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Abstract—The efficient management of campus infrastruc-
ture presents a complex spatiotemporal forecasting challenge
characterized by dynamic interdependencies between physical
assets. Traditional models fail to capture these intricate rela-
tionships as they treat buildings as independent entities or rely
on static correlation structures. This paper introduces a novel
Spatiotemporal Graph Neural Network (ST-GNN) framework
that reframes infrastructure forecasting as a relational reasoning
task, enabling dynamic inference of campus wide interdepen-
dencies. Our approach integrates Graph Attention Networks
(GAT) to learn time-varying spatial dependencies and Gated
Temporal Convolutional Networks (TCNs) to capture multi-scale
temporal patterns. A key innovation is our context-sensitive
graph construction method that incorporates physical proximity,
functional similarity, and human mobility data to create a
holistic representation of campus dynamics. Evaluated on a real-
world multimodal dataset comprising 24 months of energy and
occupancy data from 50 campus buildings, the proposed model
demonstrates superior performance, achieving a 16.3% reduction
in mean absolute error compared to the strongest baseline.
Comprehensive ablation studies confirm the critical contribution
of each architectural component, while qualitative analysis reveals
the model’s capacity to provide interpretable insights into campus
operational patterns. This work provides a powerful framework
for intelligent campus management, enabling precise resource
allocation, energy optimization, and sustainable operational plan-
ning through advanced relational reasoning capabilities.
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I. INTRODUCTION

The proliferation of the Internet of Things (IoT) has
transformed university campuses into living laboratories for
cyber physical systems, generating vast volumes of spatiotem-
poral data from interconnected assets like academic buildings,
libraries, and utility networks [1]. The efficient management
of these resources is paramount for achieving sustainability
goals, optimizing operational costs, and enhancing the overall
user experience. Central to this challenge is the ability to
accurately forecast key utilization metrics, such as energy load
and occupancy, which are influenced by a complex interplay
of factors: time of day, day of the week, academic calendars,
and, crucially, the functional and spatial relationships between
different campus locations [2].

The field of predictive analytics has evolved from clas-
sical statistical models (e.g., ARIMA) to machine learning
techniques (e.g., SVR, XGBoost) and modern deep learning
architectures like Long Short Term Memory (LSTM) networks.
While powerful for sequence modeling, these approaches

typically treat the time series of each asset in isolation,
fundamentally ignoring the rich relational graph structure that
defines a campus [3]. This represents a significant limitation,
as the energy load of a lecture hall intrinsically influences that
of a nearby cafeteria, and occupancy in a library is affected
by class schedules across campus. Convolutional Neural Net-
works (CNNs) applied to spatial data assume a Euclidean grid
structure, an invalid premise for the irregular, non-Euclidean
layout of campus infrastructure [4].

Graph Neural Networks (GNNs) emerged as a powerful
paradigm for learning from relational data [5]. Spatiotemporal
GNNs (ST-GNNs), which combine GNNs with temporal mod-
els like RNNs or Temporal CNNs, have subsequently become
the de facto standard in domains like traffic forecasting [6],
[7] and urban computing [8]. These models operate on the
core principle that the state of a node (e.g., a sensor) is
influenced by its own historical states and the current states
of its neighbors within a graph. However, their application to
the unique ecosystem of a university campus remains nascent.
Most existing ST-GNNs rely on static graph structures based
on physical distance or fixed network connectivity [7], which
fail to capture the dynamic and semantic nature of relationships
in a campus environment. For instance, the correlation between
a specific classroom and a coffee shop is not static but peaks
during the break between lectures.

This work argues that overcoming this limitation requires
a shift in perspective: from spatiotemporal forecasting to
dynamic context-aware graph modeling. The task is not just to
predict a value but for the AI to understand, infer, and leverage
the dynamic relationships between entities. We propose that an
AI system managing campus infrastructure must automatically
reason about which assets are functionally related at any
given time and to what degree. While our approach uses
attention mechanisms to learn dynamic weights rather than
explicit symbolic reasoning, it aligns with broader concepts of
relational reasoning by enabling the model to adaptively focus
on the most relevant relationships in the campus ecosystem.

A. Problem Statement

The core problem addressed in this work is the short-
term predictive forecasting of utilization metrics (e.g., energy
consumption Xt

energy, occupancy Xt
occ) across a university

campus’s infrastructure network, formulated as a relational
reasoning task on a graph.

Formally, the campus infrastructure is represented as a
graph G = (V, E ,A), where V is the set of N nodes (each node
vi ∈ V represents a distinct physical asset, e.g., a building),
E is the set of edges representing potential relationships, and
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A ∈ RN×N is a weighted adjacency matrix quantifying rela-
tionship strength. Each node vi has a feature vector xt

i ∈ RF

at time t.

Given a historical window of T time steps, the observed
graph signals X = (Xt−T ,Xt−T+1, . . . ,Xt−1) ∈ RT×N×F ,
the challenge is to learn a function f(·) that maps the historical
data and the graph structure to future graph [9] signals for the
next T ′ steps:

[Xt−T , . . . ,Xt−1;G] f−→ [X̂t, X̂t+1, . . . , X̂t+T ′−1] (1)

The specific limitations of existing methods that this work
tackles are:

• Inability to model dynamic relational dependencies:
Most models use a static graph A [7], failing to
adapt to the time-varying nature of influences between
campus assets (e.g., a lecture hall’s impact on a
cafeteria changes throughout the day).

• Oversimplified graph construction: Edges are typi-
cally based solely on physical distance [6], ignoring
stronger, more predictive functional relationships (e.g.,
two administratively similar buildings with correlated
schedules) and human mobility patterns.

• Lack of a unified relational reasoning framework:
Current applications are siloed (e.g., for traffic OR
energy) [8], lacking a general framework that can rea-
son over multimodal campus data (energy, occupancy)
emanating from the same underlying social system.

B. Research Objectives and Contributions

To address the above problems, this paper formulates the
following research objectives (ROs):

RO 1: To design a novel ST-GNN architecture that dy-
namically captures the complex, time-evolving
spatiotemporal dependencies in campus infras-
tructure data for relational reasoning.

RO 2: To develop a context-aware graph construction
method that accurately represents a heterogeneous
campus by integrating multimodal data (physical
distance, functional similarity, human mobility) to
infer relational edges.

RO 3: To empirically validate the proposed model
against a comprehensive suite of state-of-the-art
benchmarks on a real-world, multimodal campus
dataset, demonstrating superior [10] performance
in forecasting accuracy.

RO 4: To demonstrate the model’s practical utility and
interpretability by analyzing its learned relational
patterns and their implications for campus man-
agement decisions.

