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Abstract—Gliomas are considered one of the most lethal and
aggressive types of brain cancer, responsible for countless deaths
worldwide. This study seeks to improve glioma classification using
cutting-edge machine learning (ML) techniques to differentiate
between glioma subtypes based on clinical and genomic data. The
goal is to identify important biomarkers and features influencing
glioma classification, with an emphasis on improving feature
selection and model interpretability. For glioma classification,
the Gradient Boosting Classifier (GBC) was employed. The
Harris Hawks Optimization (HHO) algorithm was used for
feature selection and hyperparameter fine-tuning to enhance the
model’s performance. Additionally, SHapley Additive exPlana-
tions (SHAP) were applied to improve model interpretability
and to better understand feature contributions.The Gradient
Boosting (GB) method yielded the best performance among the
selected models, achieving an accuracy of 88.40%, precision of
87.3%, recall of 88.48%, and an F1 score of 88.29%, with
feature selection and hyperparameter tuning using the Harris
Hawks Optimization. These results highlight the significance
of hyperparameter tuning and feature selection in enhancing
classification performance. Key features such as IDH1, Age at
Diagnosis, and EGFR were identified as the most influential in
distinguishing glioma subtypes. SHAP analysis further confirmed
the importance of these features in the model.This study shows
that the Gradient Boosting Classifier (GBC), optimized with
Harris Hawks Optimization (HHO), significantly improves glioma
classification, achieving a high F1 score. Key features like IDH1,
Age at Diagnosis, and EGFR were identified, showcasing its
potential for enhanced glioma diagnosis.

Keywords—Glioma; gradient boosting; Harris Hawks Optimiza-
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I. INTRODUCTION

Brain and nervous system cancer is one of the most
dangerous cancers in today’s age. The death toll is rising day
by day. According to research by the World Health Organiza-
tion, there were approximately 251,000 deaths from brain and
nervous system cancer in 2020, across both sexes, up to 85
years of age [1]. Among these, gliomas represent a diverse
group of tumours originating from glial cells in the brain
and pose significant diagnostic and therapeutic challenges in
neuro-oncology [2]. Accurate grading of gliomas is critical,
as it informs clinical decision-making and influences patient
outcomes. However, conventional grading methods often lack
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precision and are resource-intensive. As illustrated in Fig. 1,
the global burden motivates the need for reliable, explainable
decision support.

Survival rates for glioma patients remain low, especially for
high-grade variants such as glioblastoma multiforme (GBM),
which alone accounts for more than 60 percent of adult
primary brain tumours [6], [7]. The 2007 WHO classification
introduced a system based on histological features, which
was later enhanced by incorporating molecular markers such
as IDH mutations [4]. In recent years, the convergence of
neuroinformatics, computational neuroimaging, and machine
learning has provided promising avenues for improving glioma
classification. Machine learning algorithms can analyse com-
plex, high-dimensional data from genomic and clinical sources
to uncover patterns that traditional methods may overlook. One
of the key challenges in glioma grading is the reliance on
expensive molecular tests like IDH1/IDH2 mutation analysis,
which can cost between USD 135–1800 and take up to two
weeks to process [9], [10]. Additionally, variables such as age,
sex, and clinical symptoms also influence tumour behaviour
but are not always integrated effectively due to limited dataset
annotations [11].

Fig. 1. Estimated number of brain cancer deaths by region in 2020.

Gliomas are among the most prevalent and deadly forms
of brain cancer [3]. Early and accurate detection is crucial
for prognosis and treatment decisions. Machine learning has
shown great promise in extracting valuable insights from
complex medical datasets, making it possible to predict disease
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outcomes with higher accuracy. This paper leverages advanced
techniques such as Gradient Boosting Classifiers (GBC) and
optimisation algorithms like HHO to identify key features
that improve glioma diagnosis, with a specific focus on their
interpretation through SHAP analysis [21].

Despite many promising studies, important gaps remain.
A number of works maximize accuracy without explaining
the predictions; others provide explanations but rely on only
one data type (for example, imaging alone) or evaluate models
using a single cross-validation loop that can overestimate per-
formance. It is still uncommon to jointly perform feature selec-
tion and hyperparameter tuning on combined clinical+genomic
predictors, then audit the final model with SHAP and report
fold-aggregate results that better reflect generalization and
clinical use.

This paper addresses these gaps with a simple, end-to-end
pipeline that uses HHO with a GBC to jointly pick features and
tune hyperparameters on TCGA-LGG/GBM data, followed by
SHAP to check that the most influential variables—such as
IDH1, EGFR, TP53, NF1, and Age—agree with contemporary
glioma biology and the WHO-2021 system [5] [22]. We
evaluate the model with cross-validation and summarize results
across folds rather than relying on a single split. We also
explain why gains in threshold-based metrics (accuracy, F1)
can coexist with small changes in ROC AUC, and we outline
how the outputs could support care by triaging cases for
confirmatory molecular testing and by providing feature-level
explanations suitable for tumor-board discussion.

