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Abstract—Effective inventory management is fundamental
to supply chain resilience and efficiency. Artificial intelligence
(AI) has emerged as a transformative solution that enables
more dynamic and data-driven inventory strategies. To map the
latest advancements in this rapidly evolving field, this study
presents a systematic literature review (SLR) of AI techniques
in inventory management. The review was conducted following
the PRISMA 2020 guidelines, through which 87 high-quality
articles published between 2021 and 2025 were systematically
analyzed. Our review identifies machine learning (ML), deep
learning (DL), reinforcement learning (RL), and hybrid methods
as the predominant AI technologies. These techniques primar-
ily address three foundational tasks. In demand forecasting,
they improve prediction accuracy and mitigate stockout and
overstock risks. For inventory control, they balance costs with
service levels and optimize replenishment strategies. In inventory
classification, they facilitate targeted resource allocation. Despite
these advancements, AI research confronts significant challenges,
particularly in data dependency, model interpretability, and
implementation overhead. To address these gaps, we suggest
future research focused on data-efficient learning, explainable
AI, and lightweight, integrated frameworks to lower adoption
barriers. This review provides a timely and holistic overview of
the current research landscape, which serves as a reference for
academics to identify research directions.
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I. INTRODUCTION

Effective supply chain management (SCM) plays a critical
role in modern corporate strategy by optimizing resource
allocation, enhancing market responsiveness, and mitigating
operational risks [1], [2]. Inventory management is a core
component of SCM that is crucial for balancing supply and
demand. It directly impacts key performance indicators such as
operational costs and customer satisfaction [3], [4]. The strate-
gic importance of inventory management is particularly evident
in high-stakes sectors, such as the power grid sector. In this
domain, managing inventories of critical assets, such as trans-
mission components and essential spare parts, is paramount
for ensuring grid stability and operational reliability, especially
amidst the growing integration of volatile renewable energy
sources [5], [6]. Traditional inventory management methods,
reliant on static models and historical data, are ill-equipped for
the volatility of modern supply chains [7], [8]. These meth-
ods exhibit inherent limitations in timeliness, flexibility, and
predictive accuracy. Consequently, there is a growing demand
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for advanced solutions, and AI is a particularly promising
approach [9], [10].

AI leverages big data and intelligent algorithms to enable
scientific forecasting and dynamic optimization in inventory
management, improving efficiency, reducing costs, and en-
hancing supply chain flexibility [11], [12]. For instance, ma-
chine learning (ML) can perform demand forecasting based
on historical sales and market trends [13]. Deep learning
(DL) is capable of processing complex nonlinear data for
anomaly detection and defective product identification [14].
Natural language processing (NLP) can analyze supplier and
customer information to support market fluctuation prediction
[15]. Reinforcement learning (RL) can optimize replenishment
strategies in dynamic environments [16]. The Internet of
Things (IoT) combined with computer vision (CV) enables
real-time monitoring, automated stocktaking, and visualization
management [17]. These techniques significantly improve fore-
casting accuracy, inventory turnover, and anomaly detection,
while supporting strategic supply chain planning and promot-
ing intelligent manufacturing and digitalized supply chains
[18][19][20].

Although artificial intelligence is rapidly transforming in-
ventory management, the field lacks a current, unified map of
these advancements, creating a research gap. To the best of
our knowledge, there is a notable scarcity of comprehensive
systematic reviews on this topic published after 2023. This
gap is particularly critical for two reasons. On one hand,
recent years have witnessed unprecedented progress in AI,
with the emergence of large language models (LLMs) and the
maturation of deep reinforcement learning and Transformers
opening new paradigms. On the other hand, existing research
has become increasingly fragmented. Studies often focus on
narrow problems, such as demand forecasting or stock con-
trol, using isolated techniques, without providing a holistic
view. Consequently, a systematic synthesis is urgently needed
to answer critical questions regarding the current research
landscape, the primary application topics, the comparative
advantages and limitations of different AI techniques, and the
challenges and future directions.

To address this clearly defined gap, this study presents a
systematic literature review of AI in inventory management
focused on the crucial 2021 to 2025 period. By synthesizing
the latest advancements, we provide an updated and holistic
framework of the current research status, topics, techniques,
and future directions. This study, therefore, offers signifi-
cant contributions. For the academic community, it maps the
fragmented research landscape, identifies critical knowledge
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gaps, and outlines promising avenues for future inquiry. For
practitioners and industry leaders, it serves as a practical
guide, demystifying the capabilities and limitations of various
AI methods and offering evidence-based insights to support
strategic technology adoption. Ultimately, this review acts
as a timely and essential reference, empowering researchers
to navigate the new frontier and enabling practitioners to
implement state-of-the-art solutions that enhance supply chain
resilience and efficiency.

The remainder of this study is structured as follows:
Section II introduces the research methodology employed for
this review. Section III presents a descriptive analysis of the
collected literature over the past five years. Section IV provides
a detailed technical analysis based on the literature review.
Section V discusses the findings in relation to the key research
questions posed in this study. Finally, Section VI concludes the
study.

II. RESEARCH METHODOLOGY

Due to its rigor, transparency, and reproducibility, the
systematic literature review (SLR) enables a comprehensive
and evidence-based synthesis of AI techniques and applications
in inventory management. To further enhance the transparency
and scientific rigor of this study, the entire process follows
the preferred reporting items for systematic reviews and meta-
analyses (PRISMA 2020) guidelines as shown in Fig. 1. The
research began by outlining four research questions to explore
the state, main topics, applied methods, and future directions of
AI in inventory management. Subsequently, literature searches
were conducted across databases. The retrieved articles were
then filtered according to specific inclusion criteria. Studies
unrelated to the topic, non-academic sources, and those outside
the publication window were excluded. Finally, the selected lit-
erature was systematically analyzed to identify major findings,
research trends, challenges, and recommendations for future
research.

A. Research Questions

In the context of AI applications in inventory management,
this study addresses the following research questions:

RQ1: What is the current state of research on AI technolo-
gies in inventory management?

RQ2: What are the primary topics in inventory management
that AI is applied to solve?

RQ3: What are the key AI techniques and algorithms applied
in inventory management, and what are their respec-
tive advantages and disadvantages?

RQ4: What challenges does AI face in inventory manage-
ment, and what directions can be explored in future
research?

B. Literature Search Strategy

To ensure comprehensive coverage of this interdisciplinary
topic, our literature search utilized several major academic
databases. The chosen platforms, IEEE Xplore, ScienceDirect,
Springer, Wiley, Taylor & Francis, and MDPI, were selected

Fig. 1. Flowchart of the proposed method.

as they collectively represent the primary, high-quality publi-
cation venues for research spanning artificial intelligence, en-
gineering, and supply chain management. This multi-database
strategy was crucial for minimizing selection bias and captur-
ing a broad spectrum of relevant studies.

