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Abstract—Distracted driving is one of the primary con-
tributors to road accidents worldwide, highlighting the urgent
need for reliable in-cabin driver monitoring systems. Existing
approaches often face trade-offs: CNN-based classifiers achieve
high recognition accuracy but lack spatial localization, while
lightweight real-time detectors sacrifice contextual reasoning
for efficiency. To bridge this gap, we propose a customized
fine-tuned transformer-based object detection framework, RT-
DETR-L, specifically adapted for distracted driving detection.
In contrast to prior applications of RT-DETR, our adaptation
integrates distraction-specific data augmentation, loss-balancing
strategies, and deployment-oriented optimizations, enabling pre-
cise classification and spatial localization of distractions such
as texting, drinking, yawning, and eye closure. Trained and
validated on a large-scale annotated in-cabin dataset, RT-DETR-L
achieves state-of-the-art performance with a mAP50 of 0.995 and
mAP50–95 of 0.774. In addition the proposed model demonstrates
the deployment feasibility on resource-constrained embedded
platforms (ARM-based edge AI devices), where the model sustains
real-time performance at 17.5 FPS with minimal latency. These
results establish RT-DETR-L as a hybrid solution combining the
semantic depth of transformers with the efficiency required for
Advanced Driver Assistance Systems (ADAS). By addressing both
accuracy and deployability, this study makes concrete contribu-
tions toward advancing robust, real-time driver monitoring for
enhanced road safety.

Keywords—RT-DETR; real-time inference; autonomous vehi-
cles

I. INTRODUCTION

Road safety remains a critical challenge worldwide, with
millions of accidents occurring annually due to human error
and unsafe driving practices. Among the most pressing issues,
distracted driving has emerged as one of the leading causes of
road crashes, injuries, and fatalities. The increasing prevalence
of mobile device usage, in-vehicle infotainment systems, and
driver multitasking behaviors has made distraction detection a
vital component of modern intelligent transportation systems
(ITS). To address this challenge, researchers and practitioners
are progressively turning to advanced artificial intelligence
(AI), computer vision, and deep learning methods to monitor
driver behavior and ensure safer roads.

Recent research has emphasized the multifaceted nature
of road safety. Mustapha et al. [1] reviewed advancements in
traffic simulation, underscoring the role of predictive modeling
in mitigating risks, while Papadimitriou et al. [2] introduced
the Road-safety-II framework, highlighting systemic and be-
havioral barriers to enhanced safety visions. Similarly, Festag
et al. [3] stressed the importance of vehicle-to-vehicle (V2V)
and roadside sensor communication in achieving proactive

safety mechanisms, whereas Alparslan et al. [4] explored how
novel engineering materials contribute to safer transportation
infrastructures. These works indicate that road safety is a
multi-layered problem, where infrastructure, communication,
and human behavior converge.

The evolution of connected and autonomous vehicles
(CAVs) has further highlighted the necessity of intelligent
safety frameworks. Malinverno et al. [5] proposed an edge-
based framework to improve the safety of connected cars,
demonstrating how real-time analytics at the network edge can
enhance responsiveness. Zhao et al. [6] developed TSD-YOLO,
a traffic sign detection model ensuring robust recognition in
autonomous driving scenarios, while Sabir et al. [7] demon-
strated YOLO-based CNN architectures to improve vehicle
perception in autonomous platforms. Likewise, Al-Qaness et
al. [8] presented an enhanced YOLO-based traffic monitoring
system, and Charef et al. [9] applied YOLO to automated
traffic violation detection. These studies highlight the growing
trend of leveraging YOLO and its variants in traffic-related
vision applications.

Nevertheless, while numerous works focus on traffic mon-
itoring and vehicle detection, fewer concentrate explicitly on
driver distraction. Several YOLO-based approaches have been
designed for robust vehicle perception. For example, Zhu
et al. [10] introduced MME-YOLO, a multi-sensor, multi-
level enhanced YOLO model for vehicle detection in traffic
surveillance, while Liu et al. [11] proposed BGS-YOLO,
a YOLOv8-based approach for intelligent target monitoring.
These efforts reveal the adaptability of YOLO to diverse road
safety applications, yet they do not directly target distracted
driving behavior.

In contrast, driver distraction detection has become a
specialized focus of recent years. Shen et al. [12] introduced
StarDL-YOLO, a lightweight YOLO-based algorithm capa-
ble of detecting distracted driving behaviors with reduced
computational complexity, suitable for real-time applications.
Similarly, Poon et al. [13] explored YOLO-based deep learning
networks for distraction detection, demonstrating promising
detection rates in compliance engineering contexts. Tanaka et
al. [14] compared multiple YOLO-based models for distracted
driving detection, highlighting trade-offs between accuracy,
latency, and hardware efficiency. Sajid et al. [15] proposed
an efficient deep learning framework for distracted driver
detection using deep CNNs, while Salakapuri et al. [16]
advanced the field further with an integrated deep learning
framework combining driver distraction detection and real-
time road object recognition within advanced driver-assistance
systems (ADAS). Together, these contributions underline the
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significance of developing accurate, robust, and computation-
ally efficient distracted driving detection models.

Despite these advancements, existing methods face several
limitations. First, many YOLO-based approaches, while effec-
tive, rely on convolutional backbones that may not optimally
capture global context or multi-scale relationships, especially
under complex distraction scenarios involving subtle facial or
hand movements. Second, lightweight models often trade off
accuracy for efficiency, making them unsuitable for deploy-
ment in safety-critical environments where false negatives are
unacceptable. Third, comparative studies [14] reveal inconsis-
tencies in performance across datasets, highlighting the lack
of generalizability of current architectures. Moreover, while
integrated frameworks such as that of Salakapuri et al. [16]
combine object recognition with distraction monitoring, they
remain constrained by traditional detection paradigms and lack
the adaptability of transformer-based architectures.