II. RELATED WORKS

TCGA (The Cancer Genome Atlas) data have been used
extensively to classify gliomas [8]. To differentiate glioblas-
toma multiforme (GBM) patients from others, Ko and Brody,
for instance, used a gradient boosting classifier on TCGA
copy-number data, obtaining an AUC of 0.875 [13]. Like-
wise, Sánchez-Marqués et al. demonstrated that ensemble
approaches (e.g., CatBoost) outperformed standard classifiers
on TCGA glioma cohorts by using TCGA-LGG and TCGA-
GBM molecular and clinical data for glioma grade prediction
[14]. These investigations emphasize how rich the TCGA-
LGG/GBM dataset—which consists of hundreds of patients
and clinical/molecular data—is for glioma subtype and grade
classification problems. Underlining the relevance of TCGA in
glioma research, other studies have built predictive models of
glioma subtype or prognosis using TCGA-derived data (gene
expression, mutations).

Medical and glioma classification has seen especially suc-
cessful application for gradient boosting techniques. In oncol-
ogy classification tasks, ensemble tree-boosting algorithms in-
cluding XGBoost, LightGBM, and CatBoost routinely produce
state-of-the-art results. Tang et al. used XGBoost on TCGA
GBM transcriptomic profiles, for example, to classify GBM
into its three subtypes (proneural, classical, mesenchymal),
identifying a five-gene signature and approximating 80% ac-
curacy [17]. Xia et al. trained GradientBoost and LightGBM
models on MRI radiomic features to differentiate GBM from
solitary metastases, achieving ROC-AUC > 0.90, and used
SHAP to interpret feature contributions [16]. Gradient boosting
approaches have also performed powerfully in radiomics-based

brain tumor studies. Using MRI data, Kha et al. built an
XGBoost model to forecast 1p/19q co-deletion in lower-grade
glioma and used SHAP to choose the most useful radiomic
features [15]. These and other studies—e.g., Sánchez-Marqués
et al. using CatBoost [14]—show that gradient boosting clas-
sifiers are well-suited to complex, high-dimensional medical
data, producing high accuracy in glioma grading and biomarker
prediction.

Applied for feature selection and hyperparameter tuning
in biomedical machine learning, Harris Hawks Optimization
(HHO) is a new nature-inspired metaheuristic. Originally pro-
posed in 2019 by Heidari et al., HHO has been modified for
high-dimensional biomedical data in later work. Elgamal et al.,
for instance, chose ideal feature subsets in medical datasets by
means of an enhanced HHO coupled with simulated annealing.
Pirgazi et al. proposed a two-stage filter-wrapper approach
whereby an enhanced HHO-based wrapper (with GRASP)
further refines features chosen by a filter to identify an optimal
subset for classification [21]. Apart from feature selection,
HHO has been applied effectively to adjust model hyperparam-
eters in clinical predictive models. Using HHO in a COVID-19
detection system, Kumar et al. optimized the hyperparameters
of boosting classifiers (XGBoost, LightGBM, etc.), improving
model performance and enabling integration of SHAP for
feature analysis [18]. In a liver cirrhosis prediction task,
Nalasari et al. similarly combined XGBoost with HHO for
hyperparameter tuning, reporting notably better accuracy and
less overfitting than standard XGBoost [19]. In the neuro-
oncology setting [12], Kurdi et al. embedded HHO into a
convolutional neural network (HHOCNN) for MRI-based brain
tumor detection; their HHO-optimized CNN attained 98%
accuracy on benchmark MRI datasets [20]. These cases show
that by automatically selecting features or tuning parameters,
HHO can efficiently improve model training; moreover, its
application to biomedical classification is becoming rather
common.

Rising in prominence in healthcare, interpretable artificial
intelligence techniques such as SHapley Additive exPlanations
(SHAP) offer insights into black-box model decisions. Several
glioma research studies have used SHAP to clarify predictive
characteristics. Before training the XGBoost model for 1p/19q
status, Kha et al. ranked radiomic features using SHAP values,
so increasing the transparency of the model [15]. Xia et al.
calculated mean SHAP values for radiomic features in imaging
studies to underline the most important predictors of tumor
type [16]. Using SHAP to offer both global and local explana-
tions of model outputs in a glioma survival-prediction web tool
helped to show how clinical and molecular factors influence
risk projections. Likewise, Kumar et al. used SHAP analysis on
their COVID-19 boosting model to find important risk factors
and simplify the predictions [18]. These papers demonstrate
that SHAP is a useful tool in medical machine learning since
it quantifies feature importance in complicated models, thus
improving clinician confidence. SHAP has been applied not
only for MRI/radiomics models but also for genomic and
clinical models in the glioma domain, exposing which genetic
changes or patient factors drive predictions.

