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Abstract—Numerous practical uses necessitate multi-agent
systems, including managing traffic, assigning tasks, regulating
ant colonies, and operating self-driving cars, and drones. These
systems involve multiple agents working together, communicating
and engaging with their surroundings to achieve the highest possi-
ble total numerical reward. Deep Reinforcement Learning (DRL)
approaches are used to address these multi-agent applications. In
many circumstances, the use of agents raise challenges to safety
and robustness. To address these issues, we develop a DRL based
system in which multiple agents in an industrial network scenario
interact with the real-world environment and act collaboratively
and cooperatively. In proposed model, several agents collaborate
with one another to complete tasks and maintain a safe state.
To take actions cooperatively and collaboratively of agents in
accordance with the safety robustness of policies, we apply
DRL algorithms such as proximal policy optimization (PPO) and
Trust Region Policy Optimization (TRPO) algorithms and DRL
approaches. We apply Curriculum Learning (CL) for their better
performance and training. In this study, a reward structure is
also proposed which help agents to maintain their safe state.
Mean reward, policy loss, value loss, value estimate and safety
robustness are analyzed as performance matrix in this study.
The results shows that the policy adopted in the proposed model
perform comparably better than the other policies.

Keywords—Safety robustness; reinforcement learning; multi-
agents; safe state; collaboration

I. INTRODUCTION

In an experiment on a cat’s behaviour done by Thorndike
[1], reinforcement learning (RL) begins with the trial and error
method. In machine learning, RL is a significant approach. It’s
a method of determining which action offers the most reward
[2]. Real-time learning involves an agent that interacts with
the learning environment, takes actions on the current state,
and proceeds to the next state while striving to maximize
the numerical reward. DRL, which merges Deep Learning
and Reinforcement Learning [3] [4], is utilized to handle
high-dimensional environments. To surpass the limitations of
single-agent systems, multi-agent systems are necessary. The
agents in multi-agent systems communicate with one another,
interact with the environment, and aim to maximize the overall
numerical reward [5]. Many real-world applications, such as
traffic control, task distribution, ant colonies, autonomous
cars, and drones, necessitate multi-agent systems. Due to the
complexity of a high-dimensional environment, an agent that
is hard-coded cannot work well in it.

To ensure the agents can generate optimal learning solu-
tions, Multi-Agent Deep Reinforcement Learning (MADRL) is

a crucial technique in the previously mentioned applications.
In these applications, MADRL agents can discover the most
effective solutions and policies. MADRL is a learning method
where multiple agents interact with the learning environment
to maximize the total reward. Using neural networks with
numerous layers and approximations, agents strive to estimate
the value of actions. Their policies rely on their own action
values and those of other agents [5].

Therefore, researchers are now focusing not only on reward
maximization but also on safety. Deep integration of machine
learning and control technologies is required to tackle safety
challenges in critical applications such as self-driving cars and
robot manipulation [4]. In the control community, robust and
adaptive control techniques have been developed to ensure
the safety and stability of systems. To enhance the safety
of learned policies, appropriate control approaches from the
control community can be applied [4] [6]. The performance of
learned policies is typically measured through success rates [7]
[8] or obtained rewards [9] [10] to determine their robustness.
However, when using RL to address problems in safety-critical
applications, policy robustness must also be evaluated from
a safety perspective. However, there is presently no way of
evaluating policy robustness from the standpoint of safety.

This work proposes a framework for the safety robustness
of agents using deep reinforcement learning techniques. In
the proposed work, a system is developed in which multiple
agents interact with the real-world environment and act collab-
oratively and cooperatively. This work is an extension to our
previously published work [33]. Here, we have added policy
loss, safety robustness, value loss and value estimate. We have
evaluated these parameters on multiple policies, i.e., Policy 1,
Policy 2 and Policy 3. We have also proposed a novel algorithm
for the training process. In proposed model, several agents
collaborate with one another to complete tasks and maintain a
safe state. To take actions cooperatively and collaboratively of
agents in accordance with the safety robustness of policies.
We have applied DRL algorithms such as proximal policy
optimization (PPO) and Trust Region Policy Optimization
(TRPO) algorithms and DRL approaches.