The key contributions of this work, aligned with these
objectives, are:

• A novel ST-GNN framework that integrates Graph
Attention Network (GAT) for dynamic spatial mod-
eling and Gated Temporal Convolutional Networks

(TCNs) for efficient multi-scale temporal modeling,
with careful design justification for the TCN-GAT
ordering.

• A principled, interpretable methodology for construct-
ing a context-aware graph adjacency matrix A that
fuses physical proximity, functional similarity, and
human mobility data through a weighted fusion ap-
proach.

• Comprehensive empirical evaluation including com-
parison with recent state-of-the-art methods (2022-
2024) and rigorous statistical significance testing.

• Detailed analysis of model scalability, computational
efficiency, and parameter sensitivity, addressing prac-
tical deployment considerations.

• Qualitative analysis demonstrating the model’s ability
to provide interpretable insights into campus dynamics
through its learned attention weights.

II. LITERATURE REVIEW

The pursuit of accurate predictive models for complex
spatiotemporal systems has evolved significantly, traversing
statistical, machine learning, and deep learning eras. The appli-
cation of these models to infrastructure management represents
a challenging frontier, necessitating architectures capable of
handling non-Euclidean relationships and dynamic temporal
patterns. This review synthesizes the relevant body of work
across three key areas: the foundational concepts of Graph
Neural Networks (GNNs), their extension into spatiotemporal
domains, and their specific applications in IoT and smart envi-
ronments analogous to a campus setting. The review concludes
by explicitly identifying the critical research gap that this work
aims to address.

A. Foundations of Graph Neural Networks

Traditional deep learning architectures, notably Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs), excel at processing data with underlying Eu-
clidean structures, such as images and sequential data [3].
However, their application becomes non-trivial when faced
with non-Euclidean, irregularly structured data, such as the
relational topology of a graph representing interconnected
assets. Graph Neural Networks (GNNs) emerged as a powerful
framework to overcome this fundamental limitation by defining
convolution and feature propagation operations directly atop
graph structures.

The foundational work by [5] introduced the core concept
of iteratively propagating and aggregating feature information
from a node’s neighbors to learn powerful node represen-
tations. This concept was later extended and popularized
through two primary lineages: spectral-based and spatial-
based approaches. Spectral-based methods, leveraging graph
Fourier transforms and the convolution theorem, provided
a mathematical framework for graph convolution but were
often computationally intensive and lacked spatial localization
[11]. A significant breakthrough came with the development
of spatial-based methods, which define convolution opera-
tions based on a node’s immediate spatial connections. The
Graph Convolutional Network (GCN) by [11] simplified earlier
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spectral methods with a localized first-order approximation,
achieving strong performance with remarkable efficiency and
becoming a cornerstone model.

A pivotal advancement in spatial modeling was the in-
troduction of the Graph Attention Network (GAT) by [12].
The GAT architecture employs a self-attention mechanism to
compute adaptive, non-uniform weights for each neighbor dur-
ing feature aggregation. This allows the model to dynamically
prioritize the most influential neighboring nodes, effectively
learning the relational context without relying on a pre-defined,
static graph structure. This capability to infer dynamic relation-
ships, rather than assume static ones, marks a significant step
towards genuine relational reasoning within graph-based AI.
For comprehensive overviews of the evolution and taxonomy
of GNNs, the surveys by [3] and [4] provide extensive details
on the myriad of methods and their applications.

B. Spatiotemporal Graph Neural Networks

While GNNs effectively model spatial dependencies, most
real-world systems—from traffic networks to infrastructure
grids—generate data that is inherently both spatial and tempo-
ral. Spatiotemporal Graph Neural Networks (ST-GNNs) were
developed to jointly capture these two intertwined facets. These
models typically integrate a component for spatial dependency
modeling (e.g., a GNN) with a component for temporal depen-
dency modeling (e.g., an RNN or a Temporal Convolutional
Network).

Early and influential approaches combined GNNs with
recurrent architectures. The Diffusion Convolutional Recur-
rent Neural Network (DCRNN) by [6] modeled spatial de-
pendencies using bidirectional random walks [13] (diffusion
convolution) on the graph and temporal dependencies using
an encoder-decoder architecture with gated recurrent units
(GRUs). Similarly, the Temporal Graph Convolutional Net-
work (T-GCN) [14] [7] integrated a GCN layer with a GRU
cell to capture complex spatial and temporal correlations
simultaneously. While effective, RNN-based models can be
computationally intensive due to their sequential nature and
are susceptible to gradient vanishing problems over very long
sequences, limiting their ability to capture long-range temporal
dependencies.

Recent Advances (2022-2024), more recent works have
focused on adaptive graph structures and advanced tempo-
ral modeling. Proposed adaptive graph learning mechanisms
that dynamically adjust graph structures based on input data.
Introduced hierarchical spatiotemporal modeling for better
capturing multi-scale patterns. Explored frequency-domain ap-
proaches for long-range dependency modeling. These recent
advances represent the current state-of-the-art against which
our method must be compared.

A critical and often overlooked challenge in ST-GNNs is
the definition of the graph structure itself. While many works
in traffic forecasting use a pre-defined, static graph based
on road connectivity [7], [6], this assumption is insufficient
for domains where relationships are dynamic, semantic, or
not solely defined by physical connections. The attention
mechanism inherent in GATs provides a potent solution to
this by allowing the model to learn dynamic adjacency weights
implicitly [15]. This capability to adapt spatial dependencies

based on temporal context is crucial for modeling the non-
static influences present in environments like a university
campus.

C. Applications in IoT, Smart Environments, and Predictive
Maintenance

The theoretical advancements in ST-GNNs have found
compelling applications in the realm of the Internet of Things
(IoT) and smart environments, which share strong conceptual
parallels with the campus infrastructure problem domain.

In smart city and urban computing, ST-GNNs have become
the de facto standard for tasks such as traffic forecasting [6],
[16], crowd flow prediction [17], and air quality inference [8].
These applications demonstrate the strength of ST-GNNs in
modeling city-wide dynamics where entities (sensors, regions)
are interconnected. The work by [8] specifically surveys these
applications, highlighting the critical translation of spatial and
temporal dependencies into meaningful graph structures.

Within smart grids and energy systems, ST-GNNs are
deployed for tasks like load forecasting [2], electricity theft
detection [18], and anomaly detection [19]. For instance, [2]
utilized dynamic GCNs for building energy prediction, empiri-
cally showing that modeling inter-building relationships yields
significant improvements in accuracy over models that treat
buildings as independent entities. Similarly, [19] developed
an explainable ST-GNN framework for anomaly detection in
smart grids, enhancing the trustworthiness and operational
utility of the predictions for human experts.

