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Abstract—Deep reinforcement learning (DRL) typically in-
volves training agents with stochastic exploration policies while
evaluating them deterministically. This discrepancy between
stochastic training and deterministic evaluation introduces a
potential objective mismatch, raising questions about the validity
of current evaluation practices. Our study involved training 40
Proximal Policy Optimization agents across eight Atari environ-
ments and examined eleven evaluation policies ranging from de-
terministic to high-entropy strategies. We analyzed mean episode
rewards and their coefficient of variation while assessing one-step
temporal-difference errors related to low-confidence actions for
value-function calibration. Our findings indicate that the optimal
evaluation policy is highly dependent on the environment. De-
terministic evaluation performed best in three games, while low-
to-moderate-entropy policies yielded higher returns in five, with
a significant improvement of over 57% in Breakout. However,
increased policy entropy generally degraded stability—evidenced
by a rise in the coefficient of variation in Pong from 0.00 to
2.90. Additionally, low-confidence actions often revealed an over-
optimistic value function, exemplified by negative TD errors,
including -10.67 in KungFuMaster. We recommend treating
evaluation-time entropy as a tunable hyperparameter, starting
with deterministic or low-temperature softmax settings to opti-
mize both return and stability on held-out seeds. These insights
provide actionable strategies for practitioners aiming to enhance
their DRL-based agents.

Keywords—Deep reinforcement learning; policy evaluation;
stochastic policy; temporal difference error; Atari; PPO

I. INTRODUCTION

Deep reinforcement learning has emerged as a powerful
paradigm for solving complex sequential decision-making
problems, with notable successes in domains ranging from
game playing to robotics [1], [2]. Among the most successful
families of algorithms are policy gradient methods, which
directly optimize the parameters 6 of an agent’s policy, g.
Algorithms like Proximal Policy Optimization (PPO) [3] learn
a stochastic policy, which maps states to a probability distribu-
tion over actions, 7g(a|s). For discrete action spaces, as found
in the Atari Learning Environment, this policy is typically
represented by a categorical distribution, often parameterized
by the softmax output of a neural network.

The stochastic nature of the policy is not an incidental
feature; it is fundamental to the learning process. During
training, sampling actions from the policy distribution enables
exploration, allowing the agent to discover novel state-action
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pathways that may lead to higher rewards. This exploration is
essential for escaping local optima and preventing premature
convergence to a suboptimal policy. Indeed, the policy gradient
theorem [4], the theoretical foundation of these methods, relies
on this stochasticity to estimate the gradient of the expected
return.

In stark contrast to the training phase, the common practice
during evaluation or deployment is to render the policy deter-
ministic by selecting the action with the highest probability for
any given state (i.e., taking the argmax of the policy’s output
distribution). This deterministic approach is predicated on the
principle of exploitation. Once the agent has been sufficiently
trained, the optimal strategy is to consistently choose the
action it believes to be the best. This creates a fundamental
duality: agents are trained as stochastic decision-makers but
are often deployed as deterministic ones. This practice, while
widespread, rests on an assumption that has received surpris-
ingly little systematic scrutiny. Earlier empirical studies have
examined evaluation discrepancies for value-based agents,
but only recently has the gap for policy-gradient methods
been quantified. In study [5], the authors demonstrate that
apparent gains can disappear when stochastic and deterministic
evaluations are compared under matched conditions; however,
their study does not isolate the causal role of value-function
mis-calibration. We extend this thread by providing the first
large-scale analysis that links evaluation stochasticity, TD-error
structure, and overfitting across eight Atari domains.

This dichotomy between training and evaluation method-
ologies raises a critical question: is the deterministic policy
derived via an argmax operation the most effective implemen-
tation of the knowledge encoded within the trained stochastic
policy? While intuitively appealing, this assumption is not
guaranteed to hold. The optimization objective of PPO max-
imizes the expected return under the stochastic policy, g,
not necessarily the return of its deterministic counterpart. This
creates a potential objective mismatch, where the criteria for
success during training (effective stochastic exploration and
exploitation) differ from the criteria during evaluation (pure
deterministic exploitation). There are well-established scenar-
ios where a stochastic policy is not just a tool for exploration
but is fundamentally optimal for the task itself. In game-
theoretic or multi-agent settings, a deterministic policy can be
predictable and easily exploited by an adversary. A classic
example is Rock-Paper-Scissors, where the Nash equilibrium
corresponds to a uniform stochastic policy [4]. Similarly, in
Partially Observable Markov Decision Processes (POMDPs),
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where different underlying states may appear identical to
the agent (a phenomenon known as perceptual aliasing), a
stochastic policy can be crucial for breaking symmetry and
avoiding getting stuck. Although Atari games are typically
single-agent environments, they are not fully observable, as
the agent only sees the current screen’s pixels and must infer
dynamic information like velocity and trajectory. This partial
observability could favor a stochastic approach. The degree
of a policy’s randomness can be quantified by its entropy.
Higher entropy corresponds to a more uniform and exploratory
distribution, while lower entropy indicates a more deterministic
and exploitative one. During training, policy entropy is often
explicitly encouraged via an entropy bonus in the loss function
to promote exploration and smooth the optimization landscape.
However, its role and optimal level during the evaluation phase
remain largely unexamined.