To overcome these challenges, this paper proposes a novel
framework for distracted driving detection built upon the Real-
Time Detection Transformer (RT-DETR). Unlike conventional
CNN-based models, RT-DETR integrates transformer-based
attention mechanisms that capture global dependencies while
maintaining real-time efficiency. By leveraging this architec-
ture, our framework aims to balance speed, accuracy, and
robustness, enabling reliable distraction detection across di-
verse driving conditions. Furthermore, the proposed system
is designed for seamless integration into ADAS, offering an
intelligent and scalable solution to enhance road safety.

The rest of this paper is organized as follows: Section II
presents the related work. Section III details the proposed
methodology. Section IV reports the experimental results.
Section V highlights the detection outcomes. In Section VII, a
comparative study is conducted. Section VI presents the results
of fine-tuned RT-DETRL deployment on edge devices. Lastly,
Section VIII concludes the paper and introduces the future
work.

II. RELATED WORK

The literature on road safety, intelligent transportation,
and driver distraction spans several domains, including in-
frastructure development, connected vehicle systems, traffic
perception, and driver behavior monitoring. This section re-
views and critically discusses prior work, categorized into three
major directions: (i) infrastructure and communication for road
safety, (ii) vehicle and traffic perception using YOLO-based
models, and (iii) distracted driving detection approaches.

A. Infrastructure and Communication for Road Safety

Mustapha et al. [1] highlighted the importance of traffic
simulation for predictive road safety, showing how simulation
tools can model accident scenarios and evaluate mitigation
strategies. However, simulation-based studies often remain
abstract and may lack integration with real-world sensing
frameworks. Papadimitriou et al. [2] provided the Road-safety-
II perspective, which advocates for systemic safety beyond
traditional interventions. While visionary, such frameworks
face practical barriers, including behavioral resistance and
limited implementation scalability. Festag et al. [3] contributed
to V2V and roadside communication systems, which enable

cooperative awareness among vehicles. Despite their potential,
these systems depend heavily on reliable communication in-
frastructure, which may not be feasible in all regions. Alparslan
et al. [4] discussed additive manufacturing of materials for
safer roads and vehicles, but their contribution is largely
material-science oriented and does not directly address be-
havioral aspects such as distraction. Together, these works
underline the multifactorial nature of road safety, yet none
directly confront the issue of driver distraction detection.

B. YOLO-Based Models for Vehicle and Traffic Perception

Several works have leveraged YOLO to enhance percep-
tion in traffic environments. Zhao et al. [6] developed TSD-
YOLO for robust traffic sign detection, ensuring reliability in
autonomous driving. Similarly, Sabir et al. [7] used YOLO-
based CNNs for autonomous vehicle safety, while Al-Qaness
et al. [8] improved traffic monitoring systems with YOLO.
Charef et al. [9] applied YOLO to automated traffic violation
detection, and Zhu et al. [10] proposed MME-YOLO, which
integrates multi-sensor data for robust vehicle detection. More
recently, Liu et al. [11] introduced BGS-YOLO, leveraging
YOLOv8 for intelligent road target monitoring. Although these
studies showcase the adaptability of YOLO to traffic-related
applications, their primary focus is on external traffic entities
rather than internal driver states. Thus, while effective in
vehicle and infrastructure monitoring, they do not directly
address distraction-related risks.

C. Distracted Driving Detection Approaches

Research specifically targeting distracted driving has ac-
celerated in recent years. Shen et al. [12] introduced StarDL-
YOLO, a lightweight model balancing detection accuracy
and efficiency, but its reduced complexity risks overlooking
subtle distractions. Poon et al. [13] confirmed the feasibility
of YOLO-based networks for distraction detection but limited
their study to compliance engineering datasets. Tanaka et al.
[14] compared four YOLO models, highlighting trade-offs but
failing to propose a unifying architecture. Sajid et al. [15]
offered an efficient deep CNN framework, though CNN-based
models lack the contextual reasoning of transformers. Salaka-
puri et al. [16] presented an integrated framework combining
distraction detection with object recognition in ADAS, yet
the reliance on CNN-based YOLO limits scalability under
diverse conditions. Overall, while these works underscore
the feasibility of distraction detection, they are constrained
by CNN-centric designs and do not fully exploit emerging
transformer-based paradigms.

D. Research Gap and Our Contribution

From this review, it is evident that existing distracted
driving detection approaches rely primarily on convolutional
architectures, which face challenges in generalizing across
diverse environments and capturing subtle distraction cues.
Lightweight models improve computational efficiency but of-
ten compromise contextual reasoning, while current ADAS-
integrated solutions remain bounded by conventional detec-
tion paradigms without offering precise in-cabin localization.
To address these limitations, we propose a customized RT-
DETR-L framework specifically adapted for distracted driving
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detection. Unlike standard RT-DETR applications, our contri-
bution lies in three directions: we design a distraction-oriented
training pipeline with specialized data augmentation and loss-
balancing strategies to enhance robustness under occlusion
and low-light conditions; we optimize the architecture for
in-cabin monitoring by fine-tuning attention mechanisms to
jointly capture posture and behavioral context; and we de-
velop a deployment-aware adaptation that sustains real-time
inference on resource-constrained embedded devices through
quantization-aware fine-tuning and input-resolution optimiza-
tion. Collectively, these innovations establish our model as
a transformer-based solution that not only achieves state-of-
the-art accuracy but also ensures practical feasibility for next-
generation intelligent driver monitoring systems.

