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Abstract—Chest X-ray imaging remains a cornerstone in the
diagnosis of thoracic conditions such as COVID-19, pneumonia,
and lung opacity. Despite advancements in deep learning, the
development of robust and generalizable models is limited by
data privacy constraints, as patient data cannot be centralized
across institutions. Federated Learning (FL) has emerged as
a promising solution by enabling collaborative model training
without sharing raw data. However, standard FL algorithms
like FedAvg, FedProx, and FedSGD aggregate all client updates
without considering their individual quality, making them vul-
nerable to performance degradation in the presence of data
heterogeneity, label noise, or underperforming clients. To address
these challenges, this study proposes Federated Performance-
Based Averaging (FedPA), a novel selective aggregation strategy
that incorporates only those client models that meet a pre-
defined performance threshold during training. By leveraging
an accuracy-based filtering mechanism, FedPA ensures that
only sufficiently trained and reliable local models contribute
to global updates. The method was evaluated on a multi-class,
non-IID chest X-ray dataset containing four classes: Normal,
COVID-19, Pneumonia, and Lung Opacity. Using DenseNet as
the backbone model, experiments were conducted across four
federated clients, each biased toward a specific class to simulate
real-world data distributions. Results demonstrate that FedPA
significantly outperforms baseline federated algorithms across
key metrics, achieving a global accuracy of 91.82%, F1-score
of 92.48%, and recall of 92.08%. The method also achieved
faster convergence, higher stability, and reduced round-to-round
accuracy fluctuations. System-level evaluations further show that
FedPA offers competitive efficiency in terms of inference time,
throughput, CPU usage, and memory footprint, making it suitable
for deployment in resource-constrained clinical environments.
Overall, FedPA offers a practical and effective advancement in
federated learning for medical imaging. By filtering unreliable
client contributions, it preserves model quality and privacy,
presenting a viable path for clinical deployment in scenarios
where data centralization is infeasible due to ethical, legal, or
logistical constraints.
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I. INTRODUCTION

Deep learning [1] and Medical imaging has become an
necessary tool in current healthcare, playing an important role
in the diagnosis, monitoring, and treatment of various diseases
[2]. Technologies such as X-rays, computed tomography (CT),
magnetic resonance imaging (MRI), and ultrasound, combined
with Al-driven analysis (see Fig. 1), offer detailed insights
into the human body, enhancing the ability of healthcare
professionals to detect abnormalities at an early stage with
greater accuracy and efficiency [3]. With rapid advancements
in artificial intelligence (AI) and deep learning, medical image
analysis has significantly improved [4], offering enhanced
accuracy, speed, and efficiency in diagnosing conditions such
as cancer [5], pneumonia [6], neurological disorders [7], and
cardiovascular diseases [8]. These Al-driven approaches fa-
cilitate automated detection, segmentation, and classification
of medical images, reducing the burden on radiologists and
improving patient outcomes [9], [10].

The collection and management of medical imaging
datasets for Al applications face significant challenges due
to strict privacy regulations and ethical concerns. Federated
Learning (FL) [11] has emerged as an innovative, privacy-
preserving solution that enables collaborative model training
across healthcare institutions without sharing raw patient data
(see Fig. 1). By training models locally and only sharing model
updates, FL. ensures data privacy while leveraging distributed
datasets [12]. Federated averaging (FedAvg) is a common
aggregation procedure in federated contexts. FedAvg, however,
experiences convergence issues, especially when there is sig-
nificant diversity in the data distributions among clients [13].

In the next section, we will examine the role of federated
learning in healthcare, highlighting its current applications and
limitations. This discussion will also identify the existing re-
search gaps, thereby framing the specific aim and contribution
of this paper in addressing those challenges.
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Fig. 1. Medical imaging modalities classification [3].

A. Federated Learning in Healthcare

In a standard FL setup, each client trains a local model
using its own dataset and transmits model updates to a central
server, which aggregates these updates to improve the global
model. This iterative process continues until the model reaches
convergence (see Fig. 2). However, traditional FL algorithms
such as FedAvg struggle with non-IID data distributions, client
heterogeneity, and communication overhead, particularly in
healthcare applications where data availability and quality vary
significantly across institutions.

Federated Learning has gained significant traction in the
healthcare domain due to its ability to enable collaborative
model training while ensuring compliance with data privacy
regulations such as HIPAA (Health Insurance Portability and
Accountability Act) and GDPR (General Data Protection Reg-
ulation) [14]. In healthcare, FL is particularly useful for appli-
cations such as medical imaging analysis, predictive diagnos-
tics, personalized treatment planning, and disease progression
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Fig. 2. Federated learning step by step process.

Recent studies have introduced various aggregation tech-
niques to enhance federated learning, with Federated Averag-
ing (FedAvg) being one of the most widely adopted due to
its simplicity and efficiency [15]. However, FedAvg assumes
equal participation from all clients, making it vulnerable to un-
reliable or delayed clients, particularly in real-world federated
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networks where client availability is inconsistent due to factors
such as network failures, power constraints, and computational
limitations. This inconsistency can lead to several challenges,
including unstable global updates, where a high dropout rate
among clients causes model updates to become erratic and
degrade overall performance; inefficient optimization, as the
server lacks control over client participation, making it difficult
to streamline the learning process; and reduced model quality,
since the absence of high-performing clients in certain rounds
may lead to lower-quality updates.

To address some of these limitations, several advanced ag-
gregation techniques have been proposed. Federated Learning
with Proximal Optimization (FedProx) [16] improves FedAvg
by mitigating the negative effects of client data heterogeneity.
However, tuning its additional hyperparameter is challenging,
and its default values may not generalize well across differ-
ent datasets. Federated Multi-Task Learning via Multi-Task
Association (FedMA) [17] optimizes both global and local
models jointly, which enhances convergence, but its complex-
ity makes it difficult to implement in some federated learn-
ing systems. Quantization-based Federated Learning (QFFL)
[18] reduces communication overhead by compressing model
updates through quantization, but this approach introduces
quantization errors, which can impair convergence and final
model accuracy.