This paper aims to bridge this research gap through a
large-scale, systematic empirical investigation. We trained 40
agents using the PPO algorithm across eight distinct Atari
environments. These trained agents were then evaluated using
a suite of eleven different evaluation policies, ranging from
fully deterministic to highly stochastic, allowing us to precisely
control and measure the impact of policy entropy on perfor-
mance. This comprehensive experimental framework allows us
to address the following research questions:

e  Performance and Stability: How do evaluation policies
with varying degrees of stochasticity, as measured
by entropy, affect agent performance (mean reward)
and stability (reward variance) across different Atari
environments?

e  Action Pruning: Can a simple heuristic—pruning the
least likely actions from the policy’s distribution, a
form of manual entropy reduction—consistently im-
prove performance?

e  Underlying Mechanisms: How do stochastic policies
reveal weaknesses in the learned value function?
Specifically, can we use the Temporal Difference
(TD) error—conceptually, the difference between the
predicted value of a state and a more accurate value
estimated after taking an action— on low-confidence
actions to diagnose inaccurate value predictions and
explain performance degradation?

Novelty and contribution. In contrast to prior work that
either 1) proposes entropy-regularized objectives to train
intrinsically stochastic policies [6], [7] or 2) benchmarks
evaluation heuristics without examining the critic, our study
treats evaluation stochasticity as a post-training intervention
and interrogates its causal impact on performance through a
TD-error lens. This framing enables a principled diagnosis of
value-function overfitting in cases where stochasticity harms
performance and yields actionable guidelines for selecting
evaluation protocols that account for this risk.

The remainder of this paper is structured to answer these
questions. Section II details the related works, situating our
investigation within the context of policy representation and
overfitting in RL. Section III describes the methodologies we
utilized for the study. Section IV presents a detailed analysis
of the experimental results, addressing each research question
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in turn. Finally, Section V discusses the broader implications
of our findings for RL practitioners and outlines directions for
future research, concluding with a summary in Section VI.

II. RELATED WORK

Our investigation is situated at the intersection of several
key areas in reinforcement learning: policy representation,
overfitting and generalization, action space modification, and
the role of stochasticity.

A. Policy Representation in Reinforcement Learning

RL algorithms can be broadly categorized by how they
represent the agent’s policy.

A core distinction in RL is between on-policy and off-
policy learning. On-policy algorithms, such as PPO [3], update
the policy using only the data collected from the most recent
version of that same policy. In contrast, off-policy algorithms,
like DDPG [8], can learn from data generated by a different
policy, often by using a replay buffer of past experiences.
Another key distinction is between stochastic policies, which
map states to a probability distribution over actions, and
deterministic policies, which map states to a single action.
These two distinctions are not synonymous.

1) Stochastic policy methods: Modern on-policy RL was
significantly advanced by Trust Region Policy Optimization
(TRPO) [9], which introduced a constraint on the Kullback-
Leibler (KL) divergence between successive policies to guar-
antee monotonic improvement and stabilize training. PPO [3]
emerged as a more practical and scalable successor, replacing
the complex second-order optimization of TRPO with a more
straightforward clipped surrogate objective that achieves simi-
lar stability. Its robustness and ease of implementation have
made PPO a ubiquitous algorithm in the field, with recent
advances continuing to refine its optimization process and the-
oretical underpinnings [10], [11]. Another influential on-policy
method, Asynchronous Advantage Actor-Critic (A3C) [12],
demonstrated that using multiple parallel actors to interact
with the environment could decorrelate the training data and
stabilize learning without a replay buffer. These methods all
directly learn a stochastic policy, where exploration is inherent
to the policy representation itself. While these examples are
on-policy, off-policy algorithms that learn stochastic policies,
like Soft Actor-Critic (SAC) [7], also exist.

2) Deterministic policy methods: In contrast, another line
of research focuses on learning deterministic policies. The
Deterministic Policy Gradient (DPG) theorem [13] showed
that for deterministic policies, the policy gradient can be
computed more efficiently as it does not require integration
over the action space. This theoretical advantage motivated
the development of algorithms like Deep DPG (DDPG) [8],
which combines DPG with deep function approximators for
continuous control tasks. These methods are typically off-
policy and separate exploration from the policy itself, typically
by adding noise to the actions during training only.

This fundamental split in RL approaches—between learn-
ing a stochastic policy with built-in exploration and learning a
deterministic policy with external exploration—sets the stage
for our central research question.
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3) Value-based methods and evaluation: The pioneering
Deep Q-Network (DQN) [1] learns a value function, Q(s,a),
and derives a policy by acting greedily with respect to it. Early
work on DQN evaluated agents using an e-greedy policy with a
small € (e.g., 0.05) to prevent deterministic cycling in the Atari
environments. However, subsequent common practice shifted
towards fully greedy evaluation (¢ = 0) to assess the agent’s
maximum performance capacity. This historical trend shows
the field’s implicit convergence on deterministic evaluation
as the standard, an assumption our work aims to scrutinize.
Complementary evidence comes from [5], who revisit the Atari
evaluation methodology and advocate measuring on-policy
returns under test-time stochasticity. Our experimental design
follows these recommendations but augments them with a
TD-error-based causal probe, thereby clarifying why mis-
matched evaluation protocols degrade performance.

