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Abstract—Overfitting and limited generalization remain sig-
nificant challenges for deep learning models, often leading to
suboptimal performance on unseen data. To address this, The
Divided Ensemble Voting (DEV) method was introduced, a novel
approach that strategically partitions a dataset into distinct sub-
sets to train an independent model on each partition. This division
encourages each model to specialize in unique features and
patterns, thereby increasing ensemble diversity. Predictions from
all models are aggregated through a majority voting mechanism
to determine the final output, which mitigates overfitting and
improves generalization. The proposed method was rigorously
evaluated on four binary image classification tasks: Deepfake &
Real, Waste Classification, Concrete & Pavement Crack, and Non
& Biodegradable Material. Experimental results demonstrate
that DEV consistently surpasses the performance of conventional
singular models. Accuracy rates improved from 85.55% to 93.1%,
85.12% to 89.6%, 95.42% to 99.0%, and 89.00% to 93.0%,
respectively, across the datasets. These findings underscore the
efficacy of strategic data partitioning and ensemble consensus in
advancing deep learning performance.
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I. INTRODUCTION AND LITERATURE REVIEW

Image classification is a crucial aspect of computer vi-
sion, enabling the automatic identification and categoriza-
tion of images across various applications [1]. Since deep
learning models have completely changed how images are
processed and categorized, their significance in this domain
is profound [2], [3]. These models, particularly convolutional
neural networks (CNNs), are characterized by their ability
to extract complex features from images, resulting in signifi-
cantly improved accuracy compared to traditional methods [4].
However, achieving optimal classification remains a challenge
due to the inherent variability in image data, which can be
influenced by factors such as lighting, occlusion, and object
variability [5]. As a result, researchers often explore various
learning models and hybrid approaches, they have combined
different algorithms to enhance classification performance and
address these challenges [6]. Additionally, the computational
time required for training and inference poses another signifi-
cant hurdle, necessitating the selection of efficient models that
can generalize well across diverse problems [7], [8].

On the one hand, recent research efforts have focused on
improving performance challenges by developing innovative
algorithms and frameworks. For instance, a study by Yu (2022)
highlighted the integration of self-supervised learning tech-
niques to improve model performance with limited labeled data
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[9]. The presented method, MICLe, employs a self-supervised
learning approach that utilizes unlabeled medical images to
enhance classification accuracy in medical diagnostics. By
leveraging multiple views of the same pathology, the model
effectively learns robust features, demonstrating the potential
of self-supervised methods to address the challenges of optimal
classification in complex image datasets. Moreover, another
aspect of improving accuracy in image classification models
involves processing images based on color space. Authors in
[10] presented a robust clinical decision support system for
diabetic retinopathy detection. This system employs a three-
stage deep learning model that integrates color space-based
image preprocessing to enhance image quality, followed by
feature extraction and classification. Furthermore, the use of
transfer learning has gained traction, allowing models pre-
trained on large datasets to be fine-tuned for specific tasks,
thereby improving performance on smaller, domain-specific
datasets [11], [12]. This approach not only enhances accuracy
but also reduces the time and resources required for training
[14].

On the other hand, another significant area of research
focused on optimizing deep learning models for specific
datasets while ensuring their generalizability. Researchers are
actively exploring various strategies to enhance the accuracy
and generalization of machine learning models across diverse
datasets [13]. He et al. (2024) demonstrated improved per-
formance and accuracy on large-scale datasets like ImageNet
based on a residual learning framework [15]. The framework’s
effectiveness is evidenced by its success in major competi-
tions, achieving top results in various visual recognition tasks.
Additionally, extracting the correct image features is crucial
for optimal accuracy [16]. The authors in [17] employed
the synthetic minority oversampling technique (SMOTE) to
address data imbalance and developed an ML-based ensemble
model to predict the probability of second primary lung cancer
in patients, optimizing accuracy through feature selection.
Moreover, ensemble learning methods, employing multiple
learning models, have gained prominence in deep learning-
based image classification. Authors in [18] studied compared
four ensemble learning techniques (soft voting, weighted av-
erage voting, weighted hard voting, and stacking) applied
to 16 convolutional neural networks trained on ultrasound
images of liver masses. Ensemble methods significantly im-
proved classification accuracy compared to individual CNNs
and ResNet101, demonstrating the effectiveness of ensemble
learning for liver mass classification in ultrasound images.

The contribution of this study is as follows: 1) Designing a
convolutional neural network (CNN) architecture that automat-
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ically learns and extracts relevant features from preprocessed
images, capturing intricate patterns. 2) Utilizing four distinct
image datasets to demonstrate the model’s effectiveness. 3)
Classifying images based on the proposed learning model,
demonstrating its classification capabilities. 4) Divide each
dataset into three subsets and classifying each subset indepen-
dently to thoroughly train the model’s performance. 5) Apply
the three trained models to the test set to comprehensively
evaluate their classification capabilities. 6) Implementing the
Divided Ensemble Voting (DEV) method to enhance overall
classification accuracy and reliability. 7) Conducting a com-
parative analysis of performance metrics to determine the
optimal model, examining the effectiveness of using the entire
training dataset versus DEV method. The subsequent sections
of this paper are structured as follows: Section II presents
the proposed learning model architecture and explains the
implementation of the Divide Ensemble Voting (DEV) method.
Section III-A describes the utilized dataset and its preparation
for the learning model. Section IV provides the results and
discussion, and finally, Section V offers the conclusion.

II. RESEARCH METHODOLOGY

This section introduces the Divided Ensemble Voting
(DEV) methodology, detailing its operational framework and
implementation mechanics for enhanced classification perfor-
mance.

A. Divided Ensemble Voting (DEV)

DEV method is a novel ensemble learning approach de-
signed to enhance classification performance through strategic
data partitioning and collaborative model voting.