The field of predictive maintenance in industrial IoT (IIoT)
is another highly relevant area. Here, ST-GNNs are used to
predict equipment failures by modeling sensors on a machine
as nodes in a graph whose edges represent functional or
physical linkages. [20] applied an ST-GNN for predictive
maintenance on industrial equipment, while [21] focused on
anomaly detection in IIoT networks, demonstrating the model’s
robustness in noisy industrial settings. These works are concep-
tually analogous to predicting “failures” or “stress” in campus
infrastructure, such as an overloaded electrical transformer or
an over-occupied study space.

D. Identification of the Research Gap

The existing body of literature, while impressive and foun-
dational, reveals a distinct and unmet need that this research is
designed to address. The successful application of ST-GNNs
in traffic networks [6], smart grids [2], and industrial settings
[20] proves their efficacy for spatiotemporal forecasting in
networked systems. However, a critical gap exists in their ap-
plication to the unique, heterogeneous, and dynamic ecosystem
of a university campus.

Firstly, prior work largely relies on homogeneous and static
graph structures. Traffic networks use static road connectivity
[7], and power grids use fixed physical connections [19]. A
campus graph, in contrast, is inherently heterogeneous (con-
taining nodes of vastly different types: classrooms, dormitories,
libraries, substations) and dynamic. The influence between
nodes is not static; a lecture hall’s impact on a cafeteria’s
load is transient, peaking sharply around class dismissal times.
While models like GAT [12] offer a mechanism to learn
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dynamic weights, their application to model these specific,
semantically-rich, and context-dependent campus dynamics
remains largely unexplored and constitutes a significant gap.

Secondly, there is a pronounced gap in context-aware graph
construction. Most studies take the graph structure as a given
or derive it from a single data source (e.g., physical distance).
In a campus setting, the graph cannot be assumed; it must
be constructed from first principles to be meaningful. Edges
should represent not only physical proximity but also func-
tional similarity (e.g., two buildings hosting simultaneous large
lectures will have highly correlated energy loads regardless
of distance) and human mobility patterns (e.g., the flow of
students between a dormitory and a dining hall). The method
for constructing this multi-faceted, context-aware graph is a
novel research problem in itself, one that the current literature
does not adequately tackle for this specific domain [17].

Finally, there is a lack of a unified ST-GNN framework
validated on a holistic, real-world campus dataset. Existing
applications are siloed: models are built and evaluated for a
single metric, such as traffic OR energy OR occupancy. A
university campus generates multimodal data (energy, occu-
pancy, network load) from the same underlying system—the
movement and activities of people. A model that can leverage
this synergy to provide a unified view of campus infrastructure
utilization through relational reasoning, and be rigorously
validated on a real-world, multimodal dataset, is absent from
the current state-of-the-art [22].

Therefore, this paper bridges this gap by proposing a
novel ST-GNN framework specifically designed for the re-
lational reasoning tasks inherent in the campus environment.
It introduces a principled method for constructing a context-
aware graph that integrates multiple relationship types (spa-
tial, functional, social) and leverages a dynamic attention
mechanism to capture the non-static spatial dependencies that
define campus life. By validating this model on a real-world
dataset encompassing both energy and occupancy metrics,
this work extends the application frontier of ST-GNNs into
a new, critically important domain and provides a blueprint
for context-aware relational AI in cyber-physical systems.

III. RESEARCH METHODOLOGY

This section delineates the proposed methodological frame-
work for predictive campus infrastructure analytics through re-
lational reasoning. The architecture is meticulously designed to
model the complex, dynamic spatiotemporal dependencies in-
herent in campus data by moving beyond static correlations to
infer context-aware relationships. We commence by formally
defining the problem, followed by a detailed exposition of the
novel graph construction process. Subsequently, we dissect the
individual components of the proposed Spatiotemporal Graph
Neural Network (ST-GNN), elucidating the design choices
for spatial and temporal modeling. The section concludes
by specifying the training protocol and evaluation metrics,
ensuring reproducibility.

A. Problem Formulation

A university campus is conceptualized as a dynamic graph-
based system of interconnected assets, where the state of each
asset is influenced by its own history and its time-varying

relationships with others. Let the entire infrastructure network
be represented as a graph G = (V, E ,A), where:

• V denotes the set of N nodes. Each node vi ∈ V
represents a distinct physical asset (e.g., a building, a
substation).

• E signifies the set of edges. An edge eij ∈ E represents
a potential spatial, functional, or social relationship
between nodes vi and vj .

• A ∈ RN×N is a weighted adjacency matrix that
quantitatively defines the strength and nature of the
connections within E .

Each node vi has an observed feature vector at time t,
denoted as xt

i ∈ RF , which includes metrics such as energy
consumption (kWh) and occupancy count. The historical data
for all nodes over a sliding time window of length T is
represented as a tensor X = (Xt−T ,Xt−T+1, . . . ,Xt−1) ∈
RT×N×F .

The objective is to learn a non-linear mapping function f(·)
that leverages both the historical observations and the inferred
graph structure to perform multi-step forecasting of the future
graph signals for the next T ′ time steps:

[Xt−T , . . . ,Xt−1;G] f−→ [X̂t, X̂t+1, . . . , X̂t+T ′−1] (2)

Where X̂ represents the predicted values. The function
f must inherently perform relational reasoning to adapt the
influence weights in A based on the temporal context.

B. Context-Aware Graph Construction

A pivotal contribution of this work is the move beyond a
static, distance-based graph. We propose a novel strategy to
construct a context-aware adjacency matrix A that holistically
encapsulates multiple facets of campus dynamics. The final
graph is a normalized linear combination of three distinct,
semantically meaningful adjacency matrices:

A = α ·Adist + β ·Afunc + γ ·Amob (3)

where, α, β, and γ are tunable hyperparameters that control
the contribution of each relationship type, subject to α+ β +
γ = 1.

1) Spatial proximity graph (Adist): The spatial graph en-
codes the assumption that physically proximate assets are
likely to influence each other, e.g., due to shared electrical
circuits or HVAC systems. It is constructed based on the phys-
ical distance dij between assets vi and vj . A Gaussian kernel
is applied to transform distances into normalized connection
weights, ensuring that nearby nodes exert a stronger influence
[6]:

Adistij = exp

(
−
d2ij
σ2

)
(4)

where, σ is a standard deviation parameter controlling the
spatial spread of the influence.
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2) Functional similarity graph (Afunc): This graph captures
non-spatial functional relationships that may exist between dis-
tant nodes. We calculate the Pearson correlation coefficient ρij
between the historical time series (e.g., energy consumption) of
nodes vi and vj . Strong positive correlations indicate a func-
tional relationship (e.g., two lecture halls with synchronous
schedules will have correlated energy profiles):

Afuncij = max(0, ρij(Xi,Xj)) (5)

This ensures only positive correlations contribute to the
graph, filtering out inhibitory relationships which are less
common in this context.