B. Oveftfitting in Deep Reinforcement Learning

The problem of generalization, a fundamental challenge in
deep reinforcement learning (DRL) [14], provides a critical
lens through which to view our results. High-capacity models
like deep neural networks are prone to memorizing the training
data rather than learning generalizable features, a phenomenon
that is particularly acute in RL. An agent that overfits to the
limited set of trajectories collected through its own on-policy
interactions may perform well on states and actions it has seen
frequently but fail catastrophically in novel situations [15].
For example, a study [16] demonstrated that overfitting is
a primary cause of performance collapse when an agent is
transferred from a limited set of training levels to unseen ones,
highlighting the need for explicit regularization techniques to
promote generalization.

Recent work has provided a more specific vocabulary for
diagnosing these failures. The issue is not merely one of stan-
dard supervised learning overfitting, but involves instabilities
unique to the RL process. A key failure mode is the chain effect
of churn [17]. This phenomenon, identified in [17], describes
how the value function’s predictions for states not in the batch
can change uncontrollably after each batch update. This creates
a vicious cycle where churn in value estimation and policy
improvement compound each other, progressively biasing the
learning dynamics. This churn is symptomatic of a deeper issue
termed “representation collapse,” where the agent’s neural
networks lose plasticity and feature rank throughout training,
rendering them incapable of adapting to new observations or
fitting new targets. This collapse is exacerbated by the non-
stationarity inherent in RL, where the agent’s improving policy
continually shifts the data distribution.

This perspective aligns with the concept of specification
overfitting, where a system focuses excessively on optimizing
a specific, narrow metric—in this case, the TD error on its on-
policy data distribution—to the detriment of broader, high-level
requirements, such as robustness and generalization. In [18],
the authors provided a crucial diagnostic insight, identifying
statistical overfitting in the temporal-difference (TD) error as a
primary bottleneck. Their key idea is that as an agent trains, its
value function becomes highly accurate on its on-policy data
distribution but remains inaccurate on out-of-distribution tran-
sitions. They propose that this can be diagnosed by measuring
the TD error on a held-out validation set of transitions, where
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an extensive validation TD error indicates poor generalization.
This theoretical framework provides a powerful explanation for
our empirical findings. The low-confidence actions sampled
by our stochastic evaluation policies serve as a naturally
occurring validation set. The TD errors on these actions thus
act as a direct probe into the value function’s generalization
capabilities, allowing us to empirically test and validate the
overfitting hypothesis proposed in the recent literature.

C. Action Elimination and Pruning

Our experiments with drop policies are related to a line
of research on action elimination. An Action Elimination
Network (AEN) learns to predict and mask out suboptimal
or irrelevant actions in environments with very large discrete
action spaces [19]. By reducing the effective size of the
action space at each step, their method significantly speeds
up learning and improves robustness in complex domains like
text-based games. Our drop policies can be seen as a simple,
non-learned heuristic inspired by this principle. Instead of
learning which actions to eliminate, we manually prune the
actions with the lowest logits, allowing us to test the hypothesis
that performance can be improved simply by preventing the
agent from taking actions it is already least confident about.

D. The Dual Role of Stochasticity: Exploration, Optimality,
and Causality

The stochastic nature of the policy in algorithms like PPO
is typically framed as a mechanism for exploration, which
is essential for discovering novel, high-reward trajectories
and preventing premature convergence. However, this view is
incomplete. A growing body of research highlights that policy
stochasticity plays a more fundamental role in optimization
and even optimality itself. In some contexts, a stochastic policy
is not merely a means to an end but is the optimal solution.
This is well-established in game-theoretic settings [4]. More
broadly, the framework of maximum entropy RL formalizes
the benefit of randomness by augmenting the standard reward
objective with an entropy term [6]. Algorithms like SAC [7]
explicitly optimize this objective, learning policies that are not
only effective but also as random as possible. The resulting
policies can capture diverse strategies for accomplishing a task,
thereby improving robustness.

Furthermore, the stochasticity inherent in policy gradient
methods is a key mechanism for escaping local optima in the
complex, non-convex optimization landscapes of DRL [20]. A
purely deterministic policy can easily get trapped in a simple
but suboptimal strategy. In contrast, the noise introduced by
sampling from a policy distribution can provide the necessary
perturbation to jolt the agent out of such traps and discover
more sophisticated, higher-reward solutions. This provides a
compelling theoretical lens through which to interpret our
empirical results in environments like Breakout.

Finally, recent work on the causal foundations of RL pro-
vides a formal way to disentangle the sources of randomness
in an agent’s experience [21]. This framework decomposes
the total return of a trajectory into components attributable
to the agent’s actions and components attributable to the
environment’s inherent stochasticity. This decomposition is
achieved by interpreting the advantage function as the causal
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Fig. 1. The eight Atari 2600 environments utilized for the study: (a) Alien,
(b) Boxing, (c) Breakout, (d) Enduro, (¢) Freeway, (f) KungFuMaster
(KFM), (g) Pong, and (h) Qbert.

effect of an action on the return [21]. This distinction clarifies
that our investigation focuses on the consequences of the
agent’s policy stochasticity rather than randomness in the
environment’s dynamics.