All told, previous studies have shown the value of TCGA-
based ML for glioma, the efficacy of gradient-boosting classi-
fiers in such tasks, the promise of HHO for optimizing feature
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sets and model parameters, and the importance of SHAP in
model interpretation. These components have, nevertheless,
mainly been studied separately. The present work validates
the model with SHAP-based interpretability and combines
these developments by using HHO to execute both feature
selection and hyperparameter tuning of a gradient boosting
classifier on TCGA glioma data. We know of no prior reports
of this combined approach: an HHO-optimized GBC trained
on TCGA genomic data using SHAP validation. It jointly
improves model performance and transparency, bridging gaps
in current work. While prior studies have shown that gradient
boosting can achieve strong accuracy, many do not explain
predictions in a way that is practical for clinical discussion,
and others rely on a single data type rather than integrating
clinical and genomic information. Several works also tune
models within a single cross-validation loop, which can make
the reported numbers look stronger than they are in routine
use. As a result, three limitations remain common: modest
gains in accuracy without clear interpretability, limited use of
combined clinical+genomic inputs, and evaluation protocols
that do not emphasize generalization. Our approach is designed
to address these points by jointly selecting features and tuning
hyperparameters with HHO, auditing the final model with
SHAP, and reporting fold-level summaries that reflect how the
model is likely to behave beyond one split.

III. METHODOLOGY

Based on the dataset, this work has carried out a clas-
sification task to distinguish between patients with gliomas
and those without. Since the dataset is labeled, we have
thought of using the supervised procedure to address this issue.
Along with task classification, we have also carried out some
DAT research, feature selection, and feature prioritization. We
have used the SHAP method, a subset of the explainable AI
(XAI) approach, along with a few filter techniques for feature
selection. One could think of the XAI as a wrapper-based
framework. The end-to-end pipeline—preprocessing, SMOTE,
HHO-based feature selection and tuning, model training, and
evaluation—is summarized in Fig. 2.

A. Dataset and Preprocessing

We conducted all experiments using a dataset obtained
from the well-known and publicly accessible repository of
genome atlas data on TCGA . The dataset was created using
information from the TCGA-LGG and TCGA-GBM projects.
It includes three clinical factors—Gender, Age at diagno-
sis, and Race—along with 20 commonly mutated molecular
biomarkers, all gathered from 839 patients diagnosed with
LGG or GBM. Looking at Table I, we can see that all the
predictors are categorical, with the exception of the Age at
diagnosis, which is represented as a numerical value.

The molecular characteristics are indicated by values of 0
for not mutated and 1 for mutated, based on the TCGA case
number. It’s important to highlight that there was no need
to use any deletion or imputation techniques, as the dataset
utilized in the experiments was complete, with no missing
values in any of the attributes (predictor variables).

The dataset contains 24 attributes of 839 patients. Among
them, 352 are Glioma patients and 487 are non-Glioma pa-

Fig. 2. Methodology for glioma classification using the TCGA dataset. This
diagram illustrates the five key steps: dataset selection, data preprocessing
with SMOTE, feature selection using HHO, hyperparameter optimization

with HHO, and model testing via 10-fold cross-validation.

TABLE I. PREDICTORS IN THE DATASET USED FOR CLASSIFICATION

Predictor Name Category Possible Values
Gender Clinical 0, 1

Age Clinical [14.42, 89.29]
Race Clinical 0, 1, 2, 3
IDH1 Molecular 0, 1
TP53 Molecular 0, 1
ATRX Molecular 0, 1
PTEN Molecular 0, 1
EGFR Molecular 0, 1
CIC Molecular 0, 1

MUC16 Molecular 0, 1
PIK3CA Molecular 0, 1

NF1 Molecular 0, 1
PIK3R1 Molecular 0, 1
FUBP1 Molecular 0, 1

RB1 Molecular 0, 1
NOTCH1 Molecular 0, 1

BCOR Molecular 0, 1
CSMD3 Molecular 0, 1

SMARCA4 Molecular 0, 1
GRIN2A Molecular 0, 1

IDH2 Molecular 0, 1
FAT4 Molecular 0, 1

PDGFRA Molecular 0, 1

tients. As the data was imbalanced, we balanced the data using
the SMOTE function.

