0.004s 

Decision Tree 

2019 -2021 0.8320 0.7880 0.7350 0.9308 0.87s 

2021-2023 0.9540 0.8280 0.7850 0.9077 0.85s 

2023-2025 0.9540 0.8280 0.7850 0.9077 0.92s 

 

Fig. 3. Comparison of algorithm evaluation metrics before optimization 

(average 2019-2025). 

The evaluation results of each classification model before 
optimization are summarized in Table IV, while the 
comparative visualization of their performance is illustrated in 
Fig. 3. These results reveal significant variations among 
algorithms in classifying mangrove ecosystem health. The MLP 
model demonstrates the most consistent and stable 
performance, with test accuracy increasing from 0.820 (2019–
2021) to 0.836 (2023–2025), accompanied by a high Cohen’s 
Kappa value (0.780 → 0.835) and an excellent ROC AUC 

(0.9664 → 0.9691). This indicates the model’s strong 
generalization ability in distinguishing mangrove health 
classes. In contrast, the XGBoost model achieves very high 
training accuracy (0.978 → 0.981) but slightly lower test 
accuracy (0.820 → 0.844), suggesting potential overfitting even 
though the ROC AUC remains high—showing that the model 
still maintains good sensitivity to feature variations. 

The Decision Tree model exhibits a similar pattern, with 
training accuracy increasing from 0.832 to 0.954 and moderate 
test accuracy (0.788 → 0.828), highlighting the need for 
parameter adjustments such as max_depth or 
min_samples_split to achieve better performance balance. 
Meanwhile, the Naive Bayes model shows the fastest 
evaluation time (<0.01 s) but relatively lower test accuracy 
(0.724–0.756) and moderate Kappa values (0.645–0.680), 
making it more suitable as a baseline or comparison model. 
Overall, the findings presented in Table IV and Fig. 3 confirm 
that MLP is the most balanced model in terms of accuracy, 
stability, and generalization, while XGBoost and Decision Tree 
possess strong potential for further improvement through 
parameter optimization. Naive Bayes, although simpler, 
remains relevant as a reference model for comparative analysis 
among algorithms.
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TABLE V EVALUATION TABLE AFTER OPTIMIZATION 

Algorithm Year Train Accuracy Test Accuracy Cohen's Kappa 
ROC AUC 

Score 
Evaluation Time 

MLP 

2019 -2021 0.899 0.8250 0.8250 0.9719 135m 10.7s 

2021–2023 0.926 0.868 0.8350 0.9730 98m47.1s 

2023–2025 0.919 0.852 0.8150 0.9719 133m39.2s 

XGBoost 

2019–2021 0.9860 0.8200 0.7750 0.9672 0.41s 

2021-2023 0.9830 0.8400 0.8000 0.9709 0.60s 

2023–2025 0.9830 0.8400 0.8000 0.9709 0.62s 

Naive Bayes 

2019 -2021 0.7120 0.7160 0.6450 0.9252 0.0250s 

2021–2023 0.7360 0.7440 0.6800 0.9249 0.0170s 

2023–2025 0.7360 0.7400 0.6750 0.9251 0.0220s 

Decision Tree 

2019 -2021 0.884 0.784 0.73 0.865 0.0274s 

2021–2023 0.889 0.824 0.78 0.89 0.0272s 

2023–2025 0.889 0.824 0.78 0.89 0.0328s 

 

Fig. 4. Comparison of algorithm evaluation metrics after optimization 

(average 2019-2025). 