A combination of subject terms and free-text keywords
are used: (‘Artificial Intelligence’ OR ‘AI’) AND (‘Inventory
Management’ OR ‘Inventory Optimization’) AND (‘Demand
Forecasting’ OR ‘Demand Prediction’ OR ‘Inventory Classi-
fication’ OR ‘Inventory Control’) AND (‘Machine Learning’
OR ‘Deep Learning’ OR ‘Reinforcement Learning’ OR ‘Ex-
plainable AI’ OR ‘XAI’). Only English-language papers were
considered. After initial screening, a total of 3,085 publications
related to the above topics were identified.

C. Inclusion and Exclusion Criteria

The inclusion criteria required that studies focus on the
application or methodology of AI in inventory management
and related domains, covering techniques such as ML, DL, RL
and other related methods. Only peer-reviewed research papers
published between 2021 and 2025, with sufficient methodolog-
ical or practical details, were included. Studies unrelated to
AI in inventory management, non-academic publications, or
published outside the specified period were excluded.

D. Quality Assessment

To ensure the scientific rigor and reliability of the sys-
tematic literature review, all included studies were subjected
to a structured quality assessment based on established SLR
frameworks [21]. The assessment focused on the clarity of re-
search objectives, the appropriateness of the AI techniques em-
ployed, the transparency of data and experimental procedures,
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the completeness and reliability of results, and the practical
relevance of the study. Finally, 87 publications remained for
further research.

III. RESULTS

Following the research protocol described above, the litera-
ture relevant to the topic was selected and analyzed from four
perspectives: publication trends, resource distributions, most
cited papers, and keyword analysis.

A. Publication Trend

Fig. 2 presents the publication trend in the field over the
past five years using a line chart. Overall, the number of
publications increased significantly from 6 in 2021 to 22 in
2025, with a particularly notable surge in 2022, reflecting the
rapid growth of academic interest in this topic. The number of
publications remained relatively stable in the subsequent years,
indicating sustained attention from the research community.

Fig. 2. Number of publications by year.

B. Resource Distributions

The distribution of publications across academic databases
reflects the accessibility and concentration of research in this
field. As shown in Fig. 3, IEEE Xplore hosts the largest number
of publications (24 papers), followed by ScienceDirect (21
papers) and Springer (16 papers). This uneven distribution
indicates that IEEE Xplore, ScienceDirect, and Springer serve
as the primary sources of relevant studies, while MDPI, Wiley,
Taylor & Francis and Others play a supplementary role.

At the journal level, the selected publications are relatively
concentrated. Among the source journals, Applied Sciences
contributed the most articles (8 papers), followed by IEEE
Access with 7 papers. Additionally, Annals of Operations
Research and International Journal of Production Research
each published 4 relevant articles. Other contributing journals
include Sustainability (3 papers), Journal of Intelligent Man-
ufacturing (2 papers), Expert Systems with Applications (2
papers), European Journal of Operational Research (2 papers),
Production and Operations Management (2 papers), and IEEE
Transactions on Engineering Management (2 papers).

Fig. 3. Distribution of screened publications across databases.

C. Most Cited Papers

To illustrate the recent activity in this research area, Table I
lists the top ten most cited papers. Leading publications
received over 100 citations within a short period. For instance,
the paper by Moor [22] has 126 citations, and the paper by
Gonccalves [23] has 115 citations. The high citation counts of
recent publications further demonstrate the active research in
this field.

TABLE I. TOP 10 MOST CITED PAPERS

Rank Authors Reference Citations
1 Moor et al. [22] 126
2 Gonccalves et al. [23] 115
3 Wang et al. [24] 114
4 Meisheri et al. [25] 111
5 Abu Zwaida et al. [26] 109
6 Selukar et al. [27] 94
7 Tang et al. [28] 85
8 Jahin et al. [29] 85
9 Shajalal et al. [30] 79

10 Xu et al. [31] 78

D. Keyword Analysis

As shown in Fig. 4, the keyword frequency analysis indi-
cates that research in this field primarily focuses on the applica-
tion of AI in inventory management. ‘Inventory management’
(21 occurrences) appears most frequently, followed by key
methodological terms such as ‘machine learning’ (15 occur-
rences), ‘deep learning’ (10 occurrences), and ‘reinforcement
learning’ (8 occurrences). Additionally, high-frequency terms
like ‘inventory control’ (13 occurrences) and ‘demand fore-
casting’ (12 occurrences) further confirm that AI techniques
are actively applied to address core challenges in this domain.

IV. REVIEW OF LITERATURE

This section provides a comprehensive review of the core
literature identified through a systematic search, with a focus
on the AI techniques in inventory management. To clearly
present the research landscape, the studies are categorized ac-
cording to the main tasks of inventory management, including
demand forecasting, inventory control, inventory classification,
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Fig. 4. Top 10 keywords by frequency.

and other related topics and application examples. Within each
topic, the methods and algorithms such as ML and DL are
reviewed. As this section contains a substantial number of
technical acronyms, a table of abbreviations and their full
names is provided in Appendix A for easy reference [see
Table V].

A. Demand Forecasting

Accurate demand forecasting is central to inventory man-
agement, as it guides stock level decisions and mitigates the
risks of stockouts and overstocking. A summary of works
in this area is provided in Table II. Furthermore, demand
forecasting can be broken down into more specific tasks, such
as demand forecasting, inventory level prediction, and sales
and price prediction.

1) Demand forecasting: Demand forecasting represents a
core task in inventory management, aiming to predict fu-
ture product or service demand based on historical data and
relevant influencing factors. In existing research, mainstream
approaches primarily encompass ML and DL techniques.

ML provides a simple and efficient way to predict the
demands. Sathish [40] compared Exponential Smoothing (ES)
with Gradient Boosting (GB), and found that ES outperformed
GB in both forecasting accuracy and inventory optimization.
Gonccalves [23] compared ML methods with the statistic
based ARIMAX, and proved that ML models achieve superior
results in later stages. Manos [49] developed a dynamic de-
mand forecasting platform with XGBoost and SVR to process
the multiple data source and then improve the prediction
accuracy. Yang [44] developed a dynamic forecasting platform
that combines XGBoost and SVR, which leverages multi-
source data to significantly enhance forecasting accuracy and
operational efficiency.

DL models have shown remarkable success in supply chain
forecasting, with predictive power scaling alongside model
complexity. Foundational architectures like LSTM networks,
have been widely adopted. For instance, Deng [32] uti-
lized LSTMs to capture long-term temporal dependencies and
achieved prediction accuracies exceeding 80%. The versatility

of LSTMs is further demonstrated in specialized applications,
such as the hybrid LSTM variant proposed by Hasni [33]
for intermittent medical supply demand, and the integration
with customer segmentation by Jauhar [39], which slashed
prediction errors by 74.14%. Building on this foundation, more
sophisticated models are proposed to further enhance forecast-
ing accuracy. Liu [45] developed a BO-CNN-LSTM model
where Bayesian optimization fine-tunes a combined CNN-
LSTM architecture. Seyedan [50] employed an ensemble DL
method to forecast online retail demand, and the predictions
are further used to optimize safety stock. Jin [51] integrated
an attention-based Temporal Convolutional Network (ATCN)
into their system. Abualuroug [43] proposed the MMCW-
BiLSTM model which leverages multi-dimensional collabora-
tive attention. For industry-specific challenges, models like the
NARXNN have also been effective, and the accuracy reaches
96.24% in food demand forecasting [41]. In addition, the
Transformer architecture is also gaining traction. Yang et al.
[44] combined a Transformer with multi-agent RL, and yielded
an 18.2% reduction in prediction error.

