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Abstract—Machine learning models are typically developed
under the “closed-world” assumption, where training and testing
data originate from a consistent distribution. However, in real-
world scenarios, especially in the retail domain, this assumption
can become problematic due to the frequent introduction of
new products, seasonal promotions, and irregular sales events.
When models encounter out-of-distribution data inputs, predic-
tions can become overly confident or entirely incorrect. While
existing out-of-distribution detection methods primarily focus on
image-based datasets, challenges associated with numerical, high-
dimensional, and heterogeneous retail time-series data remain
largely unexplored. To address this gap, this study proposes
an enhanced Entropic Out-of-Distribution Detection framework
tailored specifically for dynamic retail environments. By trans-
forming time-series sales data into spectrogram representations
and leveraging the IsoMax+ loss function, our approach im-
proves uncertainty calibration and robustness without requiring
labeled out-of-distribution data or additional post-hoc calibration
techniques. Experimental results, conducted on a large-scale
retail dataset from Vietnam, demonstrate that the proposed
Entropic Out-of-distribution detection framework significantly
outperforms traditional out-of-distribution detection methods in
terms of detection accuracy and inference efficiency, providing a
scalable and practical solution for real-time retail applications.
Our approach achieves strong performance with an F1-score of
88% and an AUC of 91 %, highlighting its promising applicability
across diverse business scenarios.
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I. INTRODUCTION

In conventional supervised learning settings, models are
typically developed under the “closed-world” assumption,
where classifiers are trained on a predefined set of known
classes and assume future data will remain consistent with the
training distribution. However, this assumption rarely holds in
real-world scenarios, where data distributions evolve contin-
uously and models encounter previously unseen samples. As
a result, predictive accuracy deteriorates and uncertainty esti-
mates become unreliable when facing distributional shifts [1],
[2]. To maintain model reliability, robust mechanisms for de-
tecting anomalies and unseen data—commonly known as Out-
of-Distribution detection are essential. During a preliminary
survey of recent OOD research, we observed that most exist-
ing approaches are developed and benchmarked primarily on
image datasets. This observation raises a natural question: Can

OOD detection techniques be effectively adapted to numerical,
business-oriented time-series data, such as those found in retail
analytics?

In retail analytics, OOD data frequently emerge from new
product launches, regional demand changes, or promotional
campaigns. Such shifts can lead to unstable sales patterns,
causing models to generate inaccurate forecasts and poor busi-
ness decisions [3]. Conventional OOD approaches, including
Maximum Softmax Probability (MSP) [4] and Mahalanobis
Distance [5], are computationally simple but struggle with
subtle distributional drifts. Recent entropy-based methods [6],
[7] have shown promise in improving calibration by quanti-
fying prediction uncertainty, yet they often rely on post-hoc
temperature scaling or external OOD datasets [8], limiting real-
world scalability.

To overcome these challenges, researchers have ex-
plored information-theoretic and distance-aware frameworks.
Sugiyama et al. [9] introduced density ratio estimation to
capture distributional shifts, and Macédo et al. [10] proposed
the Entropic Out-of-Distribution Detection (EOOD) frame-
work that replaces softmax scoring with a distance-regularized
entropy loss.

More recently, Liang et al. [11] and Han et al. [12] further
demonstrated that entropy regularization and contrastive pre-
dictive entropy can enhance OOD robustness in deep networks
and time-series tasks.

These findings confirm the potential of entropy-based
learning to improve detection accuracy in dynamic, high-stakes
domains such as healthcare and retail [13].

1) Motivation and objective: Despite these advances, ap-
plying OOD detection to retail time-series data remains un-
derexplored. Retail datasets are highly non-stationary, multi-
modal, and influenced by seasonal, geographic, and economic
factors.

This study aims to develop a scalable, entropy-driven OOD
framework that can adapt to evolving retail conditions without
external calibration or labeled OOD data.

Such capability can enhance model reliability, reduce fore-
cast errors, and improve business decision-making in dynamic
commercial environments.