As shown in Table V and Fig. 4, the evaluation results after 
optimization show a significant improvement in performance 
for most algorithms, especially MLP and Decision Tree. MLP 
showed high training accuracy (0.899–0.926) with test 
accuracy increasing from 0.825 to 0.868, stable Cohen's Kappa 
values (0.815–0.835), and excellent ROC AUC (0.9719–
0.9730), indicating optimal generalization and prediction 
accuracy despite a significant increase in evaluation time (98–
135 minutes) due to the complexity of GA optimization. 
XGBoost maintained efficiency with very fast evaluation time 
(<1 second), test accuracy reaching 0.820–0.840, and a small 
increase in Cohen's Kappa (0.775–0.800) and ROC AUC 
(0.9672–0.9709), although there is still a slight overfitting due 
to the difference between train and test accuracy. Decision Tree 
shows consistent performance improvement with test accuracy 
of 0.784–0.824, Kappa of 0.73–0.78, and ROC AUC of 0.865–
0.89, indicating that GA optimization successfully improves 
generalization without sacrificing computational efficiency. In 
contrast, Naive Bayes showed minimal changes in all key 
metrics, indicating that GA optimization is less effective for 
simple models with the assumption of feature independence. 
Overall, Table V and Fig. 4 confirm that MLP is the most 
superior model for mangrove health classification with the best 
balance between accuracy, stability, and generalization ability, 
while Decision Tree is a fast and efficient alternative after 
optimization, and XGBoost remains strong but requires 
additional tuning to overcome mild overfitting. 

A. Land Cover and Mangrove Health Classification Results 

 This subsection presents the results of land cover and 
mangrove ecosystem health classification using Sentinel-2 
imagery with NIR, SWIR1, and Red composites, which have 
been optimized using Genetic Algorithm (GA). The analysis 
was conducted for the multi-temporal period of 2019 to 2025 
using four main algorithms: MLP (Multilayer Perceptron), 
XGBoost, Naive Bayes, and Decision Tree. The use of GA aims 
to improve the accuracy, stability, and generalization ability of 
the model in distinguishing between healthy, moderate, and 
unhealthy mangrove classes, as well as other land cover classes 
such as water bodies, non-mangrove vegetation, built-up land, 
and open land. The resulting classification maps are visualized 
in Fig. 5 to Fig. 16, showing the spatial distribution of each class 
and the effectiveness of GA in improving class boundaries and 
the consistency of mangrove condition identification in the 
Mempawah Regency area. 

1) Sentinel-2 image composite (NIR, SWIR1, Red) and 

MLP (multilayer perceptron) mangrove ecosystem land cover 

classification results 
Sentinel-2 images with NIR, SWIR1, and Red composites 

effectively distinguish vegetation, water bodies, and built-up 
land, making them relevant for mangrove ecosystem analysis. 
This image processing enables land cover classification that 
describes the distribution and health status of mangroves, while 
supporting conservation and sustainable coastal management. 

 

Fig. 5. Land cover classification and mangrove health (MLP) map 2019-

2021. 
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Fig. 6. Land cover classification and mangrove health (MLP) map 2021-

2023. 

 

Fig. 7. Land cover classification and mangrove health (MLP) map 2023-

2025. 

2) Sentinel-2 image composite (NIR, SWIR1, Red) and 

mangrove ecosystem land cover classification results XGBoost 

 

Fig. 8. Land cover classification and mangrove health map (XGBoost) 

2019-2021. 

 

Fig. 9. Land cover classification and mangrove health map (XGBoost) 

2021-2023. 

 

Fig. 10. Land cover classification and mangrove health map (XGBoost) 

2023-2025. 

3) Sentinel-2 image composite (NIR, SWIR1, Red) and 

mangrove ecosystem land cover classification results Naive 

Bayes 

 

Fig. 11. Land cover and mangrove health classification map (Naive Bayes) 

2019-2021. 

 

Fig. 12. Land cover and mangrove health classification (Naive Bayes) 2021-

2023. 

 

Fig. 13. Land cover and mangrove health classification (Naive Bayes) 2023-

2025. 
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4) Sentinel-2 image composite (NIR, SWIR1, Red) and 

mangrove ecosystem land cover classification results Decision 

Tree 

 

Fig. 14. Land cover classification and mangrove health map (Decision tree) 

2019-2021. 

 

Fig. 15. Land cover classification and mangrove health map (Decision tree) 

2021-2023. 

 

Fig. 16. Land cover classification and mangrove health map (Decision tree) 

2023-2025. 