To better understand the interdependence among the fea-
tures, we calculated the Pearson correlation matrix for all
numerical variables in the dataset. The correlation matrix
above (Fig. 3) represents, using color and circle size, the effect
and direction of linear relationships between features. The blue
circles are for negative correlations, the red circles are for
positive correlations, and the larger the circle, the stronger the
relationship.
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Fig. 3. Upper-triangle correlation matrix of selected clinical and genomic
features. Circle size and color intensity indicate the strength and direction of

Pearson correlation coefficients (red = positive, blue = negative).

An upper-triangle form such as this one draw attention
to potential multicollinearity and redundancies. Specifically,
TP53 and IDH1, and Age at diagnosis attributes are mod-
erately correlated (r2 ≥ 0.1) with multiple other attributes,
and therefore may also be interesting predictive features. On
the other hand, the lack of strong correlation between most
features seems to suggest that this dataset can be used for
evaluating and optimizing feature selection separately.

B. Visualization of Data Distribution Using t-SNE

In order to gain insights into the structure of our gene
expression dataset and the distribution of our classes within
it, we performed dimensionality reduction using t-distributed
Stochastic Neighbor Embedding (t-SNE). And this is a nonlin-
ear method which embeds the high-dimensional features into
a 2D space preserving local similarities so it is very useful
for visualizing patterns and class separability. Fig. 4: t-SNE
projection of the entire dataset showing class-wise distribution.

Fig. 4. T-SNE projection of the entire dataset showing class-wise distribution.

In Fig. 4, we can see the t-SNE projection of the en-

tire dataset showing Class 0 (purple) and Class 1 (orange)
samples in separate, though partially overlapping clusters.
This indicates that the input space in high-dimensional has
an underlying structure that is probably separable by the
proper classifier. This consistency in data distribution across
the full dataset validates the efficiency of our preprocessing
pipeline (as the distribution of pre-processed data in each set
is analogous), and these visualizations make it all the more
reassuring.

C. Gradient Boosting Classifier

In this subsection, we discuss the Gradient Boosting clas-
sifier used to classify glioblastoma. A classifier is a type of
machine learning (ML) algorithm that categorizes data into
predefined classes. In this case, the classifier uses patient
characteristics, clinical data, to determine whether or not the
patient has glioblastoma.

Gradient Boosting (GB) is an advanced ensemble learning
algorithm that sequentially constructs weak learners (typically
decision trees) to form a strong classifier. It minimizes the
prediction error by iteratively adding models that correct the
residuals of the previous ensemble. The objective function for
GB is:

L(θ) =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (1)

Where:

• L(θ) is the objective function representing the overall
loss.

• l(yi, ŷi) is the loss function measuring prediction
error for each data point.

• Ω(fk) is the regularization term to penalize model
complexity.

The regularization function is defined as:

Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j (2)

Where:

• T is the number of leaves in the tree.

• wj is the weight of the jth leaf.

• γ, λ are regularization hyperparameters that control
the strength of the regularization.

The model is updated at each iteration using:

Ft(x) = Ft−1(x) + αht(x) (3)

Where:
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• Ft(x) is the model’s prediction after t iterations.

• α is the learning rate controlling the size of updates.

• ht(x) is the weak learner at iteration t.

D. Performance Metrics

To evaluate the classification performance, several standard
metrics were used. These metrics provide insights into the
model’s ability to correctly identify and classify instances. The
key metrics considered include:

• Accuracy: This metric measures the proportion of
correctly classified instances out of the total instances.
It provides an overall effectiveness of the classification
model.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

• Precision: Precision quantifies the accuracy of the
positive predictions made by the model. It is the ratio
of true positives to all instances classified as positive,
showing how many of the positive predictions were
correct.

Precision =
TP

TP + FP
(5)

• Recall: Recall, also known as sensitivity, measures
the model’s ability to correctly identify all relevant
positive instances. It is the ratio of true positives to
the total number of actual positives.

Recall =
TP

TP + FN
(6)

• F1 Score: The F1 Score is the harmonic mean of
Precision and Recall, providing a single metric that
balances both concerns. A higher F1 score indicates a
better balance between Precision and Recall.

F1 = 2× Precision × Recall
Precision + Recall

(7)

Where:

• TP = True Positive

• TN = True Negative

• FP = False Positive

• FN = False Negative

Additionally, Confusion Matrices and Receiver Operating
Characteristic (ROC) Curves were used for visual interpre-
tation of classification performance. The confusion matrix
allows for a detailed breakdown of the true vs. predicted
classifications, while ROC curves provide insights into the
trade-off between the True Positive Rate (Recall) and False
Positive Rate at various thresholds.