III. EXPERIMENTAL FRAMEWORK

To systematically investigate the effects of evaluation pol-
icy stochasticity, we designed a comprehensive experimental
setup involving multiple agents, environments, and evaluation
strategies.

A. Environments and Agent Training

Experiments were performed on eight Atari 2600 games
from the Arcade Learning Environment (ALE)—Alien, Box-
ing, Breakout, Enduro, Freeway, KungFuMaster (KFM), Pong,
and Qbert (Fig. 1). These titles span a broad spectrum of
interaction modalities, reward densities, and action-space car-
dinalities, thereby providing a representative benchmark suite.
The characteristics of each environment, particularly the size
of the discrete action space and the corresponding entropy of
a random policy, are crucial for interpreting the results and are
summarized in Table I.

For each game, five independent PPO agents were trained,
yielding a total of 40 trained policies and thereby mitigating
the variance induced by random seeds. Training lasted for
1 x 107 environment steps per agent and used the canonical
convolutional network for Atari inputs introduced by study [1].
Table II lists the set of PPO hyperparameters that were held
constant across all environments.

B. Evaluation Policies

For each of the 40 trained agents, we conducted evaluations
using 11 distinct action selection policies. These policies were
designed to span a wide spectrum of stochasticity, from fully
deterministic to highly random. Each agent-policy combination
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was evaluated for 100 independent episodes to gather statisti-
cally robust performance data. The definitions of the evaluation
policies are provided in Table III. Table III provides a concise
definition for each of the 11 evaluation policies used to assess
the trained agents. logits refers to the raw, pre-softmax output
of the policy network.

Justification for linear and drop policies:

1) Linear: The linear policy was designed as a high-
entropy alternative to a purely random policy. By preserving
the ordinal ranking of the network’s logits while drastically
flattening the probability distribution, it serves as a hard test
case for how the agent performs when it must consider its
less-preferred actions more seriously.

2) Drop: The softmax_drop_k and linear_drop_k policies
are simple, non-learned heuristics inspired by action-pruning
techniques. They allow us to test the hypothesis that manually
preventing the agent from taking actions it is already least
confident about can function as a form of targeted entropy
reduction and improve performance, particularly on otherwise
highly random policies.

C. Analysis Metrics

To evaluate performance and diagnose mechanisms, we
record the following metrics during evaluation.

1) Performance metrics: The primary performance metric
is the Mean Episode Reward, averaged over 100 episodes per
agent—policy pair. Stability is quantified by the Coefficient of
Variation (CV), defined as the standard deviation of episode
returns divided by their mean. A lower CV indicates more
consistent performance relative to the average score.

2) Stochasticity metric: The degree of randomness of the
evaluation policy is measured by the average policy entropy,

H(qr) = Bi|=Y ar(a|s) loggr(als)|, (1)
acA

where gp(- | s) is the evaluation policy (e.g., softmax_T)
and the expectation is over timesteps.

3) Diagnostic metrics: To investigate the underlying mech-
anisms of performance differences, we defined two key diag-
nostic metrics:

a) Low-Confidence Action Ratio (LCAR): Given an
evaluation policy gr(a | s) and threshold 7 € (0, 1], define

LCAR, (s) =
ZqT(a|s)1{qT(a\s)<‘fT‘}. 2)

acA

This quantity equals the total probability mass that g7 (- | )
assigns to the low-confidence set {a : qr(a | s) < 7/|A|}.
We report LCAR-50 (7 = 0.5) and LCAR-10 (7 = 0.1)
as the time-averaged frequencies of such events. Note on
softmax_10.0. As T — oo, qr(- | s) approaches the uniform
distribution, implying LCAR (s) — 0 because 1/|A| > 7/|A]
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TABLE I. ACTION SPACE SIZE AND ENTROPY OF A RANDOM POLICY IN ATART ENVIRONMENTS

‘ Alien Boxing Breakout Enduro Freeway KFM Pong Qbert
Action Space Size (V) 18 18 4 9 3 14 6 6
Entropy (nats) 2.890 2.890 1.386 2.197 1.099 2.639 1.792 1.792

TABLE II. PPO HYPERPARAMETER CONFIGURATION USED FOR THE
ATARI EXPERIMENTS

Hyper-parameter Value
Frame stack 4
Number of parallel environments (nenys) 8
Rollout length per environment (72steps) 128
SGD epochs per update (Tepochs) 4
Mini-batch size 256
Total timesteps 1% 107

Learning-rate schedule linear, 2.5 X 107* >0
Value-function loss coefficient (c,,) 0.5
Entropy coefficient (cg) 0.01

TABLE III. EVALUATION POLICIES AND THEIR DESCRIPTIONS

Policy ‘ Description

deterministic Selects the action with the highest logit value: a =
arg max (logits).

softmax_T Samples an  action from the distribution  given
by  Softmax(logits/T").  Tested for  temperatures