Despite advancements in Federated Learning (FL), existing
methods still face major challenges in medical imaging. High
communication overhead, caused by frequent model updates,
burdens low-bandwidth healthcare networks. Non-IID data due
to variations in demographics, imaging tools, and protocols
limits model generalizability.

Client participation is often inefficient, particularly from
resource-constrained or outdated devices, contributing low-
quality updates and hindering convergence. Data heterogeneity
and noise further destabilize training. Scalability is also limited
by diverse hardware capabilities across institutions.

Moreover, FL systems remain vulnerable to privacy and se-
curity threats such as model inversion and adversarial attacks.
Unreliable client connectivity common in mobile or remote
setups adds to participation inconsistency, complicating the
learning process.

To address these limitations, we propose Performance-
Based Federated Averaging (FedPA). A novel aggregation
technique specifically designed for medical imaging applica-
tions. Unlike the traditional FedAvg method, which aggregates
updates from all participating clients regardless of their quality,
FedPA selectively incorporates only those updates that meet
a predefined accuracy threshold (e.g., 80%). This selective
inclusion significantly reduces noise from poorly performing
clients, accelerates convergence, and enhances overall model
robustness.

In addition to performance-aware selection, FedPA allows
low-performing clients to download the updated global model
parameters, enabling them to improve their local models over
time. Once their performance meets the participation threshold,
they are reintegrated into the aggregation process. This strategy
promotes progressive learning and inclusivity while maintain-
ing model quality and minimizing communication overhead.
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To evaluate the effectiveness of FedPA, we applied it to
a multi-class chest X-ray dataset for thoracic disease detec-
tion (Normal, COVID-19, Lung Opacity, Pneumonia). Each
client was assigned a specific class, simulating a realistic
non-IID setting. Experimental results demonstrate that FedPA
outperforms traditional FL. methods in terms of accuracy, F1-
score, robustness, and communication efficiency highlighting
its potential as a performance-aware and scalable FL approach
for healthcare AI applications

The remainder of this paper is structured as follows.
Section 2 presents a literature review of existing FL techniques
in medical imaging, discussing the limitations of traditional
aggregation methods. Section 3 details the methodology, in-
cluding an overview of FL, the architecture of the proposed
FedPA framework, model configurations, and dataset prepro-
cessing. Section 4 provides experimental results and discus-
sion, comparing FedAvg, traditional FedPA, and Performance-
Based FedPA in terms of accuracy, loss, convergence time,
and efficiency. Section 5 discusses the broader implications of
the findings, highlighting advantages, challenges, and potential
real-world applications of FedPA. Section 6 concludes the pa-
per with a summary of findings and future research directions,
focusing on further optimizations and the integration of secure
aggregation techniques for enhanced privacy in FL.

II. AGGREGATION STRATEGIES IN FEDERATED
LEARNING

1) Federated Averaging (FedAvg): Federated Averaging
(FedAvg) is the most commonly used FL aggregation strategy,
introduced by [11]. In FedAvg, each participating client trains
a local model for several epochs and sends the updated model
weights to the central server. The global model is updated
using the weighted average of all client models, formulated
as:

K
n
Wip1 = Z ﬁsz (D
k=1

where wtk is the local model update from client k, ny, is the
number of samples on client k, and N = Zszl ny represents
the total number of data samples across all clients.

While FedAvg is effective in IID (independent and iden-
tically distributed) settings, it faces challenges in heteroge-
neous and non-IID environments, where certain clients may
contribute low-quality updates, slowing down convergence.

Federated learning studies in medical imaging commonly
use FedAvg as the standard baseline, often comparing it with
optimization-enhanced and personalized alternatives. For in-
stance, [19] report an accuracy approximately 97% for FedAvg
under IID conditions, while personalized approaches in [20]
and [21] show AUROC values of 0.95 for FedAvg versus
0.94 for local models. These studies cover diverse imaging
modalities such as MRI, CT, X-ray, OCT and dataset sizes
ranging from 2,100 to over 84,000 images. Methods tailored to
handle data heterogeneity, such as FedOpt, often demonstrate
improved accuracy and robustness under non-IID conditions.
However, most of these approaches (six out of seven) incur
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higher client-side computational costs, and communication
overhead typically remains moderate to high.

The [22] study shows that using EfficientNet-BO with the
FedAvg algorithm in a federated learning framework improves
privacy and diagnostic accuracy for MRI brain tumor detection.
EfficientNet-BO outperforms ResNet in handling data hetero-
geneity, emphasizing the potential of federated learning for
robust medical image analysis.

Referred by [23] SecureFed, a secure federated learning
aggregation method, outperforms FedAvg, FedMGDA+, and
FedRAD in lung abnormality analysis using chest X-rays. It
demonstrates superior robustness and fairness on COVID-19
datasets and is adaptable for multimodal medical data analysis.

The [24] study introduces Auto-FedAvg, a data-driven fed-
erated learning approach that dynamically adjusts aggregation
weights based on data distribution and training progress. It
outperforms existing methods on heterogeneous CIFAR-10 and
proves effective in two medical imaging tasks: COVID-19
lesion segmentation in chest CT and pancreas segmentation
in abdominal CT.

While FedAvg is simple and effective, it suffers from
inefficiencies when dealing with non-IID data and heteroge-
neous client performance, leading to slower convergence and
suboptimal accuracy.