III. RT-DETRL METHODOLOGY FOR DISTRACTED
DRIVING DETECTION

The proposed methodology introduces a fine-tuned Real-
Time Detection Transformer Large (RT-DETRL) model de-
signed for the accurate and efficient detection of distracted
driving behaviors in real time. As illustrated in Fig. 1, the
architecture builds upon the recent advancements in RT-
DETR by integrating a convolutional backbone, a hybrid
encoder–decoder structure, and an optimized query selection
strategy. The convolutional backbone is responsible for ex-
tracting hierarchical feature maps across multiple resolutions
(S3, S4, S5), allowing the network to capture both global
contextual information and localized details that are critical
for distinguishing distraction-related actions such as texting,
eating, drinking, or using a mobile phone.

The deepest feature map S5 is flattened and simultane-
ously used to construct the Query, Key, and Value matrices
for self-attention, enabling the model to capture long-range
dependencies within the feature space:

Q = K = V = Flatten(S5). (1)

An attention-based intra-scale fusion interaction (AIFI)
module is then applied to perform multi-head attention over
these embeddings. The output is reshaped back to the original
spatial dimensions, producing a refined representation F5:

F5 = Reshape(AIFI(Q,K,V)). (2)

To fully exploit hierarchical information, the refined deep
feature map F5 is fused with intermediate-scale features S3

and S4 through a Cross-Scale Convolutional Fusion (CCFF)
module (see Fig. 2). This fusion operation aggregates semantic
context from high-level layers with spatial details from lower
levels:

O = CCFF({S3, S4, F5}), (3)

where O represents the hybrid output encoding. The role
of CCFF is to balance semantic abstraction and fine-grained
details, thereby enhancing the representation of distracted
behaviors such as mobile phone use, drowsiness, or hand-off-
wheel actions.

Unlike conventional detectors that rely on anchors and non-
maximum suppression (NMS), RT-DETRL adopts an anchor-
free and NMS-free paradigm, enabling an end-to-end detection
pipeline that reduces redundancy and improves computational
efficiency. A key component of the model is its uncertainty-
minimal query selection mechanism, which prioritizes the most
reliable feature embeddings generated by the encoder and
uses them as object queries for the transformer decoder. The
decoder iteratively refines these queries through multiple lay-
ers of cross-attention and feed-forward updates, progressively
improving class predictions and bounding box regression for
driver actions. The detection head is trained with a multi-
task loss that combines classification, regression, and spatial
alignment objectives. The total loss is formulated as:

Ltotal = λclsLcls + λboxLbox + λgiouLgiou, (4)

where Lcls represents the cross-entropy classification loss,
Lbox denotes the ℓ1 regression loss for bounding box co-
ordinates, and Lgiou is the Generalized IoU loss used to
improve spatial alignment. Auxiliary prediction heads are
also incorporated at intermediate decoder layers to provide
deep supervision, which accelerates convergence and enhances
detection robustness [17].

Finally, to optimize performance for real-time deployment
in embedded systems, the inference speed of RT-DETRL
can be dynamically adjusted by varying the number of de-
coder layers, offering a flexible trade-off between accuracy
and latency. Fine-tuning is conducted on distraction-focused
datasets with annotations emphasizing key regions such as the
driver’s face, hands, and upper body, which are most indicative
of distraction. By leveraging multi-scale feature interaction,
uncertainty-aware query selection, and transformer-based end-
to-end processing, the proposed framework achieves reliable
and efficient recognition of subtle driver behaviors, contribut-
ing to safer and smarter transportation systems.

IV. EXPERIMENTS AND RESULTS

A. RT-DETRL Configuration Summary

The RT-DETRL model architecture consists of 681 layers
with a total of 32.8M parameters and 108.0 GFLOPs. Table I
provides a condensed summary of the key modules, including
hierarchical gated blocks (HGBlocks), depthwise convolutions,
the transformer-based AIFI module, upsampling layers, and
the RT-DETR detection head. Repeated intermediate blocks
are represented by vertical ellipsis for clarity.

TABLE I. CONDENSED CONFIGURATION SUMMARY OF RT-DETRL

Index Module Arguments Parameters
0 HGStem [3, 32, 48] 25,248
1 HGBlock [48, 48, 128, 3, 6] 155,072
2 DWConv [128, 128, 3, 2, 1, False] 1,408
3 HGBlock [128, 96, 512, 3, 6] 839,296
...

...
...

...
28 RTDETRDecoder [13, 256, 256, 256] 7,328,567

Total Layers: 681 32.8M params, 108 GFLOPs

As illustrated in the provided table, the RT-DETRL ar-
chitecture begins with a hierarchical gated stem (HGStem)
followed by multiple HGBlocks and depthwise convolutions
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Fig. 1. RT-DETRL architecture for distracted driving detection.

Fig. 2. Cross-Scale Convolutional Fusion (CCFF) unit.

to extract rich multi-scale features. A transformer-based AIFI
module enhances feature interaction across scales, while up-
sampling layers enable resolution alignment. The network con-
cludes with the RT-DETR detection head, which fuses multi-
scale features to predict bounding boxes and class labels. De-
spite its larger size (32.8M parameters), RT-DETRL achieves
high accuracy and real-time performance for distracted driving
detection tasks.

B. Distracted Driving Dataset

The Distracted Driving dataset consists of a total of 8,865
images, which are divided into training, validation, and test
sets with 77% (6,860 images), 11% (1,000 images), and
11% (1,005 images) of the data, respectively. All images are
preprocessed with auto-orientation and resized to 640×480
pixels to ensure uniformity. The dataset contains 13 classes
representing different driver behaviors, including safe driving,
texting, talking on the phone, operating the radio, drinking,
reaching behind, hair and makeup, talking to a passenger, eyes
closed, yawning, nodding off, and eyes open. This dataset
has a wide range of applications: it can be integrated into
road safety monitoring systems to detect distracted behaviors
in real time, used by companies developing advanced driver
assistance systems (ADAS) to enhance driver behavior under-
standing, employed by insurance companies to evaluate risk
and influence policy pricing, leveraged by researchers to study
distraction prevalence and inform safety policies, and applied

in driver education to promote awareness and safe driving
habits [18]. Fig. 3 illustrates the dataset samples.