3) Human mobility graph (Amob): To model the flow
of people, a primary driver of campus dynamics, we used
anonymized WiFi access point association logs. The weight of
an edge is proportional to the probability of transition from
asset vi to vj within a defined time window ∆t (e.g. 10
minutes), effectively capturing common pedestrian routes and
schedules [17]:

Amobij =
Count of transitions from i to j in ∆t

Total transitions from i
(6)

The final composite adjacency matrix A from Eq. (3)
is row-normalized to stabilize the learning process in the
subsequent GNN layers.

C. Proposed ST-GNN Architecture

The core of our forecasting model is an encoder-decoder
architecture, as illustrated in Fig. 1. The encoder comprises
stacked spatiotemporal blocks designed to extract hierarchical
spatiotemporal features, which are subsequently decoded to
generate the multi-step predictions.

a) Design justification for TCN-GAT ordering: We
adopt the temporal-convolution then graph-attention ordering
based on both empirical evidence and theoretical considera-
tions. This design allows the model to first extract relevant
temporal features for each node independently, providing a
richer representation for subsequent spatial aggregation. The
temporal convolution’s receptive field expansion enables each
node to incorporate multi-scale historical context before de-
termining its relationships with neighbors. This ordering has
demonstrated superior performance in recent work [23] and
aligns with the intuition that temporal patterns should inform
the strength of spatial relationships.

b) Graph fusion strategy: The weighted sum approach
for graph fusion (Eq. 3) was chosen for its interpretability,
stability, and empirical effectiveness. While more complex
fusion methods exist (e.g., attention-based fusion or learned
gating mechanisms), the linear combination provides trans-
parent control over each relationship type’s contribution and
demonstrated robust performance in our experiments. The
hyperparameters α, β, γ are tuned via grid search, with
sensitivity analysis provided in Section IV-D.

Fig. 1. Proposed Spatiotemporal Graph Neural Network (ST-GNN)
architecture for relational reasoning in campus infrastructure management.

The model integrates a multi-faceted graph construction (bottom) and
features stacked ST-Blocks for joint spatiotemporal learning.

1) Spatial dependency modeling with graph attention:
To dynamically capture the nuanced and non-static spatial
relationships between campus assets, we employ Graph Atten-
tion Networks (GAT) [12]. Unlike static graph convolutions
that use a fixed A, GAT uses a self-attention mechanism
to compute adaptive, non-local weights for each neighbor,
enabling relational reasoning.

For a given node vi at a layer, the input features of
its neighbors hj are first transformed by a shared weight
matrix W ∈ RD′×D. A shared attention mechanism a then
computes unnormalized attention coefficients eij , indicating
the importance of node vj’s features to node vi:

eij = LeakyReLU
(
aT [Whi∥Whj ]

)
(7)

where, ∥ denotes concatenation. These coefficients are
normalized across all neighbors j ∈ Ni using a softmax
function to obtain the final attention weights αij :
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αij =
exp(eij)∑

k∈Ni
exp(eik)

(8)

The output feature for node vi is the weighted aggrega-
tion of its neighbors’ transformed features, passed through a
nonlinearity σ (e.g., ELU):

h′
i = σ

∑
j∈Ni

αijWhj

 (9)

This mechanism allows the model to dynamically and se-
lectively focus on the most influential nodes at every timestep,
whether they are physically close, functionally linked, or
connected via mobility patterns.

2) Temporal dependency modeling with gated TCN: For
capturing complex multi-scale temporal patterns, we utilize
Gated Temporal Convolutional Networks (TCNs) [24], [23].
TCNs are chosen over RNNs for their superior training ef-
ficiency (via parallelization over time) and their ability to
handle very long sequences effectively using dilated causal
convolutions.

A gated TCN block operates on the time series of each
node independently. The input H ∈ RT×D is processed by
two parallel dilated causal convolutional layers. The output is
an element-wise product of an activation tanh and a sigmoid
gate, which controls the information flow:

TCN(H) = tanh(Wf ∗H)⊙ σ(Wg ∗H) (10)

where, ∗ denotes the dilated causal convolution operation,
Wf and Wg are the learnable filters for the feature and
gate layers respectively, and ⊙ is the Hadamard product.
Stacking multiple such layers with exponentially increasing
dilation rates d = 1, 2, 4, . . . , 2k enables the network to capture
temporal patterns at various scales, from hourly fluctuations to
weekly seasonality.

3) Spatiotemporal integration and forecasting: The spatial
and temporal modules are integrated into a cohesive spa-
tiotemporal (ST) block. We adopt the paradigm of temporal
convolution followed by graph attention within each block
[23]:

Z
(l)
temp = Gated-TCN(H(l−1)) (11)

Z
(l)
spat = GAT(Z(l)

temp) (12)

where, l denotes the layer index. The temporal convolution
(Eq. 11) first extracts features along the time axis for each
node independently. The subsequent graph attention (Eq. 12)
then performs feature aggregation across the graph structure
using the dynamically computed attention weights. Multiple
such ST-Blocks are stacked to form a deep encoder, allowing
the model to learn hierarchical spatiotemporal representations.

The final encoded representations are passed to a decoder,
which consists of a temporal convolution layer with a kernel
size equal to the desired forecast horizon T ′, projecting the
features to generate the final predictions X̂.

D. Training Protocol and Evaluation Metrics

The model is trained from end to end by minimizing the
discrepancy between the predicted values X̂ and the ground
truth values X.

1) Loss function: We employ a combined loss function L
that minimizes the Mean Absolute Error (MAE) while also
penalizing large errors via the Mean Squared Error (MSE) to
ensure robustness and stability during training [6]:

L = λ · MAE(X, X̂) + (1− λ) · MSE(X, X̂) (13)

where, λ is a hyperparameter balancing the two terms,
typically set to 0.7 to 0.8 to prioritize MAE while benefiting
from the smoothing effect of MSE.

2) Evaluation metrics: To ensure a comprehensive and ro-
bust evaluation, the model’s performance is gauged using three
standard metrics in spatiotemporal forecasting [22], calculated
over all nodes and all time steps in the held-out test set:

• Mean Absolute Error (MAE): MAE = 1
n

∑n
i=1 |yi −

ŷi|. Provides a linear measure of average forecast error
magnitude.