2) Federated Proximal (FedProx): To address the limita-
tions of FedAvg, FedProx [16] introduced a proximal term to
stabilize local updates, especially when clients have hetero-
geneous computing power or varying data distributions. The
modified objective function is:

wi! = argmin (Fk(w) + %Hw - th?)

where u controls how much a client update deviates from
the global model. FedProx helps mitigate drift in non-IID
settings but does not directly address client selection based
on performance.

The author in [25] presents a comparative analysis of
federated aggregation algorithms for binary classification of X-
ray images across a limited number of hospitals with varying
data heterogeneity. Among the evaluated methods, FedProx
consistently outperforms others, making it the most effective
approach in handling statistical variation in distributed medical
imaging settings.

Referred by [26], FedProx outperforms FedAvg in feder-
ated learning for medical image analysis, demonstrating supe-
rior performance in cancer classification despite heterogeneous
client data. However, increasing the number of communication
rounds between the server and clients degrades model perfor-
mance, affecting convergence and accuracy.

The author in [27] introduces a hybrid federated learning
algorithm, FedProx:FedSplit, designed to tackle both statistical
and system heterogeneity in medical data communication.
This approach enhances model convergence and improves the
overall accuracy of the global model in distributed healthcare
settings.
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This [28] study explores brain tumor detection using MRI
images in a federated learning (FL) setup to preserve data
privacy. A VGG19-based model was trained across four clients
with non-IID data, incorporating Grad-CAM for explainability.
Using a centralized test set for fair evaluation, the model
achieved high accuracy of 97.18% using FedAvg, 98.24% us-
ing FedProx, and 98.45% using Scaffold. It demonstrating the
effectiveness of FL in privacy-preserving, real-world medical
imaging scenarios.

3) Federated Proximal (FedBN): Federated Batch Nor-
malization (FedBN) [29]is a variant of federated learning
designed to tackle non-IID (non-identically distributed) data
across clients by adjusting how batch normalization layers
are handled. In standard federated learning (e.g. FedAvg), all
model parameters (including batch normalization statistics) are
averaged across clients, which can be problematic when clients
have very different feature distributions (a situation known
as feature shift). FedBN addresses this by keeping the batch
normalization parameters local to each client. In other words
it does not include the BN layers running mean and variance
in the global model aggregation [30].

Medical imaging federated learning often faces site-specific
data distributions for example, MRI scans from different
hospitals may have varying intensity distributions due to dif-
ferent scanners or protocols, even if the underlying task (e.g.
tumor classification) is the same [29]. FedBN is well-suited
to such settings: by not forcing a single global normalization,
it allows each hospitals model to adjust to its own imaging
characteristics while still contributing to a shared global model.
This approach has been applied in a number of medical
imaging tasks to improve generalization across institutions.
For instance, researchers have evaluated FedBN on multi-
center datasets for diagnostic classification and segmentation
problems, observing better performance compared to vanilla
federated training when data distributions differ [31]

Notably, FedBN has been used as a state-of-the-art baseline
in: Histopathology Image Classification Cell Nuclei Segmen-
tation MRI Segmentation The method’s success in these peer-
reviewed studies demonstrates how personalized normalization
can boost performance in privacy-preserving medical Al col-
laborations.

While FedBN was introduced to address the issue of batch
normalization (BN) layers in a non-IID setting. In standard BN,
statistics are computed from local mini-batches that might not
generalize properly across clients. FedBN sidesteps BN layers
during aggregation, allowing the client-specific normalization
parameters while aggregating the remaining ones. This modi-
fication improves generalization, thus preventing the collapse
in performance due to misaligned feature statistics [13].

In FedBN, the model parameters are separated into two
components:

W = {Wshared, WBN }

where:

®  Wgnareq are the weights of shared layers (e.g., convo-
lutional layers),
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e wpn = {78,402} are the batch normalization
parameters: scale, shift, running mean, and running
variance.

The FedBN update rules are then:

K
(t+1) _ E :nk (t)
Wehared — Z{wshared,k @)
k=1

(t+1) _  (t)
WgN, k- = WBN,k

(not aggregated) 3)
This means batch normalization parameters remain local to
each client to better handle feature distribution heterogeneity.

A. Federated Stochastic Gradient Descent (FedSGD)

FedSGD is a foundational algorithm in federated learning
that updates the global model by aggregating gradients from
multiple clients rather than full model weights. Unlike FedAvg,
which averages model parameters after multiple local updates,
FedSGD performs only one gradient computation per client
per round, reducing local computation but increasing commu-
nication cost. The global objective is to minimize the weighted
empirical risk:

Nk

;fk(e)

WE

mein f(o) =
k=1

Each client k£ computes its local gradient using the current
global model 6:

9e = V(6"

The server aggregates gradients from the selected clients
S: and updates the global model as:

t+1 _ pt Nk 4
0 =0"—n Yk
keS, St

If uniform weighting is used instead of sample-size-based
weighting:

1
9t+1 — et . t)
n ‘Stl kezst gk,

This approach ensures lightweight local computation and
is suitable for bandwidth-constrained distributed settings.

FedAc [32] can achieve a linear speedup with fewer rounds
of synchronization compared to FedAvg, improving commu-
nication efficiency. FedAc has stronger theoretical guarantees
than FedAvg, particularly for functions that are third-order
smooth. The authors developed a novel analysis approach and
a strategic tradeoff between acceleration and stability to derive
the FedAc algorithm.

The key idea of the FedSel framework [33] is to privately
select the top-k most important dimensions in each iteration of
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federated SGD, in order to reduce the noise injected into the
gradients under local differential privacy. The authors claim
that their FedSel framework outperforms the state-of-the-art
solutions in terms of privacy, accuracy, and time complex-
ity.Experiments on real-world and synthetic datasets verify the
effectiveness and efficiency of the FedSel framework.