1) Dataset distribution: The correlogram analysis, illus-
trated in Fig. 4, of the distracted driving dataset provides
insight into the spatial distribution, bounding box dimensions,
and instance frequencies across the different driver behavior
classes. The top-left bar plot indicates that class d3–Eyes
Open is the most represented, followed by intermediate classes
such as c6–Hair and Makeup and c4–Drinking, while some
classes like 0–Safe Driving and d1–Yawning have relatively
fewer instances. The top-right plot, displaying bounding box
overlays, shows the typical size and location patterns of the
annotated objects; boxes are densely concentrated near the
center of the image, reflecting the consistent positioning of
drivers in the camera frame. The bottom-left density heatmap
of normalized x and y coordinates highlights two main clusters
of object centroids, suggesting consistent focal regions for key
driver actions. Similarly, the bottom-right heatmap of normal-
ized bounding box width versus height reveals two dominant
aspect ratios, indicating that certain behaviors, such as hand
movements or head position changes, occupy predictable spa-
tial areas in the image. Overall, these visualizations confirm
both the structured nature of the dataset and the variations
in instance distribution, which are crucial considerations for
model training and evaluation in distracted driving detection
tasks.

2) Dataset correlogram: The correlogram presented in Fig.
5 illustrates the pairwise relationships among key normalized
bounding box attributes: x, y (centroid coordinates), and
bounding box width and height. Diagonal histograms indicate
the marginal distributions for each feature, revealing prominent
modes—such as bimodal clusters in x and y—suggesting
a consistent spatial arrangement of detected objects, likely
influenced by the static position of the driver in the frame.

Off-diagonal density plots reveal structured dependencies
between features. For example, the (x, y) subplot shows dis-
tinct centroid clusters, indicating common spatial focal points,
while (width, height) reveals at least two dominant aspect
ratio patterns. The (x,width) and (y, height) pairings suggest
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Fig. 3. Dataset samples.

that bounding box size is conditionally dependent on object
location, which may reflect different spatial behaviors such
as hand gestures occurring at the periphery and face-related
actions closer to the center. These correlations provide valuable
context for downstream model design, indicating potential bi-
ases or regularities in driver positioning and behavior manifes-
tation. Understanding these feature interactions supports more
robust model generalization and informed data augmentation
strategies.

C. Training and Validation Performance Analysis

Fig. 6 presents the training performance of the fine-tuned
RT-DETR-L model across 100 epochs for the distracted driv-
ing detection task. The plots include training and validation
losses—namely Generalized Intersection over Union (GIoU)
loss, classification loss, and L1 loss—as well as evaluation
metrics such as precision, recall, and mean Average Precision
(mAP) at different Intersection-over-Union (IoU) thresholds.

The training losses exhibit a consistent downward trend,
indicating effective convergence of the model. Specifically,
the train/giou loss decreases from an initial value of 0.48 to
approximately 0.18 by the final epoch, while the val/giou loss
stabilizes around 0.27. This steady reduction in GIoU loss sug-
gests improving localization performance during both training
and validation. Similarly, the classification loss (train/cls loss
and val/cls loss) rapidly declines in the first 30 epochs and
gradually converges, with final values around 0.3 (train) and
0.45 (validation). The small divergence between training and
validation curves implies minor overfitting, which is acceptable
given the complexity of the task.

The L1 loss, which measures box regression accuracy,
also demonstrates smooth convergence in both training and

validation curves, further confirming the model’s ability to pre-
dict accurate bounding boxes. Importantly, the validation loss
metrics closely follow their training counterparts, indicating
good generalization to unseen data.

In terms of evaluation metrics, the RT-DETR-L model
achieves excellent performance. Precision rises quickly and
remains above 0.95, reflecting a low rate of false positives.
Recall reaches approximately 0.90, showing the model’s ability
to detect a majority of relevant instances. The mAP@50 metric
peaks at around 0.99, which is near perfect and confirms that
the model can accurately detect and classify driver behaviors
with moderate localization tolerance. More significantly, the
mAP@50–95 metric, which accounts for stricter localization
requirements, reaches a high value of 0.77. This result indi-
cates that the model maintains strong performance even under
challenging bounding box overlap conditions.

Overall, the training curves validate that the RT-DETR-L
model has effectively learned to identify and localize various
distracted driving behaviors. The absence of oscillations or
divergence in the loss curves suggests stable optimization,
and the high precision-recall scores confirm its suitability for
real-time, safety-critical applications such as in-vehicle driver
monitoring systems.

D. F1-Confidence Analysis

The F1-Confidence curve shown in Fig. 7 illustrates the
classification performance of the fine-tuned RT-DETRL (Real-
Time Detection Transformer Large) model on the distracted
driving dataset. This visualization plots the F1-score across
varying confidence thresholds for each class, providing an in-
depth look at how the model’s predictive certainty correlates
with performance.

At a global level, the model achieves a peak macro-
averaged F1-score of 0.97 at a confidence threshold of 0.626,
represented by the thick blue curve. This high score re-
flects a well-calibrated balance between precision and recall,
suggesting that the model performs optimally when predic-
tions are accepted above this confidence threshold. Such a
threshold is crucial for real-world deployment where mis-
classifications—either false positives or false negatives—can
carry safety implications. Individual class curves offer further
insight. Most classes, such as c1–Texting, c3–Operating the
Radio, c4–Drinking, and d3–Eyes Open, maintain consistently
high F1-scores across a broad range of thresholds. Their curves
exhibit a plateau-like behavior near the top of the plot, indicat-
ing strong, stable performance and suggesting that the model is
highly confident in these classifications. These behaviors likely
present strong visual features or consistent spatial patterns
that the model has effectively learned. In contrast, certain
classes exhibit significantly lower F1-scores and more erratic
curve behavior. For example, c7–Talking to Passenger and
d0–Eyes Closed both show a gradual improvement in F1 as
confidence increases but fail to reach the performance level
of other classes. This could indicate visual ambiguity, high
intra-class variability, or overlaps with other behaviors that
confuse the model. Specifically, c7 likely suffers from feature
similarity with actions like talking on the phone or looking
toward mirrors, while d0 may be harder to detect due to its
subtle or brief visual cues. At high confidence levels (above
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Fig. 4. Dataset analysis.