T € {0.1, 0.5, 1.0, 2.0, 10.0}.

linear Applies an affine shift to make all logits non-negative (w =
v — min(v)), then normalizes these values linearly to form a

probability distribution.

softmax_drop_k

Removes the k actions with the lowest logit values, then applies
a softmax function with 7" = 1.0 to the remaining logits. Tested
for k € {1,2}.

linear_drop_k Removes the k actions with the lowest logit values, then applies
the linear normalization scheme to the remaining logits. Tested

for k € {1,2}.

for 7 € {0.5,0.1}. At the finite temperature 7=10, however,
the policy remains only approximately uniform and retains
residual structure from the logits. Consequently, a small but
nonzero fraction of probability mass can still fall below the
threshold. Empirically, this is visible in Qbert, where soft-
max_10.0 attains LCAR-50 = 5.489% (Table XI). We therefore
include softmax_10.0 as a high-entropy reference policy rather
than a recommended operating point.

b) Conditional TD error: The one-step TD error at
timestep ¢ is

0 = Rey1 +vV(Sey1) —V(Sy), 3)

with discount factor v = 0.99 and V the learned value
function. We report the average TD error conditioned on
low-confidence events (e.g., timesteps contributing to LCAR-
50 or LCAR-10). This conditional analysis probes the value
function’s accuracy for actions that the policy itself deems
unlikely.

IV. RESULTS AND ANALYSIS

Our experiments yielded a rich dataset that provides clear
answers to our research questions, with comprehensive statis-
tics presented in Tables IV to XI for each environment and
Table XII for policy entropies. The results, visualized in Fig. 2,
reveal a split pattern: in five environments, a low- or moderate-
entropy policy outperforms the deterministic baseline, while in
three (Boxing, Pong, Qbert) deterministic remains best.

A. RQI: How do Stochastic vs. Deterministic Policies Affect
Performance and Stability?

1) Performance: Across the eight Atari tasks, determin-
istic evaluation achieves the highest mean reward in three
games—Boxing (Table V), Pong (Table X), and Qbert (Ta-
ble XI). In the remaining five games, a low-to-moderate-
entropy policy outperforms deterministic evaluation: Alien
(softmax_0.5; Table 1V), Breakout (softmax_0.5; Table VI),
Enduro (softmax_0.1; Table VII), Freeway (softmax_drop_1;
Table VIII), and KFM (softmax_0.1; Table IX). This pattern
indicates that modest stochasticity can yield higher returns
in a majority of environments, while deterministic remains a
strong baseline in the others. This pattern is evident in the
summary bar charts in Fig. 2. In several environments, modest
stochasticity yields higher returns. In Breakout (Table VI),
the moderately stochastic softmax_0.5 policy surpasses the
deterministic baseline, scoring 242.02 compared to 153.83
(57.3% improvement). In Freeway (Table VIII), performance
differences are modest, but softmax_1.0 and drop variants
slightly exceed the deterministic baseline (22.00 and 22.06
vs 21.41), indicating multiple near-optimal evaluation policies.
However, in Qbert (Table XI), the deterministic policy scores
3894.00, significantly outperforming the standard stochastic
softmax_1.0 policy, which scores 2404.60.

2) Stability: Stochastic evaluation generally inflates return
variance and degrades stability. Across many games, higher-
entropy evaluation tends to increase the coefficient of variation
(CV). However, the relationship is not strictly monotonic in all
environments, so we treat the stability impacts of entropy as
environment-dependent(as detailed in Table XII). This instabil-
ity is most pronounced in what we term ’brittle’ environments,
such as Pong (Table X), where a single suboptimal action can
lead to immediate and irreversible negative consequences (e.g.,
losing a rally). The CV rises from a perfect 0.00 under the
deterministic policy to 0.38 under the softmax_2.0 policy. Con-
versely, in ‘robust’ environments like Freeway (Table VIII), the
agent’s success is determined by a longer sequence of actions,
and a single suboptimal move is less likely to be catastrophic,
allowing for multiple near-optimal policies. However, stability
decreases significantly with near-uniform action sampling, as
seen with the softmax_10.0, which has a CV of 0.42.

To better understand the differences in both performance
and stability, Fig. 3 visualizes the full reward distributions for
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Fig. 2. Mean reward per evaluation policy across eight Atari environments. Error bars represent 95% confidence intervals.

TABLE IV. POLICY-WISE SUMMARY FOR ALIEN: REWARD, LOW CONFIDENCE ACTION RATIO, AND TD ERROR

Policy Reward Low Conf 50% Low Conf 10%
Mean Min Max Cv Ratio (%) TD Error Ratio (%) TD Error