The paper [34] analyzes the convergence of local descent
methods like Federated Stochastic Gradient Descent (FedSGD)
for solving nonconvex optimization problems in federated
learning with heterogeneous data.

Despite notable advances in federated aggregation strate-
gies such as FedAvg, FedProx, FedBN, and FedSGD, existing
approaches remain limited in their ability to adaptively account
for client performance quality under highly heterogeneous and
non-1ID medical data. Most methods either assume uniform
participation (FedAvg), add complexity with sensitive hyper-
parameters (FedProx), or address only feature shift without
considering contribution reliability (FedBN), while lightweight
approaches like FedSGD incur high communication costs with-
out performance-based filtering. Furthermore, recent personal-
ized and optimization-driven extensions improve convergence
but often impose higher computational and communication
overhead, making them less practical for resource-constrained
healthcare environments. A clear gap therefore exists in the
literature for a performance-aware, lightweight, and selective
aggregation mechanism that not only filters out low-quality
updates but also ensures inclusivity for weaker clients to
progressively improve an area where FedPA positions itself
as a novel and practical contribution.

III. FEDERATED LEARNING PERFORMANCE-BASED
AVERAGING (FEDPA)

Federated Averaging (FedAvg) is one of the most widely
adopted aggregation methods in federated learning due to its
simplicity and communication efficiency [15]. However, it
assumes uniform participation and contribution quality from
all clients, which rarely holds in real-world settings. Client
availability often varies due to network instability, power
constraints, and hardware limitations, leading to unreliable or
delayed updates. This inconsistency results in unstable global
model updates, inefficient optimization, and reduced model
quality especially when high-performing clients are absent
from certain rounds. Furthermore, FedAvg lacks mechanisms
to differentiate between high- and low-quality updates, al-
lowing poor local models to degrade overall performance,
particularly when data quality, size, or computational resources
vary significantly across clients.

To overcome this limitation, Performance-Based FedPA
is introduced. This approach integrates a client contribution
evaluation mechanism that selectively aggregates model up-
dates from high-performing clients while still allowing lower-
performing clients to participate and improve. This strategy
ensures that the global model prioritizes high-quality updates,
leading to improved overall performance and stability.

Step 1: Initialization

e Initialize the global model wy.
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e  Set the performance threshold 7 (e.g., 80% accuracy).

e  Define all participating clients K.

Step 2: Federated Learning Process
For each global round ¢t =1,2,...,T"

e Server selects a subset of clients S; C K.

e Each client k € S;:

o  Trains its local model w}, using its dataset.
o  Evaluates its local model accuracy:

Accuracy(w},)

o If Accuracy(w!) > 7, the client is added to
the selected clients set Cielected:

Cielected = {k | Accuracy(w}) > 7}

o If Accuracy(w}) < 7:

= The client still receives the global
model update but does not contribute to
aggregation.

= This ensures continuous learning for

weaker clients.

Step 3: Optimization and Weight Computation

For each selected client k € Cyeleced:

e Compute the contribution weight «j based on
accuracy:

Accuracy(w},)
Zj € Clelected Accuracy(w;? )

e  Compute the local model update Aw}:

qp =

¢ ¢
Awp, = wy, —wy

Step 4: Aggregation Using FedAvg

Once all selected clients send their updates to the server,
the global model is updated using FedAvg.

Using the weighted averaging formula:
(07 3
Wiy = —w
= Y %
kecselecled

where:
o N = |Cielected|, the number of selected clients.

e Stable and effective for non-IID data.
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e  Reduces variance in updates.

e Slower convergence but better final accuracy.

Step 5: Updating the Global Model

e  Server broadcasts the updated global model w;4; to
all clients.

e  The process repeats for 1" rounds.

e At the end, the final model wr is returned.

A. Advantages of Performance-Based FedPA

1) Improved global model accuracy: By prioritizing con-
tributions from high-accuracy clients, the global model avoids
the negative impact of poor updates, leading to faster and more
stable convergence. Ensures that well-trained models influence
learning while still allowing weaker models to improve.

2) Faster convergence: Since only high-performing models
significantly influence the global update, the model learns more
effectively per round, reducing the number of communication
rounds required for convergence. Avoids instability caused by
noisy updates from clients with poor local training.

3) Adaptive participation for weaker clients: Clients not
meeting the accuracy threshold are still included in the feder-
ated learning process, receiving global updates and improving
over multiple rounds. This encourages progressive learning,
allowing weaker models to gradually enhance their accuracy
and contribute more effectively in future rounds.

4) Robustness to Non-IID data: Real-world federated
learning scenarios, such as multi-institutional medical imaging,
often involve non-IID (heterogeneous) datasets. Performance-
Based FedPA naturally adapts to these conditions by giving
higher importance to clients with better model performance,
which mitigates the impact of data heterogeneity.

IV. METHODOLOGY
A. Data Acquisition and Preprocessing

This study is based on dataset images of the chest radio-
graph classifying images into four classes-Normal, COVID-
19, Viral Pneumonia, and Lung Opacity. Data from this
collection used for the study is from publicly available clinical
repositories to make sure the patient’s demographics and
radiological conditions are as diverse as needed. Such diversity
will strengthen the generalization capability of the trained
models for better and more effective application in real-world
clinical conditions (Fig. 3).