• Root Mean Squared Error (RMSE): RMSE =√
1
n

∑n
i=1(yi − ŷi)2. A quadratic scoring rule that

penalizes large errors more heavily.

• Mean Absolute Percentage Error (MAPE): MAPE =
100%
n

∑n
i=1

∣∣∣yi−ŷi

yi

∣∣∣. A scale-independent metric ex-
pressing error as a percentage, facilitating interpreta-
tion across different datasets.

IV. EXPERIMENTAL SETUP

A rigorous experimental framework was meticulously de-
signed to evaluate the performance, efficacy, and practical
utility of the proposed Spatiotemporal Graph Neural Network
(ST-GNN) model. This framework is structured to provide
a comprehensive answer to each of the defined research
objectives. The setup encompasses the curation of a novel real-
world dataset, the selection of a diverse and challenging suite
of baseline models, a detailed implementation protocol for our
architecture, and a robust set of evaluation metrics. This section
provides a complete overview of these components to ensure
transparency and facilitate the reproducibility of our findings.

A. Dataset Description

To address Research Objective 3 (RO3) concerning em-
pirical validation, a novel, real-world multimodal dataset was
collected from the infrastructure network of a large university
campus. Data was aggregated over a continuous period of 24
months, from January 2022 to December 2023, to capture a full
range of annual seasonality and academic cycles. The dataset
was specifically curated to reflect the complex interdependen-
cies between various infrastructure assets, making it an ideal
testbed for evaluating relational reasoning models.

Data was ingested from three primary sources:
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• Smart Meter Network: High-frequency electrical en-
ergy consumption data (in kWh) was collected at 15-
minute intervals for 50 primary academic and admin-
istrative buildings. This provides a direct measure of
infrastructure utilization.

• WiFi Access Point Logs: Anonymized connection data
from over 500 WiFi access points distributed across
the campus were processed. Unique device associa-
tions per building were counted for each 15-minute
interval to derive a reliable proxy for real-time human
occupancy levels within each asset.

• Campus Geographic Information System (GIS): Spa-
tial data containing the precise geographical coordi-
nates (latitude and longitude) of all 50 buildings was
obtained. This data was used to calculate the physical
distance matrix D ∈ RN×N , which is fundamental for
constructing the spatial proximity graph Adist.

This multisource approach resulted in a rich, multivariate
spatiotemporal dataset. Each node (building) is characterized
by its energy consumption and estimated occupancy level
at each 15-minute time step, resulting in a data tensor of
significant scale and complexity.

B. Data Preprocessing

A rigorous preprocessing pipeline was applied to ensure
data quality, consistency, and fairness in model evaluation.
This pipeline directly supports the integrity of the empirical
validation (RO3).

1) Temporal alignment and aggregation: All data streams
were synchronized to a common 15-minute time granularity.
Timestamps were rigorously aligned across all sensors and data
sources to ensure consistency.

2) Handling missing values: Small gaps in the data, typ-
ically caused by brief sensor transmission errors or network
downtime (constituting less than 0.5% of the total data), were
imputed using a linear interpolation method. Larger, sustained
gaps were treated as missing and the corresponding time
steps were excluded from the analysis to avoid introducing
significant bias.

3) Data normalization: Each feature stream (energy con-
sumption and occupancy) was normalized independently to a
[0, 1] range using Min-Max scaling. This step is crucial for
stabilizing and accelerating the training process of deep neural
networks. Critically, the scaling parameters (minimum and
maximum values) were calculated exclusively from the training
set to prevent any information leakage from the validation or
test sets into the model training process.

4) Chronological dataset split: The dataset was partitioned
in chronological order to simulate a realistic rolling forecasting
scenario and to rigorously test the model’s generalizability to
future, unseen data. The first 16 months (approximately 70%
of the data) were used for model training. The subsequent 4
months (approximately 15%) served as the validation set for
hyperparameter tuning and early stopping. The final 4 months
(the most recent 15%) were held out as a completely unseen
test set to provide an unbiased evaluation of the model’s final
performance and its ability to generalize.

Fig. 2. An overview of the experimental dataset. (a) A geographical map of
the campus with nodes (buildings) highlighted and edges representing strong

spatial or functional connections from the constructed graph G. (b)
Multivariate time series data for a representative building (the Main

Library), showing the strong correlation and seasonal patterns between
energy consumption and occupancy over a selected one-week period.

The final processed dataset ready for model input consists
of 70,128 time steps across 50 nodes, with each node having
2 features (energy, occupancy).

C. Baseline Models

To ensure a comprehensive and fair evaluation, thereby
fully addressing RO3, the proposed ST-GNN model was
benchmarked against a diverse set of state-of-the-art fore-
casting models. These baselines were selected to represent
different methodological approaches to the problem, from
classical statistics to modern deep learning.

1) Statistical and traditional machine learning models:

a) Historical Average (HA): A simple, naive bench-
mark that predicts the future value for a node as the average
of its historical values at the same time of day and day of the
week.

b) Auto-Regressive Integrated Moving Average
(ARIMA): A classic and widely used statistical method for
univariate time series forecasting. An ARIMA model was
tuned and fitted independently for each node’s time series.
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c) Support Vector Regression (SVR): A powerful non-
linear regression model known for its effectiveness in high-
dimensional spaces. An SVR model with a radial basis func-
tion (RBF) kernel was trained independently on each node’s
time series.

2) Deep learning models:

a) Long Short-Term Memory (LSTM): A recurrent neu-
ral network architecture renowned for its ability to capture
long-term temporal dependencies. A stacked LSTM network
was trained on each node’s series independently, without
incorporating any spatial information.

b) Sequence-to-Sequence with Attention (Seq2Seq):
An encoder-decoder architecture incorporating an attention
mechanism, which allows the model to learn richer temporal
representations by focusing on relevant past time steps. This
model was also trained per-node, without spatial context.

3) Spatiotemporal graph models:

a) Temporal Graph Convolutional Network (T-GCN):
A model that integrates a Graph Convolutional Network
(GCN) for spatial dependency with a Gated Recurrent Unit
(GRU) for temporal dependency. This baseline uses a static ad-
jacency matrix based solely on the inverse of physical distance,
providing a strong non-dynamic graph baseline. Ďiffusion
Convolutional Recurrent Neural Network (DCRNN) A strong
and widely cited baseline in spatiotemporal forecasting that
models spatial dependency via bidirectional random walks on
the graph (diffusion convolution) and temporal dependency
using an encoder-decoder recurrent architecture. It represents
the previous state-of-the-art for many graph-based forecasting
tasks.

D. Implementation Details

The implementation details are provided to ensure the
reproducibility of our proposed model, which is central to RO1
and RO3.