The rest of the paper is organized as follows: Section II
provides the literature review. Section III presents the proposed
methodology. In Section IV, the details of the proposed model
are presented. Section V explains the implementation setup.
In Section VI, experiments and results are presented and the
paper is concluded in Section VII.
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II. LITERATURE REVIEW

A. Single Agent Scenarios

Alternative reward functions may be presented to help an
agent learn better if a reward function for an RL problem is
not provided. With multiple reward functions, the agent may
learn a variety of policies with varying levels of robustness.
Evaluating the achieved reward and success rate has been a
common method for assessing the robustness of a policy. When
utilizing RL to address issues in many safety-critical situations,
safety is a concern. Although reward and success rate have
been commonly used to evaluate policy robustness, there has
been limited discussion on assessing policy robustness from
a safety perspective. This study [11] contributes to the field
by introducing a novel concept of safety robustness and an
algorithm to estimate it. The proposed method is applied to
evaluate the safety robustness of three policies for controlling
the manipulation of a cable-driven parallel robot. The results
demonstrate that the algorithm is effective in estimating safety
robustness by comparing the number of safe episodes to the
total number of episodes. The study also includes illustrative
experiments to demonstrate the implementation of the pro-
posed algorithm. It can also choose the safest policy from a
set of many policies.

As a recent and popular research area, RL faces a number
of issues. Agent navigation and obstacle avoidance are the
most appealing of these RL challenges. It is well understood
the value of precise and multidimensional monitoring in de-
tecting problems early and preventing them from escalating.
Previously, AI was employed for drone navigation, with im-
ages from on-board cameras being processed for wayfinding
and collision avoidance. The authors of this paper presented a
novel recommender system for drone navigation, which utilizes
artificial intelligence and sensor data while requiring only
basic information [12]. Their approach involves combining two
techniques: Proximal Policy Optimization (PPO) for naviga-
tion with minimal information and Long-Short Term Memory
(LSTM) networks for overcoming obstacles using navigation
memory. The safety requirements of the system are determined
using a systematic functional failure analysis (FFA).

RL methods have been used to handle a variety of se-
quential decision-making issues for a long time. In complex
environments with high dimensions, algorithms face significant
challenges when attempting to optimize policies. Recent ad-
vances in deep learning have enabled RL approaches to drive
optimal policies for complex agents capable of performing well
in these difficult contexts [13] [14]. In their paper, the authors
conducted a survey on various approaches for multi-agent
deep RL (MADRL). The survey covers non-stationary, partial
observability, continuous state and action spaces, multi-agent
training methods, and multi-agent transfer learning [15]. The
survey also discusses the advantages, disadvantages, and ap-
plications of the evaluated approaches, leading to the creation
of more robust and practical multi-agent learning methods for
tackling real-world issues in the future.

To overcome challenges in dealing with local-stable-point
scenarios in complex situations, the artificial potential field
method needs to be revised, which may increase the algo-
rithm’s complexity. In this study, the authors proposed an
improved black-hole potential field combined with RL [16]

to address this issue. The black hole potential field is used
as the environment in an RL system, where agents automat-
ically adapt to their surroundings and learn how to discover
targets using basic environmental data. Furthermore, with the
curriculum learning technique, taught agents adapt to a variety
of contexts. Meanwhile, the avoidance process is visualized to
show how agents avoid obstacles and achieve their destination.
Static and dynamic trials are used to assess our approach. The
findings indicate that agents can autonomously learn how to
escape local stability points even without prior knowledge.

The authors presented a collision avoidance system in their
research paper, which aims to provide reliable autonomous
navigation for self-driving ships. The system uses a collision
risk assessment [17] technique based on the ship’s domain and
the closest point of approach (CPA) to estimate the collision
risk, and generates an avoidance path only when necessary.
The ship domain is designed with an asymmetric shape, taking
into account the ship’s maneuverability and the international
regulations for preventing collisions at sea (COLREGs). The
CPA is used to determine the value of a quantitative collision
risk. The authors of [18] investigate the resilience of RL with
adversarial altered state observations, which is relevant for
deploying real-world RL agents in the face of unexpected
sensing noise. They show that with a given agent strategy,
an optimum adversary to tampering state observations can
be discovered, ensuring that the worst-case agent reward is
obtained. This results in a unique empirical adversarial assault
on RL agents in DRL environments, via a learnt adversary
that is significantly stronger than earlier ones. Authors offer an
alternate training with learned adversaries (ATLA) approach to
improve an agent’s resilience by training an opponent online
alongside the agent using policy gradients and the optimum
adversarial attack framework.

The automobile industry is being encouraged toward more
flexibility and stability in manufacturing by EU laws on CO2
limitations and the trend of individualization. Modular manu-
facturing, in which workstations are detached by autonomous
guided vehicles and new control ideas are required, is one
way to handle these issues. Throughput-optimal coordination
of goods, workstations, and vehicles are the goals of modular
production control. Conventional control techniques for this
NP-hard issue are inefficient in computation, do not discover
optimal solutions or are not generalizable. On the other hand,
DRL provides strong and generalizable algorithms that can
deal with a wide range of settings and high levels of complex-
ity. The PPO method is utilized in solving modular production
control, as discussed in the paper [19]. The experimental
results showed that the learned behavior of the agent was
optimal, reliable, consistent, and generalizable across various
modular production control setups. The agent was successful
in adapting its strategies based on the given problem configura-
tion. The authors further discussed how this learning behavior
was achieved, with a focus on the agent’s state, activity, and
incentive design.