Each image was preprocessed through a similar standard
pipeline that was used across federated clients. All images
were resized to a consistent input resolution of 224x224 pixels,
which is widely adopted in convolutional neural network
(CNN) models. Afterward, the pixel intensities were normal-
ized by scaling the values into the range from [0, 1]. This
definition of normalization was further adjusted per channel by
mean and standard deviation values calculated on the training
set to standardize input data of different images.
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Various data augmentation techniques were utilized during
training to reduce overfitting and improve the generalization
abilities of the model. These augmentation methods included
random horizontal flipping, small-angle rotations, random
cropping, and intensity rescaling. The augmentations mimic
image acquisition variability across the various institutions and
imaging equipment, which is one of the main requirements
for building robust models in medical image analysis. These
techniques improve model robustness by preparing a model
that performs better in real data differing from the acquisition
conditions and quality.

All the changed images, label and metadata have been
stored in an organized NumPy archive (covid_dataset.npz) to
directly load and access such data during the training opera-
tion. This format is readily available for any federated client
to train on such dataset providing a facility to have a smooth
Read-Write process in distributed learning in healthcare Al
systems.

Resized to 224x224
Size: (224, 224)

¢

Original Image
Size: (299, 299)

4T

Rotation (£15°) Intensity Rescaled (o 207 %)

1Y

Fig. 3. This figure shows the preprocessing pipeline, the original image is
resized into 224 x 224 size. This is further rotated and has its intensities
increased for better feature recognition and generalization.

B. Data Partitioning and Distribution Strategy

The partitioning of the preprocessed chest X-ray dataset
into four virtual clients simulating different hospitals or set-
tings under federated learning, therefore representing three tho-
racic diseases-COVID-19, Pneumonia, and Lung Opacity-and
one Normal class, would provide insight into these instances’
diverse medical diagnosis as seen in real-world clinical prac-
tice. A truly non-IID data partitioning approach for federated
learning algorithms is justified because, in practice, medical
data can vary from one institution to another depending on
specialization, as well as geographical attractiveness for certain
diseases. Now, the data of each client was divided into a
training set (70%), a validation set (15%), and a global test set
(15%). The training and validation data were kept by the local
class distributions, whereby the model of each client’s training
learned from an equal balance of images to prevent any biases
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that could have arisen from unequal class proportions. The
global test set, which holds 15% of the total dataset, was evenly
distributed across all classes, allowing it to be completely
separate to ensure an unbiased evaluation of the aggregated
model’s performance. This partitioning strategy exploits nat-
ural statistical variability that different clients have for the
evaluation of federated learning methods under decentralized,
imbalanced, and real-world clinical data conditions. Such a
mechanism becomes necessary to allow for the generalization
of the trained models over dissimilar clinical terrains, while
addressing nature issues like data heterogeneity and class
imbalance.

C. Model Architecture

Proposed model works on deep learning algorithms to
classify chest X-ray images under four categories: Normal,
COVID-19, Lung Opacity, and Pneumonia. The architecture
promises extraction of multi-level spatial features with a reduc-
tion in computational complexity, thereby making it an ideal
flaunt for federated learning settings.

1) The input layer: images of size 224 x 224 in grayscale
feed into the model such that all the images could also undergo
pre-processing in the same way for all federated clients.

2) Convolutional layer: Three convolutional blocks are
required to capture the most relevant features such as edges,
textures, patterns related to abnormalities in the lungs, and
consist of a convolutional layer each followed by ReLU
activation and max pooling.

3) Flatten layer: This layer converts 2-D feature maps
made from the convolutional layers into single one-
dimensional vectors for subsequent processing.

4) Dense layer: This is a dense layer built with 128
neurons and by ReLU activation to model very complex
behaviours. A dropout layer is included at 30% rate to reduce
overfitting and thus enhance generalization across clients.

5) Output layer: There are 4 neurons that correspond to
classes using the SoftMax activation function for multi-class
classification.

The model is optimized with the categorical cross-entropy
loss for multi-class classification and is best suited for fast
training by the Adam optimizer. It is a lightweight model that
affords on-the-fly training on pretty cheap machines on the
client-side in a federated learning system.

D. Global and Local Model Training in Federated Learning

In federated learning, model training involves two main
phases: local model training and global model aggregation.
These phases are iteratively repeated to make the global model
better while ensuring data privacy.

1) Client model training: The local model for a specific
client will be trained based on its local private data and the
updates to be sent to the global server will only be that specific
model updates such as weights or gradients. The training
procedure involves:

a) Model initialization: Clients receive the global
model weights at the beginning of the training round.
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b) Local epochs: Clients train their model for a set
number of epochs on local data.

c) Update sharing: After training, each client computes
the updates (model weights or gradients) before sending them
back to the global server.

This decentralized structure ensures that client sensitive
data never leaves clients.

2) Global model training: The global server aggregates
all local updates to improve the global model after all the
local updates have been collected. This will include averaging
the weights of all models from participating clients after the
process. The most common aggregation algorithms include the
following:

a) FedAvg: This is basically the first federated learning
algorithm where the server computes a weighted factor average
of model updates to carry out its aggregation. This would be
especially useful when the distribution of data was relatively
similar among the clients.

b) FedProx: This adds a proximal term in a local
objective with respect to deviation from the global model for
local models. This is usually good where very much dissimilar
data exist across clients.

c) FedBN: This is a specific method designed for
very different data distributions across client bases, as might
occur in medical imaging tasks. FedBN keeps different batch
normalization statistics for each client to handle domain shifts,
thereby completely solving the problem of tasks.

d) FedSGD: Unlike FedAvg, which uses model
weights, FedSGD is used to aggregate gradients instead of
model parameters. It thus minimizes data exchange between
clients and the server, thus optimally suited under low-latency
communication networks.

e) FedPA (Federated Performance Averaging): With
this new method, performance-based client selection is intro-
duced. So in FedPA, a client must surpass a certain perfor-
mance threshold to add its model updates to the global model.

Ensure that the federated learning algorithms harness the
global model through the knowledge gained from each client
while having local data private. They are especially concerned
with healthcare and medical imaging since they leverage
data diversity to deal with privacy alongside efficient model
aggregation (Fig. 4).