2) Main contributions: The contributions of this work can
be summarized as follows:
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e  We propose an enhanced Entropic Out-of-Distribution
Detection (EOOD) framework tailored to retail time-
series data, combining entropy and distance-based
uncertainty modeling for improved calibration.

e A spectrogram-based transformation is introduced to
convert sales sequences into time—frequency represen-
tations, enabling convolutional architectures to capture
temporal dynamics effectively.

e A labeling and preprocessing pipeline is designed
to generate realistic in-distribution and out-of-
distribution samples without requiring external OOD
datasets or post-hoc calibration.

e  Extensive experiments on large-scale Vietnamese re-
tail data demonstrate that the proposed method out-
performs conventional baselines in detection accuracy,
calibration robustness, and inference efficiency.

The remainder of this study is organized as follows:
Section II reviews representative OOD detection methods
and their limitations. Section III details the proposed EOOD
methodology, including data processing and model architec-
ture. Section IV presents experimental results and analysis,
while Section V concludes the study and outlines future
research directions.

II. RELATED WORK

Out-of-Distribution (OOD) detection has become an essen-
tial problem in reliable deep learning, aiming to identify sam-
ples that do not conform to the training data distribution [4].
Early approaches relied on confidence-based measures, such
as Maximum Softmax Probability (MSP) [4] and temperature
scaling or input perturbation methods as in ODIN [14]. Later,
Mahalanobis distance-based techniques [3] improved robust-
ness by modeling feature-space distributions, while IsoMax
and IsoMax+ losses [10] introduced distance-aware learning
for better uncertainty calibration.

Recent research has continued to refine these directions.
Liang et al. [11] proposed entropy regularization to stabilize
OOD decision boundaries. Han et al. [12] extended entropy-
based detection to time-series data through contrastive predic-
tive modeling, and Liu et al. [15] leveraged spectral repre-
sentation learning to enhance feature robustness. Macedo et
al. [16] revisited IsoMax+ for improved distance-awareness,
while Yang et al. [17] provided a comprehensive survey catego-
rizing OOD methods by analytical principles and highlighting
emerging challenges.

To synthesize these developments, Table I presents a com-
parative summary of representative OOD detection approaches,
categorizing them by type of analysis, advantages, limitations,
and their relationship to the proposed EOOD framework.
This overview clarifies how our method differs by emphasiz-
ing entropy—distance synergy, calibration-free detection, and
adaptability to dynamic retail time-series data.

OOD detection has emerged as a critical subfield in
machine learning, particularly in safety-critical and dynamic
environments. Early works often relied on confidence-based
metrics such as Maximum Softmax Probability (MSP) [4],
which takes the highest softmax output as a confidence score.
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While MSP is computationally efficient, it is prone to overcon-
fidence on unfamiliar inputs. Distance-based methods, such as
the Mahalanobis Distance approach [3], measure the feature-
space distance between a sample and class centroids under
Gaussian assumptions. Although effective in some cases, these
methods are sensitive to covariance estimation errors and tend
to degrade in high-dimensional, non-isotropic settings.

To mitigate softmax overconfidence, Liang et al. [14] pro-
posed ODIN, which combines temperature scaling and input
perturbations to improve separation between in-distribution
(ID) and OOD samples. ODIN improves detection accuracy but
requires careful hyperparameter tuning and access to OOD-like
validation data, limiting its scalability. Entropy-based scoring
methods [6] address this issue by using the entropy of the
predictive distribution as an uncertainty measure—Ilow entropy
indicating confident predictions for ID data, and high entropy
reflecting unfamiliarity for OOD inputs. However, many still
depend on post-hoc calibration [7] or labeled OOD datasets
[8], which may be impractical in real-time settings.

Entropic Out-of-Distribution Detection was introduced by
Macédo et al. [10] to overcome these limitations. EOOD
replaces the softmax layer with IsoMax+, a distance-aware
probability formulation that computes class likelihoods based
on the squared Euclidean distance between an input’s feature
vector and learned class centroids. This design naturally pro-
duces higher predictive entropy for OOD samples—improving
separation without post-hoc adjustments or external OOD data.
IsoMax+ encourages isotropic feature distributions, making
the model more robust in high-dimensional and noisy data
environments. Recent studies such as Jin et al. [18] further
confirm the effectiveness of entropy-based and distance-aware
approaches in dynamic, high-dimensional settings.