Let D be a labeled dataset where each instance x ∈ D
belongs to a class Ci ∈ {C1, . . . , Cn}. The goal is to learn
an ensemble model that improves generalization by using
partitioned subsets of D. the Divided Ensemble Voting (DEV)
technique consists of two phases:

• Partitioned Training: Train N similar or diverse mod-
els on disjoint subsets of D.

• Voting-Based Inference: Aggregate predictions via
majority voting.

The DEV algorithm technique starts with:

1) Data Splitting: Split D into:

• Data for training:Dtrain,

• Data for validation: Dval, and

• Data for testing: Dtest

2) Partitioning: Divide Dtrain into N non-overlapping
subsets: {Dtrain−1, Dtrain−2, ..., Dtrain−N}.

where,

Dtrain =

N⋃
i=1

Dtrain−i, &

Dtrain−i ∩Dtrain−j = ∅ ∀i ̸= j

(1)

3) Model Training: train multiple independent similar or
divers models on different chunks of the training data.

• Start with base model architecture (e.g. a CNN
for images)

• Create N identical copies of this model:
{M1,M2, ...,MN}

• Each model Mi is trained only on its assigned
subset Dtrain−i (a small portion of the full
training data).

min
Θi

∑
(x,y)∈Dtrain,i

τ(Mi(x,Θi), y) (2)

where,

• Θi: Trainable parameters of model Mi.

• Dtrain,i: The i-th partitioned subset of training
data.

• (x, y): Input-label pair from Dtrain,i.

• τ : Loss function (e.g., cross-entropy for
classification).

• Mi(x,Θi): Prediction of model Mi with
parameters Θi for input x.

4) Ensemble Prediction: In this step, For a test instance
x ∈ Dtest:

• Obtain predictions {M1,M2, ...,MN}

• Compute the final prediction Pfinal(x) via
majority voting:

Pfinal(x) = mode({Mi(x)}Ni=1) (3)

The DEV algorithm’s effectiveness stems from
its foundation in ensemble learning theory and
statistical learning principles. Below are its core
theoretical properties:

• Diversity Mechanism: By training each model
Mi on disjoint subsets, the algorithm ensures:

◦ Low Correlation Between Errors: Models
make mistakes on different data points,
reducing collective bias.

◦ Complementary Expertise: Each model
specializes in unique features of its partition.

Algorithm 1 illustrates the architecture of the proposed
method DEV.
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Algorithm 1 Divided Ensemble Voting

1: Input: Dataset D, Number of partitions N , Model archi-
tecture M

2: Output: Final predictions for Dtest

3: Split D into Dtrain, Dval, and Dtest

4: Partition Dtrain into N subsets: Dtrain1, Dtrain2, . . . ,
DtrainN

5: Initialize an empty list of models: Models = []
6: for epochs = 1 to N do
7: Clone model M to Mi

8: Train Mi on Dtrain,i

9: Add Mi to Models
10: end for
11: Initialize empty list for predictions: Predictions = []
12: for each x in Dtest do
13: Collect predictions P1(x), P2(x), . . . , PN (x) from all

models
14: Compute final prediction: Pfinal(x) =

mode(P1(x), P2(x), . . . , PN (x))
15: Append Pfinal(x) to Predictions
16: end for
17: Return Predictions

Fig. 1 illustrates the DEV method based on the CNN learn-
ing model for binary classification. As shown in the figure, the
dataset is divided into three distinct subsets: training(Dtrain),
validation(Dval), and testing(Dtest). Subsequently, the training
set is further subdivided into N sets, designated as Dtrain1,
Dtrain2 , · · · , DtrainN . Each of these training sets was utilized
to train separate instances of the model, designated as M1, M2,
· · · ,MN , respectively. Specifically, Dtrain1 is processed by
M1, Dtrain2

is processed by M2 and so forth for all partitioned
datasets and corresponding models. Notably, the Dval set
remained constant across all models to ensure consistency in
performance evaluation. Upon completion of the training pro-
cess, N distinct trained models were obtained. Subsequently,
the Dtest set is evaluated using each of the trained models
Mi, {i = 1, 2 · · · ,N}, yielding N separate accuracy results
P1, P2 · · · , PN . To determine the optimal classification for
each image, a mode mechanism was employed, reflecting the
majority vote among the N models. This approach facilitated
the aggregation of predictions, enhancing the robustness of the
classification results.

III. EXPERIMENTAL FRAMEWORK

This section details the experimental framework, including:
1) the benchmark datasets employed, 2) the core components
of the DEV method: image processing , and baseline CNN
model architecture.

A. Dataset

This subsection describes the benchmark datasets selected
for this study, which were chosen based on their substantial
size and representative sample diversity. The large volume
of high-quality training samples inherently provides sufficient
feature variation, rendering data augmentation unnecessary.
This approach not only streamlines the training pipeline but
also preserves the authentic statistical distribution of the orig-

inal data, eliminating potential biases introduced by synthetic
transformations.

1) Deepfake and Real (DS-FR): This dataset comprises
a collection of manipulated and real images, specifically
focusing on human faces, and contains two classes: Fake
and Real [19]. The manipulated images are generated using
various techniques, primarily featuring deepfake technology,
which involves replacing an individual’s likeness in an existing
image or video with that of another person. Each image in
the dataset is formatted as a 256 x 256, showcasing either
real or artificially generated faces. The dataset includes 70,000
authentic, alongside 70,000 synthetic faces derived from a
larger pool of 1 million fake faces generated by StyleGAN
[20]. For training, 60,000 images are utilized, with 30,000 for
each class; 2,000 images are allocated for validation, with
1,000 for each class; and 4,000 images are designated for
testing, split evenly into 2,000 for each class. Fig. 2 presents
samples from the dataset, the validation set comprises 5% of
the training data. The precise numbers for Dtrain, Dval, and
Dtest in our proposed model are detailed in Table I.