B. Multi-Agents

The robots that work in the marine environment are Un-
manned surface vehicles (USV), which is a surface ship that
can detect the target, and do the perception of the environment.
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TABLE I. IN THE LITERATURE REVIEW TABLE, THE FEATURE THAT HAS
NOT BEEN ADDRESSED IN PREVIOUS WORK IS DENOTED BY ×, WHILE

√

INDICATES THAT THE FEATURE HAS BEEN ADDRESSED IN PRIOR
RESEARCH

Ref. Multi
Agents

Agents
make
joint
actions

Single
Agent

Partially
observ-
able
environ-
ment

Real
world
complex
environ-
ment

[5]
√ √ √

× ×
[11] × ×

√
× ×

[20] × ×
√

×
√

[12] × ×
√

× ×
[29] × ×

√
× ×

[30]
√

× × × ×
[34] × ×

√
× ×

[35]
√

× × × ×
Proposed
Model

√ √ √ √ √

Autonomous navigation and obstacle avoidance are very nec-
essary for USV and have been frequently employed to carry
out operations in a complex sea environment or in risky marine
areas for ships with sailors, considerably increasing their
defensive capability and detection range [26] [27]. Traditional
navigation approaches increase the risk of falling into traps
while travelling in a complex, dynamic environment, and the
likelihood of reaching the target decreases. These heuristic
approaches are slow, and when used in real-world sophisticated
dynamic situations, they have issues such as slow speed and
inability to identify and avoid obstacles [24] [25]. Authors
proposed a DRL approach called ANOA (Autonomous Nav-
igation and Obstacle Avoidance), which uses a dueling deep
Q-network and a customized architecture of state and action
spaces [20]. They implemented their proposed approach in a
static and dynamic environment using Unity 3D and the ML-
Agents Toolkit. Their experimental results show that once they
are trained, USVs can find a path, reach their destination, and
avoid obstacles in any complex dynamic environment. In [21],
authors proposed a DRL based framework for the collaboration
and cooperation of multi agents in real-world environments.
A partitioned base technique is presented in this work. For
effective coordination and continuous operation of a multi-
agent system, it is necessary for agents to have knowledge of
the environment’s boundary and the location of the currently
active neighboring agent. This allows for seamless transition
to the next neighboring agent in case of any unexpected issue
or failure.

Authors explore the feasibility of utilizing the PPO, a
cutting-edge DRL algorithm for continuous control tasks, to
address the challenge of effective path planning that caters
to the two primary objectives of path following and collision
avoidance (COLAV), essential for ensuring the safety and
dependability of autonomous surface vehicles (ASV) [29]. The
AI agent is trained and evaluated in a complex, stochastically
generated simulation environment employing the OpenAI gym
Python toolbox equipped with several rangefinder sensors for
obstacle detection. The agent has real-time visibility into its
own reward function, which enables it to adapt its guid-
ance strategy dynamically. The trained agent achieves an
episodic success rate of almost 100 percent, varying from path-
adherence to obstacle avoidance.

The application of deep neural network-based systems has

become a state-of-the-art approach in various robotics tasks.
However, utilizing these systems in safety-critical areas can be
precarious in the absence of explicit network robustness guar-
antees [22] [23]. Small changes in sensor inputs (due to noise
or adversarial situations) can cause network-based decisions to
change, as demonstrated by an autonomous car swerving into
another lane. To mitigate the risks posed by adversarial attacks,
various defensive algorithms have been developed, including
those that provide formal robustness guarantees. In the study
[30], certified adversarial robustness research is utilized to
develop an online DRL method that is certifiably robust. The
proposed defense mechanism calculates lower bounds on state-
action values to detect and select a resilient action in case
of worst-case input divergence caused by possible adversaries
or noise. Additionally, the resulting policy is accompanied
by a certificate of solution quality, despite the certifier’s lack
of knowledge about the real state and optimal action due to
disturbances. The study provides new performance guarantees,
extensions to other RL algorithms, aggregated results across
multiple scenarios, an extension into scenarios with adversarial
behavior, comparisons with a more computationally expensive
method, and visualizations that provide intuition about the
robustness algorithm [31] [32].