Despite its success on image benchmarks such as CI-
FAR10, CIFAR100, and SVHN, most prior EOOD research
has been limited to static spatial structures. In contrast, retail
time-series data presents unique challenges: high dimension-
ality, seasonal patterns, abrupt demand spikes, and sparsity
across product—location pairs. Traditional OOD methods de-
signed for images may fail to capture these temporal-seasonal
anomalies effectively.

To summarize, Table I provides a synthesis of representa-
tive OOD detection methods, categorized by their analytical
principles, advantages, and limitations. This overview high-
lights how our proposed EOOD framework improves uncer-
tainty calibration and adaptability to dynamic retail data.

This comparative summary facilitates a clearer understand-
ing of how the proposed EOOD method distinguishes itself
from existing approaches in terms of scalability, uncertainty
calibration, and adaptability to dynamic time-series data.

This study addresses this shortage by extending EOOD
to retail time-series forecasting. We introduce a spectrogram-
based transformation that converts 12-month revenue se-
quences into image-like representations, enabling the use
of deep CNN architectures such as EfficientNet-B3. By
integrating IsoMax+ loss, our approach preserves EOOD’s
calibration-free property while enhancing its ability to de-
tect OOD patterns in dynamic, high-variance retail environ-
ments—supporting real-time anomaly detection where timely
insights are crucial for operational decision-making.:
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TABLE I. COMPARATIVE SUMMARY OF REPRESENTATIVE OUT-OF-DISTRIBUTION (OOD) DETECTION METHODS CATEGORIZED BY ANALYTICAL
APPROACH, HIGHLIGHTING THEIR RESPECTIVE ADVANTAGES, LIMITATIONS, AND DISTINCTIONS FROM THE PROPOSED EOOD FRAMEWORK

Method Type of Analysis Advantages

Comparison with the Pro-
posed Framework

Limitations

Maximum Softmax Confidence-based

Simple, fast, easy to imple-

Overconfident on unseen data Lacks uncertainty calibration

Probability ment
(MSP) [4]
ODIN [14] Temperature scaling and input  Improves OOD separation Requires tuning and validation  Higher complexity; not scal-

perturbation

data able

Mabhalanobis Distance-based
Distance [3] ture

Captures feature-space struc-

Sensitive to covariance estima-  Less effective on high-
tion dimensional time-series

Entropic (0]0)))
Detection
(EOOD) [10]

Entropy + Distance

Calibration-free, robust

This study extends it to re-
tail time-series

Limited to image data
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where, f(x) represents the feature vector of input sample z,
¢; is the centroid of class ¢, and d(-) is a distance metric such as
squared Euclidean distance. This formulation encourages the
model to produce higher entropy for OOD samples, as they
lie farher away from the class centroids. Therefore, the model
shows ability to detect OOD instances without the need for
additional calibration or external datasets.

Out-of-Distribution detection has emerged as a fundamen-
tal subfield in machine learning, particularly in applications
where model required reliability and safety. Several approaches
have been proposed to distinguish between ID and OOD
inputs, with varying assumptions and mechanisms for uncer-
tainty estimation.

One of the earliest and most often used methods is the MSP,
introduced by Hendrycks and Gimpel [4]. This method uses
confidence score from the softmax output as an indicator of
distributional fit. While computationally efficient, MSP likely
overconfident predictions on unfamiliar inputs. In case of deal-
ing with subtle anomalies or class overlapping distributions.

To solve these limitations, ODIN was proposed by Liang et
al. [14], combining temperature scaling and input perturbations
to amplify the distinction between ID and OOD samples.
Despite its improved detection performance, ODIN requires
careful hyperparameter tuning and access to validation data,
which may hinder its scalability across domains.

Another mature method is the Mahalanobis Distance based
approach introduced by Lee et al. [3], which computes the dis-
tance between a test sample and class conditional distributions
in the feature space. Although this method works effective in
enhancing internal feature representations,it assumes Gaussian-
ity and sensitive to covariance estimation errors particularly in
high-dimensional or non-isotropic feature spaces.