2) Inventory level prediction: Predicting inventory levels
and stockout risks is crucial for optimizing inventory control
and minimizing costs. Researchers have applied a range of ML
and DL models to this task.

As to ML methods, tree-based ensemble models like XG-
Boost have proven effective for direct inventory level predic-
tion [28] and related tasks such as order quantity forecasting
[47]. DL, on the other hand, provides more powerful tools
to capture complex nonlinear patterns. For instance, a hybrid
Multi-MLP and LightGBM model yielded a significantly lower
prediction error with an MAE of 0.2331 [34]. Novel archi-
tectures target specific challenges: QAmplifyNet, a quantum-
classical hybrid network, was designed to handle data imbal-
ance in stockout prediction and achieved 90% accuracy [29].
To address the need for model transparency, an explainable
CNN framework [30] was proposed, which delivered both high
performance (AUC = 0.9489) and valuable interpretability.

3) Sales and price prediction: Accurate sales and price
prediction is fundamental to developing effective commercial
strategies, enabling businesses to forecast product demand
and establish optimal pricing. Both ML and DL have been
extensively applied to address these interconnected challenges.

For prediction tasks, ML models like SVR, MLR, and
MNLR have demonstrated high accuracy of 95.63% [36],
while more advanced hybrid kernel models such as IMOHHO-
AHK-ELM have been developed for specialized areas like
wine price forecasting [46]. DL architectures offer further
improvements. BPNs have been used for daily sales prediction
of perishable goods [35], and integrated CNN-LSTM models
have proven effective for complex forecasting, leading to
inventory cost savings of over 20% [38]. A real-time automatic
pricing system was built using a Dueling DQN algorithm.
This system [37] successfully tackled multi-period pricing
challenges, securing 91.58% of the returns achievable by an
optimal strategy.

B. Inventory Control

The central challenge in inventory control is to guarantee
product availability while keeping total costs to a minimum.

www.ijacsa.thesai.org 918 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

TABLE II. LITERATURE FOR DEMAND FORECASTING

Study Citations Type Algorithms Method
[32] 78 DL LSTM Inventory management is optimized by using LSTM for demand prediction in this paper.
[33] 8 DL LSTM The challenge of accurately forecasting medical item demand in humanitarian operations is tackled using a hybrid LSTM

method.
[23] 109 ML VAR, ARIMAX,

ANN
Multi-step demand forecasting in an automotive supply chain is tackled with a multivariate approach to improve
prediction accuracy.

[34] 8 DL MLP Future inventory levels in manufacturing are predicted by employing a multi-MLP model.
[28] 69 ML XGBoost Inventory forecasting for cross-border e-commerce is enhanced using XGBoost to predict demand, with the aim of

improving service automation and reducing costs.
[35] 13 DL BPN The daily sales quantity for short-shelf-life cream puffs is predicted using DL in this model, in order to reduce food

waste.
[36] 79 ML SVR, MLR, MNLR The monthly demand for construction machinery spare parts (specifically manifold products) is predicted with ML and

regression methods.
[37] 9 DL DQN, DRL The optimal real-time price for retailers in presale e-commerce environments was predicted using deep RL.
[38] 8 DL DNN, CNN, LSTM A dynamic sales prediction model (DSP-FAE) is proposed to forecast product sales volumes for inventory optimization,

by which costs are reduced by over 20% using auto-learning and elastic-adjustment mechanisms.
[39] 15 DL,

ML
K-means,
Regression, LSTM

An explainable AI framework is proposed to predict wine sales volume (MntWines) for perishable supply chains by
segmenting customers and forecasting demand per segment, resulting in a 74.14% reduction in forecasting errors.

[40] 115 DL ES/GB A material demand prediction task is solved to forecast material requirements through a comparative analysis of
forecasting methods.

[41] 33 DL NARXNN A food demand prediction task is solved using a NARXNN model to forecast the daily sales volume of processed foods.
[42] 28 DL LSTM The inventory demand prediction task for volatile SME data is solved using LSTM and 2D kernel density estimation.
[43] 2 DL BiLSTM The inventory demand prediction task is solved using a novel MMCW-BiLSTM model, by which future product demand

is predicted.
[44] 27 DL MARL,

Transformer, DQN
A multi-agent deep RL framework is proposed to solve demand prediction tasks in retail supply chains, achieving an
18.2% lower forecast error and 23.5% reduced stockout rates.

[45] 28 DL CNN, LSTM Demand forecasting is solved with BO-CNN-LSTM to predict demand accurately, which leads to improved inventory
optimization and cost control.

[31] 14 DL,
ML

LSTM, PSO The demand prediction task in supply chains is solved using AI, specifically by forecasting future demand quantities to
achieve higher accuracy and optimize resource allocation.

[46] 6 ML IMOHHO-AHK-
ELM

An IMOHHO-AHK-ELM prediction model is proposed to achieve accurate point and interval forecasting of wine prices
using AI techniques.

[29] 34 ML Quantum Neural
Network

Supply chain backorders are predicted with 90% accuracy by QAmplifyNet using a hybrid quantum-classical neural
network.

[47] 85 ML/DL XGBoost, LSTM The task of forecasting the number of meal orders for the next 10 weeks is addressed using time series analysis to
minimize waste.

[30] 85 DL CNN A CNN-based explainable framework for product backorder prediction in inventory management was proposed in this
paper.

[48] - DL RNN, LSTM, GRU,
CNN

A DL framework is proposed to predict supply chain risks; specifically, drug delivery status, food demand quantities,
car prices, and electricity volumes are forecasted.

This involves a continuous balancing act between the costs of
holding inventory, placing orders, and running out of stock.
The primary tools for managing this balance are the opti-
mization of order quantities, reorder points, and safety stock.
A well-designed inventory system prevents stockouts, which
directly improves customer satisfaction, operational efficiency,
and overall profitability. In this section, we summarize the
recent methods compiled in Table III. The task of inventory
control can be further divided into three sub-categories: single-
echelon inventory control, multi-echelon inventory control, and
control strategies for special scenarios.

1) Single-echelon inventory control: The single-echelon
inventory control task aims to determine the optimal replenish-
ment policy for a single inventory node. Singh [62] combined
decision trees with symbolic distance methods to defuzzify
the fuzzy total cost of seasonal demand and imperfect per-
ishable products, and the method achieved precise inventory
control under uncertainty. Mo [64] proposed an online RL
approach that dynamically adjusts inventory policies under
non-stationary stochastic market demand without requiring
prior knowledge of demand patterns.

2) Multi-echelon inventory control tasks: The multi-
echelon supply chain inventory control task, which is signifi-
cantly more complex than its single-echelon counterpart, aims
to coordinate inventory decisions across multiple tiers such
as factories, distributors, and retailers. This process involves
optimizing inventory levels and replenishment policies at each

tier to minimize total supply chain costs and mitigate systemic
issues like the bullwhip effect.