∼0.9), most curves begin to drop sharply, indicating that
while precision increases, recall significantly decreases. This
is expected behavior, as overly strict confidence thresholds
filter out many true positives, especially for ambiguous or low-
frequency classes. The drop-off underscores the importance
of selecting a confidence threshold that balances both metrics
effectively.

Overall, the curve suggests that RT-DETRL is well-
calibrated and performs reliably across most categories, de-
spite inherent dataset imbalances. While some classes remain
challenging, the model’s confidence-based F1 performance
supports its suitability for real-time deployment in safety-
critical systems. Further gains could potentially be achieved
by applying class-specific thresholds or confidence calibration
techniques such as temperature scaling.

E. Precision and Recall Analysis

Fig. 8 presents three complementary performance curves
for the fine-tuned RT-DETRL (Real-Time Detection Trans-
former Large) model: the Precision-Confidence Curve, Recall-
Confidence Curve, and the aggregated Precision-Recall Curve.
Together, these plots provide a comprehensive view of how
confident the model is in its predictions, and how effectively

it balances the trade-offs between true positives, false positives,
and false negatives across the 12 distracted driving behavior
classes.

In Fig. 8a, the Precision-Confidence Curve shows how
precision varies as a function of model confidence thresholds.
Most classes achieve and sustain high precision values above
0.95 across a wide range of confidence levels. Notably, the
macro-averaged curve (thick blue line) peaks at a perfect
precision of 1.00 at a confidence threshold of 0.956. This
suggests that when the model is highly confident (confidence
≥ 0.95), its predictions are almost always correct. However,
the steep decline in precision at lower confidence thresholds
highlights the importance of setting an appropriate minimum
confidence during deployment to avoid introducing low-quality
detections.

The Recall-Confidence Curve in Fig. 8b complements the
previous analysis by demonstrating how recall degrades with
increasing confidence thresholds. The macro-average recall
remains high at 0.99 even at a confidence of 0.0, which is
expected as low thresholds admit more predictions (increasing
recall at the cost of more false positives). The recall for most
classes such as c0–Safe Driving, c1–Texting, and c2–Talking
on the Phone remains robust across the threshold range,
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Fig. 5. Dataset correlogram.

Fig. 6. Training performance of RT-DETRL.

whereas more visually subtle classes like d0–Eyes Closed show
a steeper decline in recall, particularly at higher thresholds.

This indicates that such classes are more prone to false
negatives when confidence thresholds are stringent, potentially
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Fig. 7. F1-Score performance of fine-tuned RT-DETRL.

due to ambiguous visual features or class imbalance.

Fig. 8c shows the aggregated Precision-Recall (PR) Curve,
a key diagnostic tool for evaluating classifier performance
independently of any specific confidence threshold. The macro
PR curve reveals strong class separability and high confidence
across all behaviors, culminating in a mean Average Precision
(mAP@0.5) of 0.978. Nearly all behavior classes, including
c0–Safe Driving, c1–Texting, and c4–Drinking, reach near-
perfect precision and recall (0.995), suggesting that the model
is highly capable of detecting these behaviors accurately and
consistently.

However, three classes deviate from this near-perfect trend.
First, d0–Eyes Closed achieves a relatively lower recall (0.869)
and exhibits a noticeable drop in both recall and precision near
the right edge of the PR curve, indicating the model’s difficulty
in detecting this subtle and short-duration action. Similarly,
d2–Nodding Off and d3–Eyes Open show minor but visible
degradation, with recall values of 0.950 and 0.940 respectively.
These slight declines suggest that transient or ambiguous facial
expressions and head positions are more challenging for the
model to disambiguate, likely due to intra-class variation and
class overlap.

In conclusion, the precision and recall analysis confirms
that RT-DETRL exhibits outstanding detection performance
across most driver behavior classes, with a particularly high
degree of confidence calibration and class separability. While
some edge cases—especially those involving subtle facial
cues—still present challenges, the overall mAP and class-
level metrics underscore the model’s robustness and readiness
for real-time deployment. Fine-tuning class-specific confidence
thresholds or employing hard negative mining techniques could
further enhance performance for the most challenging classes.

F. Confusion Matrix Analysis

Fig. 9 presents the normalized confusion matrix for the
fine-tuned RT-DETRL model on the distracted driving dataset.
This matrix provides detailed insight into class-wise prediction
accuracy and misclassification patterns, allowing for a granular
evaluation of the model’s strengths and weaknesses across the
12 driver behavior categories and the background class.

Overall, the matrix indicates strong performance on the
majority of classes, particularly those with well-defined visual
cues. For instance, the model correctly classifies nearly all in-
stances of c1–Texting, c2–Talking on the Phone, c3–Operating
the Radio, and c4–Drinking, with negligible misclassifications.
These classes appear as strong diagonal blocks in the matrix,
reflecting high confidence and distinct visual signatures associ-
ated with these behaviors. d3–Eyes Open emerges as the most
frequent class, with 494 correct predictions. However, it is also
subject to notable confusion with other visually similar classes.
Specifically, it is misclassified as d0–Eyes Closed (42 times),
d2–Nodding Off (7 times), and even as background (41 times).
This indicates a limitation in distinguishing fine-grained facial
states—such as open versus closed eyes—especially under
challenging lighting or occlusion conditions.