TABLE I. DATASET DISTRIBUTION

Dataset Dtrain Dval Dtest Total

DS-FR 60000 2000 4000 12000

DS-OR 21435 1129 2513 25077

DS-NP 24000 2000 4000 30000

DS-BNB 59922 2000 4000 65922

2) Waste Classification (DS-OR): The dataset consists of
25,077 images of solid household waste, categorized into two
classes: organic (Org) waste, comprising 13,966 images, and
Recyclable ( Recy) waste, consisting of 11,111 images [21].
The acquired images are colored .jpg files of random portrait
and landscape orientation with resolution ranging from 191
pixels (minimum) × 264 pixels (maximum) [22]. The number
of training and testing images is 22564 and 2513, respectively.
Additionally, the validation set comprises 5% of the training
data. Fig. 2 presents samples of the dataset. The numbers for
Dtrain, Dval, and Dtest in our proposed model are shown in
Table I.

3) Concrete and Pavement Crack (DS-NP): This dataset
consists of 30,000 images of concrete and pavement surfaces,
classified into two categories: cracked and non-cracked [23].
Collected by Omoebamije Oluwaseun, a civil engineering
student at the Nigerian Army University Biu, the images
were obtained using a DJI Mavic 2 Enterprise drone and a
smartphone. Each image is downsized to 227 × 227 pixels
and stored in RGB and JPEG format. It is then arranged
into Negative (Neg) and Positive (Pos) folders for convenient
access and analysis. Samples of the dataset are presented in
Fig. 2, the validation set comprises 5% of the training data.
The precise numbers for Dtrain, Dval, and Dtest are presented
in Table I.

4) Non and Biodegradable Material (DS-BNB): This
dataset comprises approximately 256,000 images, derived
from an original collection of 156,000, representing two
waste categories: Biodegradable (Bio) and Non-biodegradable
(Non-Bio) [24], [25]. The Bio class includes materials that
can be naturally decomposed, such as food and plant waste,
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Fig. 1. Divided Ensemble Voting (DEV) model.

Fig. 2. Datasets samples.

while the non-biodegradable Non-Bio class consists of
materials like plastics and metals that cannot be decomposed.
The dataset is divided into main subsets: training and
testing. The training set further split into four parts, with the
“TRAIN.1” folder designated for this research. Fig. 2 presents
samples from the dataset. From the Dtest: 2,000 images are
randomly selected from each category, while 1,000 images
from each category are randomly chosen for the validation
set. The precise numbers for Dtrain, Dval, and Dtest are
presented in Table I.

The DEV method integrates two key components: 1) image

preprocessing and 2) independent baseline CNN model train-
ing on partitioned data subsets. Each component is detailed in
the following subsections.

B. Image Processing

Effective preprocessing and processing of image datasets
are essential for improving the performance of classification
tasks. These steps ensure that the images is formatted appropri-
ately for analysis, thereby enhancing the model’s accuracy. In
this study, each image was assigned to its respective category.
For each category of the dataset, the images were read using
OpenCV, resized to a uniform dimension of 64x64 pixels, and
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normalized by scaling pixel values to the range [0, 1]. This
normalization step is essential, in order to improve the model’s
performance and rate of convergence.

C. Baseline CNN Model

Convolutional neural networks (CNNs), which are the basis
of the deep learning model, are made to efficiently classify
the processed images. The model architecture plays a crucial
role in extracting relevant features from images and making
accurate predictions regarding each class of the dataset.

Fig. 3 shows the baseline CNN architecture where input
images pass through three convolutional blocks with increasing
filters F (32, 64, 128) and a fixed kernel size K(3 × 3). Each
block includes convolutional layers with ReLU activation,
batch normalization, max pooling, and dropout. The final block
outputs a 2048-dimensional vector, followed by a dense layer
(256 units) with dropout before the softmax output layer (2
units). The model uses the Adam optimizer and categorical
cross-entropy loss for binary classification. Table II provides
details on the configuration of the CNN model layers.

Total parameters: 815, 818 (814, 410 trainable; 1, 408 non-
trainable, from batch normalization’s moving statistics). The
trainable parameters primarily consist of convolutional and
dense layer weights and biases, along with Batch Normaliza-
tion’s learnable scale (γ) and shift (β) parameters. The non-
trainable parameters exclusively originate from Batch Normal-
ization layers, representing the moving averages of mean (µ)
and variance (σ2) that are updated during inference but remain
fixed during training to maintain stable feature distributions.

In the experimental implementation of the DEV method,
the training set was partitioned into N=3 distinct subsets,
each processed by a dedicated instance of N=3 independently
trained models. Training was conducted over 20 epochs, with
validation set performance monitored at each epoch to verify
generalization capability beyond the training data. This rig-
orous evaluation protocol ensures unbiased assessment using
completely distinct data partitions, maintaining the integrity
of performance metrics. The partitioned approach not only
facilitates specialized feature learning but also provides built-in
validation through inter-model consensus.

IV. RESULTS AND DISCUSSION

This section presents the results derived from three stages
of analysis: first, performance accuracy using the entire train-
ing set; second, the accuracy after partitioning the training
set into three subsets; and finally, accuracy achieved after
implementing the DEV method.

A. Model Performance Evaluations on Datasets Based on the
Entire Training Sets

This subsection evaluates the model’s performance across
four datasets, analyzing training/validation losses, accuracy
metrics, and overall classification performance. The assessment
is conducted using complete training sets for model develop-
ment and validation.

Figures of the training and validation losses for the four
datasets, along with their accuracy performance, are shown in
Fig. 4 and 5, 6 and 7 across 20 epochs for DS-FR, DS-OR,

DS-NP and DS-BNB datasets, respectively. Moreover, Table
III illustrates the loss values for training, validation and testing
across these datasets based on the entire training set.