In Table I, the existing literature is comprehensively sum-
marized. They must guarantee that DRL-trained robots are
robust in order for them to function alongside humans in actual
circumstances. Because the current world is so diverse, and
human behaviour frequently changes in reaction to agent de-
ployment, the agent will almost certainly encounter scenarios
that he or she has never encountered before. This creates an
assessment challenge: how can authors successfully measure
robustness if they can’t use the average training or validation
reward as a metric? Unit testing in software engineering is
a source of inspiration for them. In their paper [34], the
authors propose that when creating AI agents that interact
with people, designers should consider potential edge cases in
partner behavior, conceivable states encountered, and construct
tests to guarantee that the agent’s behaviour is appropriate in
these instances. This technique is used to create a suite of unit
tests for the Overcooked-AI environment, which is then used to
assess three ideas for enhancing robustness. Authors discover
that using the test suite gives them a lot of information about
the consequences of these proposals that they couldn’t get by
just looking at the average validation reward.

III. JUSTIFICATION OF THE PROPOSED MODEL

It would be naive to assert that MAS should be em-
ployed in all complex system designs. There are certain cases
when it is especially suited, as with any beneficial strategy,
and others where it is not.Multi-Agent Systems (MAS) have
numerous real-world applications, including but not limited
to traffic control, task distribution, ant colonies, autonomous
cars, and drones. A hard-coded agent cannot operate well
in a high-dimensional environment due to the complexity of
the environment. MADRL agents can find the best solutions
and policies. The policies of other agents are impacted by
changes in the environment when agents collaborate and
coordinate their actions. Failure of a learnt policy in safety-
critical applications might result in dangerous scenarios. The
purpose of this section is to emphasise the importance and
utility of MADRL in accordance with safety. In safety-critical
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applications, ensuring the robustness of policies is essential
when using RL to solve problems. To enhance the safety of
learned policies, control approaches from the control commu-
nity can be utilized. Safety-critical scenarios are not considered
in multi-agent settings. So, there is a need to develop a DRL-
based system that tackles the problem of safety in a multi-agent
environment.

IV. PROPOSED MODEL

A technique for approximating the safety robustness of
policies is proposed, which is based on the system architecture
of robust control, safe states (i.e., non-error states [35]), and
statistical analysis. The safety robustness is approximated by
calculating the ratio of the number of safe episodes to the
total number of episodes, which can be used as an indicator
to evaluate policy robustness from a safety perspective. This
model uses curriculum learning for the randomization of the
environment and the better performance of agents. Agents
start their learning with easy tasks and then move to the
difficult ones. We use PPO to analyze the visual observations
as well as vector observations. By using visual and vector
observations, agents communicate with each other. In order
to train our model, we employ a 4-dimensional action space
in the environment. CNN is the neural network used by PPO
(a fully linked neural network).

The environment is sensed by the agent’s sensors, which
are subsequently passed on to the first layer of the neural
network. The activation function is used here before moving
on to the next layer. Similarly, the agent receives the output
after using the activation function. The agent receives this
output and estimates his action based on that output. The agent
receives a positive reward if it takes the correct action, while
a negative reward is given if it takes the wrong action.

We also use CL (a method of training a machine learning
model that gradually introduces more challenging components
of a problem such that the model is constantly optimally
challenged) for training purposes also.

A. Proposed Method of DRL

When agents interact with the environment, there are a
number of observations made by them. According to obser-
vations, an agent must follow some policy and, as a result,
must take action [28]. By taking that action, the agent makes
different changes in the environment. Changes may be positive
(perform the best action to tackle the task) or may be negative.
(perform bad actions, exploit the task or environment). After
performing an action, the agent moves to another state. The
agent again observes the environment and follows another
policy to gain the optimal policy for that task.

We employ the PPO algorithm for training in our multi-
agent settings, and by combining it with CL, we can expand
the training process to a large number of agents. The learning
environment is entirely cooperative, and each agent possesses
only basic knowledge of the surroundings. The goal of all
agents is to maximize the total discounted reward by working
together. The following is a description of a tuple:

(N,S,Ai, Zi, C,R,O)

N denotes the total number of agents in the system, S rep-
resents the number of possible states that the system can be
in, and Ai denotes the number of possible actions that agent
i can take. C and R represent the joint transition and reward
functions, respectively. O represents the number of possible
observations that can be made, and Zi represents the collection
of observations that agent i has access to.

To make the training more stable, each agent only knows
limited knowledge about the environment in a single state Sc.
As a result, agents must recall some information from prior
observations.