Local Updates Local Updates

Local Model Local Model

R=c=l =3 y ey C=-] =o=
T — B —Eeil
HorsI;lilal e=-] (( ServerModel \’i [e==] ospital

Local Updates

Local Updates

£ i
& C—le—| 0 0 == Je—F—2]
E [ | == E—] r;‘

Hospital

Local Model Local Model

Fig. 4. Federated learning environment whereby hospitals learn and update
local models on local patient data and use these to periodically update a
shared central server for collaborative model updates without patient-data

sharing.
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V. EXPERIMENTS
A. Hardware and Software Requirements

The experiments were conducted on a workstation running
Windows 11, equipped with an Intel Core i7 processor, 16
GB of RAM, and an NVIDIA RTX 4050 GPU with 12 GB of
VRAM. The software environment was configured with Python
3.10, PyTorch 2.0.1, Torchvision 0.15.2, NumPy 1.24, scikit-
learn 1.2, tgdm 4.65, and the CUDA Toolkit version 11.7.
Model training was accelerated using CUDA where applicable,
leveraging the available GPU resources. All models were
implemented in PyTorch and executed in a single-machine,
single-GP

B. Hyperparameter Settings

A careful selection of hyperparameters is critical in feder-
ated learning, as it significantly influences convergence speed,
model generalization, and robustness to non-IID medical data
distributions. This aligns with prior research in federated
medical imaging and deep learning optimization. To ensure
fair evaluation across all methods, the hyperparameters were
standardized, drawing on empirical validation and insights
from earlier studies addressing model regularization, optimizer
behavior, and communication efficiency in federated settings.

Throughout all experiments, consistent hyperparameter set-
tings were maintained. The AdamW optimizer was chosen for
its improved handling of weight decay over standard Adam,
with a stable initial learning rate of 0.001. A cosine annealing
learning rate scheduler was applied at every epoch to adjust
the learning rate dynamically. A weight decay of 0.01 was
used to mitigate overfitting. The loss function employed was
cross-entropy loss, a standard choice for classification tasks.
A batch size of 16 was selected to balance memory usage
and gradient estimation accuracy. Each client performed three
local epochs per round, and all federated learning variants
(FedAvg, FedProx, FedBN, and FedPA) were trained over
14 communication rounds. Data augmentation techniques, in-
cluding random horizontal flips and rotations, were applied
during training to enhance generalization. A DenseNet-based
convolutional neural network served as the common base
architecture across all approaches.

These hyperparameter values were fixed for all experiments
to ensure both comparability and reproducibility, in line with
best practices recommended in recent federated learning stud-
ies focused on medical imaging.

C. Client Configuration and Performance-Based Participation

As viewed from this research perspective, the federated
learning setup imitates the real-life medical setting where the
data distributions are inherently non-IID and client-specific.
Four clients were set up to represent the four separate clinical
categories from the chest X-ray dataset: Normal, COVID-19,
Lung Opacity, and Pneumonia. Each of the four clients had
access exclusively to its own set of labeled images, creating
heterogeneity in class distribution and simulating isolated data
silos of hospitals or diagnostic centers.

In the training process, each client was intended to keep
optimizing its copy of the global model independently for five
epochs per round using local data. This practice seems to fit
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well with reality since in federated health care, local compu-
tation is generally chosen over frequent communication due to
privacy and latency issues. Nevertheless, global performance
could be compromised if all clients participated uniformly,
as when some clients perform really poorly due to poor data
quality or too few training samples.

Consequently, the proposed FedPA framework imple-
mented a performance-based client selection mechanism. At
the end of every round, the clients assessed their local model(s)
on a validation split and saved the best checkpoint. Only clients
that achieved at least 85% validation accuracy were eligible
to take part in the global aggregation. Generalization and
robustness in federated learning can benefit from contribution-
based client selection, as earlier studies have pointed out..

This participation filter remained in effect throughout the
15 communication rounds. FedPA, by removing low-quality
model updates, fosters stable learning and reduces the risk of
drift in the central model, which is often due to unreliable
model updates by clients; a challenge posed in federated
scenarios by heterogeneous and imbalanced datasets.

D. Global Aggregation Strategy

For every modification of the global model, there was an
aggregation of local models by the participating clients at
the end of each communication round, though significantly
different regarding the mechanism of aggregation. In FedAvg,
aggregation used to be done by the average of all client
updates uniformly, presuming the reliability of all participants
is equal. On a somewhat similar note, FedProx did not in-
troduce any method of aggregation but provided a proximal
term to recursively impose on local training so that students
would penalize divergence from the global model within the
locality, indirectly affecting aggregation quality. For another
communication-intensive approach, FedSGD used gradients
from each client, not the model updates but only required
synchronous updates and higher communication overhead.
FedBN performed normal averages on parameters but excluded
all batch normalization layers from the averaging process such
that the client held domain-specific statistics on normalization-
an important feature in non-IID settings.

By contrast, the proposed FedPA approach redefined aggre-
gation through a selection mechanism based on performance:
It’s not the fact that all clients contributed updates that matters,
but instead, FedPA had just included clients whose local model
outperformed a given validation accuracy threshold-all the way
in this case, at or above the bar of 85 percent. Clients not
meeting this criterion are not included in that specific round’s
aggregation. The selective strategy ensured that noisy and
inferior updates were filtered out and only the well-trained
local model participated in the global parameters. Thus, FedPA
offered a greater quality enhancement under client perfor-
mance and data heterogeneity-influencing factors concerning
simple convergence and robustness, primarily in complicated
evidence-dependent contexts, for example, medical imaging..