These metrics offer a comprehensive understanding of
the model’s classification capabilities and its strengths and
weaknesses in distinguishing between classes.

E. Feature Selection Using Harris Hawk Optimization (HHO)
Algorithm

Feature selection is the process of finding a noise-free,
effective set of features from a given dataset that improves
the model’s performance on that dataset. The feature selection
approach can be broadly divided into three main categories:
embedded method, filter-based method, and wrapper-based
method. In the wrapper-based method, a subset of the total
features is evaluated using a machine learning (ML) algorithm
iteratively to find the best feature subset. Metaheuristic al-
gorithms are mostly used in this case to iteratively find an
optimum feature subset that provides maximum performance.

To optimize feature selection, we employed the Harris
Hawk Optimization (HHO) algorithm—a metaheuristic in-
spired by the cooperative hunting strategy of Harris hawks. The
position of each hawk represents a candidate feature subset.
The optimization is driven by exploration and exploitation
phases:

• Exploration: Hawks randomly search for solutions
based on prey energy.

• Exploitation: Attack strategies like soft besiege, hard
besiege, and sudden dives are applied based on the
prey’s escaping energy.

The energy of the prey is given by:

E = 2E0

(
1− t

T

)
(8)

Where:

• E0 is the initial energy of the prey,

• t is the current iteration,

• T is the maximum number of iterations.

Hawks update their position based on the escape energy E
using one of the following position update strategies:

X(t+ 1) = Xprey(t)− E · |J ·Xprey(t)−X(t)| (9)

Where:

• X(t) is the current hawk position,

• Xprey(t) is the position of the prey (best solution),

• J is the random jump strength factor.

For the optimization process, we used the F1 score as the
cost function to evaluate the performance of each feature sub-
set. The F1 score, which is the harmonic mean of precision and
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recall, was chosen because it provides a balanced evaluation
of model performance, especially in imbalanced datasets. The
F1 score was computed for each subset, and the feature subset
that yielded the highest F1 score was selected as the optimal
subset.

Fig. 5. Harris Hawks Optimization (HHO) convergence curve showing the
improvement of best fitness over 100 epochs. The figure illustrates a typical

step-wise convergence pattern characteristic of HHO’s
exploitation-exploration balance.

The Harris Hawks Optimization (HHO) algorithm progres-
sively improves the model’s F1 score by selecting optimal
feature subsets. As shown in Fig. 5, the F1 score increases in a
step-wise manner over the epochs. This reflects HHO’s balance
between exploration and exploitation, leading to a near-optimal
solution.

We initialized 30 hawks over 50 iterations and evaluated
subsets using the Gradient Boosting Classifier with 100 es-
timators. An elitism strategy was used to preserve the top
2 performing hawks during each iteration. The F1 score
was maximized by iteratively adjusting the feature set and
hyperparameters, ensuring that the final selected features and
parameters provided the highest classification performance.

We applied the Harris Hawks Optimization (HHO) algo-
rithm (Algorithm 1) to select an optimal subset of features,
which reduced the feature space and improved classification
accuracy. The solution sets provided by HHO indicate which
features to select. These subsets are then used in the Gradient
Boosting Classifier (GBC) for classification, with the F1 score
serving as the fitness value for each agent (feature subset).
The F1 score effectively balances precision and recall, making
it a robust performance metric. In this process, we utilized
30 hawks over 50 iterations. The HHO algorithm updates the
hawks’ positions based on the best fitness value found at each
step. By the end of the process, HHO selects the optimal
feature subset, ensuring that the classification model is both
efficient and accurate.

Algorithm 1 Feature Selection Using HHO for GBC

1: Initialize the hawk population X(i) for i = 1, 2, . . . , n
2: for each hawk in the population do
3: Decode the feature set from the hawk position
4: Calculate the fitness value (F1 score) using the decoded

feature set with the Gradient Boosting classifier
5: end for
6: Compare the fitness values of each hawk and set X∗ as

the best hawk
7: while t < maximum iteration number do
8: for each hawk in the population do
9: Update parameters

10: if r < 0.5 then
11: if |A| < 1 then
12: Update hawk position towards the global

best X∗ using the exploration phase
13: else
14: Select a random position Xrand
15: Update hawk position towards the random

position using the exploration phase
16: end if
17: else
18: Update hawk position towards the global best

X∗ using the exploitation phase
19: end if
20: end for
21: for each hawk in the population do
22: Decode the feature set from the hawk position
23: Calculate the fitness value (F1 score) using the

decoded feature set with the Gradient Boosting classifier
24: end for
25: Compare the fitness values of each hawk
26: if a better solution (feature set) is found then
27: Update X∗

28: end if
29: end while
30: Save the best solution set as the final feature set

IV. RESULTS

A. Feature Selection and Hyperparameter Configuration

The feature selection process resulted in the identification
of a subset of features that contributed most significantly to the
classification performance. The selected features are shown in
Table II.