ML approaches continue to offer solutions. For instance,
Preil [53] developed a MCTS based algorithm for both offline
and online models. Their method is designed to determine
optimal inventory decisions under stochastic demand and lead
times and also helps to alleviate the bullwhip effect. Zietsmann
[68] introduced an integrated inventory management frame-
work. This framework, built upon a computer-aided decision
support system, cohesively handles product selection, demand
forecasting, and procurement to optimize inventory under
multi-objective constraints.

On the other hand, DL methods, particularly RL one,
have become a cornerstone of modern multi-echelon inventory
control, because they can handle more complex and dynamic
cases. Zhang [52] proposed an improved SAC-AlphaLR al-
gorithm to optimize replenishment policies in the supply
chains of multi-tier fast-moving consumer goods. Addressing
systemic challenges like the bullwhip effect is another critical
application. Liu [63] utilized a HAPPO algorithm within a
multi-agent deep RL framework. Their goal was to mitigate
the bullwhip effect in distributed multi-echelon systems. Scal-
ability is a major advantage offered by DL. Meisheri [25]
developed a scalable deep RL approach that leverages a single-
product meta-model to manage the inventory of hundreds of
products in parallel. This method effectively handles multi-
period constraints and demonstrates the potential of DL in
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TABLE III. LITERATURE FOR INVENTORY CONTROL

Study Citations Type Algorithms Goals/Approach
[52] 34 DL SAC-AlphaLR,

DRL
A DRL-based ME-DRFO model is proposed for multi-echelon FMCG inventory optimization, whereby total costs are
minimized under demand uncertainty and supply chain constraints.

[53] 94 ML MCTS An MCTS approach is proposed for multi-echelon inventory optimization to reduce total supply chain costs and mitigate
the bullwhip effect.

[54] 14 Hybrid GBDT, ANN Inventory, ordering, and financing decisions are optimized using data-driven methods under capital constraints and
demand volatility.

[55] 12 DL DRL High-stochasticity inventory optimization is addressed using a tailored DRL algorithm.
[56] 5 DL PPO, DRL A DRLOM is proposed for multi-echelon inventory control, by which system-wide costs under stochastic demand and

lead times are minimized.
[57] 2 Others System Dynamics Replenishment is optimized using system dynamics, leading to a reduction in stockouts and lost sales.
[58] 11 DL LSTM, PSO Inventory errors and operational costs are minimized through Transformer-based forecasting and PSO.
[59] 17 DL/ML DQN, LSTM, SVR SME inventory is optimized through joint demand forecasting and replenishment policies.
[27] 28 DL DQN Multi-perishable inventory is optimized using deep RL, with lead times, lifecycles, and demand being considered.
[60] 76 DL DRL, BNN,

MAML
New-product inventory across multiple stores is optimized under demand uncertainty and short life cycles.

[61] 28 ML IPSO, BPNN Green supply chain inventory is optimized using an IPSO-BPNN algorithm to reduce costs and improve environmental
efficiency.

[62] 17 ML DTL Deteriorating product inventory is optimized using ML forecasts and fuzzy variables to minimize cost and emissions.
[63] 17 DL MADRL Decentralized multi-echelon inventory optimization is addressed using multi-agent DRL with limited information sharing.
[64] 10 ML RL Online RL methods are proposed for inventory control under nonstationary demand, through which costs are saved and

service levels are improved.
[65] 29 DL DRL Apparel inventory control is optimized using DRL, where demand volatility, service level, and sell-through rate are

considered to minimize costs and improve efficiency.
[26] 126 DL DRL A DRL method is proposed for hospital drug inventory optimization, aimed at minimizing refilling costs under demand

uncertainty and storage constraints.
[66] 25 DL PPO, DRL DRL is applied to two-echelon inventory control with stochastic seasonal demand and multiple warehouses, minimizing

total costs.
[67] 45 ML KNN, DT, RF, XG-

Boost
Hospital drug inventory is optimized using ML and stochastic optimization to reduce stock levels and emergency orders.

[22] 111 DL DQN, TL The problem of perishable inventory optimization under lead time and demand uncertainty is solved using DRLs with
reward shaping.

[25] 41 DL DQN A DRL method is proposed for scalable multi-product inventory control with lead time constraints to optimize
replenishment and reduce costs.

[24] 114 DL DQN The problem of inventory optimization for lost-sales and multi-echelon systems is solved using DRL, which minimizes
costs under lead times and demand uncertainty.

large-scale supply chains. Beyond algorithmic development,
researchers have also explored hybrid models. Xie [69] intro-
duced the NFDIRM, which combines a RBF neural network
with fuzzy logic. This fusion enhances both forecasting accu-
racy and decision flexibility in intelligent warehousing. Finally,
providing a broader perspective, Boute [70] summarized key
design choices in this domain and outlines promising directions
for future research.

3) Inventory control in special scenarios: Inventory control
in specialized contexts, such as for perishable goods and
healthcare supplies, introduces distinct challenges due to strict
temporal and safety constraints. RL has emerged as a powerful
tool for addressing these complex problems.

For perishable goods, research has focused on dynamic
policy learning to minimize spoilage and other losses. For
instance, Selukar [27] developed a multi-product DQN model
that dynamically learns optimal replenishment policies. Build-
ing on this foundation, De [22] improved the training stability
of such models by incorporating reward shaping and transfer
learning techniques. To better manage inherent uncertainties,
Singh [62] adopted a fuzzy logic approach, which treats key
parameters like deterioration and defect rates as fuzzy variables
rather than fixed values.

Healthcare inventory management places a high premium
on safety, and preventing stockouts is often a higher prior-
ity than minimizing costs. Addressing this critical balance,
Abu [26] employed a deep RL framework for automated
replenishment, which successfully reduced both operational
costs and stockout incidents. Galli [67] integrated multiple

ML algorithms with stochastic optimization, where the system
leverages daily ward-level data to optimize inventory.

C. Inventory Classification

Inventory classification is a systematic methodology that
categorizes inventory items based on criteria such as value,
demand patterns, and criticality. This approach enables orga-
nizations to allocate resources efficiently by applying differ-
entiated management policies to distinct categories. Table IV
summarizes recent research on inventory classification.

1) Multi-criteria inventory classification: Although the tra-
ditional ABC classification method remains widely adopted, its
reliance on a single metric, such as annual usage value, often
neglects other critical operational factors [80]. To overcome
this limitation, multi-criteria inventory classification (MCIC)
has been introduced as a more robust approach. This paradigm
integrates multiple indicators and thus provides a more detailed
and effective basis for decision support.