softmax_0.1 984.46 460.00 2850.00 0.41 0.489 0.765 0.100 0.518
softmax_0.5 1105.72 470.00 4400.00 0.44 3.075 0.205 0.534 -0.014
softmax_1.0 1055.94 330.00 4080.00 0.46 5.111 0.039 0.835 -0.253
softmax_2.0 732.78 280.00 2860.00 0.45 7.521 -0.497 0.896 -0.983
softmax_10.0 282.78 70.00 1450.00 0.40 2.567 -1.819 0.002 1.368
deterministic 1008.28 470.00 2650.00 0.44 0.000 0.000 0.000 0.000
linear 352.96 80.00 2090.00 0.45 5.438 -1.236 0.117 -0.796
softmax_drop_1 1034.18 270.00 2910.00 0.43 5.024 0.041 0.832 0.059
softmax_drop_2 1007.52 330.00 4370.00 0.44 5.050 0.028 0.826 -0.395
linear_drop_1 415.36 150.00 2170.00 0.53 4.697 -0.923 0.173 -1.274
linear_drop_2 435.18 90.00 1970.00 0.43 4.145 -0.910 0.176 -0.933

the deterministic policy and a representative stochastic policy
(softmax_1.0). These plots reveal the underlying structure of
the summary statistics. For example, in Pong, the deterministic
policy’s distribution is a single sharp spike at the maximum
score of 21, illustrating its perfect stability (CV of 0.00). In
contrast, the distribution for Breakout is bimodal; the stochastic
softmax_1.0 policy is visibly more successful at avoiding
the low-reward mode, explaining its higher average score.
Conversely, in games like Qbert, the deterministic policy’s
distribution is clearly concentrated at a much higher reward
level than that of the stochastic policy, reinforcing its superior
performance in that environment.

B. RQ2: What is the effect of action pruning (drop) on
performance?

Our analysis of the drop policies, which manually prune the
least likely actions, reveals that this heuristic acts as a form
of manual entropy reduction whose effectiveness is entirely

dependent on the baseline policy’s randomness.

When applied to a focused, low-entropy policy like
softmax_1.0, pruning has a negligible impact. The ac-
tions being pruned already have near-zero probability
of being selected, so their explicit removal does not
significantly alter the agent’s behavior. For instance, in
Alien (Table 1V), the mean reward for softmax_1.0 is
1055.94, while softmax_drop_1 and softmax_drop_2
score a comparable 1034.18 and 1007.52, respectively.

The effect is dramatically different when pruning is
applied to a highly random policy such as linear,
which assigns substantial probability to actions with
low logits. In this context, pruning is highly effective
at improving performance by forcing the agent to
be more exploitative. In Qbert (Table XI), the linear
policy scores a meager 371.55, whereas linear_drop_2
improves this to 1201.20, more than tripling the re-
ward. This shows that performance is fundamentally
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Fig. 3. Reward distribution histograms and kernel density estimates for 100 episodes across eight Atari environments. Only two representative policies
(softmax policy with temperature 1.0 and deterministic policy) are shown for clarity.
TABLE V. POLICY-WISE SUMMARY FOR BOXING: REWARD, LOW CONFIDENCE ACTION RATIO, AND TD ERROR
Polic Reward Low Conf 50% Low Conf 10%

Y Mean Min Max CvV Ratio (%) TD Error Ratio (%) TD Error
softmax_0.1 98.11 84.00 100.00 0.02 0.098 0.006 0.020 0.030
softmax_0.5 98.02 84.00 100.00 0.02 0.706 -0.011 0.146 -0.010
softmax_1.0 96.57 62.00 100.00 0.04 1.777 -0.022 0.422 -0.032
softmax_2.0 90.82 42.00 100.00 0.07 5.148 -0.078 1.065 -0.114
softmax_10.0 3.72 -32.00 22.00 1.52 4.056 -0.170 0.010 -0.328
deterministic 98.17 89.00 100.00 0.03 0.000 0.000 0.000 0.000
linear 2.59 -18.00 22.00 2.02 3.925 -0.139 0.074 -0.188
softmax_drop_1 96.48 66.00 100.00 0.04 1.769 -0.032 0.420 -0.046
softmax_drop_2 96.41 46.00 100.00 0.05 1.814 -0.035 0.433 -0.048
linear_drop_1 3.99 -20.00 25.00 1.53 4.896 -0.144 0.120 -0.163
linear_drop_2 4.80 -9.00 25.00 1.22 4.844 -0.137 0.142 -0.153

tied to avoiding low-confidence actions. However, it is
crucial to note that even with this significant improve-
ment, the linear_drop_2 policy’s score of 1201.20 is
still dramatically lower than the deterministic policy’s
score of 3894.00. This suggests that simply pruning
the worst few actions is insufficient to recover high
performance. The underlying issue is not just the
presence of a few catastrophic actions, but the overall
shape of the probability distribution. The linear nor-
malization scheme, even after pruning, assigns a much
more uniform probability to the remaining actions than
the peaked distribution of a standard softmax policy,
leading to continued suboptimal decision-making.

C. RQ3: Can TD Error Explain the Performance Degrada-
tion?

While the preceding results demonstrate a correlation be-
tween high evaluation entropy and poor returns in many games,

our analysis of the TD error provides a causal, mechanistic
explanation for this performance degradation. The data reveal
that performance degradation is a direct symptom of the
agent’s value function being poorly generalized outside of the
high-density regions of the on-policy data distribution observed
during training. The argument is built in three steps.