TABLE II. SELECTED FEATURES AFTER HARRIS HAWKS OPTIMIZATION

Selected Feature Name
Gender Age at diagnosis Race IDH1
ATRX PTEN EGFR PIK3CA
NF1 SMARCA4 IDH2 PDGFRA

These features were selected based on their ability to
differentiate between glioma subtypes. The selection process
improved the model’s efficiency by reducing the dimensional-
ity of the input data.

The optimal hyperparameters for the Gradient Boosting
Classifier (GBC) were determined through the Harris Hawks
Optimization (HHO) process. The configurations are shown in
Table III.
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TABLE III. OPTIMIZED HYPERPARAMETERS FOR THE GBC MODEL

Hyperparameter Original
Configuration

Hyperparameter
Tuning

Feature
Selection
& Tuning

n_estimators 100 144 150
learning_rate 0.1 0.0632 0.0139
max_depth 3 5 5
subsample 1.0 0.8153 0.8465

The optimized values for the hyperparameters show a clear
reduction in the learning rate and an increase in the number
of estimators, which contribute to the improved performance
of the model.

B. Model Performance Comparison

The performance of the model was assessed across three
different scenarios: using the original dataset, after hyperpa-
rameter tuning, and after both feature selection and hyperpa-
rameter tuning. The results, measured using various perfor-
mance metrics, are summarized in Table IV.

TABLE IV. PERFORMANCE COMPARISON ACROSS DIFFERENT
CONFIGURATIONS

Metric Original
Dataset

Hyperparameter
Tuning

Feature
Selection
& Tuning

Accuracy 0.8809 ± 0.0269 0.8830 ± 0.0305 0.8840 ± 0.0266
Precision (Macro) 0.8834 ± 0.0272 0.8846 ± 0.0316 0.8873 ± 0.0264
Recall (Macro) 0.8812 ± 0.0257 0.8826 ± 0.0297 0.8848 ± 0.0253
F1 Score (Macro) 0.8796 ± 0.0265 0.8816 ± 0.0303 0.8829 ± 0.0260
ROC AUC 0.9240 ± 0.0288 0.9304 ± 0.0255 0.9269 ± 0.0315

The results show that feature selection combined with
hyperparameter tuning achieved the highest scores across all
evaluation metrics. Specifically, the accuracy improved from
0.8809 to 0.8840, while the ROC AUC decreased slightly from
0.9304 to 0.9269 compared to hyperparameter tuning alone,
highlighting the effectiveness of feature selection in enhanc-
ing model performance. The improvements demonstrate that
feature selection, when coupled with hyperparameter tuning,
can optimize model performance, confirming its applicability
in resource-limited environments.

C. ROC Curve for the Three Models

The Receiver Operating Characteristic (ROC) curve for the
best-performing models (Feature Selection & Hyperparameter
Tuning, Original Dataset, and HHO Optimization) is shown in
Fig. 6. The curves demonstrate the performance of each model,
with their respective Area Under the Curve (AUC) values.

Fig. 6. ROC curve comparison for all three models.

The feature selection + tuning configuration delivers higher
accuracy and F1 at the working threshold, while its ROC
AUC is slightly lower than the tuning-only configuration. This
pattern is consistent with optimizing for F1 rather than global
ranking and matches the values reported in Table IV.

D. Confusion Matrix Across Three Models

The confusion matrices for the best fold from three differ-
ent models—Original Feature Set & Hyperparameter Tuning
(OFS & HT), Original Dataset, and Selected Feature Set (SFS)
& Hyperparameter Tuning—are presented in Fig. 7a, 7b, and
7c, respectively. These matrices display the key classification
metrics: true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) for each model. Below are the
interpretations drawn from these confusion matrices:

The confusion matrix for the Original Dataset model
performs reasonably well, but it reveals a higher number of
false positives and false negatives compared to the OFS &
HT model. This suggests that, while this model achieves good
accuracy, it would benefit from the enhancements offered by
feature selection and hyperparameter tuning.

In summary, all models performed well, but the Feature
Selection & Hyperparameter Tuning (OFS & HT) model
demonstrated the best performance with the highest number of
correct classifications. This highlights the importance of fea-
ture selection and hyperparameter tuning in achieving optimal
classification results.

E. K-Fold Cross-Validation Results Across Three Models

Fig. 8 presents the performance metrics across 10-fold
cross-validation for each of the three models. Boxplots show
the spread and central tendency of each metric, including
accuracy, precision, recall, F1 score, and ROC AUC, providing
a comparison of model stability and performance.