One major research stream of MCIC involves clustering
algorithms. For example, Keskin [72] combined an autoen-
coder with K-means, incorporating sustainability indicators
such as carbon emissions alongside traditional measures like
order fulfillment and inventory turnover. Similarly, Khanorkar
[84] applied K-means to simultaneously optimize usage value,
delivery time, and unit cost. Another important line of work
involves multi-criteria decision-making (MCDM) techniques.
Kaabi [77] integrated genetic algorithms with TOPSIS to
systematically generate optimal weights for multiple objec-
tives. Furthermore, to address inherent uncertainties, Yung
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TABLE IV. LITERATURE FOR INVENTORY CLASSIFICATION

Study Citations Type Algorithms Goals/Approach
[71] 10 ML K-means Clustering The inventory classification problem for impulse purchase products is solved by grouping SKUs via unsupervised

clustering (K-means).
[72] 1 ML Autoencoder/K-

means
The problem of inaccurate multi-criteria inventory classification in the white goods industry is solved by hybridizing
autoencoders with clustering methods.

[73] 34 ML SVM, MNB, DT,
RF, GB, KNN

Inventory classification in blood bank supply chains is addressed using ML to automate data handling, with big data
and security factors being considered.

[74] 2 DL CapsNet Automated consumer product identification and classification for inventory management is solved, with noise reduction,
feature extraction, hyperparameter tuning, and ensemble learning being considered to maximize accuracy.

[75] 26 ML SHAP The lack of explainability in multi-criteria ABC inventory classification is addressed by proposing an XAI-based approach
using SHAP values, optimizing both classification accuracy and interpretability.

[76] 8 ML CNN Inventory classification challenges in electrical warehouses are solved by blending RGB and depth CNN pipelines with
synthetic and real data; classification accuracy is optimized to 95.23% while domain shifts are addressed.

[77] 15 ML Genetic Algorithm Multi-criteria inventory classification (ABC analysis) is addressed by integrating metaheuristics (AI) for criteria weighting
and TOPSIS (MCDM) for scoring; total safety stock cost and service level are optimized.

[78] 19 DL CNN The problem of fabric type classification for inventory management is solved using YOLOv10.
[79] 10 ML BPNN An objective spare parts importance evaluation method is proposed to optimize inventory strategies and reduce

subjectivity.
[80] 13 ML SHAP/K-means The lack of Pareto compliance and explainability in multi-criteria ABC inventory classification is solved by integrating

semi-supervised clustering and XAI to provide interpretable results.
[81] 50 ML Fuzzy Logic A fuzzy ABC classification system for space mission components is proposed, which incorporates multi-attribute criteria

to optimize purchasing decisions.
[82] 1 DL CNN/Transformer Fine-grained product recognition for inventory classification is addressed. High interclass similarity and large intraclass

variation are tackled, and accuracy is optimized with self-supervised learning to reduce annotation dependency.
[83] 28 DL CNN/Transformer Multi-criteria spare parts classification problems are solved by transforming hierarchical criteria into visual graphs, and

inventory strategies are optimized through a modified CNN.
[84] 34 ML K-means The problem of inaccurate inventory classification is solved by incorporating criteria like annual usage value, lead time,

and unit cost with K-Means clustering.
[85] 30 ML GA/DT A cost-driven ML classification method is proposed, integrating demand patterns and replenishment policies to minimize

inventory costs.

[81] employed fuzzy logic, which allowed them to manage
variability in delivery times and supplier risks, thereby im-
proving classification robustness. Khan [86] proposed a fuzzy
set enhanced VIKORSort method that uses trapezoidal fuzzy
membership functions to improve classification flexibility and
decision-making efficiency. In addition, Medina [87] applied
a genetic algorithm for ABC classification of raw material
inventory in a jewelry company, and the method reduced the
total inventory costs across multiple criteria and established
differentiated inventory policies.

2) Enhanced classification interpretability: The ‘black
box’ nature of learning algorithms presents a challenge in in-
ventory classification. Although these models can achieve high
accuracy, their opaque decision-making processes hinder trust
and adoption. This is particularly critical in multi-criteria ABC
analysis, where stakeholders must understand the reasoning
behind classifications. Enhanced classification interpretability
directly addresses this problem.

Research in this area primarily focuses on explainable
artificial intelligence (XAI) and advanced visualization. The
SHAP framework is an example of XAI. As demonstrated by
Qaffas [75], its primary function is to quantify the contribution
of each input feature to a model’s final prediction. This allows
for explanations at both the local level for individual items
and the global level for the overall model. In their study
[80], Qaffas further enhanced this approach by integrating
semi-supervised clustering. This integration not only provides
granular, multi-level explanations but also ensures that the
classification results adhere to Pareto principles. Meanwhile,
visualization techniques aim to make complex multi-criteria
relationships intuitively understandable. For example, Yang
[83] transformed hierarchical data structures into images and
employed an improved CNN architecture to visualize decision
boundaries and feature importance, and this method enhanced

the transparency of the classification process. Moreover, Med-
ina [88] proposed an integrated inventory management model
that combines ABC-AHP classification, holt forecasting, and
cycle counting. The model is designed to optimize inventory
control and minimize stock discrepancies for distributors.

3) Classification in specified scenarios: Beyond the foun-
dational principles of inventory classification, many sectors
present unique operational requirements. In the healthcare sec-
tor, studies focus on managing life-critical items. For example,
Maathavan [73] proposed a machine learning framework for
blood banks that integrates parameters like expiration dates and
storage protocols. This approach serves to minimize human
error in high-stakes environments. In retail, the primary chal-
lenge stems from demand volatility. Garcia [71] addressed this
with a customized K-means clustering method. The approach
groups SKUs by demand and cost patterns to effectively
manage unpredictable impulse-buy categories and optimize
total relevant costs. In manufacturing and warehousing, object
detection techniques are pivotal for real-time classification.
For instance, the YOLOv10-based textile inventory system
from Mao [78] reached 85.6% mAP. Similarly, to handle
uncontrolled environments, Piratelo [76] used a hybrid of RGB
and depth CNNs for warehouse classification. Their model
proved highly robust, with an accuracy of 95.23% despite
domain shifts.

D. Other AI Techniques in Inventory Management

AI in inventory management typically focuses on core
tasks like demand forecasting, inventory control, and inventory
classification. However, researchers are also applying AI to a
wider range of research. This section explores several of these
novel topics.

1) Automated simulation modeling: Traditional logistics
simulation modeling heavily depends on close collaboration
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between domain experts and specialized engineers, which
creates barriers to its widespread adoption in inventory man-
agement. To address this issue, Jackson [89] developed a
system based on an enhanced GPT-3 Codex model. This
system utilizes advanced NLP and Transformer architectures to
translate natural language descriptions into executable Python
simulation code, which simplified the model development
process.

2) 3D inventory positioning: The objective of 3D inventory
positioning is to achieve precise automatic localization of in-
ventory items in unstructured warehouses with flexible storage
layouts. Traditional marker-based systems are often unsuitable
for such dynamic environments due to their rigid infrastructure
requirements. To overcome this limitation, Yoon [90] proposed
a DL framework that processes drone-captured video from a
single QR-coded camera. The framework integrates U-Net++
for image segmentation with epipolar geometry, resulting in a
17% improvement in coordinate estimation accuracy.

3) Robot navigation and task management: Efficient robot
navigation and task management are crucial for automating
modern warehouse operations. Research in this area addresses
challenges ranging from physical pathfinding and environmen-
tal perception to high-level strategic decision-making.