1) Step 1: Higher entropy forces more low-confidence
actions. There is a direct causal link between the stochasticity
of the evaluation policy and the frequency of low-confidence
actions. As policy entropy increases (Table 12), the evaluation
policy gr allocates more probability to the low-probability
tail, increasing the frequency of low-confidence events (e.g.,
LCAR-50 of Alien rises from 0.489% at T' = 0.1 to 7.521%
at T' = 2.0; Table IV).

2) Step 2: The value function is systematically over-
optimistic for low-confidence actions. Our analysis shows that
when the agent is forced to take actions it has learned to avoid,
the resulting outcomes are consistently worse than what its
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TABLE VI. POLICY-WISE SUMMARY FOR BREAKOUT: REWARD, LOW CONFIDENCE ACTION RATIO, AND TD ERROR

Policy Reward Low Conf 50% Low Conf 10%
Mean Min Max CcvV Ratio (%) TD Error Ratio (%) TD Error
softmax_0.1 198.01 4.00 426.00 0.78 1.593 -0.122 0.311 -0.200
softmax_0.5 242.02 22.00 429.00 0.59 3.454 0.033 0.524 0.029
softmax_1.0 205.22 21.00 428.00 0.72 5.153 -0.008 0.667 -0.137
softmax_2.0 95.88 7.00 421.00 1.11 6.478 -0.127 0.529 -0.356
softmax_10.0 4.71 0.00 16.00 0.65 1.876 -0.180 0.015 -0.134
deterministic 153.83 6.00 417.00 0.96 0.000 0.000 0.000 0.000
linear 12.79 0.00 373.00 1.38 1.269 -0.032 0.029 -0.056
softmax_drop_1 203.68 15.00 430.00 0.70 5.540 -0.016 2.268 -0.020
softmax_drop_2 212.63 17.00 429.00 0.69 10.709 0.000 9.711 0.005
linear_drop_1 140.39 7.00 428.00 0.99 1.032 -0.091 0.037 -0.073
linear_drop_2 146.49 6.00 417.00 0.98 0.000 0.000 0.000 0.000
TABLE VII. POLICY-WISE SUMMARY FOR ENDURO: REWARD, LOW CONFIDENCE ACTION RATIO, AND TD ERROR
Policy Reward Low Conf 50% Low Conf 10%
Mean Min Max Ccv Ratio (%) TD Error Ratio (%) TD Error

softmax_0.1 786.96 390.00 1341.00 0.25 0.789 0.000 0.162 0.009
softmax_0.5 779.99 377.00 1359.00 0.26 3.652 -0.017 0.586 -0.027
softmax_1.0 678.18 197.00 1057.00 0.26 5.346 -0.041 0.728 -0.073
softmax_2.0 406.85 135.00 756.00 0.29 6.203 -0.103 0.824 -0.170
softmax_10.0 0.50 0.00 14.00 3.51 2.901 -0.271 0.001 -0.316
deterministic 774.72 415.00 1272.00 0.24 0.000 0.000 0.000 0.000
linear 13.17 0.00 107.00 0.98 4.072 -0.197 0.273 -0.195
softmax_drop_1 677.04 389.00 1057.00 0.27 5.334 -0.041 0.927 -0.065
softmax_drop_2 684.12 192.00 1083.00 0.26 5.396 -0.039 1.266 -0.051
linear_drop_1 55.74 0.00 140.00 0.54 2.297 -0.187 0.166 -0.224
linear_drop_2 112.62 25.00 334.00 0.31 0.956 -0.210 0.030 -0.237

TABLE VIII. POLICY-WISE SUMMARY FOR FREEWAY: REWARD, LOW CONFIDENCE ACTION RATIO, AND TD ERROR

Policy Reward Low Conf 50% Low Conf 10%
Mean Min Max CvV Ratio (%) TD Error Ratio (%) TD Error

softmax_0.1 21.37 19.00 26.00 0.07 0.000 0.000 0.000 0.000
softmax_0.5 21.36 19.00 26.00 0.07 0.003 -0.010 0.003 -0.010
softmax_1.0 22.00 18.00 27.00 0.08 0.568 -0.010 0.568 -0.010
softmax_2.0 20.30 15.00 25.00 0.07 8.492 -0.015 1.409 -0.019
softmax_10.0 3.82 0.00 9.00 0.42 0.017 -0.127 0.000 -0.043
deterministic 21.41 19.00 26.00 0.07 0.000 0.000 0.000 0.000
linear 18.92 13.00 24.00 0.10 1.823 -0.017 0.000 0.000
softmax_drop_1 22.06 17.00 27.00 0.08 0.573 -0.009 0.573 -0.009
softmax_drop_2 22.03 17.00 29.00 0.09 0.573 -0.011 0.573 -0.011
linear_drop_1 2147 19.00 26.00 0.07 0.000 0.000 0.000 0.000
linear_drop_2 21.42 19.00 26.00 0.07 0.000 0.000 0.000 0.000

value function predicted. This observation is consistent with
recent evidence that actor-critic value networks become mis-
calibrated on out-of-distribution state—action pairs, systemati-
cally over-estimating returns in precisely the regions we probe
here [18]. A negative TD error (§; < 0) means the experienced
outcome, R;1+7V (S¢4+1), was significantly worse than what
the value function V' (S;) had predicted. The data provides
unambiguous evidence for this. In Alien (Table IV), when the
softmax_2.0 policy takes a low-confidence (50%) action, the
resulting average TD error is -0.497. For the lowest-confidence
(10%) actions, the error is -0.983. A similar pattern is observed
in KFM (Table IX), where the softmax_2.0 policy yields a TD
error of -6.111 and -10.671 on low-confidence actions of 50%
and 10%, respectively. When the agent is forced to take an
action it deems unlikely, the consequence is almost always
worse than it expected.