Furthermore, Table IV presents the performance accuracies
achieved for the training, validation, and testing sets of the
proposed learning approach across the four datasets. Table V
further illustrates the performance metrics achieved by apply-
ing the learning model approach to the test set for each dataset.
Additionally, Fig. 8 demonstrates the confusion matrices for
each dataset which provide a comprehensive overview of
the model’s figure classification performance across different
labels.

For DS-FR, As demonstrated in Table III, while the model
fits the training data well, it may not generalize as effectively
to test data, indicated by the higher test loss of 0.5856.
Furthermore, the model achieved a high training accuracy of
98.18% and a validation accuracy of 93.4%, although the test
accuracy was comparatively lower at 85.55% with execution
training time (ET) of 8 hrs., 21 sec, as shown in Table IV.
The precision and recall values for the class labels in DS-FR
dataset also reflect this trend, with precision scores of 0.87 and
0.84 for classes Fake and Real, respectively, as shown in Table
V.

Additionally, in DS-OR dataset, the loss values for this
dataset were higher, with a training loss of 0.2392 and a
validation loss of 0.3445, as shown in Table III. Moreover,
accuracies of training, validation and testing were 88.94%,
86.1% and 85.12%, respectively, as shown in Table IV. The
precision for Org class was notably high at 0.98, but the recall
at 0.68 suggests that the model struggled to identify all relevant
instances of this class, leading to a lower f1-score of 0.80, as
shown in Table V.

Furthermore, DS-NP dataset exhibited strong performance
across all metrics, with a training accuracy of 96.41% and a
validation accuracy of 96.95%, as shown in Table IV. The
test accuracy of 95.42% was accompanied by a low-test loss
of 0.1816 (Table III), indicating effective generalization. The
precision and recall values for both class labels Neg and Pos
achieving 1.00 and 0.92 for precision, and 0.91 and 1.00 for
recall, respectively, resulting in f1-scores of 0.95 and 0.96 as
shown in Table V.

Finally, DS-BNB dataset showed a training accuracy of
98.14% and a validation accuracy of 87.7%, with a test
accuracy of 89%, as demonstarted in Table IV. Despite the
high training accuracy, the validation loss of 0.3361 (Table
III) suggests potential overfitting. As shown in Table V, the
precision and recall values for class labels were relatively
balanced, with precision scores of 0.93 for Bio class and
0.86 for Non-Bio, reflecting a strong capability in predicting
instances of these classes.

B. Performance Evaluation Based on Partitioning of Training
Data

This subsection evaluates model performance across the
four datasets by analyzing: 1) training/validation losses, 2)
accuracy metrics, and 3) overall classification effectiveness.
For enhanced model evaluation, each original training set is
further partitioned into three distinct training subsets.
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Fig. 3. Overview of the baseline CNN model architecture.

TABLE II. OVERVIEW OF THE BASELINE CNN ARCHITECTURE AND ITS PROPERTIES

Layer Type Output Shape Kernel Size(K) Stride trainable Params Non-trainable Params
Conv2D (62, 62, 32) (3, 3) (1,1) 896 0
BatchNormalization (62, 62, 32) – – 128 (γ, β) 128 (µ, σ2)
Conv2D (60, 62, 32) (3,3) (1,1) 9248 0
BatchNormalization (60, 62, 32) – – 128 (γ, β) 128 (µ, σ2)
MaxPooling2D (30, 30, 32) (2,2) (2,2) 0 0
Dropout (0.25) (30, 30, 32) – – 0 0
Conv2D (28, 28, 64) (3, 3) (1,1) 18496 0
BatchNormalization (28, 28, 64) – – 256 (γ, β) 256 (µ, σ2)
Conv2D (26, 26, 64) (3,3) (1,1) 36928 0
BatchNormalization (26, 26, 64) – – 256 (γ, β) 256 (µ, σ2)
MaxPooling2D (13, 13, 64) (2,2) (2,2) 0 0
Dropout (0.25) (13, 13, 64) – – 0 0
Conv2D (11, 11, 128) (3, 3) (1,1) 73,856 0
BatchNormalization (11, 11, 128) – – 512 (γ, β) 512 (µ, σ2)
Conv2D (9, 9, 128) (3,3) (1,1) 147,584 0
BatchNormalization (9, 9, 128) – – 512 (γ, β) 512 (µ, σ2)
MaxPooling2D (4, 4, 128) (2,2) (2,2) 0 0
Dropout (0.25) (4, 4, 128) – – 0 0
Flatten (2048, ) – – 0 0
Dense (256, ) – – 524544 0
BatchNormalization (256, ) – – 1024 (γ, β) 1024 (µ, σ2)
Dropout (0.5) (256, ) – – 0 0
Dense (Output) (256, ) – – 514 0

TABLE III. LEARNING CNN MODEL LOSSES BASED ON THE ENTIRE
TRAINING SET

Dataset training Loss validation Loss testing Loss
DS-FR 0.0506 0.1991 0.5856
DS-OR 0.2392 0.3445 0.3783
DS-NP 0.1362 0.1041 0.1816
DS-BNB 0.0578 0.3361 0.2806

TABLE IV. OVERALL ACCURACY AND EXECUTION TIME BASED ON THE
ENTIRE TRAINING SET

Dataset training validaton testing Execution
ACC ACC ACC Time(ET)

DS-FR 98.18% 93.4% 85.55% 8 hr, 21 min,11 sec
DS-OR 88.94% 86.09% 85.12% 3 hr, 4 min, 35 sec
DS-NP 96.41% 96.95% 95.42% 3 hr, 55 min, 37sec
DS-BNB 98.14% 87.70% 89.00% 7 hr, 27 min

1) Partitioning the training set: Based on DEV method, the
original training set Dtrain was further subdivided into three
distinct subsets referred to as Dtrain1 , Dtrain2 and Dtrain3

using random stratified sampling to preserve class distribution

TABLE V. PERFORMANCE METRICS OF THE CNN LEARNING MODEL ON
TEST SET ACROSS ALL DATASETS

Dataset class precision recall f1-score

DS-FR Fake 0.87 0.83 0.85
Real 0.84 0.88 0.86

DS-OR Org 0.98 0.68 0.80
Recy 0.79 0.99 0.88

DS-NP Neg 1.00 0.91 0.95
Pos 0.92 1.00 0.96

DS-BNB Bio 0.93 0.84 0.88
Non-Bio 0.86 0.94 0.89

across all subsets, the number of images in each subset is
illustrated in Table VI.