E. Evaluation Metrics

The performance of the federated learning models was
evaluated based on the following main metrics
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e  Accuracy: It is the metric that indicates the overall
performance of the model at classifying chest X-ray
images correctly.

A TP+TN @

ccuracy =
Y"TPYFP+FN+TN

e  Precision: Indicates the ability of the model to reduce
false positives by correctly identifying only true pos-
itive instances.

TP
Precision = TP+ FP (%)
e  Recall : Reflects the model’s ability to correctly iden-
tify all positive instances, minimizing false negatives.

Sensitivit TP (©6)
ensitivity = ——————
YTFEN+TP
e F1 Score: It combines precision and recall into one
measure and therefore sets a balance between the two
by calculating their harmonic mean.

precision x recall

F'1 score = 2 %

precision + recall” @

e Inference time (s): Time needed to make predictions

based on an input offered to the model by the user

Additional measurements, such as CPU usage, mem-

ory usage, average inference time ,total inference

time, throughput , were examined to determine the
computational efficiency of the models.

VI. RESULT AND ANALYSIS

This section portrays a comparative analysis of the five
federated learning models such as FedAvg, FedBN, FedPA,
FedProx, and FedSGD. Evaluated on a common test set under
exactly identical hardware and software conditions. The effect
of the models is analyzed in determining the best among them
in terms of the trade-off between performance in classification
and efficiency at the system level for real-world deployment in
almost all medical applications, such as chest X-ray analysis
(Table I).

TABLE I. PERFORMANCE METRICS COMPARISON

Method Accuracy | Precision Recall | F1 Score
FedAvg 0.9140 0.9259 0.9157 0.9206
FedBN 0.9124 0.9326 0.9053 0.9180
FedPA 0.9182 0.9295 0.9208 0.9248
FedProx 09113 0.9295 0.9071 0.9175
FedSGD 0.9129 0.9296 0.9102 0.9192

The standard evaluation metrics chosen for models are
accuracy, precision, recall, and F1 score; each of these has its
own clinical implications, especially in tasks related to disease
detection.

1) Accuracy: FedPA obtained an accuracy of 91.82%,
which is greater than FedAvg with 91.39% and FedSGD with
91.29%. This was achieved by performing client selection
based on performance, excluding undertrained or noisy up-
dates, which tended to minimize global model variance and
aid generalization. FedAvg and FedSGD combine all clients
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Fig. 5. Comparison of predictive performance metrics (Accuracy, Precision,
Recall, F1 Score) of various federated models.
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Fig. 6. Comparison of Accuracy across multiple federated models.

equally, thus muting the effect of high-performing clients and
slowing down convergence.

Precision FedBN leads in precision at 93.26% due to
the use of client-specific batch normalization, thereby helping
the model adapt to non-IID data distributions across clients.
FedPA, close behind at 92.95%, strikes a good balance in
precision without sacrificing too much recall. The implication
is that FedBN really tries not to miss negative samples while
FedPA has a better clinical trade-off by reducing the risk of
under-detecting actual cases.

2) Memory: With 92.08%, FedPA achieves the highest
recall performance, which indicates that it captures a lot of true
positives, especially in lives-critical contexts like conversations
about the identification of COVID-19 or pneumonia. This
selective aggregation from FedPA contributes to this recall
because high-performers among clients amplify the visibility
of their presence to the global model and, hence, facilitate
better identification of minority or diffused class patterns,
even in the presence of data heterogeneity.

F1-ScoreFedPA has again captured the F1 score of 92.48%,
thereby making it possible for it to prove its efficiency with
respect to false positive or false negative prediction. With
FedSGD and FedAvg coiled very closely behind, neither has
the robustness of FedPA because it does not filter clients. The
harmonic property of the F1 score underlines how selective
aggregation according to FedPA effects compromise between
sensitivity and specificity, both very important in terms of
clinical reliability (see Fig. 5 and 6).

A confusion matrix is a table used to evaluate the perfor-
mance of a classification model by comparing predicted labels
with true labels. It is especially useful for understanding the
types of errors a model makes. Here’s the general structure for
a binary classification confusion matrix (see Fig. 7 to 11):
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Fig. 11. Confusion matrix of FedPA: Proposed method.

A. System-Level Evaluation Metrics

This is now an assessment by which each model is com-
pared for efficiency mainly due to the inference time, through-
put, CPU usage, and memory footprint that are necessary for
real-time medical Al deployment (Table II).

TABLE II. SYSTEM METRICS COMPARISON

Method Average Inference | Throughput CPU Us- | Memory Usage
Time (ms) age (%) (MB)

FedAvg 0.003427 9328 13.15 12976

FedBN 0.002838 11266 13.11 13013

FedPA 0.002810 11377 12.85 13028

FedProx | 0.002794 11442 12.98 13040

FedSGD | 0.002812 11368 12.13 13053

1) Inference time: In terms of inference time, FedProx and
FedPA are the fastest ( 2.8 ms/image), achieved by lightweight
parameter updates and subsequently reduced model divergence
during training. FedAvg comes in at 3.4 ms, likely due to
model instability because of noisy client aggregation.

2) Throughput: FedProx attains the highest throughput
(11,442 images/s) closely followed by FedPA (11,376) and
FedSGD (11,368). These models benefit from efficient forward
pass computation; besides, FedPA benefits from stabilized
model updates that prevent computational spikes during test-
ing. FedAvg, with a throughput of 9338, is thus lower due to
its slow inference time and an increase in computational load.
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3) CPU usage: FedSGD is the lightest on the CPU
(12.13%), followed by FedPA (12.85%). Their minimal effort
on steep client-side operations and sparse updates reduces
compute requirements, thus lending themselves to edge envi-
ronments. The higher CPU usage of FedAvg (13.15%) is likely
due to its dense parameter averaging additionally worsened by
client drift in non-IID settings.