The utilization of the PPO algorithm was employed to im-
prove training with limited rewards. This method involves the
use of a conditional statement to differentiate between actions
and observations derived from the agent’s demonstration. The
condition assesses whether the new actions and observations
are similar to those in the demonstration. The agents are
rewarded for their efforts. We may also take advantage of
local incentives using PPO. This investigation employs an
extrinsic reward signal as a local reward signal, and utilizes
a combination of CL with RL and PPO to expedite policy
convergence. Fig. 1 is the demonstration of the proposed
system model.

Fig. 1. Block diagram of the proposed system model [33].

In Fig. 2, obtained from [33], you can see that agents
observe visual and vector observations from the environment
and move these inputs (observations) to the convolutional
layer. The agent receives the outputs of the results. According
to these outputs, agents take action in the environment.

The mentioned techniques are implemented for each agent,
which operate by collaborating and cooperating with other
agents. The agents interact with the learning environment
through cooperative actions, and as a result, they receive a
local cumulative reward.

This allows agents to quickly imitate demonstrated be-
haviour, which speeds up the training process. The CL tech-

www.ijacsa.thesai.org 852 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

Fig. 2. Layered approach in the proposed system model.

nique guarantees that the policies are converged quickly. The
algorithm provides the pseudo-code for the suggested model.

B. Components of the Proposed Model

Different components of proposed model are as under:

1) Learning environment: In many aspects of life, robots
play an important role. Recently, robots have been used in
digital factories [36], as well as in hazardous locations such
as fires, storms, and landslides. Robots can carry, move, and
lift large things from one location to another, making it easier
to provide goods to people who are in risky or challenging
situations. Robots operate more effectively and quickly than
people in difficult situations, reducing human risk. These
well-trained agents have also been utilised in the marine
environment to rescue individuals and apprehend smugglers.
As a result, we decided to learn in a maritime setting. This
paper looks at a real-world situation in which agents try to
save people by getting around problems and working together.

The learning environment employed in this study is de-
picted in Fig. 3. Agents in a marine setting navigate the goal
(people in need of rescue) and navigate to them while avoiding
obstacles. For example, the environment contains obstacles in
the form of heavy rocks, and the agents have the ability to
move in four directions: left, right, forward, and backward.
Agents go towards their target by doing these activities and
avoiding obstacles through navigation and coordination with
other agents.

2) Agents: In Unity 3D games, objects are used as agents
in the learning environment. The agent is a boat that is used to
move in a marine environment and to rescue individuals who
are drowning. In Fig. 4 agent is demonstrated as “ship”.

In the learning environment, agents generate states and
execute actions from a set of predefined actions such as left,
right, forward, and backward, thereby transitioning from one

Fig. 3. A scene of the learning environment for agents.

Fig. 4. A scene of an agent navigating in the given environment.

state, denoted by St to the next state, denoted by St+1. Each
agent is associated with a single brain that guides the agent
on its next course of action.

C. Training Process Algorithm

In Algorithm 1, it is observed that the process starts from
episodes. Here we apply a “For-loop” that initiates the training
process from the first episode.
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Algorithm 1 Training Process

For episodes = 1 to n
{
Initialize the Environment
Randomize the Environment
For Time-steps = 1 to 5000
{
For each Agent ai < 4
Agent ai observe Environment
Calculate distance of every agent
{
if (Distance <= 50 meters of Agent ai AND Agent aj)
{
Broadcast message to Agent aj
}
if (Goal of Agent ai AND Agent aj == same)
{
Agent with minimum distance from goal will take action.
}
}
Calculate Reward.
}
Mean Reward = Actions with positive reward / Total Reward
if (Mean Reward > 0)
{
Safe Episode
}
}
Safety Robustness of Current Policy = total Safe Episodes
/ total Episodes

Episode and then moves on to the next to meet the desired
number of episodes. The environment is initialised in each
episode. After initialization, the environment is randomized.
Because the examples of dynamic environments are considered
so, there is a need to observe all the environments. After
randomizing the environment, another “For-loop” is applied
inside the first for-loop. This for-loop starts from the first time-
step to the 5000 time-steps of each episode. Within this loop,
there is an additional nested “for-loop” that iterates through
each agent in the environment.

In each time-step, every agent observes the environment
and calculates their distance from other agents. Here is the
if statement. If the goals of both agents are common, then
the agent having the minimum distance from the goal will
take action and collect a reward while the other agent will
select the other target/goal. If both agents have different goals,
both agents will perform or take their actions according to
their targets. When 1 episode is completed, the mean reward
will be calculated by dividing the total positive reward by the
total reward. The following “if condition” checks if the mean
reward is above zero. If this condition is satisfied, the episode is
considered safe. After all episodes are completed, the policy’s
safety and robustness are determined by calculating the ratio
of safe episodes to total episodes.

D. Flow Chart

The flow chart of our proposed model is shown in Fig. 5. It
is observed that in each episode, the environment is initialized.