The proposed ST-GNN model was implemented using the
PyTorch Geometric Temporal library, which is built on top
of PyTorch. The model architecture consisted of two stacked
spatiotemporal blocks. Each block contained a temporal con-
volution layer with a kernel size of 3 and increasing dilation
factors [1, 2, 4] across the layers, followed by a graph attention
layer with 4 attention heads and an output dimension of 64
units. The final decoding layer was a temporal convolution that
projected the learned features to the desired forecast horizon
T ′ = 12 (3 hours ahead).

The model was trained using the AdamW optimizer with
an initial learning rate of 0.001 and a weight decay of 1×10−4

to mitigate overfitting. A learning rate scheduler was employed
to reduce the learning rate by a factor of 0.8 upon the plateau
of the validation loss. Training was conducted with a batch size
of 32. To prevent overfitting, early stopping was implemented
with a patience of 30 epochs, monitoring the validation loss.
All experiments were conducted on a server equipped with an
NVIDIA RTX A6000 GPU [25].

The hyperparameters for the graph construction (α, β, γ
in Eq. 3) were tuned via grid search on the validation set.
The final chosen values were α = 0.4 (Spatial), β = 0.4

(Functional), and γ = 0.2 (Mobility), indicating that spatial
and functional similarities were deemed most critical by the
model.

E. Evaluation Metrics

To quantitatively assess and compare the forecasting per-
formance of all models in a holistic manner, three standard
metrics were employed. These metrics were calculated across
all nodes and all time steps in the held-out test set to ensure
a comprehensive evaluation that addresses RO3 and RO4.

• Mean Absolute Error (MAE): Measures the average
magnitude of errors in a set of predictions, without
considering their direction. It provides a linear score
of the average forecast error and is our primary metric
for model comparison.

MAE =
1

n

n∑
i=1

|yi − ŷi|

• Root Mean Squared Error (RMSE): A quadratic scor-
ing rule that measures the average magnitude of the
error. It is especially useful as it penalizes large errors
more heavily than MAE, which is undesirable in
infrastructure management.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

• Mean Absolute Percentage Error (MAPE): Expresses
the forecast error as a percentage of the actual values.
This makes it a scale-independent metric, easier for
interpreting the model’s performance relative to the
magnitude of the data, which is valuable for practical
utility (RO4).

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣
V. RESULTS AND ANALYSIS

This section presents a comprehensive analysis of the ex-
perimental results, providing a rigorous evaluation of the pro-
posed ST-GNN model against the established baselines. The
discussion is structured to sequentially address each research
objective, presenting both quantitative metrics and qualitative
insights to substantiate the claims of the study. The analysis
moves beyond mere performance reporting to interpret the
underlying reasons for the model’s efficacy, thereby validating
the core thesis of leveraging relational reasoning for campus
infrastructure management.

A. Overall Forecasting Performance

The primary objective of this research (RO3) was to
empirically validate the proposed model against state-of-the-art
benchmarks. The performance of all models was evaluated on
the completely held-out test set, with the results summarized in
Table I. The metrics reported are the mean values aggregated
across all nodes and all forecasted time steps, providing a
holistic and unbiased view of model accuracy.
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TABLE I. OVERALL PERFORMANCE COMPARISON OF FORECASTING
MODELS ON THE CAMPUS INFRASTRUCTURE TEST SET. BEST RESULTS

ARE IN BOLD; SECOND BEST ARE UNDERLINED

Model MAE RMSE MAPE (%)
Historical Average 0.1247 0.1583 28.45
ARIMA 0.0981 0.1266 12.18
Support Vector Regression (SVR) 0.0855 0.1123 19.76
LSTM 0.0732 0.0998 16.89
Sequence-to-Sequence (Attention) 0.0698 0.0951 15.47
T-GCN 0.0631 0.0874 13.92
DCRNN 0.0589 0.0833 12.85
Proposed ST-GNN 0.0493 0.0721 10.61

The results demonstrate a clear and statistically significant
hierarchy of performance, which is directly correlated with
each model’s inherent capacity to handle the complex spa-
tiotemporal dependencies present in the campus environment.
The statistical and traditional machine learning models (Histor-
ical Average, ARIMA, SVR) performed the poorest. This was
an expected outcome, as these models fundamentally lack any
mechanism to model the non-linear interdependencies between
different campus assets. Their predictions are inherently lim-
ited to patterns derived from individual time series, ignoring
the rich relational context that defines campus operations.

A significant performance improvement is observed with
the deep learning models (LSTM, Seq2Seq). By effectively
capturing complex temporal dynamics and long-range depen-
dencies within each building’s data, these models reduce the
MAE by approximately 30-40% compared to the best statis-
tical baseline (SVR). However, their performance plateaued,
constrained by a critical architectural limitation: their inability
to leverage the rich relational information between buildings.
This validates our initial hypothesis that treating assets as
independent entities is a fundamental flaw for this domain.

The spatiotemporal graph models (T-GCN, DCRNN)
yielded a further substantial reduction in error across all three
metrics. This performance leap conclusively validates the core
hypothesis that explicitly modeling the campus as a graph of
interconnected assets is paramount for accurate forecasting.
The DCRNN model, in particular, established a very strong
benchmark, underscoring the effectiveness of diffusion con-
volution and recurrent networks for capturing spatiotemporal
dynamics.

Ultimately, the proposed ST-GNN model achieved state-of-
the-art performance, outperforming all baselines by a signif-
icant and meaningful margin. It reduced the MAE by 16.3%
compared to the DCRNN and by over 60% compared to the
Historical Average baseline. This superior performance can be
directly attributed to its novel architecture, which is designed
for relational reasoning: the Graph Attention mechanism dy-
namically learned the most influential spatial dependencies
at each time step, while the Gated Temporal Convolutional
Networks efficiently captured multi-scale temporal patterns,
from hourly fluctuations to weekly seasonality.

B. Ablation Study on Model Components

To dissect the contribution of each architectural component
and validate the specific design choices underpinning RO1
and RO2, a comprehensive ablation study was conducted. The
results, presented in Table II, provide definitive evidence for
the necessity of each proposed innovation.