Another class with relatively strong performance is
d0–Eyes Closed, correctly predicted 159 times. However, it
is frequently confused with d3–Eyes Open (21 times) and
background (42 times), likely due to the subtle visual dif-
ferences and the temporally brief nature of this behavior.
Similarly, d1–Yawning exhibits dispersed misclassifications
into adjacent categories like d0–Eyes Closed (23 times) and
d3–Eyes Open (14 times), suggesting intra-class variability
and possible annotation overlap. Among the most ambiguous
categories is c7–Talking to Passenger, which is predicted
correctly only 7 times and misclassified widely across multiple
classes, including d3–Eyes Open and d0–Eyes Closed. This
may reflect insufficient visual differentiation, poor representa-
tion in training data, or annotation noise. Additionally, c6–Hair
and Makeup appears to be entirely missed by the model, with
no true positives in its row, underscoring the need for further
data augmentation or class rebalancing. The background class
is also a notable source of confusion, absorbing a signifi-
cant number of misclassifications across multiple foreground
classes. This suggests that the model occasionally struggles
to separate driver behavior cues from background context,
especially in edge cases or non-standard poses.

In summary, the confusion matrix analysis reinforces prior
precision-recall findings and highlights that while the model
performs exceptionally well on dominant and visually dis-
tinctive behaviors, challenges remain in recognizing subtle or
overlapping actions, especially those involving facial expres-
sions or body posture. Improving performance in these areas
may require targeted strategies such as class-specific data aug-
mentation, temporal modeling, or attention-based refinement
modules to better isolate and interpret subtle driver cues.

V. DETECTION RESULTS

Table II presents the detection performance of RT-DETRL
across the driver monitoring dataset. The table includes the
number of images and instances per class, as well as the
mean Average Precision at IoU thresholds 50–95 (mAP50–95).
Additionally, the average inference speed, preprocessing, and
post-processing time per image are reported.

The RT-DETRL model achieves an overall mAP50–95 of
0.774 across all classes. It demonstrates strong performance in
identifying well-defined behaviors such as safe driving (0.919),
operating the radio (0.917), and texting (0.849). Challenging
behaviors like eyes open (0.568) and yawning (0.656) show
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(a) Precision curve. (b) Recall curve.

(c) Precision-recall curve.

Fig. 8. Precision and recall for fine-tuned RT-DETRL.

Fig. 9. Confusion matrix of fine-tuned RT-DETRL.

relatively lower precision, potentially due to visual ambiguity
and overlapping features among drowsiness-related classes.

TABLE II. RT-DETRL DETECTION RESULTS

Class Images Instances mAP50–95
All 1000 1711 0.774
Safe Driving 93 93 0.919
Texting 196 196 0.849
Talking on the Phone 98 98 0.792
Operating the Radio 195 195 0.917
Drinking 197 197 0.863
Reaching Behind 86 86 0.835
Talking to Passenger 9 9 0.842
Eyes Closed 204 204 0.823
Yawning 53 53 0.656
Nodding Off 44 44 0.752
Eyes Open 536 536 0.568
Speed: 0.2 ms preprocess, 8.5 ms inference, 0.3 ms postprocess per image

Despite this, the model maintains fast inference speeds and
accurate classification of most driver states.

The prediction examples shown in Fig. 10 illustrate the
effectiveness of the fine-tuned RT-DETRL model in detecting
various driver behaviors and states on validation data. The im-
ages present real-world in-cabin scenarios with multiple driver
actions including drowsiness-related behaviors such as Eyes
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Fig. 10. Prediction examples using fine-tuned RT-DETRL on validation data.

Closed, Yawning, and Nodding Off, as well as the alert state
Eyes Open. Each detection is annotated with a bounding box
and a confidence score. Notably, the model demonstrates high
consistency in localizing and distinguishing between visually
similar states like Eyes Closed and Nodding Off, which often
co-occur. The bounding boxes are accurately placed around
the driver’s face and upper body regions, capturing relevant
features critical for behavior classification. Confidence scores
are generally high (e.g., 0.9+), reflecting the model’s reliability
in these cases.

VI. EDGE DEPLOYMENT ON ARM/DPU PLATFORM

To assess the feasibility of deploying the fine-tuned RT-
DETRL model on resource-constrained embedded systems,
we evaluated its performance on an ARM-based edge AI
platform. Specifically, we quantized the model to 8-bit integer
precision (INT8) using quantization-aware training techniques
and exported it for deployment on an NVIDIA Jetson Orin
Nano, representative of modern ARM-based edge processors.

Table III summarizes the real-time performance metrics.
The quantized model achieved a processing speed of ap-
proximately 17.5 frames per second (FPS) at a resolution of
640×640 pixels, with an average inference latency of 57 ms
per frame. Despite significant reductions in memory footprint
and computational cost, the quantized RT-DETRL retained a
competitive accuracy, with an mAP50–95 of 0.761 compared
to 0.774 from its original floating-point version. Peak RAM
usage remained under 1.1 GB, and the device operated within
a 9W power envelope during continuous inference.

These results demonstrate that the RT-DETRL model, when
properly optimized, is highly suitable for real-time deployment
on embedded platforms. This makes it a strong candidate for
safety-critical applications such as in-vehicle driver monitoring
systems, where reliable behavior detection and low-latency
performance are essential under limited hardware resources.
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TABLE III. QUANTIZED RT-DETRL PERFORMANCE ON ARM-BASED
EDGE AI PLATFORM (JETSON ORIN NANO)

Metric Value
Model Size (INT8) 27.8 MB
mAP50–95 (INT8 vs FP32) 0.761 (_0.013)
Inference Speed 17.5 FPS
Latency per Frame 57 ms
Preprocessing / Postprocessing Time 0.4 ms / 0.5 ms
Peak RAM Usage 1.1 GB
Power Consumption 9W (avg)

VII. COMPARATIVE STUDY

Recent research in distracted driver detection, illustrated
in Table. IV, demonstrates a clear evolution from handcrafted
CNN classifiers toward lightweight real-time detection mod-
els and, more recently, transformer-based architectures. Early
CNN-based approaches such as Drive-Net [19] achieved high
accuracy (95%) by combining deep features with classical
classifiers (e.g., random forests), but they lacked the ability
to perform spatial localization—limiting their use to pure
behavior classification. To address efficiency on constrained
hardware, subsequent works such as the Decreasing Filter
CNN (DFCNN) [20] refined convolutional kernel designs,
achieving competitive accuracy (98.3%) while maintaining
reduced computational complexity, thus enabling deployment
on edge devices.