More recently, entropy-based methods have gained atten-
tion for their principled handling of predictive uncertainty. In
particular, Macédo et al. [10] proposed the Entropic Out-of-
Distribution Detection framework, which replaces the conven-
tional softmax layer with IsoMax+ loss. Traditional softmax
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Fig. 1. Comparison of softmax and IsoMax+ confidence decay with respect
to increasing feature distance from class centroids.

layers calculate class probabilities based on unnormalized log-
its, which often lead to poorly calibrated confidence estimates,
as shown by Guo et al. [7]. Therefore, this method is unsuitable
with uncertain estimation.

IsoMax+ loss overcome this limitation by using distance
based approach instead of softmax function. This replacement
limits marking unfamiliar data by attach for them lower
confidence scores and high predictive entropy. In addition,
by enhancing isotropic feature, this model is easily detect
OOD data without requiring external datasets. Therefore, it
is suitable with high dimension and noisy data. To clarify
comparison between Softmax and IsoMax+, Fig. 1 visualizes
how each method predict class based on distance of an input
sample form the class centroid.

1) Softmax: The standard softmax computes class proba-
bilities using linear logits:

e
Pi= =g 2)
Zj:l €%

where, z; is typically computed as a linear projection:
z; = w, f(x) + b;, with f(z) being the input feature vector.
This formulation does not explicitly depend on the distance
between the input and any class centroid, which can lead
to overconfident predictions for unfamiliar inputs (i.e., OOD
data).
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2) IsoMax+: In contrast, IsoMax+ replaces logits with
negative distances in the embedding space:

eid(.f(w)’c’t) 3
PSR e ©)

with the distance metric defined as:
d(f(x),¢;) = || f(z) = eil® )

Here, c; is the centroid of class ¢. This formulation ensures
that the farther an input lies from any class center, the lower
its predicted probability, thereby naturally increasing predictive
entropy for OOD samples.

Recently, as the limitaion of Sofmax based, [soMax+ which
a part of EOOD framework addressed the entropy detection
help model more practical when using for real world data.

III. METHODOLOGY

This section presents the EOOD framework for retail time-
series. The pipeline has four stages: 1) data preprocessing
and surrogate OOD labeling, 2) spectrogram transformation, 3)
EfficientNet-B3 backbone with IsoMax+ loss, and 4) entropy-
based OOD scoring.

A. Overview of the Proposed Framework

Fig. 2 summarizes the workflow. Raw transaction logs are
aggregated into monthly series, transformed into spectrogram
images via STFT, and then fed to an EfficientNet-B3 backbone
trained with IsoMax+ loss for uncertainty-aware classification.
The predictive distributions are finally converted into OOD
scores.

B. Data Pre-processing and Labeling

We use transaction-level sales data from 63 provinces in
Vietnam (2024), including product ID, date, quantity, revenue,
and location. Records are aggregated monthly per (product,
province) to form 12-month sequences; only pairs with com-
plete records and at least six non-zero months are retained to
avoid degenerate or overly sparse series.

To emulate realistic distributional shifts without relying on
external OOD datasets, two complementary heuristics were
applied for labeling, as illustrated in Fig. 4.

1) Spike-based labeling rule:: A month t is labeled as
out-of-distribution (OOD) if its revenue R, satisfies:

Rt > 2 X Rt717 (5)

capturing short-term shocks such as promotions, sudden
demand surges, or supply disruptions.

Vol. 16, No. 10, 2025
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Fig. 2. Proposed EOOD framework for retail time-series OOD detection.

2) Entropy-based volatility labeling:: For each 12-
month revenue series,

R ={Ry,Ro,..., Rz},

we compute the volatility ratio (serving as an entropy
proxy) as:

(6)

where, o(R) and p(R) denote the standard deviation and
mean of the sequence, respectively. A sequence is labeled as
OOD if its entropy ratio exceeds a global threshold:

E>pup+ 1508, (N

where, up and op represent the mean and standard de-
viation of FE across all product—province pairs. This criterion
identifies long-term volatility or regime shifts in sales behavior.

After pre-processing, a total of 33,680 valid product—
province time-series pairs were obtained, including 22,450 in-
distribution (ID) and 11,230 OOD sequences. These labeled
sequences were subsequently transformed into spectrogram
images for model training in the following section.