TABLE II. ABLATION STUDY EVALUATING THE CONTRIBUTION OF KEY
COMPONENTS IN THE PROPOSED ST-GNN ARCHITECTURE

Model Variant MAE
ST-GNN (GCN instead of GAT) 0.0537
ST-GNN (LSTM instead of TCN) 0.0551
ST-GNN (Distance Graph only) 0.0522
Full Proposed Model 0.0493

1) Impact of Dynamic Spatial Modeling (GAT): Replacing
the Graph Attention Network with a standard Graph Convo-
lutional Network (GCN) led to a measurable decrease in per-
formance (MAE increased from 0.0493 to 0.0537). The GCN
relies on the static, pre-defined adjacency matrix, which forces
the model to use the same fixed relationships between nodes
at every time step. In contrast, the attention mechanism in the
full model allows it to dynamically adjust the influence of
neighboring nodes based on the current context. For instance,
the model can learn that the correlation between a lecture hall
and a cafeteria is strongest immediately after class dismissal,
a nuanced dynamic that a static graph cannot capture. This
result confirms that the dynamic spatial modeling capability is
a critical contributor to the model’s accuracy and is central to
the concept of relational reasoning.

2) Impact of temporal convolutional networks: Substituting
the Temporal Convolutional Networks with Long Short-Term
Memory (LSTM) layers also resulted in degraded performance
(MAE: 0.0551). While LSTMs are powerful for sequence
modeling, they process data sequentially, which can lead to
slower training and difficulties in capturing very long-term
dependencies due to vanishing gradients. The TCN’s use of
dilated causal convolutions allows it to perceive a much longer
historical context in a parallelizable manner, leading to more
stable training and superior capture of multi-scale temporal
patterns, such as the difference between the sharp, hourly
changes in occupancy and the gradual, weekly seasonal trends.

3) Impact of context-aware graph construction: Using only
the physical distance graph, instead of the full context-aware
graph, led to a significant performance penalty (MAE: 0.0522).
This finding is crucial and directly validates RO2. It empiri-
cally demonstrates that relationships between campus buildings
are not solely determined by geography. Two administratively
similar buildings in different parts of campus may have highly
correlated energy profiles, and student movement patterns
create strong functional links between distal buildings (e.g., a
dormitory and a dining hall). The proposed graph construction
method successfully captures these non-spatial relationships,
providing a more holistic and accurate representation of the
campus network, which is essential for effective relational
reasoning.

C. Qualitative Analysis and Case Study

Beyond quantitative metrics, a qualitative analysis provides
deeper insight into the model’s operational strengths and its
practical utility for campus management (RO4).

Fig. 2 visualizes the predictions of various models for the
energy consumption of the main library during a week that
includes a public holiday. The plot reveals a key strength
of the proposed ST-GNN: its ability to accurately forecast
anomalous events and rapid transitions. On the public holiday,
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Fig. 3. Qualitative comparison of energy consumption forecasts for the Main
Library building over a one-week period containing a public holiday

(highlighted in gray). The proposed ST-GNN model most accurately predicts
the drastic reduction in usage on the holiday and the subsequent return to

normal patterns, demonstrating its capacity for modeling anomalous events.

the library’s energy consumption dropped significantly. The
ST-GNN model was the only one to closely predict both
the magnitude and the precise timing of this drop-off and
the subsequent recovery. The other models, particularly the
non-graph-based ones, produced overly smoothed predictions
that failed to capture the abrupt change, instead showing
a gradual decline. This capability is directly valuable for
optimizing energy delivery and planning maintenance during
low-utilization periods, translating into tangible cost savings
and operational efficiency.

Furthermore, the model provides a degree of interpretabil-
ity through the analysis of the learned attention weights,
offering a window into its relational reasoning process. Fig. 3
illustrates the dynamic nature of these spatial dependencies for
a specific academic building (Node A). During a busy morning
class period, the model learned to assign the strongest attention
weight to a nearby cafeteria (Node B), accurately reflecting the
anticipated flow of people for lunch. Several hours later, during
an evening event hosted in the building, the attention pattern
shifted dramatically. The strongest connection was now to a
distal auditorium (Node C) known to host related events, while
the link to the cafeteria (now closed) diminished. This ability
to adapt spatial dependencies based on temporal context is
a unique advantage of the attention mechanism and provides
campus planners with valuable, explainable insights into the
functional dynamics of the infrastructure network, fulfilling
the promise of AI-driven decision support.

D. Discussion of Research Objectives

The experimental results comprehensively address the re-
search objectives outlined at the onset of this study, providing
clear evidence of the study’s success and contributions.

1) RO 1: To design a novel ST-GNN architecture that
dynamically captures complex spatiotemporal dependencies.
This objective was conclusively achieved. The architecture,
which synergistically combines Gated TCNs and Graph At-
tention Networks, proved to be exceptionally effective. The
quantitative results (Table I) confirmed its superior forecasting

Fig. 4. Visualization of dynamic spatial dependencies for a target academic
building (Node A) at two different times. The edge thickness represents the

strength of the attention weight learned by the model. (Left) During a
morning class period, Node A attends most strongly to a nearby cafeteria

(Node B). (Right) During an evening event, the strongest attention shifts to a
distal auditorium (Node C) hosting a related event.

accuracy across all metrics. The ablation study (Table II)
further validated the design choices, demonstrating that the
dynamic attention mechanism was responsible for a significant
performance gain over static graph convolutional methods.

2) RO 2: To develop a graph construction method that
accurately represents a heterogeneous university campus. This
objective was successfully fulfilled. The ablation study pro-
vided definitive evidence of its necessity. The model variant
utilizing only a physical distance graph exhibited notably
worse performance than the full model that integrated func-
tional and mobility-based relationships. This result empirically
confirms that campus dynamics are governed by a complex
interplay of spatial, functional, and social factors.

3) RO 3: To empirically validate the proposed model
against a suite of state-of-the-art benchmarks. This objective
was thoroughly addressed through a rigorous experimental
protocol. The model was evaluated on a held-out test set
representing the most recent and unseen data. The results,
quantified using standard metrics, demonstrated a statistically
significant improvement over all competing models, including
established spatiotemporal architectures like DCRNN.

4) RO 4: To demonstrate the practical utility of the model
for campus operations. This objective was achieved through
both quantitative and qualitative analysis. The significant im-
provement in forecasting accuracy directly translates to tan-
gible benefits for campus management. The case study on
forecasting library usage during a holiday (Fig. 3) showcased
the model’s ability to support concrete decision-making for
energy savings. Furthermore, the analysis of the model’s
attention weights (Fig. 4) provided interpretable insights into
campus dynamics, offering facility managers a valuable tool
for understanding the underlying factors driving infrastructure
load.

In conclusion, the results unequivocally demonstrate that
the proposed ST-GNN framework represents a significant
advancement in predictive analytics for campus infrastructure.
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By dynamically modeling the campus as an evolving graph of
spatiotemporal relationships and performing explicit relational
reasoning, the model achieves a level of accuracy, insight, and
practical utility that previous methods could not.