Because after initialization, the environment is randomized.
because the examples of dynamic environments are considered.
Here is a loop. If time steps are completed, the process will
start from another episode. If the time-steps are pending,
then in each time-step, every agent observes the environment.
According to that observation, agents calculate their distance
from other agents. After calculating the distance, agents having
a minimum distance of 50 metres broadcast their goals. If
the goals of both agents are common then the agent having
minimum distance from the goal will take action and collect
reward and the other agent will select the other target/goal. If
both agents have different goals, both agents will perform their
actions to meet their target. After completing one episode, the
mean reward can be calculated by dividing the total positive
rewards obtained during the episode by the total number of
rewards received. Completion of all episodes results in the
safety and robustness of the current policy.

Fig. 5. The flow chart of the proposed system.

E. Reward Function

To promote desirable behavior, a local incentive signal
is utilized to encourage consistency. An effective incentive
system ensures faster convergence of the learning process in
single-agent contexts than ever before [37]. The entire reward
for a single agent may be calculated using the equation below:

r = (rhp + rhc)− (rcla + rclo + rcldo)

where, r is the sum of rewards given to each agent, where
rhp is the reward for rescuing drowning humans, rhc is the
reward for rescuing all humans in the environment, rclo is
the negative reward for colliding with an obstacle, rcla is the
negative reward for colliding with other agents and (r cldo) is
the negative reward for colliding with some dynamic or sudden
obstacle. rhp can be calculated using the following equation:
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rhp =

{
rp if d = 0

0 Otherwise

where, rp is the reward for rescuing people and ‘d’ repre-
sents the distance between the agent and the drowning person.

Moreover, we can calculate reward rc using the following
equation:

rhc =

{
rc if h = 0

0 Otherwise

where, hc is the reward of rescuing all drowning people,
and h is the number of drowned people remaining in the sea.

Furthermore, to calculate the rcla reward, we can use the
following equation:

rcla =

{
ra if d = 0

0 Otherwise

the reward when an agent collides with another agent is
denoted by ra and d is the distance between the two agents.

Moreover, to calculate the rclo reward, we present the
following equation:

rclo =

{
ro if d = 0

0 Otherwise

where, ro is the reward given to the agent on collision with
static obstacles, and d is the distance between the agent and
the static obstacle.

Lastly, we present the equation to calculate the rcldo
reward.

rcldo =

{
rdo if d = 0

0 Otherwise

where rdo is the reward of an agent’s collision with a moving
drowning human or any dynamic obstacle, and d is the distance
between the agent and the drowning human or dynamic
obstacle.

The table below illustrates the awards each agent received
for various occurrences. We implemented a penalty of -0.1
for each agent when they collided with another agent in the
environment. This approach addresses the issue of inter-agent
collision. We also assign a value of -0.1 when the agent
collides with the seashore or any other obstruction. The agent
earns-0.1 reward if it collides with any drowning human in the
surroundings. An agent who successfully rescues a drowning
individual receives a +0.3 bonus. Furthermore, the agents
will gain a +0.5 bonus if they are successful in rescuing all
drowning people in the surroundings.

V. IMPLEMENTATION

This section describes how we will put the suggested
approach into practice. We also go through the tools that
were utilised to carry out the implementation. This paper
also investigates various behavioral characteristics and training
parameters.

A. Unity 3D

Unity Technologies is the developer of the cross-platform
game engine called Unity, which was first announced and
released as a game engine for Mac OS X in June 2005 at
Apple Inc.’s Worldwide Developers Conference. Over time, the
engine has been enhanced to support various platforms such as
PC, mobile, console, and virtual reality. It allows developers
to create 3D and 2D games, interactive simulations [38], and
other experiences.

Gazebo is also a three-dimensional dynamic robot environ-
ment simulator that can be used to test algorithms and robot
designs. It runs regression tests and uses realistic scenarios
to teach AI systems. The speed of the Gazebo Simulator has
never been a strong point. Simulating a 30-minute event takes
6 hours. Multiple instances operating at the same time is tough.
We can make it happen, but there are still difficulties like
non-accuracy and an unknown amount of effort required to
coordinate among these various instances.

Unity [39], on the other hand, is far more efficient at run-
ning several simulations on a single system and coordinating
learning across all instances. Unity simulations may be cranked
up to a hundred times faster than real time.

B. ML-Agents Toolkit

The toolbox includes numerous components for imple-
menting RL, such as Brain, Academy, and Agent. Each agent
is connected to and controlled by a brain component. Dif-
ferent environmental factors are learned using the Academy
component. Additionally, it provides a link between the brain
and Python Tensorflow. Fig. 6 shows the basic structure and
overview of the ML-Agents toolkit [40].