One key challenge is maintaining mutual visibility and
occlusion-free paths for cooperative autonomous systems, par-
ticularly for small UAVs with limited hardware. To address this
problem, a visibility-aware framework was developed. Their
system employs a cross-entropy method and a conditional
variational autoencoder, which together significantly reduce
occlusion and collision rates while maintaining real-time per-
formance on embedded hardware. Beyond physical navigation,
optimizing robot decision-making for tasks such as shelf real-
location is essential for adapting to dynamic inventory levels
and traffic patterns. In [91], a DQN framework was proposed
that integrates task assignment with shelf reallocation. This
approach enables robots to optimize both task selection and
storage repositioning concurrently, which resulted in a 17-
23% increase in throughput and a 30% reduction in runtime
compared to conventional methods.

4) Fruit quality monitoring: Food spoilage in micro-cold
storage is a critical challenge for small-scale agriculture, where
post-harvest losses can reach 35 to 40% due to inadequate
quality monitoring. To mitigate such losses, Arun et al. [92]
have proposed an AI-based system for real-time fruit freshness
classification. Their approach utilizes the Inception architec-
ture to analyze produce, and it demonstrated a classification
accuracy of 99.78% under controlled laboratory conditions on
apples, bananas, and oranges.

E. Application Examples

Beyond research, AI-driven solutions are being actively
deployed to industries to solve problems. This section high-
lights specific applications of AI models across sectors such
as energy, retail, manufacturing, healthcare, and agriculture.
These examples showcase how AI-driven approaches address
domain-specific challenges.

1) Energy sector: The energy sector faces challenges in
material scheduling and managing demand uncertainty. To

optimize material scheduling, Hu [93] proposed an NSGA-
II algorithm that integrates non-dominated sorting with rough
vector feature decomposition. This method reduced conver-
gence iterations from 460 to 65 and improved dispatch re-
liability. In addressing demand uncertainty, Thoummala [94]
developed a two-stage DL framework. The model employs an
LSTM network for forecasting to determine optimal inventory
levels, resulting in inventory cost reductions ranging from
4.16% to 12.10%.

2) Retail sector: In the retail sector, key challenges include
multi-echelon inventory coordination and the implementation
of dynamic pricing strategies. To address coordination, Kaynov
[95] proposed a DRL solution based on a PPO framework.
This approach reduced network complexity and alleviated
shortage bias, leading to cost reductions of 1 to 3% in lost-
sales scenarios and 10 to 20% in backordering scenarios. For
dynamic pricing, Liang [37] introduced a system based on
DQN, modeling sales cycles as a Markov decision process.
By decoupling the value and action-advantage functions, the
algorithm achieved 91.58% of the optimal theoretical perfor-
mance.

3) Manufacturing sector: Manufacturing supply chains are
often hindered by demand information asymmetry, high inven-
tory costs, and response delays. To mitigate the bullwhip effect,
Sardar [96] developed a system that integrates an LSTM model
with RFID tracking and a consignment strategy. This system
enabled precise inventory control, and brings profit increase
of 43%. In specialized fields such as pharmaceuticals, where
historical data is limited, Zhu [97] leveraged multi-product data
and grouping strategies to capture complex demand patterns
more effectively.

4) Healthcare sector: Inventory management in healthcare
must address the challenges of perishable resources, such
as blood products and pharmaceuticals, where demand un-
certainty and static policies can cause costly expirations or
critical shortages. To optimize blood inventory, Mohamadi [98]
developed a framework based on an A2C RL algorithm. This
framework enabled dynamic distribution policies that achieved
a zero-expiration rate while maintaining an 85% service level.
To mitigate drug shortages, Abu [26] proposed a DQN-based
replenishment model that formulates the problem as a Markov
decision process. The model balances routine inventory with
emergency demand, which reduced the shortage rate to 2.21%
and the overall costs by 12.31%. Additionally, Adedugba
[99] developed a dual-scenario deterministic inventory model
for a pharmaceutical manufacturer in Lagos, Nigeria, using
mathematical optimization to improve inventory hierarchies,
lead times, and shortage management.

5) Agriculture sector: Agricultural supply chains face se-
vere challenges, including perishable product losses of up to
35–40% and significant seasonal imbalances between supply
and demand. For freshness monitoring, Arun [92] developed
an Inception v3-based algorithm to process sensor-captured
images, achieving 99% classification accuracy. This enabled
more precise harvest timing and contributed to price stabiliza-
tion. To optimize seasonal inventory, Wang [100] proposed a
DQN framework integrated with real-time IoT data. The model
incorporates reward shaping and cosine functions to effectively
capture seasonal demand patterns.
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V. DISCUSSION

A. RQ1: What is the Current State of Research on AI Tech-
nologies in Inventory Management?

To address this question, in Section III, this study ana-
lyzed publication trends, source distributions, and high-impact
studies using a predefined set of subject terms, keywords, and
application domains.

Publication trends indicate a continuous increase in AI-
driven inventory optimization research from 2020 to 2025. As
shown in Fig. 2, a substantial surge in publications occurred in
2022, followed by stable growth over the next three years. This
trajectory reflects the growing recognition of AI’s potential
to enhance inventory performance, while rapid technological
advancements have further promoted practical adoption.

An analysis of keywords reveals the field’s main research
areas. The most prominent topics are demand forecasting and
inventory management, which together account for nearly 28%
of the research. This high percentage shows the foundational
role of forecast accuracy in effective inventory optimization.
Next, inventory control and optimization make up another
24%, which indicates that translating forecasts into actionable
strategies is still a central research challenge. Other major
research topics include dynamic pricing, replenishment, and
supply chain resilience, with each representing about 12% of
the literature. This focus reflects significant scholarly attention
on profit maximization and risk mitigation. In contrast, topics
like multi-criteria classification, warehouse automation, and
new technologies such as AI and RL currently represent a
smaller but growing area of research.

Several studies have demonstrated significant influence in
this domain (see Table I). For instance, [22] has garnered
substantial attention with 126 citations, followed by [23] (115
citations) and [24] (114 citations). These highly cited works
underscore the importance of forecasting and advanced opti-
mization strategies. Overall, the top ten cited articles primarily
focus on optimization algorithms, DL, and explainable AI,
reflecting sustained efforts to leverage advanced technologies
for improved inventory management efficiency and decision
support.

B. RQ2: What are the Primary Topics in Inventory Manage-
ment that AI is Applied to Solve?

Although AI has been widely applied to a wide range of
topics, this study finds that its most significant impact is on
three core challenges: demand forecasting, inventory control,
and inventory classification. These domains form the opera-
tional foundation of modern inventory strategies, where AI
demonstrates the greatest value in overcoming the limitations
of traditional methods.

1) Demand forecasting: Demand forecasting aims to pre-
dict future demand accurately by modeling complex patterns,
such as nonlinear trends and temporal dependencies, from
historical data and diverse features. A key aspect of modern
forecasting is not only to provide point estimates but also to
quantify uncertainty through techniques like interval prediction
[48], [46], [42], allowing for robust adaptation across various
industries and contexts .