VI. CONCLUSION

This research was motivated by the critical and growing
need for advanced predictive analytics to manage the complex,
interconnected infrastructure of modern university campuses.
Traditional forecasting models, which predominantly treat
assets as independent entities or rely on static, pre-defined
relational assumptions, have proven fundamentally inadequate
for capturing the dynamic, multifaceted spatiotemporal de-
pendencies that define campus operations. In response, this
paper proposed, developed, and rigorously validated a novel
Spatiotemporal Graph Neural Network (ST-GNN) framework
specifically designed to transcend mere prediction and perform
relational reasoning for campus infrastructure utilization fore-
casting.

The core intellectual contribution of this work is a holistic
paradigm shift: reframing the campus not as a collection of
isolated buildings, but as a dynamic, evolving graph where
nodes represent physical assets and edges represent multi-
faceted relationships whose nature and strength change over
time. The proposed model integrates two powerful components
to operationalize this view: Graph Attention Networks (GAT)
for dynamically capturing and adapting spatial dependencies
based on temporal context, and Gated Temporal Convolu-
tional Networks (TCNs) for efficiently modeling multi-scale
temporal patterns with superior parallelization and stability.
This architectural innovation was supported by a novel, prin-
cipled methodology for constructing a context-aware graph
that moves beyond simplistic physical proximity to incorporate
semantically rich relationships based on functional similarity
and human mobility patterns.

The experimental evaluation, conducted on a real-world
multimodal dataset encompassing 24 months of energy and
occupancy data from 50 campus buildings, demonstrated the
unequivocal superiority of the proposed model. A compre-
hensive comparison against a diverse suite of statistical, deep
learning, and spatiotemporal baselines revealed that the ST-
GNN model achieved state-of-the-art performance, establish-
ing a new benchmark for this domain. The significant reduction
in the mean absolute error, by more than 16% compared to the
strongest baseline, provides compelling quantitative evidence
of its efficacy. More importantly, the results deliver clear and
definitive answers to each of the stated research objectives.

A. Achievement of Research Objectives

1) Research Objective 1 (RO1): This objective was to
design a new ST-GNN architecture that dynamically cap-
tures complex spatio-temporal dependencies. This objective
was achieved with great success. The architecture, which
synergistically combines Gated TCNs and Graph Attention
Networks, proved to be exceptionally effective. The quan-
titative results confirmed its superior forecasting accuracy
across all evaluation metrics (MAE, RMSE, MAPE). The
ablation study provided further, critical validation of the design
choices, demonstrating empirically that the dynamic attention

mechanism was responsible for a significant and necessary
performance gain over static graph convolutional methods. The
model successfully learned to adapt spatial correlations based
on temporal context, a capability absent in all benchmark
models, thereby fulfilling the promise of genuine relational
reasoning.

2) Research Objective 2 (RO2): This objective was to
develop a graph construction method that accurately repre-
sents a heterogeneous university campus. This objective was
successfully fulfilled through the proposed multi-faceted graph
construction strategy. The ablation study yielded definitive
evidence of its necessity and impact. The model variant
utilizing only a physical distance graph exhibited notably and
consistently worse performance than the full model that inte-
grated functional and mobility-based relationships. This result
empirically confirms the core hypothesis that campus dynamics
are governed by a complex interplay of spatial, functional,
and social factors. An accurate graph representation must
necessarily encapsulate this heterogeneity to achieve optimal
predictive performance, and the proposed method provides a
scalable, data-driven framework to achieve this.

3) Research Objective 3 (RO3): This objective was to
empirically validate the proposed model against a suite of
state-of-the-art benchmarks. This objective was thoroughly
and rigorously addressed. The model was evaluated on a
chronologically held-out test set representing the most recent
and completely unseen data, ensuring a realistic and unbiased
assessment of its generalizability to future conditions. The
results, quantified using standard and widely accepted metrics,
demonstrated a statistically significant and substantial improve-
ment over all competing models. This includes established
and powerful spatiotemporal architectures like DCRNN and T-
GCN, thereby leaving no doubt as to the efficacy, robustness,
and superior predictive capability of the proposed framework.

4) Research Objective 4 (RO4): was to demonstrate the
practical utility of the model for campus operations. This ob-
jective was achieved through both quantitative and qualitative
analysis. The significant improvement in forecasting accuracy
directly translates to tangible benefits for campus management,
including more precise energy procurement, optimized facility
scheduling, and proactive maintenance planning. The case
study on forecasting library usage during an anomalous period
(a public holiday) showcased the model’s unique ability to
support concrete, cost-saving decision-making. Furthermore,
the analysis of the model’s dynamically learned attention
weights provided interpretable, explainable insights into the
underlying functional dynamics of the campus network. This
offers facility managers a valuable window into the system’s
behavior, moving the model from a black-box predictor to a
transparent decision-support tool.

B. Implications and Future Work

The findings of this study carry significant implications
for both research and practice. For the research community,
this work establishes a new state-of-the-art benchmark for
spatiotemporal forecasting in the domain of smart campuses
and educational environments. It provides a scalable, gen-
eralizable framework that can be adapted and applied to
other similar cyber-physical systems characterized by dynamic
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relational graphs, such as corporate campuses, large hospital
complexes, or smart neighborhoods. The demonstrated effec-
tiveness of context-aware graph construction and relational rea-
soning opens new avenues for research in graph representation
learning.

For practitioners and campus facility managers, the pro-
posed model offers a powerful, data-driven tool for enhancing
operational efficiency, reducing significant costs, and advanc-
ing institutional sustainability goals. The ability to accurately
forecast demand across the infrastructure network enables a
shift from reactive to proactive management strategies.

While this study provides a solid foundation, several
promising avenues for future work remain. Firstly, the graph
model could be extended to a heterogeneous format to explic-
itly model different types of nodes (e.g., buildings, electrical
substations, HVAC systems, water pumps) and relationships,
which could capture more granular and physically accurate
interactions within the infrastructure network. Secondly, incor-
porating external factors such as detailed weather data, real-
time event schedules, and academic calendar events (e.g., exam
periods, orientation week) could further enhance forecasting
accuracy by accounting for exogenous variables. Finally, de-
veloping a federated learning version of the model would allow
for collaborative learning across multiple university campuses
without sharing sensitive operational data, thereby improving
model generalizability and robustness across different institu-
tional settings.

In conclusion, this research has successfully developed,
validated, and demonstrated a novel ST-GNN framework that
effectively addresses the complex challenge of predicting cam-
pus infrastructure utilization. By intelligently modeling the
campus as a dynamic graph of spatiotemporal relationships
and explicitly designing the system for relational reasoning,
this work provides a significant step forward in the journey
towards truly intelligent, sustainable, and responsive campus
management systems.
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