C. Training Parameters

The learning environment’s working area is 200×200
square feet. The functional area of the learning environment
contains a variety of objects, including rocks, boats, humans,
and agents. The combination of moving individuals and robots
was utilized to enhance the realism and dynamism of the
learning environment, enabling the agents to be trained in such
a setting.

TABLE II. TRAINING PARAMETERS USED IN THE PROPOSED MODEL

Parameters Values
Batch size 1024
Buffer size 16384

Learning rate 0.0003
Max steps for each episode 5000

Number of epoch 3
Number 0f layers 2

Gamma in extrinsic Reward signal 0.99
Behavior cloning strength 0.5

www.ijacsa.thesai.org 855 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

Fig. 6. ML-Agents toolkit used in the proposed model.

Table II displays some important training parameters em-
ployed to train the agents utilizing the proposed model. Based
on empirical testing, a batch size of 1024 is deemed appropri-
ate. Additionally, the buffer size parameter must be larger than
the batch size. The buffer size was set to 16384 by default.
Local RL reward signals are used in the proposed model.

TABLE III. TRAINING PARAMETERS USED FOR POLICY 1

Parameters Values
Batch size 1024
Buffer size 16384

Learning rate 0.0003
Max steps for each episode 5000

Number of epoch 3
Number 0f layers 2

Gamma in extrinsic Reward signal 0.99
Time horizon 128
Hidden Units 512

The Table III provides some key training parameters for
policy 1, which were utilized to train the agents. The batch
size for the PPO algorithm has been adjusted to 1024. By
default, we set the buffer size parameter to 16384, which is
greater than the batch size of 1024. For policy 1, we set the
temporal horizon value to 128 and the hidden units value to
512.

The Table IV provides some key training parameters for
policy 2, which were utilised to train the agents. The batch
size for the SAC algorithm has been adjusted to 1024. By
default, we set the buffer size parameter to 16384, which is
greater than the batch size of 1024. For the SAC algorithm,
we set the temporal horizon to 128 and the hidden unit value
to 512. Initial buffer steps of 6000 are used. Tua is used at
a value of 0.01. For policy 2, we employ 10.0 steps for each
update.

TABLE IV. TRAINING PARAMETERS USED FOR POLICY 2

Parameters Values
Batch size 1024
Buffer size 16384

Learning rate 0.0003
Max steps for each episode 5000

Number of epoch 3
Number 0f layers 2

Gamma in extrinsic Reward signal 0.99
Time horizon 128
Hidden Units 512

Tau 0.01
Buffer initial steps 6000
Steps per update 10.0

VI. EXPERIMENTS AND RESULTS

With the aforesaid configuration, Algorithm 1 is used to
evaluate the safety robustness of the three approaches for
managing USVs in terms of obstacle avoidance and navigation
to their destination. Fig. 7 illustrates the orientation of the
USVs controlled by the three policies (p1, p2, and p3) towards
a goal orientation when the maximum uncertainty of action
and state is 0.1. It can be observed that all three policies
successfully maintain the USVs in safe states.

Fig. 7. Orientation of the USVs controlled by the three policies with action
uncertainty value 0.1.

The y-axis depicts the control of USVs, while the x-axis
represents the number of time-steps.

The target is shown by a blue line, the policy-1 is indicated
by a red line, the policy-2 is indicated by a grey line, and the
policy-3 is indicated by a yellow line.

The proposed model’s policy is policy-3, and it can be
observed that policy-3 is closer to the aim than the other
policies. It can be seen from Fig. 7, the policy followed by
our proposed model is more resilient in terms of USV’s control
than the other policies.

When the maximum magnitudes of the uncertainties of
action and state are 0.2, Fig. 8 shows the results.
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Fig. 8. USV control with action uncertainty of 0.2.

Fig. 9. USV control with action uncertainty of 0.5.

The USV control is represented on the y-axis, while the
number of time-steps is represented on the x-axis.

The plot displays the target as a blue line, while the policy-
1, policy-2, and policy-3 are represented by a red, grey, and
yellow line, respectively.

The proposed model’s policy is policy-3, and it can be
observed that policy-3 is closer to the aim than the other
policies.

It can be seen from Fig. 8, the policy followed by our
proposed model is more resilient in terms of USV’s control
than the other policies.

Fig. 10. Value loss against the number of steps in 3 different policies.

Fig. 11. Value estimate against the number of steps in 3 different policies.

Fig. 9 illustrates the orientation of USVs controlled by the
three policies (p1, p2, and p3) to a goal orientation, when the
maximum magnitudes of the uncertainty of action and state
are 0.5. All three policies were able to maintain the USVs in
safe states.