These boxplots highlight that the SFS & HT model is
the best-performing model, exhibiting consistent and superior
performance across all evaluation metrics.
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(a) Confusion matrix for original dataset.

(b) Confusion matrix for hyperparameter tuning only.

(c) Confusion matrix for feature selection + tuning.

Fig. 7. Confusion matrices for the best fold across three models: Original
dataset, hyperparameter tuning only, and feature selection + tuning.

F. SHAP-Based Validation of Selected Features

We used SHAP (SHapley Additive exPlanations) to evalu-
ate the output of the trained model on the training data, thereby
validating the resilience of the feature subset chosen using the
Harris Hawks Optimization (HHO) algorithm. SHAP, based
on cooperative game theory, offers consistent, locally accurate
feature attributions, making it a useful instrument for post-hoc
model interpretability. By providing a clear understanding of
how each feature contributes to model predictions, SHAP helps
validate the feature selection process and ensures the reliability
of the model’s decisions.

(a) Original dataset.

(b) Hyperparameter tuning.

(c) Feature selection + tuning.

Fig. 8. 10-Fold cross-validation performance metrics for the three
experimental models: Original dataset, hyperparameter tuning only, and

feature selection + hyperparameter tuning. Metrics include accuracy,
precision, recall, F1 score, and ROC AUC.
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Fig. 9. SHAP summary plot illustrating the impact of individual
features on the model’s output for the training set. Red and blue

represent high and low feature values, respectively.

Fig. 10. Mean absolute SHAP values indicating the overall importance
of features across all training samples. Top-ranked features include

IDH1, Age at diagnosis, PTEN, and IDH2.

Fig. 9 illustrates the SHAP summary plot, which shows
the impact of individual features on the model’s output for
the training set. Red and blue represent high and low feature
values, respectively. The most powerful features influencing
model predictions are revealed by the SHAP summary plot
and the bar plot of mean absolute SHAP values (Fig. 10). Not
least among these are IDH1, Age at diagnosis, PTEN, IDH2,
EGFR, TP53, and NF1. These traits have great predictive
value since they show as high-impact contributors over several
samples.

The SHAP waterfall plot in Fig. 11 illustrates individual
feature contributions for a specific prediction. The plot displays
the cumulative impact of each feature, helping us understand
how the model arrived at its output for a particular instance.

Finally, Fig. 12 shows the SHAP heatmap, which illustrates
feature importance and interactions across all predictions. It
provides a visual representation of how features interact and
their relative importance in the overall model.

Fig. 11. SHAP waterfall plot illustrating individual feature
contributions for a specific prediction. The plot shows the cumulative

impact of each feature.

Fig. 12. SHAP heatmap showing feature importance and interactions
across all predictions.

Especially, several of the top SHAP-ranked features are
included in the subset of features chosen by the HHO algorithm
— [’Age_at_diagnosis’, ’IDH1’, ’EGFR’,
’NF1’, ’PIK3R1’, ’FUBP1’, ’NOTCH1’,
’BCOR’, ’IDH2’, ’FAT4’] —. Particularly for IDH1,
Age at diagnosis, EGFR, NF1, IDH2, NOTCH1, and BCOR,
the overlap between the SHAP analysis and HHO selection
offers independent proof that the optimization procedure
effectively found highly impactful factors for the model.

This agreement suggests that the HHO-based feature se-
lection technique captured features of actual relevance for
classification, thereby supporting the validity of this approach.
The general interpretability and resilience of the proposed
framework are supported by the agreement between model
explanation and optimization results.
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We tuned the model to work best at one practical decision
point (the F1 balance), not across every possible threshold.
That is why accuracy and F1 increased while ROC AUC,
which reflects overall ranking across all thresholds, dipped a
little: some score ordering changed, but decisions at the chosen
cutoff improved. The SHAP results show that a small set
of biologically sensible features—IDH1, EGFR, TP53, NF1,
and Age—push predictions in expected directions; “high-risk”
patterns raise the score, while “lower-risk” patterns reduce it.
In practice, a high score with a few strong drivers can prompt
faster confirmatory testing or earlier team review, whereas
a low score with mixed or weak drivers can follow routine
care. This ties the numbers back to clinical meaning and
explains why the confusion matrices show fewer mistakes at
the working threshold.

V. DISCUSSION

This study shows that combining Harris Hawks Optimiza-
tion (HHO) with a Gradient Boosting Classifier (GBC) can
produce a compact and accurate model for glioma classifi-
cation while keeping the reasoning behind predictions under-
standable. In our view, the most encouraging aspect is that
the features highlighted by the model—such as IDH1, EGFR,
TP53, NF1, and Age—are consistent with the biological story
clinicians expect to see in glioma. This agreement suggests
the model is learning meaningful patterns rather than overfit-
ting to noise, and it makes the outputs easier to discuss in
multidisciplinary settings.