C. Spectrogram Transformation

Each 12-month sequence is converted into a spectrogram
using the Short-Time Fourier Transform (STFT),

oo

S(t, f) = Z x[m] wlm — t] e 327/™ (8)

m=—0o0

and mapped to a three-channel image via a fixed colormap.
This representation preserves temporal order while exposing
time—frequency structure, where retail anomalies often appear
as localized spectral distortions. Prior studies show that such
image-based encodings can improve time-series classification
and anomaly detection in complex settings [6], [19]. Visual
examples are shown in Section IV.
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D. Model Architecture

We adopt EfficientNet-B3 as the backbone and resize spec-
trograms to 300 x 300 pixels. EfficientNet’s compound scaling
achieves a favorable accuracy-latency balance compared to
heavier backbones, which is crucial for near real-time retail
inference [20]. Global average pooling is applied to the final
feature maps, and the ImageNet classifier is replaced by an
IsoMax+ head.

E. IsoMax+ Loss for OOD Detection

Traditional softmax classifiers often produce overconfident
predictions even for inputs that are far from the training
distribution. This limitation arises because the Softmax func-
tion converts unnormalized logits into probabilities without
explicitly considering the distance of a sample from any known
class centroid. As a result, OOD samples can still be assigned
high confidence scores, leading to poor uncertainty calibration

[7].

IsoMax+ addresses this problem by replacing linear logits
with distance-based formulations. Specifically, the logit for
class ¢ is computed as:

zi=—a-||f— ciH2 9)

where, f is the feature vector of an input, c; is the
centroid of class 7, and « is a learnable scaling parameter.
This formulation ensures that samples located far from all
class centroids are assigned low confidence and high predictive
entropy, thereby mitigating the overconfidence issue without
requiring post-hoc calibration [10].

To provide intuition, Fig. 3 compares the posterior prob-
ability distributions of Softmax and IsoMax+. As shown,
Softmax tends to output peaked, low-entropy posteriors even
for ambiguous inputs, while IsoMax+ yields smoother, high-
entropy distributions that better reflect uncertainty. This prop-
erty makes IsoMax+ particularly suitable for OOD detection
in dynamic retail environments.

IsoMax Loss Trained Neural Networks
Underconfident Probability Distributions
Agreement with the Maximum Entropy Principle

SoftMax Loss Trained Neural Networks
Overconfident Probability Distributions
Disagreement with the Maximum Entropy Principle

Low Entropy Posterior
Probability Distribution

High Entropy Posterior
Probability Distribution

Probabilities
Probabilities

\

S N
Class #1 (Class #2 Class #1 Class #2

Fig. 3. Comparison of posterior probability distributions produced by
Softmax and IsoMax+.

E Training Strategy

Models are trained end-to-end with AdamW and a cosine
learning rate schedule. We use random cropping, horizon-
tal flips, brightness/contrast jitter, Gaussian noise, MixUp
(a=0.4), label smoothing (0.1), and Exponential Moving Av-
erage of weights. These choices improve robustness to small

Vol. 16, No. 10, 2025

rendering differences in spectrograms, temper overconfident
posteriors, and stabilize convergence under volatile demand
patterns typical of retail data.

In summary, the EOOD framework combines dual-criteria
labeling, spectrogram-based encodings, an EfficientNet-B3
backbone, and IsoMax+ loss to deliver calibration-free OOD
detection suited to dynamic retail environments.

IV. EXPERIMENTS
A. Dataset Collection and Pre-Processing

The raw dataset contained approximately 1.2 million trans-
action records from 63 provinces in Vietnam, covering the
12-month period of 2024. The data were obtained from the
retail sales management system of Liberico Company, which
operates on the nationwide VNPost postal distribution channel.
This channel supports multiple vendors and retail partners
beyond Liberico itself, making it a rich and heterogeneous
retail environment that includes diverse product categories,
pricing schemes, and sales behaviors from different busi-
nesses. The dataset was directly extracted from the company’s
database and exported into excel format Table II summarizes
the key attributes contained in the raw transaction dataset.
After monthly aggregation and filtering for completeness (i.e.,
retaining only product—province pairs with at least six non-zero
months), a total of 33,680 valid time-series sequences were
preserved for analysis. These sequences were subsequently
labeled based on two criteria:

e  Spike-based labeling: A time-series is labeled OOD if
any month shows a revenue spike exceeding 2x the
previous month.

e  Entropy-based labeling: The entropy of each sequence
was computed as the ratio Z (standard deviation over
mean). If this value exceeded a global threshold of
(1 + 1.50), the sequence was labeled as OOD.