TABLE VI. PARTITIONING TRAINING SET INTO THREE SUBSETS

Dataset Dtrain1 Dtrain2 Dtrain3

DS-FR 19800 20100 20100
DS-OR 7073 7181 7181
DS-NP 7919 8040 8041
DS-BNB 19774 20074 20074
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Fig. 4. DS-FR training and validation losses and its accuracy performance.

Fig. 5. DS-OR training and validation losses and its accuracy performance.

Fig. 6. DS-NP training and validation losses and its accuracy performance.

2) Models performance evaluation: Each of training sub-
sets is used to independently train a separate instance of the
CNN learning model Mi, i = {1, 2, 3}. The validation set was
kept constant across all model instances to ensure consistent
performance monitoring during training. Once training was
completed, each of the three models was evaluated on the same
independent test Dtest, producing three individual accuracy
scores.

Table VII presents the loss values for models M1, M2, M3

trained on subsets Dtrain1, Dtrain2 and Dtrain3, respectively.
The table also includes the corresponding validation and test

losses for each dataset.

Table VIII presents the performance accuracies of
Models M1, M2 and M3 for the training subsets
{Dtrain1, Dtrain2, Dtrain3}, validation, and test sets across
all four datasets, along with their execution times for each
training subset. Furthermore, Table IX summarizes the perfor-
mance metrics of each model (M1, M2 and M3) on the test
sets, evaluated per class across all datasets. Finally, Fig. 9, 10,
11 and 12 display the confusion matrix for models (M1, M2

and M3) across the four datasets, providing detailed insights
into their classification performance.
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Fig. 7. DS-BNB training and validation losses and its accuracy performance.

Fig. 8. Confusion matrix for all datasets based on the entire training set.

TABLE VII. TRAINING, VALIDATION AND TESTING LOSS VALUES FOR
MODELS M1 , M2 , M3

Dataset model training loss validation loss testing loss

DS-FR
M1 0.0189 0.2116 0.2921
M2 0.2511 0.7716 1.0366
M3 0.0209 0.2633 0.3174

DS-OR
M1 0.2281 0.4054 0.4043
M2 0.1851 0.3830 0.4479
M3 0.1565 0.3518 0.3172

DS-NP
M1 0.0362 0.0655 0.0537
M2 0.0540 0.0623 0.0601
M3 0.0424 0.0618 0.0594

DS-BNB
M1 0.0757 0.3029 0.2794
M2 0.0755 0.3969 0.3947
M3 0.1324 0.3742 0.3720

For the DS-FR dataset , as summarized in the three Tables
VII, VIII and IX, M1 and M3 showed lower losses (test
loss: 0.29–0.32) compared to M2 (1.04), indicating better
generalization. M1 and M3 also outperformed M2, achieving
99% training and 90.3% testing accuracy, versus M2 93.6%
(training) and 79.8% (testing) (Table VIII). Per-class metrics
(Table IX) reveal M1 balanced precision (0.90–0.91), while
M3 achieved 0.94 (Fake) and 0.87 (Real); M2 had high Fake-
class precision (0.95) but poor recall (0.63). Overall, M1

excelled in accuracy and loss, with M3 as a close competitor,
while M2 lagged significantly.

The results for DS-OR dataset, presented in Tables VIII,
VII and IX, reveal notable differences in performance among
models M1, M2, and M3. M3 achieved lowest losses (0.16
training, 0.32 testing) and the highest accuracy (94.03% train-
ing, 90.89% testing), demonstrating superior generalization.

While M1 showed strong precision for Org class (0.98)
and M2 had high Recy recall (0.93), M3 delivered balanced
performance across classes (Org: 0.95 precision/0.83 recall;
Recy: 0.88/0.97) with the best F1-scores (0.92 Recy). Models
M1 and M2 exhibited trade-offs :M1 in recall (0.70 Org) and
M2 in precision (0.69 Org), but M3 consistently outperformed
in both accuracy and class-wise metrics, establishing itself as
the most robust choice for this dataset.

Moreover, For DS-NP dataset, as shown in Tables VIII,
VII and IX, M1 achieved the lowest losses (0.036 training,
0.054 testing), indicating superior generalization. Additionally,
M1 led with 99.03% training and 98.43% testing accuracy,
followed closely by M2 (98.56%/98.22%) and M3 (slightly
lower). All models excelled in class-wise metrics (preci-
sion/recall 0.98–0.99 for both Pos/Neg classes), with F1-
scores consistently near 0.98. Results demonstrate exceptional
performance across all models, highlighting the robustness of
the learning approach on this dataset.