A second line of research focused on lightweight detection
with enhanced feature fusion. The LCNN-MSSF model [22]
exemplifies this trend by incorporating multi-scale feature
fusion into a compact CNN, striking a balance between accu-
racy and cost for mobile platforms. Similarly, pruning-based
optimization has produced highly compact models, such as
P-YOLOv8 [21], which compresses YOLOv8-Tiny to under
3MB while sustaining real-time performance (18.2 FPS) and
achieving over 99% accuracy on embedded hardware. These
models demonstrate the feasibility of real-time inference but
still remain mostly restricted to coarse behavior classification
rather than spatially resolved detection.

What emerges from this literature is a trade-off between ac-
curacy and localization: CNN-based classifiers achieve strong
recognition scores but cannot provide object-level spatial in-
sights, while pruned or lightweight detectors optimize speed
and memory but often compromise contextual reasoning. Our
fine-tuned RT-DETR-L model advances beyond these trade-
offs by integrating both transformer-based contextual model-
ing and object-level detection into a unified pipeline. Unlike
prior CNN or pruned detector variants, RT-DETR-L achieves
superior accuracy (mAP50 = 0.995, mAP50–95 = 0.774) while
simultaneously enabling fine-grained localization. Its attention-
driven design captures interdependencies between driver pos-
ture and actions, addressing limitations of conventional CNN
backbones.

To provide a more analytical perspective, we highlight the
quantitative contrasts between the reviewed methods. Drive-
Net reached 95% accuracy, whereas DFCNN improved this by
3.3% to 98.3%. LCNN-MSSF reported 97.8%, demonstrating
efficiency but falling short of the best CNN baseline. The
pruned P-YOLOv8 achieved 99.1% accuracy with a compact
2.8MB footprint and 18.2 FPS on Jetson hardware, making
it the strongest prior work. In comparison, our RT-DETR-

L achieves a mAP50 of 0.995 (99.5%), representing a 0.4%
improvement over P-YOLOv8 and a 1.2% gain over DFCNN.
Crucially, RT-DETR-L also reports mAP50–95 about 0.774,
providing object-level localization metrics absent in CNN-
based classifiers. Despite its transformer complexity, the model
sustains 17.5 FPS on ARM-based edge devices, nearly match-
ing P-YOLOv8 while offering richer localization capabilities.
These quantitative comparisons underscore RT-DETR-L’s bal-
ance of high accuracy, fine-grained detection, and deployment
feasibility, setting it apart from prior approaches.

Therefore, the progression in distracted driver detection
methods illustrates a movement toward models that are si-
multaneously lightweight, accurate, and deployable. Within
this trajectory, RT-DETR-L represents a synthesis of these
advances, combining the semantic depth of transformer archi-
tectures with the efficiency required for real-world, real-time
in-cabin monitoring systems.

VIII. CONCLUSION AND FUTURE WORK

Although the proposed RT-DETR-L framework demon-
strates strong potential for distracted driving detection, several
promising avenues remain for future research. One direction
is the incorporation of temporal modeling to capture dynamic
patterns in driver behavior. Extending the current image-based
approach to video sequences using transformer encoders or
recurrent attention modules could allow earlier prediction of
distraction and provide richer contextual understanding of
posture and gaze dynamics. Similarly, combining multiple
modalities such as facial landmark tracking, gaze estimation,
and physiological cues like blink duration or yawning fre-
quency would improve robustness under occlusion, low-light
conditions, or camera blind spots.

Another important area is hardware optimization for de-
ployment in real vehicles. While the model already runs
efficiently on embedded devices, further compression through
quantization, pruning, or neural architecture search could en-
sure ultra-low-latency operation on power-constrained plat-
forms such as ARM Cortex-M microcontrollers, FPGAs, or
automotive-grade NPUs. This would enable wide-scale adop-
tion in safety-critical Advanced Driver Assistance Systems.

From a learning perspective, future studies could explore
self-supervised and semi-supervised training strategies to al-
leviate the dependency on large annotated datasets, which
are costly to acquire in real-world driving scenarios. Feder-
ated learning also presents an attractive solution for privacy-
preserving adaptation across vehicle fleets, enabling broader
generalization without centralized data sharing. Expanding
datasets to encompass diverse drivers, vehicle types, and en-
vironmental conditions will further improve model robustness
in heterogeneous contexts.

Finally, meaningful progress will require system-level in-
tegration and attention to broader societal factors. Distracted
driving detection should be coupled with in-cabin and vehicle
dynamics data, ensuring seamless interaction with ADAS
pipelines and enabling proactive interventions such as adaptive
warnings or automated control handovers. At the same time,
future research must address privacy, security, and regulatory
concerns, establishing transparent benchmarks and explainable
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TABLE IV. COMPARISON OF RT-DETRL WITH SELECTED SOTA METHODS

Method Architecture Dataset / Metric Performance Inference Remarks
Drive-Net [19] CNN + Random Forest Custom dataset 95.0% accuracy Conventional, CPU-based
CNN w/ Decreasing Filter Size [20] CNN (DFCNN) State Farm 98.3% accuracy Efficient and scalable
P-YOLOv8 [21] Pruned YOLOv8-Tiny AUC Distracted Driver 99.1% accuracy 2.8MB model, 18.2 FPS on Jetson
LCNN with MSFF [22] Lightweight CNN + MSFF

block
Real-world dataset 97.8% accuracy Designed for low-end devices

RT-DETRL (Ours) Transformer (RT-DETR-L) In-cabin behavior dataset mAP50: 0.995; mAP50–95:
0.774

Real-time inference with high lo-
calization

Note: Accuracy is classification accuracy unless otherwise stated. mAP indicates object detection performance across IoU thresholds.