TABLE II. DATA DICTIONARY OF THE RETAIL TRANSACTION DATASET

Field Description
Date Transaction date (dd/mm/yyyy), used to derive month.
Province Province or city where the transaction occurred.

Invoice ID
Product ID
Product Name

Unique identifier of the invoice.

Unique identifier of the product.

Description of the product.

Unit Measurement unit (e.g., piece, pack, bottle).

Unit Price Price per unit (VND).

Quantity Number of units sold.

Revenue Total transaction revenue (Unit Price X Quantity).
Commission ratio applied to the transaction.
Calculated as Revenue X Commission Rate.

Commission Rate
Commission (derived)
Total Payment (derived) Calculated as Revenue — Commission.

Month (derived) Extracted from the Date for time-series grouping.

In total, 22,450 sequences were labeled ID, and 11,230
were labeled OOD. The distribution of entropy values for ID
and OOD sequences is shown in Fig. 4.

Each of the 33,680 time-series sequences was converted
into a spectrogram using the Short-Time Fourier Transform.
The resulting spectrograms were mapped to a 3-channel image
using a fixed colormap. This conversion produced a dataset
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Fig. 4. Distribution of entropy scores for labeling ID (blue) vs. OOD
(orange) sequences.

of 33,680 spectrogram images, each of size 300x300 pixels,
which were then organized into two directories: one for ID
(label 0) and one for OOD (label 1). An example spectrogram
of a 12-month revenue time series is shown in Fig. 5.

To improve generalization and avoid overfitting, we applied
several data augmentation techniques as followings:

e Random horizontal flip: This was used to mimic
random variations in input patterns (e.g., seasonal
variations).

e Random cropping: Spectrogram images were ran-
domly cropped to 270x270 pixels during training.
This allowed the model to focus on localized features
within the image, improving robustness.

e  Brightness jitter: Slight changes to the brightness of
the images were made to mimic changes in lighting
conditions in the retail environment.

e  Gaussian noise injection: Small amounts of noise were
added to the images to simulate real-world signal
fluctuations.

e  MixUp (o = 0.4): This technique mixes two random
images during training, allowing the model to gen-
eralize better by learning from both images at once,
which also increases the model’s robustness against
noisy data.

Fig. 5. Example spectrogram of a 12-month revenue series.

Vol. 16, No. 10, 2025

B. Experimental Setup

1) Training parameters: Following the methodology
pipeline (Fig. 2), the spectrogram images were used as input
to an EfficientNet-B3 backbone pre-trained on ImageNet. The
model was trained with IsoMax+ loss for out-of-distribution
(OOD) detection. We used the AdamW optimizer with an
initial learning rate of 2x10~° and a cosine-annealing schedule
that progressively reduced the learning rate to ensure stable
convergence. The loss function and learning rate scheduler
were selected to balance optimization stability and conver-
gence speed.

2) Exponential Moving Average (EMA): To further stabi-
lize training and ensure that the model’s weights converge to
a stable point, we applied the Exponential Moving Average
(EMA) of model weights. This technique averages the weights
over time to ensure that fluctuations in model parameters are
minimized, resulting in a more robust model that performs
better in real-world scenarios [21]. The decay factor was set
to 0.995, meaning that each new weight update is blended with
the previous one by 99.5%.

3) Training environment: Training was carried out on
NVIDIA Tesla T4 GPU with a batch size of 32. This GPU
is highly efficient for training models like EfficientNet and
provides a good balance between memory and processing
power, making it suitable for high-throughput deep learning
tasks. The model was trained for 75 epochs, and the early
stopping criterion was applied, which halted training if the
validation loss did not improve for 10 consecutive epochs. This
approach helped prevent overfitting and ensured that training
time was efficiently managed.

The model performance was evaluated based on classi-
fication accuracy, Fl-score, AUC-ROC, and inference time(
measured in milliseconds per sample).