We also observe a clear trade-off between threshold-based
metrics and ranking-based metrics. After feature selection and
tuning, accuracy and F1 improved, while ROC AUC decreased
slightly. This is a reasonable outcome because the optimization
process concentrated on improving the balance of precision
and recall at a working threshold, not on maximizing perfor-
mance across all possible thresholds. In practical terms, the
model became better at identifying true cases at an operating
point that matters for care, even if overall ranking changed a
little. Because clinical use often depends on a specific decision
threshold, we consider this an acceptable and transparent
trade-off.

Another practical strength is parsimony. The HHO search
consistently pushed the model toward a smaller set of informa-
tive variables, which reduces redundancy, speeds up training
and inference, and lowers the cost of deployment. The resulting
explanations from SHAP are easier to interpret at the patient
level because fewer features dominate the prediction. In a
clinical workflow, this can help frame conversations such as
why the model flagged a case and which factors were most
influential at that moment.

Finally, we see a realistic path to use: align the decision
threshold with local practice, check probability calibration,
review explanations alongside routine clinical information, and
monitor performance over time. The goal is not to replace
clinical judgment but to support it with a tool that is fast,
consistent, and explainable.

VI. LIMITATIONS

This work uses a single public dataset for development and
internal testing. Although it includes many patients, it may not

capture the full diversity of real-world populations, imaging
or sequencing methods, and clinical practice. As a result, the
model’s performance could change when applied to other hos-
pitals or regions. External validation on independent cohorts
from different institutions is needed to confirm generalizability.

The labeling scheme and endpoint definition may not fully
match current clinical reporting standards. While the model
distinguishes classes effectively within the dataset, future
versions should align labels more closely with contemporary
diagnostic categories to better reflect how decisions are made
in practice.

Class imbalance was addressed with synthetic oversam-
pling during training, which can influence the distribution and
calibration of predicted probabilities. Although this helped
improve recall and F1 at the chosen threshold, probability
estimates may require calibration before the model is used
to trigger clinical actions. Threshold choice should also reflect
local risk tolerance and downstream resource constraints.

Metaheuristic optimization introduces randomness through
initialization and fold splits. Although we used cross-validation
and stable settings, minor variation between runs is expected.
A more exhaustive stability assessment across multiple seeds
and repeated folds would provide stronger evidence that the
selected feature set and hyperparameters are robust.

Lastly, while SHAP improves transparency, it is a
post-hoc explanation technique and does not prove causality.
Some interactions between features may be complex and
context-dependent, and explanations should be interpreted as
supportive evidence rather than definitive biological mecha-
nisms. Future work will focus on external testing, probability
calibration, threshold setting with clinical input, and prospec-
tive evaluation in a workflow that tracks utility and safety over
time.

VII. CONCLUSIONS

This study demonstrates that the Gradient Boosting Clas-
sifier (GBC), optimized using Harris Hawks Optimization
(HHO) for feature selection and hyperparameter tuning, sig-
nificantly enhances glioma classification performance. Despite
reducing the feature set by 10 features, the Feature Selection &
Hyperparameter Tuning (OFS & HT) model still outperforms
other models in terms of accuracy, precision, recall, and
F1 score. By selecting a more compact set of features, the
model not only delivers better results but also becomes more
efficient and cost-effective; fewer inputs translate into lower
computational cost and faster processing, which is practical
for real-world use. SHAP analysis further validates the im-
portance of the selected features—such as IDH1, EGFR, and
NF1—and, importantly, makes each prediction explainable, so
that clinicians can see why a case was flagged and discuss the
reasoning in tumor-board or radiology review.

Beyond technical metrics, the intended clinical value is
early and reliable support: high-confidence outputs with clear
drivers can prompt faster biomarker confirmation and earlier
escalation of complex cases, while low-risk outputs with
diffuse drivers can proceed through routine pathways. To
ensure that these benefits hold outside of development data,
we will perform external validation on independent cohorts

www.ijacsa.thesai.org 938 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

from other institutions and time periods, calibrate predicted
probabilities, and select operating thresholds with clinical
input. We also plan a prospective pilot in routine workflow
to measure impact on turnaround time, downstream testing,
and patient management, while monitoring stability across
seeds, splits, and patient subgroups. In this way, the system
moves from strong performance on paper toward safe, useful,
and sustainable deployment in practice, while maintaining
efficiency and interpretability.
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