4) Memory usage: Models cluster around 13 GB, with
FedSGD (13.05 GB) and FedPA (13.11 GB) being somewhat
lighter on memory. Since the overhead of memory and CPU
power is manageable, these systems may also be deployed on
a resource-limited scenario like mobile clinics (Fig. 12).

CPU Usage Comparison
13.50 13150-

Memory Usage Comparison

13.25{ 13.15%
13.11% 13052.86 MB
13100 13039.76 MB
13027.85 MB
13012.86 MB
13050(Best Model

12975.63 MB

12.98%

13.00 12.85%

12.75
12.50
Best Model
12.25 TR 13000

CPU Utilization (%)

12.00

Memory Consumption (MB)

|

12950
11.75

11.50 12000

FedAvg FedBN FedPA FedProx FedSGD edAvg FedBN FedPA FedProx FedSGD

Fig. 12. Relative comparison of system resource usage between models with
CPU usage and memory usage set side by side to emphasize the
computational efficiency of the models.

B. Summarized Key Insights

We combine performance measures and systems metrics
to identify the best model, lightest model, and most balanced
model.

1) Best performing model: FedPA is characterized by high
accuracy, recall, and F1 scores with low inference time and
moderate resource consumption. Its inclusion strategy includes
only reliable updates in the global model computation, thereby
increasing the robustness of the FedPA in non-IID settings.

2) Most lightweight model: The FedSGD is by far the
most lightweight in terms of CPU and memory resource
consumption while still keeping throughput at a high level.
It does have slightly less accuracy in the classification realm,
but it is best suited for scenarios where resource constraints

apply.

3) Most balanced model: FedPA, once again, sets the
mark by balancing state-of-the-art accuracy with reasonable
performance metrics. FedPA considers both efficiency and
accuracy in diagnosis, a crucial capability for healthcare Al.
In contrast, FedProx sacrifices accuracy for throughput (Fig.
13).
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Fig. 13. Spider chart comparison of all eight test measures across all the
models with a focus on the general predominance of FedPA regarding
predictive performance, system efficiency, and consumption of resources.

C. Strengths of FedPA in Federated Learning

It is performance-aware aggregation that FedPA relies on
for its superiority, where applying the client changes under
a local accuracy condition of 85% would filter out updates
and speed convergence, all while not falling into the trap of
overfitting for the dominant client distribution.

Unlike FedAvg and FedProx, which accept all updates
equally, FedPA selectively amplifies clients not by each, but
only by those contributing meaningfully to learning and thus
reducing negative transfer-the well-known problem of non-IID
federated settings. It is both economical of communication
bandwidth use, and doesn’t waste computation cycles on low-
quality updates; it is hence scalable and robust.

High recall and F1-score metrics further justify the clinical
relevance of FedPA, especially in contexts where increased
false negatives can lead to fatalities. Moreover, it is extremely
stable across rounds and generalizes strongly; hence, it is
earmarked for federated medical applications in which the
parameters of accuracy and reliability are critical.

VII. CONCLUSION

This study introduced Federated Performance-Based Av-
eraging (FedPA), a performance-aware federated learning ap-
proach designed to address challenges of data heterogeneity,
variable client performance, and privacy concerns in medical
imaging. Unlike traditional aggregation strategies such as
FedAvg, FedProx, and FedSGD, which combine all client
updates indiscriminately. FedPA selectively incorporates only
high-performing client models based on a predefined accuracy
threshold. This strategy helps to mitigate the negative impact
of undertrained or noisy clients on global model performance.

In the context of COVID-19 chest X-ray classification,
FedPA consistently outperformed other federated algorithms
across all major evaluation metrics, achieving the highest
accuracy, recall, and Fl-score. It also demonstrated faster
convergence and greater training stability, with reduced per-
formance fluctuations and better retention across both strong
and weak clients.

Looking ahead, several enhancements can further
strengthen FedPA. These include adaptive thresholding
that dynamically adjusts performance criteria across

training rounds, and techniques to handle label noise
through confidence-based filtering. Incorporating federated
hyperparameter  optimization methods may improve
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convergence and fairness, while expanding to multi-modal
data such as CT, MRI, and electronic health records could
broaden the model’s clinical utility. Real-world validation
across geographically diverse hospital networks would also
be essential to assess FedPA’s scalability, generalization, and
equity in healthcare delivery.

Overall, FedPA represents a significant advancement for
privacy-preserving federated learning in healthcare. Its strong
diagnostic performance, stability, and system efficiency make
it a practical candidate for deployment in real-world clinical
environments where centralized data access is limited.

A. Future Work

In this study, the evaluation of the proposed FedPA
framework primarily focused on accuracy as the performance
threshold for client selection. While this provided promising
improvements in robustness and convergence, accuracy alone
may not sufficiently capture the impact of class imbalance,
which is a common challenge in medical imaging tasks.
As part of future work, we aim to extend the thresholding
mechanism by incorporating the F1-score alongside accuracy,
thereby ensuring that both precision and recall are adequately
considered in performance-based aggregation. This dual-metric
approach will allow the framework to better handle skewed
class distributions and minority class detection. Additionally,
we plan to design adaptive selection strategies that dynamically
choose the most suitable performance metric (e.g., accuracy,
F1, precision, recall, or AUC) depending on the dataset charac-
teristics and clinical context. Beyond this, ablation experiments
will be conducted to systematically evaluate the contribution of
each component in the FedPA pipeline, enabling us to identify
the most effective configurations for stability and generaliza-
tion. Ultimately, these enhancements aim to finalize FedPA
into a robust, performance-aware federated learning algorithm
that is well-suited for real-world commercial deployment in
healthcare Al applications.
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