However, achieving this goal in practice faces fundamen-
tal challenges. A primary issue is that these models often
fail to capture the complex nonlinearities and multivariate
dependencies that drive demand [33], [43]. Second, their
single point estimates neglect the quantification of forecast
uncertainty, which is a critical input for robust inventory and
risk management [46]. Finally, their effectiveness is frequently
undermined by the practical realities of sparse, incomplete, or
low-quality data.

To address these forecasting challenges, recent research
has shifted towards AI-driven methods capable of capturing
complex demand patterns. Deep learning models, particularly
LSTM networks and their variants, have proven effective
at modeling long-term temporal dependencies. For instance,
Hasni [33] demonstrated that a hybrid LSTM model could
reduce prediction errors for intermittent medical supplies by
74.14%.

Further advancements include the integration of attention
mechanisms and sophisticated optimization algorithms. A no-
table example is the BO-CNN-LSTM model, which employs
Bayesian optimization to automatically fine-tune the model
architecture, simultaneously enhancing forecasting precision
and inventory cost control [45]. Beyond improving accuracy,
researchers have also tackled data scarcity. Generative AI and
transfer learning are now being explored to augment sparse
datasets [42], which is crucial for ensuring robust predictions
for new products or in settings with limited historical data.

2) Inventory control: Inventory control dynamically deter-
mines optimal ordering and stocking policies to balance the
trade-off between minimizing costs and maximizing service
levels, while adapting to complex constraints and demand
uncertainties across the supply chain [53], [52], [27], [22].

However, traditional inventory control methods are often
ill-equipped for modern complexities. They struggle with di-
verse, non-stationary demand patterns, and a structural dis-
connect between forecasting and control allows prediction
errors to propagate directly into costly stock imbalances [53],
[52], [59]. These demand-side issues are further amplified by
supply chain dynamics. Within the supply chain, information
asymmetries can fuel instabilities such as the bullwhip effect.
Furthermore, a complex web of real-world constraints often
renders simple optimization models ineffective.

To address these challenges, DRL has emerged as a pow-
erful paradigm for developing dynamic ordering policies that
sense and adapt to non-stationary demand in real time. These
policies have shown superior performance over static models
[52], [53]. A key architectural innovation is the integrated
forecast-and-optimize framework. In this framework, deep
learning models first capture complex demand patterns. Their
outputs then directly inform optimization algorithms, which
prevents the propagation of prediction errors [58], [59]. This
principle of integration extends to multi-echelon systems. Here,
multi-agent RL allows for the development of collaborative
policies that coordinate decisions across all supply chain
nodes. This approach effectively dampens the bullwhip effect
and aligns local actions with global system efficiency.

3) Inventory classification: Inventory classification is a
critical process that segments items based on multiple criteria
to align management strategies with their strategic importance.
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However, conventional methods face significant practical lim-
itations. First, they are constrained by an over-reliance on
single or subjective criteria. Classic ABC analysis, for instance,
uses a single metric and neglects critical operational factors
from supplier risk to sustainability [72]. Even multi-criteria
approaches often depend on subjective expert weights, which
undermines objectivity and auditability [77]. Second, their
effectiveness is compromised by opaque “black-box” logic. As
models grow in complexity, their internal decision-making be-
comes unintelligible to managers, eroding trust and hindering
practical adoption [80]. Third, they exhibit poor adaptability
to real-world data, and are difficult to manage the uncertainty,
noise, or sparsity common in modern inventories.

To overcome these challenges, AI-driven methods offer
targeted advancements. To counter subjective bias, AI em-
ploys data-driven multi-objective optimization. Techniques like
K-means clustering and genetic algorithm-enhanced MCDM
autonomously learn the importance of diverse metrics, estab-
lishing an objective, evidence-based framework [72], [77]. To
resolve the ‘black-box’ problem, AI incorporates eXplainable
AI (XAI) techniques. Frameworks such as SHAP deconstruct
model decisions, and provides transparent, quantifiable justi-
fications for item categorization that enhance trust and stake-
holder buy-in [80]. Finally, to tackle poor data adaptability,
AI leverages advanced data processing. Fuzzy logic [81], [72]
is used to effectively integrate mixed criteria, while feature
enhancement tools like autoencoders ensure model robustness
against noise and data sparsity.

C. RQ3: What are the Key AI Techniques and Algorithms Ap-
plied in Inventory Management, and What are their Respective
Advantages and Disadvantages?

According to the review, AI techniques in inventory man-
agement can be categorized into traditional ML, DL, RL, and
hybrid algorithms.

1) ML methods: Algorithms such as KNN, DT, RF, XG-
Boost, LightGBM, SVR, ANN have been widely adopted in
inventory management. These methods are primarily applied
to demand forecasting and can handle volatile demand [23],
[29], [36]. They also support basic inventory decisions, such
as optimizing replenishment quantities for profit maximization
[61], [67]. The main advantages of ML algorithms lie in their
low computational costs and fast inference speeds. In addition,
they provide good interpretability and can clearly identify the
contribution of each feature. However, their ability to capture
long-term dependencies is limited. For example, SVR often
performs poorly in modeling multi-period demand for short-
shelf-life products [47]. In addition, ML models frequently
require substantial manual intervention [34], including param-
eter tuning and feature engineering, and their generalization
ability is constrained.

2) DL methods: Models including LSTM, CNN, Trans-
formers, and AEs are increasingly applied to complex in-
ventory management problems. They are primarily used
for advanced demand forecasting, capable of handling non-
stationary, intermittent, and multi-factor-driven demand pat-
terns, such as forecasting procurement needs for perishable
goods [35], and multi-category inventory requirements in-
fluenced by factors like weather and promotions [45]. DL

models excel at high-dimensional feature extraction, automat-
ically capturing temporal dependencies and multi-feature in-
teractions. For instance, MMCW-BiLSTM [43] captures bidi-
rectional temporal relationships, while Transformers identify
long-range nonlinear dependencies.

The main advantage of DL lies in its superior predictive
accuracy, which significantly outperforms traditional statistical
methods. For example, in [58], a Transformer model reduced
the MAE of the predicted values from 15.8 to 8.2 and
RMSE from 22.3 to 11.5. DL models also demonstrate strong
adaptability to complex demand patterns. In [43], BiLSTM
can process nonlinear time-series data with MAE as low as
1.75. Their generalization ability is also notable, with MMCW-
BiLSTM and BO-CNN-LSTM achieving high accuracy across
diverse datasets and scenarios [45].

However, compared with ML methods, DL models have
high computational costs, and higher dependence on large-
scale, high-quality datasets. Moreover, the ‘black-box’ nature
of these models makes decision logic difficult to trace, which
restrict their applicability in regulated fields such as healthcare.

3) RL methods: The RL algorithms, such as PPO, A2C,
DDPG, and DQN, have emerged as powerful tools for
dynamic inventory control. RL is particularly well-suited
for multi-echelon supply chain management, perishable and
multi-category inventory control, and joint inventory-financing
decision-making under constraints [26], [55]. A key application
is mitigating the bullwhip effect by promoting coordination and
information sharing among supply chain nodes. For instance,
the HAPPO [44] model can reduce demand amplification by
20%.