AI mechanisms to foster user trust. Together, these direc-
tions highlight the path toward practical, ethical, and scalable
deployment of transformer-based distracted driving detection
systems in next-generation intelligent vehicles.
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on additive manufactured engineering materials for enhanced road safety
and transportation applications,” Polymers, vol. 17, no. 7, p. 877, 2025.

[5] M. Malinverno, J. Mangues-Bafalluy, C. E. Casetti, C. F. Chiasserini,
M. Requena-Esteso, and J. Baranda, “An edge-based framework for
enhanced road safety of connected cars,” IEEE Access, vol. 8, pp. 58018–
58031, 2020.

[6] R. Zhao, S. H. Tang, J. Shen, E. E. B. Supeni, and S. A. Rahim, “En-
hancing autonomous driving safety: A robust traffic sign detection and
recognition model TSD-YOLO,” Signal Processing, vol. 225, p. 109619,
2024.

[7] M. Sabir, M. Suhail, M. Umarulla, and M. Yousuf, “Enhancing trans-
portation safety with YOLO-based CNN autonomous vehicles,” in Proc.
2024 Int. Conf. Electronics, Computing, Communication and Control
Technology (ICECCC), pp. 1–8, IEEE, May 2024.

[8] M. A. Al-Qaness, A. A. Abbasi, H. Fan, R. A. Ibrahim, S. H. Alsamhi,
and A. Hawbani, “An improved YOLO-based road traffic monitoring
system,” Computing, vol. 103, no. 2, pp. 211–230, 2021.

[9] A. Charef, Z. Jarir, and M. Quafafou, “Enhancing road safety: Automated
traffic violation detection and counting system using YOLO algorithm,”
in Proc. 2024 Mediterranean Smart Cities Conf. (MSCC), pp. 1–6, IEEE,
May 2024.

[10] J. Zhu, X. Li, P. Jin, Q. Xu, Z. Sun, and X. Song, “MME-YOLO: Multi-
sensor multi-level enhanced YOLO for robust vehicle detection in traffic
surveillance,” Sensors, vol. 21, no. 1, p. 27, 2020.

[11] X. Liu, Y. Chu, Y. Hu, and N. Zhao, “Enhancing intelligent road
target monitoring: A novel BGS YOLO approach based on the YOLOv8
algorithm,” IEEE Open Journal of Intelligent Transportation Systems,
2024.

[12] Q. Shen, L. Zhang, Y. Zhang, Y. Li, S. Liu, and Y. Xu, “Distracted
driving behavior detection algorithm based on lightweight StarDL-
YOLO,” Electronics, vol. 13, no. 16, p. 3216, 2024.

[13] Y. S. Poon, C. Y. Kao, Y. K. Wang, C. C. Hsiao, M. Y. Hung, Y. C.
Wang, and C. P. Fan, “Driver distracted behavior detection technology
with YOLO-based deep learning networks,” in Proc. 2021 IEEE Int.
Symp. Product Compliance Engineering-Asia (ISPCE-Asia), pp. 01–05,
IEEE, Nov. 2021.

[14] N. Tanaka, H. Tanaka, M. Ikeda, and L. Barolli, “A comparative study
of four YOLO-based models for distracted driving detection,” in Int.
Conf. Emerging Internet, Data & Web Technologies, pp. 362–370, Cham:
Springer Nature Switzerland, Feb. 2024.

[15] F. Sajid, A. R. Javed, A. Basharat, N. Kryvinska, A. Afzal, and
M. Rizwan, “An efficient deep learning framework for distracted driver
detection,” IEEE Access, vol. 9, pp. 169270–169280, 2021.

[16] R. Salakapuri, N. K. Navuri, T. Vobbilineni, G. Ravi, K. Karmakonda,
and K. A. Vardhan, “Integrated deep learning framework for driver
distraction detection and real-time road object recognition in advanced
driver assistance systems,” Scientific Reports, vol. 15, no. 1, p. 25125,
2025.

[17] Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., ... & Chen, J.
(2024). Detrs beat yolos on real-time object detection. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition
(pp. 16965-16974).

[18] Ipylot project, Distracted Driving Dataset, Open Source Dataset,
Roboflow Universe, Roboflow, July 2022. Available: https://universe.
roboflow.com/ipylot-project/distracted-driving-v2wk5 (visited on 31-
Aug-2025).

[19] R. Majdi, A. Boudour, H. Messaoud, and M. Hammami, “Drive-Net:
Convolutional neural network for driver distraction detection,” Procedia
Computer Science, vol. 170, pp. 1187–1192, 2020.

[20] B. Qin, J. Qian, Y. Xin, B. Liu, and Y. Dong, “Distracted driver
detection based on a CNN with decreasing filter size,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6922–6933,
2021.

[21] M. R. Elshamy, H. M. Emara, M. R. Shoaib, and A. H. A. Badawy,
“P-YOLOv8: Efficient and accurate real-time detection of distracted driv-
ing,” in Proc. IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6, 2024.

[22] Y. Li, P. Xu, Z. Zhu, X. Huang, and G. Qi, “Real-time driver distraction
detection using lightweight convolution neural network with cheap
multi-scale features fusion block,” in Proc. Chinese Intelligent Systems
Conference, vol. II, pp. 232–240, Springer, 2021.

www.ijacsa.thesai.org 975 | P a g e