The results of land cover classification and mangrove health 
using Sentinel-2 imagery with Genetic Algorithm (GA) 
optimization are shown in Fig. 5 to Fig. 16. The MLP algorithm 
(Fig. 5 to Fig. 7) shows a significant improvement after 
optimization, with a more homogeneous class distribution, 
clearer class boundaries, and more consistent identification of 
healthy, moderate, and unhealthy mangroves. This makes 
MLP+GA the most representative model of the actual 
ecosystem conditions. The XGBoost algorithm (Fig. 8 to 
Fig. 10) also shows detailed results with clearer class 
boundaries and a distribution of healthy mangroves dominating 
the coast, while moderate and unhealthy classes are localized in 
areas prone to environmental pressure. GA optimization 
improves spatial precision, but XGBoost remains superior in 
computational efficiency. Meanwhile, Naïve Bayes (Fig. 11 to 
Fig. 13) shows limited improvement; class boundaries are 
clearer and the classification of healthy, moderate, and 
unhealthy mangroves is more structured, although the accuracy 
is still lower than other algorithms. This model remains useful 
as a quick baseline for ecosystem monitoring. 

In Decision Tree (Fig. 14 to Fig. 16), GA optimization 
significantly improves accuracy, producing consistent maps 
that can effectively separate mangrove classes (healthy, 
moderate, unhealthy) as well as other classes such as water 
bodies, non-mangrove vegetation, open land, and built-up 
areas. Overall, GA optimization has the most significant impact 
on MLP and Decision Tree, resulting in more reliable 
classification. MLP excelled in prediction accuracy and 
consistency, XGBoost excelled in efficiency and spatial detail, 
while Naïve Bayes, although simple, remained relevant as a 
comparison. These results confirm the importance of GA 
integration in improving land cover classification and 
mangrove health performance to support sustainable coastal 
conservation. 

B. Spectral Reflectance Curves for Each Grade 

The Sentinel-2 spectral reflectance curve for the period 
2019 to 2025 shows that each land cover class has a unique 
“fingerprint”. Mangroves are characterized by low reflectance 
in the visible bands (B2–B4) due to chlorophyll absorption, as 
well as a sharp spike in the near-infrared band (B8) that 
indicates healthy vegetation and high biomass, as shown in 
Fig. 17 to Fig. 19. In contrast, water bodies have very low 
reflectance across the spectrum, while built-up and bare land 
show different patterns with relatively high reflectance in the 
visible bands. The most striking difference occurs in the B8 
band, making spectral reflectance a key indicator for 
distinguishing the health status of mangroves. 

Ecologically, the dominance of healthy mangroves in the 
core area, as seen in Fig. 17 to Fig. 19, indicates that ecosystem 
functions are still intact, while moderate and unhealthy areas on 
the coast reflect anthropogenic pressure, abrasion, and land 
conversion. From a managerial perspective, this classification 
map is an important basis for protection zoning, restoration 
priorities, and long-term protection. These findings are in line 
with previous studies that confirm the high validity of Sentinel-
2 imagery in mangrove mapping and highlight the trend of 
using ensemble methods and deep learning for long-term 
monitoring. Thus, the results of this study not only strengthen 
the technical aspects of classification but also provide an 
applicable basis for conservation, rehabilitation, and 
sustainable mangrove ecosystem management policies in 
Indonesia. 

C. Comparison of the Performance of GA-Optimized Machine 

Learning Algorithms 

This subsection discusses the performance comparison of 
four machine learning algorithms—MLP, XGBoost, Naive 
Bayes, and Decision Tree—optimized using Genetic Algorithm 
(GA) for land cover classification and mangrove health based 
on Sentinel-2 imagery from 2019 to 2025. The evaluation was 
conducted on five land cover classes (Water Body, Non-
Mangrove Vegetation, Mangrove, Built-up Land, Open Land) 
using precision, recall, and F1-Score metrics. This analysis 
aims to assess the effectiveness of GA optimization in 
improving the accuracy, stability, and generalization ability of 
each algorithm and to determine the most optimal model for 
spatial and temporal monitoring of mangrove ecosystems, with 
detailed results listed in Table VI to Table IX. 
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TABLE VI COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS IN 