For the DS-BNB dataset (Tables VIII, VII and IX), M1

achieved the lowest losses (0.3029 validation, 0.2794 testing)
, alongside the best balance with 97.19% training and 89.6%
testing accuracy, indicating superior generalization. While
M2 had higher training accuracy (97.83%) but poorer test
performance (83.75%), and M3 lagged in training (94.35%)
and testing (86.83%), M1 excelled in class-wise metrics:
precision/recall of 0.89/0.90 (Bio) and 0.90/0.89 (Non-Bio),
yielding consistent F1-scores (0.90 both classes). Though
Models M2, M3 showed trade-offs, M1 consistently delivered
robust accuracy, loss, and per-class performance, establishing
it as the most effective choice for this dataset.
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TABLE VIII. ACCURACIES AND EXECUTION TIME BASED ON MODELS M1 , M2 , M3

Dataset model training ACC validation ACC testing ACC ET total ET

DS-FR
M1 99.32% 93.70% 90.38% 2 hr, 55 min, 49 sec

8 hr, 36 min, 25 secM2 93.59% 85.05% 79.77% 2 hr, 52 min, 25 sec
M3 99.23% 92.65% 90.35% 2 hr, 48 min, 11 sec

DS-OR
M1 89.81% 83.17% 85.83% 1 hr, 4 min, 29 sec

3 hr, 13 min, 24 secM2 92.91% 87.16% 84.12% 1 hr, 6 min, 29 sec
M3 94.03% 87.78% 90.89% 1 hr, 2 min, 26 sec

DS-NP
M1 99.03% 98.2% 98.43% 1 hr, 20 min, 58 sec

4 hr, 5 min, 17 secM2 98.56% 98.4% 98.22% 1 hr, 21 min, 3 sec
M3 98.64% 98.05% 98.15% 1 hr, 23 min, 16 sec

DS-BNB
M1 97.19% 88.8% 89.6% 2 hr, 27 min, 22 sec

7 hr, 39 min, 8 secM2 97.83% 84.65% 83.75% 2 hr, 42 min, 37 sec
M3 94.35% 86.20% 86.83% 2 hr, 29 min, 9 sec

Fig. 9. Confusion matrix for models M1, M2, M3 on the deepfake & real (DS-FR) dataset.

Fig. 10. Confusion matrix for models M1, M2, M3 on the waste classification (DS-OR) dataset.

The comparative analysis reveals distinct performance pat-
terns across datasets. M1 demonstrated consistent superiority
in DS-FR (high accuracy, balanced class metrics) and DS-
BNB (lowest losses, strong F1-scores), establishing it as the
most reliable overall. M3 emerged as the top performer in
DS-OR (best accuracy and balanced class metrics) while
maintaining competitive results in DS-NP. Though M2 showed
high precision for specific classes (e.g., 0.95 Fake in DS-
FR, 0.93 recall in DS-OR), it struggled with generalization
(notably higher losses in DS-FR/BNB). The DS-NP dataset
proved universally favorable, with all models achieving near-
perfect metrics, suggesting its inherent class separability. These
findings underscore that the composition and diversity of
training subsets play a critical role in shaping model effective-
ness on test data. To address this, DEV method is proposed
as a systematic framework to optimize performance through
ensemble learning.

C. Final Classification: DEV method vs. Entire Training-
Based Learning

The DEV method aggregates predictions P1, P2 and P3

from Models M1, M2, and M3, respectively, using majority

voting (mode) to determine final test-set labels. This ensem-
ble strategy mitigates variance from weight initialization and
subset-specific biases, enhancing generalization.

Initially, Performance metrics (Table X) highlight DEV’s
effectiveness: DS-FR achieved balanced F1-scores (0.93), DS-
OR showed strong Recy-class recall (0.98) outperforming
the whole-dataset approach in Table V, while DS-NP at-
tained near-perfect metrics (precision/recall 0.99), and DS-
BNB maintained high scores (Bio: 0.94, Non-Bio: 0.92). These
results demonstrate DEV’s consistency in optimizing accuracy
across diverse datasets. The method’s adaptability to varying
class complexities underscores its practical utility.

Secondly, Comparative analysis of confusion matrices (Fig.
8 vs. 13) reveals DEV’s consistent improvements across all
datasets. For DS-FR, Fake class detections rose to 1,756
(from 1,666) with fewer false positives (244 vs. 334). Similar
gains occurred in DS-OR (Org: 876 vs. 752) and DS-NP
(Pos: 1,970 vs. 1,819), while DS-BNB showed higher Bio
class accuracy (1,838 vs. 1,688). These results demonstrate
DEV’s superiority over whole-dataset training, enhancing both
precision and generalization.
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Fig. 11. Confusion matrix for models M1, M2, M3 on concrete & pavement crack (DS-NP) dataset.

Fig. 12. Confusion matrix for models M1, M2, M3 on non & biodegradable (DS-BNB) dataset.

Fig. 13. Confusion matrix for test set based on DEV method.

Fig. 14 demonstrates DEV’s consistent superiority over
whole-dataset training, with accuracy gains across all datasets -
most notably in DS-NP (95.0% to 99.0%). This improvement
highlights how DEV’s ensemble approach enhances classifi-
cation reliability through collaborative model strengths. The
findings validate DEV as an effective strategy for optimizing
predictive performance.

Comparative execution time analysis (Tables IV, VIII)
reveals that the additional 10 minutes required for training
Models (M1, M2, M3) under the DEV framework represents
a negligible computational overhead relative to the significant
performance gains achieved. This minor time investment is
substantially outweighed by the method’s demonstrated im-
provements in classification accuracy and robustness across all
datasets.

The DEV method demonstrates superior performance over
whole-dataset training, delivering consistently higher accuracy
with improved true/false positive ratios across all datasets,
while maintaining computational efficiency.

D. Discussion: Comparing Baseline CNN and DEV Method
for the Four Datasets

This section provides a comprehensive performance com-
parison between the baseline CNN architecture and the DEV
method across all four benchmark datasets.