C. Results

1) Phase 1: Baseline training and convergence analysis:
Fig. 6 shows the accuracy and loss curves during the first
phase of training with an 80/20 split. The model achieved rapid
convergence within the first 15 epochs, stabilizing around 89%
accuracy, while the validation loss decreased and plateaued at
approximately 0.37. The confusion matrix in the figure shows
that 48 out of 71 OOD samples were correctly classified, while
23 were misclassified as in-distribution. Table III shows the
classification report for Phase 1.

TABLE III. CLASSIFICATION REPORT FOR PHASE 1

Class Precision | Recall | F1-Score
In-Distribution 0.94 0.93 0.93
Out-of-Distribution 0.63 0.68 0.65
Accuracy 0.89

Macro avg 0.79 0.80 0.79
Weighted avg 0.89 0.89 0.89

2) Phase 2: Enhanced training and robustness evaluation:
In the second phase, the dataset was split into 70% for
training, 15% for validation, and 15% for testing. This phase
included advanced regularization techniques, such as MixUp,
label smoothing, and EMA, to improve generalization and
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reduce overfitting. The model performed consistently well,
with training and validation accuracy stabilizing 87% after
epoch 30, as shown in Fig. 7. The validation loss remained
slightly lower than the training loss throughout the phase,
indicating stable generalization.

TABLE IV. CLASSIFICATION REPORT FOR PHASE 2

Class Precision | Recall | F1-Score
In-Distribution 0.91 0.92 0.92
Out-of-Distribution 0.69 0.65 0.67
Accuracy 0.87

Macro avg 0.80 0.79 0.79
Weighted avg 0.86 0.87 0.86

The detailed classification performance is summarized in
Table IV, where the model achieved an overall accuracy
of 87%. The In-Distribution class obtained high precision
and recall (0.91 and 0.92, respectively), while the Out-of-
Distribution class was more challenging, with a precision of
0.69 and recall of 0.65. These results highlight the model’s
improved robustness compared to Phase 1, although OOD
detection remains the more difficult task.

Additionally, Fig. 8 presents the ROC curve of the best

EMA-tracked model evaluated on the 15% test set. The model
achieved an AUC of 0.7974, demonstrating its strong ability
to distinguish between in-distribution and OOD samples.

3) Comparison with baseline methods: To comprehen-
sively evaluate the performance of the EOOD framework, we
compared it with several baseline OOD detection methods:
MSP, Entropy Scoring, ODIN, and Mahalanobis Distance.
Table V shows the comparison results based on key metrics:
Fl1-score (OOD), AUC-ROC, and inference time.

EOOD consistently outperforms all baseline methods
across the key metrics. It achieves the highest Fl-score of
0.88 for OOD detection and the best AUC-ROC of 0.91,
demonstrating superior ability to distinguish between ID and
OOD samples. In contrast, while ODIN and Mahalanobis
show competitive AUCs, their inference times are significantly
higher, making them less suitable for real-time deployment.
Methods like MSP and entropy scoring suffer from low OOD
recall due to overconfidence in softmax outputs.

D. Discussion

The experimental findings presented in Section IV demon-
strate that the proposed EOOD framework effectively enhances
out-of-distribution (OOD) detection for retail time-series data.
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Fig. 8. Comparison of ROC curves across two training configurations.

TABLE V. PERFORMANCE COMPARISON BETWEEN EOOD AND
TRADITIONAL OOD DETECTION METHODS, SORTED BY F1-SCORE

Method F1-score (OOD) AUC-ROC Inference Time (ms)
MSP 0.22 0.80 9
Entropy 0.36 0.80 9
Energy 0.41 0.75 11
Mahalanobis 0.81 0.86 17
ODIN 0.83 0.89 19
EOOD 0.88 0.91 12

By transforming sales sequences into spectrogram representa-
tions and employing the IsoMax+ loss, the model improves
uncertainty calibration and maintains efficient inference suit-
able for real-time applications.