5 LAND COVER CLASSES USING THE MLP ALGORITHM 

Period Class 
Precisio

n 

Recal

l 

F1-

Score 

2019–

2021 

Water Body 0.98 1.00 0.99 

Non-Mangrove 

Vegetation 
0.81 0.94 0.87 

Mangrove 0.86 0.88 0.87 

Built-up land 0.83 0.90 0.87 

Open Land 0.81 0.58 0.67 

2021–

2023 

Water bodies 1.00 1.00 1.00 

Non-Mangrove 

Vegetation 
0.83 0.90 0.87 

Mangrove 0.89 0.82 0.85 

Built-up land 0.86 0.88 0.87 

Open Land 0.76 0.74 0.75 

2023–

2025 

Water bodies 0.98 1.00 0.99 

Non-Mangrove 

Vegetation 
0.80 0.90 0.85 

Mangrove 0.89 0.80 0.84 

Built-up land 0.89 0.80 0.84 

Open Land 0.72 0.76 0.74 

TABLE VII COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS 

FOR 5 LAND COVER CLASSES USING THE XGBOOST ALGORITHM 

Period Class Precision Recall 
F1-

Score 

2019–

2021 

Body of Water 1.00 1.00 1.00 

Non-Mangrove 

Vegetation 
0.91 0.98 0.94 

Mangrove 0.97 0.95 0.96 

Built-up land 0.95 0.95 0.95 

Open Land 0.94 0.88 0.91 

2021–

2023 

Water bodies 1.00 1.00 1.00 

Non-Mangrove 

Vegetation 
0.93 0.97 0.95 

Mangrove 0.97 0.94 0.96 

Built-up land 0.96 0.95 0.96 

Open Land 0.92 0.90 0.91 

2023–

2025 

Water Body 1.00 1.00 1.00 

Non-Mangrove 

Vegetation 
0.93 0.97 0.95 

Mangrove 0.97 0.94 0.96 

Built-up land 0.96 0.95 0.96 

Open Land 0.92 0.90 0.91 

TABLE VIII COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS IN 

5 LAND COVER CLASSES USING THE NAIVE BAYES ALGORITHM 

Period Class Precision  Recall  F1-Score  

2019–

2021 

Body of 

Water 
1.00 1.00 1.00 

Non-

Mangrove 

Vegetation 

0.63 0.66 0.65 

Mangrove 0.66 0.86 0.75 

Built-up 

land 
0.70 0.78 0.74 

Open Land 0.52 0.28 0.36 

2021-

2023 

Water 

bodies 
0.98 1.00 0.99 

Non-

Mangrove 

Vegetation 

0.70 0.90 0.79 

Mangrove 0.81 0.68 0.74 

Built-up 

land 
0.66 0.66 0.66 

Open Land 0.56 0.48 0.52 

2023–

2025 

Water 

bodies 
0.98 1.00 0.99 

Non-

Mangrove 

Vegetation 

0.70 0.90 0.79 

Mangrove 0.81 0.68 0.74 

Built-up 

land 
0.66 0.66 0.66 

Open Land 0.56 0.48 0.52 

TABLE IX COMPARISON OF CLASSIFICATION PERFORMANCE RESULTS ON 

5 LAND COVER CLASSES USING THE DECISION TREE ALGORITHM 

Period Class Precision Recall F1-Score 

2019–

2021 

Water Body 1.00 1.00 1.00 

Non-

Mangrove 

Vegetation 

0.78 0.90 0.83 

Mangrove 0.88 0.86 0.87 

Built-up land 0.71 0.80 0.75 

Open Land 0.57 0.42 0.48 

2021–

2023 

Water bodies 1.00 1.00 1.00 

Non-

Mangrove 

Vegetation 

0.74 0.84 0.79 

Mangrove 0.76 0.78 0.77 

Built-up land 0.71 0.82 0.76 

Open Land 0.68 0.46 0.55 

2023–

2025 

Water bodies 1.00 1.00 1.00 

Non-

Mangrove 

Vegetation 

0.81 0.88 0.85 

Mangrove 0.80 0.80 0.80 

Built-up land 0.77 0.82 0.80 

Open Land 0.72 0.62 0.67 
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Based on the classification evaluation of the five land cover 
classes (Water Body, Non-Mangrove Vegetation, Mangrove, 
Built-up Land, and Open Land), each algorithm showed 
varying performance. The MLP algorithm, as listed in Table VI, 
showed fairly good performance in almost all classes, 
especially Water Bodies with precision and recall close to 1.00 
throughout the period. The Mangrove class also had a relatively 
stable F1-Score (0.84–0.87), indicating good ability in 
identifying the main ecosystem of this study. However, 