1) Performance evaluation for DS-FR dataset: The base-
line CNN model, trained on the full DS-FR dataset (12K im-
ages), achieved a test accuracy of 85.55%, with a notable test
loss of 0.586, indicating potential overfitting (train loss: 0.051,
validation loss: 0.199). The confusion matrix revealed 334 FP
(Real images misclassified as Fake) and 244 FN (Fakes
misclassified as Real), suggesting challenges in distinguishing
high-quality deepfakes real images.

In contrast, the DEV method—which splits DS-FR
(Dtrain) into three smaller training sets (Dtrain1: 19800,
Dtrain2/Dtrain3: 20100 each) , keeping (Dval:2000,
Dtest:4000), yielded three models (M1, M2 , M3). Model
M1 emerged as the strongest, achieving 90.4% accuracy
with lower test loss (0.292), outperforming both the baseline
and other models (M2: 79.8%, M3: 90.3% with test loss
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Fig. 14. Overall accuracy: Entire training set vs. DEV method across the four datasets.

TABLE IX. PERFORMANCE METRICS OBTAINED FOR EACH CLASS
BASED ON MODELS M1 , M2 , M3

Dataset model class precision recall f1-score

DS-FR

M1
Fake 0.90 0.91 0.90
Real 0.91 0.90 0.90

M2
Fake 0.95 0.63 0.76
Real 0.72 0.97 0.83

M3
Fake 0.94 0.86 0.90
Real 0.87 0.95 0.91

DS-OR

M1
Org 0.98 0.70 0.81
Recy 0.80 0.99 0.89

M2
Org 0.69 0.93 0.79
Recy 0.96 0.8 0.87

M3
Org 0.95 0.83 0.89
Recy 00.88 0.97 0.92

DS-NP

M1
Pos 0.99 0.98 0.98
Neg 0.98 0.99 0.98

M2
Pos 0.99 0.98 0.98
Neg 0.98 0.99 0.98

M3
Pos 0.99 0.97 0.98
Neg 0.97 0.99 0.98

DS-BNB

M1
Bio 0.89 0.90 0.90
Non-Bio 0.90 0.89 0.90

M2
Bio 0.93 0.73 0.82
Non-Bio 0.78 0.95 0.85

M3
Bio 0.83 0.93 0.88
Non-Bio 0.92 0.81 0.86

TABLE X. PERFORMANCE METRICS BASED ON DEV METHOD

Dataset class precision recall f1-score ACC

DS-FR Fake 0.98 0.88 0.93 93.1%Real 0.89 0.98 0.93

DS-OR Org 0.97 0.79 0.87 89.6%Recy 0.85 0.98 0.91

DS-NP Pos 0.99 0.98 0.99 99%Neg 0.99 0.99 0.99

DS-BNB Bio 0.94 0.92 0.93 93%Non-Bio 0.92 0.94 0.93

1.037, 0.317, respectively) . FP were reduced by 43.4%
through the implementation of Model M1 (189 vs. baseline’s
334), indicating superior Real detection. This suggests
that smaller, curated datasets (like Dtrain1) may mitigate
overfitting and improve generalization. A relatively balanced
misclassification pattern is exhibited by the CNN baseline.
However, M1 dramatically reduces both FP and, FN,

demonstrating high robustness. Conversely, M2, despite
having the lowest FN (61), suffers from very high FP (748),
indicating that it fails to detect a significant portion of Real
images. This imbalance in M2 may stem from dataset-specific
biases or class imbalance during training.

For Precision, Recall, and F1 Comparison, It can be ob-
served that M1 consistently demonstrates the most balanced
and highest scores across all metrics, M3 precision is the
highest, but its low recall results, and these results suggest
M3 is overly moderate.

The DEV method demonstrates significant performance
improvements over baseline CNN model, achieving 7.55%
accuracy gain (85.55% ⇒ 93.1%) while adding only 15 min-
utes to the total execution time (8h21m ⇒ 8h36m). Notably,
error rates sharply decreased, with false positives reduced by
27% (334 ⇒ 244) and false negatives cut by 87% (244 ⇒
32), reflecting enhancement in both precision and recall. The
confusion matrix reveals stronger class discrimination, with
TP rising by 5.4% (1666 ⇒ 1756) and TN increasing by 12%
(1756 ⇒ 1968).

2) Performance evaluation for DS-OR dataset: The base-
line CNN model, trained on the full DS-OR dataset (2.5K
images), achieved a test accuracy of 85.12%, with a notable
test loss of 0.378, (train loss: 0.239, validation loss: 0.345). The
confusion matrix revealed 360 FP (Org images misclassified
as Recy) and 14 FN (Recy misclassified as Org).

In contrast, the DEV method—which splits DS-OR
(Dtrain) into three smaller training sets (Dtrain1: 7073,
Dtrain2/Dtrain3: 7181 each), with (Dval:1129, Dtest:2513),
yielded three models (M1, M2 , M3). Model M3 emerged
as the strongest, achieving 90.89% accuracy with lower test
loss (0.317), outperforming both the baseline and other models
(M2: 85.8%, M3: 84.1% with test loss 0.404, 0.448, respec-
tively) . Experimental data show that false positives were
reduced by 48.6% through the implementation of Model M3

(185 vs. baseline’s 360), indicating superior Org detection.
For Precision, Recall, and F1 Comparison, it can be observed
that M3 shows the most balanced and highest scores across
all metrics.
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The DEV method delivered significant performance im-
provements over whole-dataset training, achieving 4.48% accu-
racy increase (85.12% ⇒ 89.6%) while adding only 8 minutes
to execution time. Error analysis revealed particularly strong
gains in precision, with false positives reduced by 34.4% (360
⇒ 236), though false negatives increased (14 ⇒ 26) due to
the dataset’s class imbalance. The confusion matrix shows
improved TP detection (16.5% increase, 752 ⇒ 876).