From the comparative experiments, the Phase 1 baseline
achieved 0.89 accuracy and an Fl-score of 0.65 for OOD
samples, whereas the enhanced Phase 2 configuration—with
MixUp, Label Smoothing, and Exponential Moving Average
(EMA)—achieved smoother convergence and more stable gen-
eralization. Although the accuracy slightly decreased to 0.87,
the model exhibited lower variance in validation loss and
better calibration, as seen in Fig. 7. This trade-off indicates
improved robustness and reduced overfitting under dynamic
retail conditions.

As shown in Table V, EOOD outperformed Mahalanobis
and ODIN, achieving the highest overall accuracy and effi-
ciency. These results verify that the entropic—distance synergy
inherent in IsoMax+ enables superior calibration-free OOD
detection compared to confidence-based and post-hoc methods.
In particular, EOOD achieved an approximate 5% gain in
AUC over Mahalanobis Distance while reducing latency by
nearly 35%, offering a practical trade-off between accuracy
and computational cost.

Despite these promising results, Fig. 8(b) also shows that
the recall for OOD samples remains modest (0.65), implying

that extreme or rare anomalies may still overlap with in-
distribution variance. This suggests the need for adaptive
thresholding or dynamic decision boundaries to further im-
prove sensitivity under evolving retail conditions.

The framework’s scalability and calibration-free operation
make it well-suited for deployment in production environ-
ments. Beyond retail, similar entropic representations could
be applied to other time-series domains such as financial fraud
detection, healthcare monitoring, or industrial sensor analysis,
where rapid and reliable anomaly identification is critical.

The framework’s scalability and calibration-free operation
make it well-suited for deployment in production environ-
ments. Beyond retail forecasting, the proposed framework can
also support anomaly detection tasks in finance, healthcare,
and industrial monitoring, where timely and reliable OOD
identification is critical. Its calibration-free nature and low
inference latency make it practical for large-scale real-time
deployment.

Overall, these findings confirm that entropy-based learning
combined with distance-aware regularization forms a strong
foundation for robust, scalable, and interpretable OOD detec-
tion across complex and dynamic business environments.

V. CONCLUSION

This study presented an enhanced Entropic Out-of-
Distribution Detection (EOOD) framework specifically de-
signed for dynamic retail time-series data. The proposed
approach integrates IsoMax+ loss with spectrogram-based
representation learning to improve robustness against distri-
butional shifts — a persistent challenge in real-world retail
environments. By transforming sales sequences into visual
spectrograms, the model effectively captures temporal depen-
dencies and subtle anomalies in a spatial format, extending the
applicability of convolutional architectures beyond traditional
image domains.
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Unlike conventional OOD techniques that require external
datasets or post-hoc calibration, the proposed framework op-
erates in a fully calibration-free manner, making it practical
for business applications where real-time decisions are criti-
cal. This design promotes scalability and adaptability across
domains with high-dimensional, sparse, or unlabeled data,
supporting broader applications in predictive modeling and
anomaly detection.

The findings demonstrate that entropy-based learning,
when combined with distance-aware regularization, can signifi-
cantly enhance uncertainty calibration and detection accuracy.
The framework offers both scientific and practical benefits,
contributing to more reliable forecasting and decision-making
in data-driven retail operations.

A. Limitations

Despite its strong empirical performance, the proposed
EOOD framework still has several limitations. First, the label-
ing process for in-distribution and out-of-distribution samples
relies on heuristic thresholds (e.g., entropy ratio and revenue
spike rules), which may not generalize optimally across differ-
ent datasets or business domains. Second, the current approach
focuses on short-term (12-month) retail patterns, while longer
seasonal or multi-year dynamics have not been explored.
Finally, converting temporal sequences into spectrograms,
though effective for CNN-based learning, may introduce mi-
nor information loss compared to direct temporal modeling
approaches such as Transformers or recurrent architectures.
These limitations highlight opportunities for improvement in
generalization and interpretability.

B. Future Work

Several directions can be pursued to extend this research.
First, adaptive thresholding techniques could further enhance
sensitivity to gradual concept drift in long-term deployments.
Second, integrating Bayesian-inspired uncertainty modeling
may strengthen interpretability and improve predictive cal-
ibration. Finally, cross-domain evaluation in fields such as
finance, cybersecurity, and energy analytics could validate the
generalizability of the proposed framework and highlight its
potential for broader adoption.
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