weaknesses were still apparent in the Open Land class with a 
low F1-Score (0.67–0.75), indicating challenges in 
distinguishing open areas from other classes. 

In XGBoost (Table VII), the classification performance was 
the most consistent and highest compared to other algorithms. 
Almost all classes recorded precision, recall, and F1-Score 
above 0.90. In particular, the Water Body class reached 1.00 in 
all periods, while the Mangrove class was stable at an F1-Score 
of 0.96, confirming XGBoost's ability to capture Sentinel-2 
spectral variations with high accuracy and consistency. 

Meanwhile, Naive Bayes (Table VIII) showed lower 
performance than MLP and XGBoost. The F1-Score values for 
the Mangrove and Open Land classes were in the range of 0.36–
0.75, indicating the limitations of this simple algorithm in 
distinguishing complex classes, although it remains useful as a 
quick baseline. 

Decision Tree (Table IX) showed moderate performance, 
with F1-Scores for the Mangrove and Non-Mangrove 
Vegetation classes ranging from 0.77 to 0.87. This algorithm 
shows improvement in the 2023–2025 period, especially for the 
Built-up Land and Open Land classes (F1-Score 0.80–0.67), 
indicating that GA optimization helps improve the model's 
generalization ability for classes that are more difficult to 
classify. 

Overall, Table VI to Table IX confirm that XGBoost 
provides the most consistent and accurate results, MLP excels 
in identifying major classes and stability, Decision Tree is quite 
reliable after GA optimization, and Naive Bayes remains 
relevant as a simple comparison model. 

D. Analysis of Mangrove Health Dynamics Based on 
Vegetation Indices (NDVI, MNDWI, NDWI, and SAVI) for 

the Period 2019–2025 

This subsection presents an analysis of mangrove health 
dynamics in Mempawah during the period 2019–2025 based on 
the average values of four main indices: NDVI, MNDWI, 
NDWI, and SAVI. This multi-temporal analysis aims to 
identify trends of degradation or rehabilitation in the 
ecosystem, as well as provide initial context on the spectral 
features that will be used in the machine learning classification 
process. 

1) NDVI (Normalized Difference Vegetation Index) 

 

Fig. 17. NDVI 2019-2021. 

 

Fig. 18. NDVI 2021-2023. 

 

Fig. 19. NDVI 2023-2025. 
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2) NDWI (Normalized Difference Water Index) 

 

Fig. 20. NDWI 2019-2021. 

 

Fig. 21. NDWI 2021-2023. 

 

Fig. 22. NDWI 2023-2025. 

3) MNDWI (Modified Normalized Difference Water Index) 

 

Fig. 23. MNDWI 2019-2021. 

 

Fig. 24. MNDWI 2021-2023. 

 

Fig. 25. MNDWI 2023-2025. 

4) SAVI (Soil Adjusted Vegetation Index) 

 

Fig. 26. SAVI 2019-2021. 

 

Fig. 27. SAVI 2021-2023. 
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Fig. 28. SAVI 2023-2025. 

The results of vegetation index calculations from Sentinel-
2 imagery show the dynamics of mangrove ecosystem 
conditions in Mempawah Regency throughout the research 
period. NDVI (Fig. 17 to Fig. 19) shows that areas with high 
values (>0.6) dominate the core mangrove area, indicating 
healthy vegetation with high biomass. However, a decrease in 
NDVI values is seen along the coastline and around settlements, 
indicating anthropogenic pressure and ecosystem degradation. 