The core advantage of RL is its strong dynamic adapt-
ability. It provides responses to stochastic demand, lead-time
variability, and changing inventory states to achieve significant
cost optimization. For example, in [53], the supplier order
variability is reduced by 21%. In addition, its high-dimensional
handling capability enables scalability for large-scale SKU
management, with inference speeds one to two orders of
magnitude faster than linear programming [53]. However, RL
comes with substantial challenges: training costs are high, with
models such as PPO and A2C requiring millions of iterations
and several hours to converge [27] [56]. Additionally, multi-
agent coordination in multi-echelon supply chains remains a
challenge, as MARL models often exhibit slow convergence
and struggle to balance the objectives of individual nodes with
the global optimum.

4) Hybrid algorithms: Hybrid algorithms combine the
strengths of multiple AI techniques to create more powerful
and flexible solutions. Examples include LSTM-PSO [60],
IPSO-BPNN [61], and joint ‘prediction + inventory’ frame-
works such as W-LSTM + Q-learning [59]. These models are
designed for ‘forecast-then-optimize’ workflows, bridging the
gap between demand prediction and inventory decision-making
to enhance overall efficiency. Phatangare proposed a machine
learning based food inventory management system, leveraging
linear regression, random forest, and LSTM networks [101] to
optimize inventory levels through demand forecasting.

The primary advantage of hybrid models is their syn-
ergy, which combines the strengths of different techniques
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to achieve superior performance. For instance, the LSTM-
PSO model integrates the forecasting accuracy of LSTM with
the optimization capability of PSO. This integration reduces
fulfillment time by 25% and improves both model accuracy
and robustness [58]. Another key benefit is their adaptability
to complex scenarios. However, these advantages come at the
cost of structural complexity and high computational demands,
a primary disadvantage evident in the increased training times
required for AE-Clustering hybrids.

D. RQ4: What Challenges does AI Face in Inventory Man-
agement, and What Directions can be Explored in Future
Research?

The integration of artificial intelligence into inventory
management also faces challenges spanning data dependency,
model architecture, and operational viability.

First, the performance of AI models is critically constrained
by data dependency. Most algorithms presuppose the availabil-
ity of large, high-quality datasets and are highly sensitive to
common data imperfections such as noise, outliers, and incom-
pleteness [80]. A more profound limitation is their frequent in-
ability to adapt to the complex data landscapes characteristic of
real-world inventory systems: the heterogeneous, imbalanced,
and non-stationary data associated with scarce, high-value
components or sudden market disruptions [24][29]. Second,
significant challenges are inherent to the architecture and
functionality of current AI models. The inherent ‘black box’
nature of DL models impedes their adoption in high-stakes
environments where decision transparency and interpretability
are paramount [75]. Furthermore, many models exhibit narrow
functional scopes. For instance, a DRL agent optimized for
policy control may fail to manage volatile demand without
an integrated forecasting component [60]. Finally, operational
costs present a barrier to widespread adoption. For example,
baseline models such as A2C [27] and DDPG [84] can require
millions of simulation steps to achieve convergence.

To overcome these challenges, future research may focus
on several key directions:

• A primary avenue is the development of data-efficient
and robust learning paradigms. This includes leverag-
ing frontier technologies like the Internet of Things
(IoT) and Computer Vision to capture high-fidelity,
real-time data, thus mitigating issues of scarcity and
quality. Furthermore, the application of Generative AI
and LLMs holds immense potential for creating high-
fidelity simulation environments and synthetic training
data. Such approaches can augment sparse datasets,
balance class distributions, and simulate black swan
events, thereby enhancing model resilience and gen-
eralization in dynamic conditions.

• Another critical research frontier is the pursuit of ex-
plainable, integrated, and automated modeling frame-
works. Incorporating explainable AI techniques is
crucial for demystifying model predictions, allowing
managers to understand the rationale behind AI-driven
decisions and fostering greater trust.

• Finally, to tackle the prohibitive operational costs,
future research must move towards more efficient and

lightweight models. A key direction is to develop
algorithms that learn faster from less data, such as
advancing offline reinforcement learning to leverage
existing historical records instead of relying on exten-
sive live simulations.

VI. CONCLUSION

This systematic review consolidates the current landscape
of AI in inventory management by analyzing 87 articles
published between 2021 and 2025. Our main finding is that
AI applications primarily focus on three core areas. The first
is demand forecasting, where deep learning is effective at
capturing complex patterns. The second is inventory control,
where reinforcement learning is increasingly used to handle
dynamic and uncertain environments. The third is inventory
classification, where explainable AI makes traditional methods
more transparent. We also identified a consistent trade-off
among different AI approaches. Machine learning is compu-
tationally efficient, while deep learning offers high accuracy
but requires large amounts of data. Reinforcement learning
allows for real-time adaptation but demands significant training
resources. These results highlight both the great potential and
the practical challenges of using AI for inventory management.

The novelty of this study is its focused and timely analysis
of literature published after 2020. Unlike broader reviews, our
work provides a detailed map of specific AI techniques to
fundamental inventory problems. This mapping clarifies the
distinct advantages and trade-offs of each technique. A key
contribution of our study is the identification of a clear agenda
for future research aimed at overcoming current limitations.
By suggesting a focus on data-efficient learning, integrated
prediction and decision models, and lightweight algorithms,
this study guides future academic research and industry appli-
cations.

Despite these contributions, this study has several limita-
tions. Its timeframe may have excluded foundational research
published before 2021. In addition, our keyword-based search
strategy might have missed relevant studies that used different
terminology. These weaknesses indicate that our conclusions
offer a comprehensive but not exhaustive overview of the field,
which can be further strengthened in future studies.
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APPENDIX

As shown in Table V, the acronyms and full names of
various AI methods are presented.

TABLE V. TABLE OF AI ALGORITHM ACRONYMS

Acronym Complete name
AHK-ELM Attention-based Hybrid Kernel Extreme Learning Ma-

chine
ANN Artificial Neural Network
BiLSTM Bi-directional Long Short-Term Memory
BNN Bayesian Neural Network
DL Deep Learning
DQN Deep Q-Network
DRL Deep Reinforcement Learning
DRLOM Deep Reinforcement Learning-based Ordering Mecha-

nism
DT Decision Tree
DTL Decision Tree Classifier
ES Exponential Smoothing
GA Genetic Algorithm
GB Gradient Boosting
GBDT Gradient Boosting Decision Trees
IMOHHO Improved Multi-Objective Harris Hawk Optimization
LGB Light Gradient Boosting Machine
LSTM Long Short-Term Memory
MAML Model-Agnostic Meta-Learning
MARL Multi-Agent Reinforcement Learning
MCTS Monte Carlo Tree Search
ML Machine Learning
MLR Multiple Linear Regression
MLR Natural Language Processing
MNB Multinomial Naive Bayes
MNLR Multinomial Logistic Regression
NARXNN Nonlinear Autoregressive Exogenous Neural Network
PSO Particle Swarm Optimization
RF Random Forest
SAC Soft Actor-Critic
SHAP Shapley Additive Explanations
SVM/R Support Vector Machine/Regression
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