The y-axis depicts the control of USVs, while the x-axis
represents the number of time-steps.

The blue line represents the target, while the red, grey,
and yellow lines represent policy-1, policy-2, and policy-3,
respectively.

The episode is stopped at the 40th step when the USV is
controlled by p1 since it is out of safe condition. The USV
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can be kept safe by policies p2 and p3.

As a result, the three policies have varying degrees of
ability to keep the USV in a safe state. Before the policy with
the best safety robustness, it is crucial to evaluate the safety
robustness of the three policies using Algorithm 1.

Fig. 12. Policy loss against the number of steps in 3 different policies.

In Fig. 10, the y-axis represents the value loss, while
the x-axis indicates the number of time-steps. The blue line
represents policy-1, the orange line represents policy-2, and the
grey line represents policy-3. The graph indicates that policy-3
has an intermediate value loss between policy-1 and policy-2,
suggesting that policy-3 has an average value loss.

Fig. 13. Reward against the number of steps in 3 different policies.

Fig. 12 plots the value loss against the number of time-

steps, where the y-axis represents the value loss, and the x-
axis represents the time-steps. The performance of the three
policies (i.e., policy-1, policy-2, and policy-3) is shown in blue,
orange, and grey lines, respectively. The figure demonstrates
that policy-3 has the lowest value loss among the three policies.

Fig. 14. Safety robustness vs. Uncertainty in 3 different policies.

The plot in Fig. 11 shows the value loss on the y-axis
against the number of time-steps on the x-axis. The three
policies, Policy 1, Policy 2, and Policy 3, are represented by
blue, orange, and grey lines, respectively. It is evident from
the plot that Policy 3 has the highest policy loss among the
three.

The graph in Fig. 13 illustrates the rewards obtained by all
policies, where Policy 1 is represented by a blue line, Policy 2
by an orange line, and Policy 3 by a grey line. The reward is
a measure of policy efficiency, and the policy with the highest
reward indicates better efficiency. From the graph, it is evident
that Policy 2 gains more rewards compared to Policy 1, and
Policy 3 gains more rewards than both Policy 1 and Policy 2.
The proposed model adopts Policy 3, which is demonstrated
to be the most efficient among the three policies.

In Fig. 14, the y-axis represents the reward gained by all
policies, while the x-axis indicates the number of episodes. The
blue line represents Policy-1, the orange line represents Policy-
2, and the grey line represents Policy-3. The safety robustness
of a policy indicates its ability to keep the system in a safe
state.

Efficiency of a model is indicated by its safety robustness,
and the policy that has maximum safety robustness is consid-
ered the most efficient. In Fig. 14, it can be observed that the
proposed model follows policy 3, which has the highest safety
robustness among all policies.

VII. CONCLUSIONS

In this work, we investigated a DRL based scenario which
use multi-agents. These agents have been assigned some tasks
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related to real world scenario. In our case, a submarine
scenario was considered and the task of the agents is to safe
the drowning person. We extended our previously published
work by adding more experiments such as policy loss, reward
function and the safety robustness. While the training of agents
using deep reinforcement learning in real-world scenarios is
very important, the safety of agents and other human beings is
also very important. It is very important to learn about a policy
that is robust in the context of safety. Several previous works in
single agent settings focused on the safety of agents and other
aspects of their training environment. But no work was done on
the robust safety of agents in multi-agent settings. This work is
focused on the safety and robustness of policies in multi-agent
settings. A model is proposed that ensures the safety of agents
and other valuable entities in the environment. The proposed
model uses PPO algorithm to train the agents. Curriculum
learning is used to teach the agent about safety and find a
robust policy from easy to difficult level. A sea environment is
considered in this work where some USVs are rescuing human
beings that have been dropped into the sea. An algorithm is
proposed in this research for the training of agents and finds
a robust policy in the context of safety. To evaluate the safety
robustness of policies, a few parameters are evaluated in this
work. Safety robustness with respect to the number of safe
states and control of USVs for the target with respect to the
number of steps is evaluated, which shows the robustness of
policy in safety. The policy followed by the proposed model is
compared with the other two policies. Through experimental
evaluation, it has been observed that the proposed model
outperforms other policies. Furthermore, the performance of
the proposed model has been verified by evaluating parameters
such as mean reward, policy loss, policy estimate, and value
loss. The experimental results have demonstrated that the
proposed model exhibits better performance in multi-agent
scenarios.

In the future, we aim to test our model with a higher
number of agents in more complex scenarios. For example,
it is vital to investigate how wind and its speed can effect the
safety and robustness of the agents in the DRL scenario.
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