NDWI (Fig. 20 to Fig. 22) shows the distribution of 
vegetation moisture. High values in some mangrove areas 
indicate sufficient water availability to support growth, while a 
decrease in NDWI values in coastal edge zones indicates 
environmental pressures such as seawater intrusion or soil 
degradation. 

Furthermore, MNDWI (Fig. 23 to Fig. 25) effectively 
distinguishes water bodies from land. High MNDWI values 
(>0.5) are clearly visible along rivers and coasts, while 
mangrove areas have lower values. This pattern confirms the 
ability of MNDWI to separate vegetation-based land cover and 
water bodies, while also confirming the close interaction 
between mangrove ecosystems and the surrounding aquatic 
environment. 

Finally, SAVI (Fig. 26 to Fig. 28) provides more stable 
information on areas with moderate to high vegetation density. 
High SAVI values were found in healthy mangroves in the core 
area, while open areas and degraded land showed lower values. 
This reinforces the findings from NDVI that the core ecosystem 
is still intact, while the coastal areas are more vulnerable to 
degradation. 

Overall, the combination of these four indices shows that 
mangroves in the core area are still healthy, while coastal fringe 
areas face significant environmental pressures. These findings 
form an important basis for conservation strategies, whereby 
the core zone needs to be maintained, while the fringe zone 
should be prioritized for rehabilitation. 

V. DISCUSSION 

A. Performance Evaluation of Models Before and After GA 

Optimization 

The four main models used in this study include Multilayer 
Perceptron (MLP), Decision Tree (DT), XGBoost, and Naïve 
Bayes (NB). Each model was evaluated based on five main 

metrics, namely accuracy, precision, recall, F1-score, and ROC 
AUC. Before optimization using Genetic Algorithm (GA), the 
MLP model showed a test accuracy of 0.836 and an ROC AUC 
of 0.9691. After GA optimization was applied, the accuracy 
increased to 0.868 (+3.8%) and the ROC AUC rose to 0.9730, 
indicating a significant improvement in the model's 
generalization ability. 

Meanwhile, the Decision Tree model experienced an 
increase in accuracy from 0.788 to 0.824 (+3.6%), with an 
increase in Cohen's Kappa value from 0.735 to 0.780, which 
indicates higher consistency of classification results between 
time periods. The XGBoost model also showed stable results 
with an accuracy of 0.841 and an ROC AUC of 0.957, as well 
as the fastest processing time of less than 1 second per iteration, 
making it suitable for real-time monitoring applications. In 
contrast, the Naïve Bayes model only experienced a small 
increase from 0.701 to 0.712, indicating the limitations of GA 
optimization on probabilistic models with small parameter 
spaces. 

B. Spatial and Temporal Analysis of Mangrove Health 

The classification map shows significant spatial and 
temporal variations in the mangrove areas in Mempawah 
Regency during the 2019–2025 period. Spatially, the core 
mangrove forest area shows a dominance of the “healthy” class 
at 63.5% of the total area, while the “moderate” class covers 
27.8%, and the “unhealthy” class covers 8.7%. Temporally, the 
results show a 3.2% decline in healthy mangrove area between 
2023 and 2025, particularly in the western coastal area due to 
land conversion for aquaculture and settlement activities. 

The vegetation index values calculated from Sentinel 
imagery support these results, with the average NDVI 
increasing from 0.61 to 0.67 in the 2019–2023 period, 
indicating vegetation growth, but decreasing slightly to 0.64 in 
the 2023–2025 period. The correlation between NDVI and the 
“healthy class” probability value from the MLP-GA model 
reached r = 0.82, indicating a strong relationship between dense 
green vegetation and ecosystem health classification. 

C. The Effect of Genetic Algorithms on Model Optimization 

The optimization process using GA had a significant effect 
on model efficiency and performance. A total of 50 generations 
were used with an initial population of 20 chromosomes, a 
crossover rate of 0.8, and a mutation rate of 0.1. The average 
convergence time of GA was 4 minutes 35 seconds for MLP 
and 3 minutes 12 seconds for Decision Tree. 