3) Performance evaluation for DS-NP dataset: The base-
line CNN model, trained on the full DS-NP dataset (30K
images), achieved a test accuracy of 95.42%, as detailed in
Table IV, with a notable test loss of 0.182, indicating potential
overfitting (train loss: 0.1362, validation loss: 0.1041). The
confusion matrix revealed 181 FP (Pos images misclassified
as Neg) and 2 FN (Neg misclassified as Pos), suggesting
challenges in distinguishing high-quality concrete and pave-
ment surfaces images.

In contrast, the DEV method—which splits DS-NP
(Dtrain) into three smaller training sets (Dtrain1: 7073,
Dtrain2/Dtrain3: 7181 each)—yielded three models (M1, M2

, M3). Model M1 emerged as the strongest, achieving 98.43%
accuracy with lower test loss (0.0537), outperforming both the
baseline and other DEV models (M2: 98.22%, M3: 98.15%).
A significant reduction in FP was achieved by Model M1

(35 vs. baseline’s 181), indicating superior Negative detection.
This suggests that smaller, curated datasets (like Dtrain2)
may mitigate overfitting and improve generalization. The CNN
baseline’s balanced misclassification behavior is demonstrated
through its FN (28 vs. baseline’s 2). Regarding the precision,
recall, and F1 comparison, Model M1 exhibits the most
balanced and highest scores across all metrics compared to
Model M2 and Model M3. This suggests that Model M1

provides the most robust and reliable performance among the
three models.

The DEV method achieved remarkable performance im-
provements for DS-NP dataset, increasing accuracy by 3.58%
(95.42% ⇒ 99%) while adding only 9 minutes and 40 seconds
to execution time (3h55m37s ⇒ 4h5m17s). Error analysis
shows exceptional optimization, with FP reduced by 83.4%
(181 ⇒ 30) and FN increasing by 500% (2 ⇒ 12) due to
the model’s more conservative classification approach. The
confusion matrix reveals outstanding TP detection (8.3% im-
provement, 1819 ⇒ 1970) with nearly perfect TN retention
(1998 ⇒ 1988, -0.5%). These results demonstrate DEV’s
ability to push model performance to near-perfect levels while
maintaining reasonable computational efficiency.

4) Performance evaluation for DS-BNB dataset: The base-
line CNN model, trained on the full DS-BNB dataset (65.92K
images), achieved a test accuracy of 89%, as detailed in Table
IV, with a notable test loss of 0.281, indicating potential
overfitting (train loss: 0.058, validation loss: 0.336). The
confusion matrix revealed 312 FP (Bio images misclassified
as Non-Bio) and 128 FN (Non-Bio misclassified as Bio),
suggesting challenges in distinguishing high-quality Non &
Biodegradable material images.

In contrast, the DEV method—which splits DS-BNB
(Dtrain) into three smaller training sets (Dtrain1: 19774,
Dtrain2/Dtrain3: 20074 each)—yielded three models (M1, M2

, M3). Model M1 emerged as the strongest, achieving 89.6%

accuracy with lower test loss (0.279), outperforming both the
baseline and other DEV models (M2: 83.75%, M3: 86.83%). A
significant reduction in FP was achieved by Model M1 (192
vs. baseline’s 312). Regarding the precision, recall, and F1
comparison, Model M1 exhibits the most balanced and highest
scores across all metrics compared to Model M2 and Model
M3. This suggests that Model M1 provides the most robust
and reliable performance among the three models.

The DEV method delivered significant performance im-
provements for DS-BNB dataset, boosting accuracy by 4%
(89% ⇒ 93%) with only 12-minute, 8-second increase in
execution time (7h27m ⇒ 7h39m8s). The approach demon-
strated particularly strong error reduction, with FP decreasing
by 48.1% (312 ⇒ 162) while maintaining comparable FN rates
(6.25%, 128 ⇒ 120). The confusion matrix reveals excellent
TP improvement (8.9% increase, 1688 ⇒ 1838) with stable
TN performance (1872 ⇒ 1880, 0.4%). These results highlight
DEV’s ability to enhance model precision while maintaining
recall.

Finally, the DEV method’s performance gains stem from
four synergistic mechanisms. First, dataset partitioning enables
specialized feature learning, where each model captures dis-
tinct data aspects, reducing collective bias. Second, the major-
ity voting mechanism cancels individual model errors through
consensus. Third, aggregated predictions leverage complemen-
tary model strengths, enhancing robustness to outliers and
edge cases. Finally, the framework achieves this through a
favorable balance between efficiency and accuracy, a small
increase in execution time results in a disproportionate increase
in accuracy, demonstrating a scalable improvement.

V. CONCLUSION

The Divided Ensemble Voting (DEV) methodology intro-
duced in this research establishes a novel ensemble learning
architecture aimed at augmenting the efficacy of image clas-
sification systems. Central to this framework is the strategic
division of the training data into unique partitions, enabling
the development of specialized convolutional neural networks
tailored to distinct feature domains. The consensus-driven in-
tegration of predictions via a majority voting protocol yields a
robust final classification. Empirical validation across multiple
datasets confirmed a marked elevation in model accuracy, with
observed gains ranging from 3.58% to 7.55%. The framework
also demonstrated a profound capacity for error reduction,
achieving a decrease in FP instances of up to 83.4%. These
enhancements are attributed to the method’s inherent resistance
to overfitting, its ability to neutralize singular model biases
through diversified training regimes, and its superior general-
ization powered by collective decision-making. Furthermore,
DEV exhibited exceptional proficiency in addressing class
distribution imbalances, reflected by a 16.5% increase in TP
identification and F1-scores attaining 0.99. A critical advantage
of this architecture is its computational efficiency, imposing a
negligible runtime overhead of less than 5%, thereby affirming
its practicality for operational environments. The combination
of heightened precision and operational efficiency positions the
DEV framework as a transformative solution for applications
demanding high reliability.
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