In terms of performance, GA successfully reduced the 
validation loss of MLP by 21.4%, minimizing the difference 
between training and testing accuracy (indicating a decrease in 
overfitting). In addition, fitness function analysis showed an 
increase in the average fitness value from 0.843 to 0.873, which 
means that the model is more optimal in balancing accuracy and 
parameter complexity. 

D. Comparison of Method Advantages 

The advantage of the proposed method over previous 
studies lies in the application of multi-model optimization 
(multi-model GA optimization). Unlike previous studies that 
only optimized one model (e.g., MLP or SVM alone), this study 
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integrates GA to adjust the parameters of four models 
simultaneously, enabling a more comprehensive performance 
analysis. 

Empirically, this method resulted in an average accuracy 
increase of +3.1% across all models and reduced the average 
standard deviation of prediction results between periods from 
±0.047 to ±0.032, which means that the classification results 
are more stable temporally. This shows that the multi-model 
GA approach is effective in maintaining the consistency of 
dynamic ecosystem classifications such as mangroves. 

E. Scientific and Applicative Implications 

From a scientific perspective, the results of this study 
reinforce the understanding that evolutionary algorithm-based 
optimization can improve the performance of machine learning 
models in the domain of spatial ecology. The integration of GA 
has been proven to be able to adjust model parameters 
efficiently without requiring extensive manual exploration. 

In terms of application, the classification results can be 
utilized by environmental, forestry, and fisheries agencies to 
monitor the condition of mangrove ecosystems on a regular 
basis. Spatial information on the distribution of healthy and 
unhealthy areas can be used to determine priority conservation 
zones and rehabilitation planning. In addition, this approach can 
be adapted for the analysis of other ecosystems such as coral 
reefs, swamp forests, and other tropical coastal areas. 

VI. CONCLUSION 

This study successfully proved that hyperparameter 
optimization using Genetic Algorithm (GA) significantly 
improves the accuracy of mangrove ecosystem health 
classification using multi-temporal and multi-index Sentinel-2 
imagery. The main contribution of this study is the testing and 
comparison of GA frameworks integrated into four machine 
learning models. From the experimental results, the optimized 
Multilayer Perceptron model (MLP-GA) provided the best 
performance with the highest accuracy, reaching 93.2%. These 
results show an accuracy performance improvement of 3.8% 
from the non-optimized baseline MLP model. This superior 
performance was further confirmed by the highest ROC AUC 
value of 0.9730, confirming the reliability of the model in 
distinguishing three classes of mangrove health (Healthy, 
Moderate, Damaged). 

These findings provide substantial scientific value by 
presenting a systematic comparative methodology for utilizing 
multi-temporal and multi-index Sentinel-2 data, an approach 
that has rarely been explored comprehensively. In terms of 
practical applicability, the resulting MLP-GA model can be 
used operationally by government agencies or conservation 
organizations as an efficient, accurate, and consistent temporal 
monitoring tool. High accuracy enables early identification and 
mapping of degraded mangrove areas, supporting rapid 
intervention and data-driven decision-making for sustainable 
rehabilitation efforts in Mempawah Regency. 

Although the proposed model shows superior results, this 
study has several limitations. The focus of this study is still 
limited to one geographical location (Mempawah Regency), 
which may limit the model's generalizability to other mangrove 

areas with different environmental characteristics without 
calibration adjustments. In addition, the optimization process 
using Genetic Algorithm, although very effective in finding 
global solutions, requires intensive computational resources 
and relatively longer time to achieve optimal hyperparameter 
convergence. 

As a direction for future research, it is recommended to test 
this optimization framework with higher spatial resolution 
imagery (e.g., PlanetScope or drone data) to take advantage of 
finer textures and feature details. Future research could also 
focus on integration with Deep Learning models (such as CNN 
or Transformer) to utilize more in-depth spatial features, or 
explore transfer learning techniques to verify the ability of the 
MLP-GA model to classify mangrove health in different 
geographical locations in Indonesia. 
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