3) Step 3: This is a clear symptom of value function over-
fitting. This chain of evidence points to a single, compelling
conclusion: the agent’s value function is overfit to the high-
density regions of the policy distribution it experienced during
training. During PPO’s on-policy training, the critic (the value
function) is trained to minimize TD error on trajectories gener-
ated by the current actor policy. This training data is naturally
dominated by high-confidence actions. Consequently, the critic
becomes an expert at predicting the value of these frequently
observed, “good” state-action pairs. Conversely, it sees very
few examples of low-confidence actions and their outcomes,
leaving the value function undertrained and inaccurate for this
part of the state-action space.

When we evaluate with a high-entropy policy, we are
effectively sampling from low-density regions of the policy
distribution. We force the agent to explore these infrequently
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TABLE IX. POLICY-WISE SUMMARY FOR KFM: REWARD, LOW CONFIDENCE ACTION RATIO, AND TD ERROR

Policy Reward Low Conf 50% Low Conf 10%

Mean Min Max CV Ratio (%) TD Error Ratio (%) TD Error
softmax_0.1 31318.40 7000.00 60800.00 0.34 0.436 2.323 0.132 1.797
softmax_0.5 19289.60 8000.00 33000.00 0.23 2.507 -0.629 0.354 -2.660
softmax_1.0 13739.80 5800.00 24500.00 0.24 2.784 -7.744 0.537 -5.201
softmax_2.0 8113.20 2600.00 14900.00 0.31 6.274 -6.111 2.491 -10.671
softmax_10.0 966.20 0.00 2900.00 0.56 0.000 0.000 0.000 0.000
deterministic 22802.80 3400.00 51600.00 0.54 0.000 0.000 0.000 0.000
linear 2835.40 500.00 7100.00 0.41 11.982 -9.045 0.000 0.000
softmax_drop_1 13951.80 3800.00 22700.00 0.23 2.778 -7.110 0.546 -4.115
softmax_drop_2 14117.20 5200.00 26200.00 0.23 2.781 -7.109 0.543 -3.958
linear_drop_1 4168.20 700.00 12500.00 0.38 4.888 -8.184 0.770 -9.098
linear_drop_2 4468.60 900.00 18400.00 0.39 3.271 -7.312 0.627 -8.463

TABLE X. POLICY-WISE SUMMARY FOR PONG: REWARD, LOW CONFIDENCE ACTION RATIO, AND TD ERROR
Policy Reward Low Conf 50% Low Conf 10%

Mean Min Max Ccv Ratio (%) TD Error Ratio (%) TD Error
softmax_0.1 20.99 20.00 21.00 0.01 1.306 0.000 0.260 0.000
softmax_0.5 20.95 20.00 21.00 0.01 5.144 -0.000 0.609 -0.001
softmax_1.0 20.84 14.00 21.00 0.03 6.116 -0.001 0.489 -0.009
softmax_2.0 14.61 -19.00 21.00 0.38 6.004 -0.020 0.388 -0.143
softmax_10.0 -19.08 -21.00 -12.00 -0.08 0.920 -0.058 0.002 -0.071
deterministic 21.00 21.00 21.00 0.00 0.000 0.000 0.000 0.000
linear -14.93 -21.00 -3.00 -0.22 4.203 -0.032 0.145 -0.041
softmax_drop_1 20.81 13.00 21.00 0.03 6.956 -0.001 3.134 -0.001
softmax_drop_2 20.82 14.00 21.00 0.03 9.339 -0.001 7.152 -0.001
linear_drop_1 -9.83 -20.00 15.00 -0.56 2.434 -0.040 0.084 -0.044
linear_drop_2 2.80 -19.00 21.00 2.90 1.639 -0.042 0.070 -0.059

TABLE XI. POLICY-WISE SUMMARY FOR QBERT: REWARD, LOW CONFIDENCE ACTION RATIO, AND TD ERROR

Policy Reward Low Conf 50% Low Conf 10%
Mean Min Max CvV Ratio (%) TD Error Ratio (%) TD Error

softmax_0.1 3777.80 800.00 4175.00 0.24 0.800 2.531 0.171 -0.199
softmax_0.5 3439.85 575.00 4200.00 0.37 3.279 1.720 0.486 -0.235
softmax_1.0 2404.60 125.00 4450.00 0.68 4.653 -0.332 0.733 0.577
softmax_2.0 844.15 150.00 4200.00 0.81 7.433 -0.515 0.730 -0.257
softmax_10.0 312.35 0.00 1200.00 0.64 5.489 -2.509 0.000 0.000
deterministic 3894.00 800.00 4050.00 0.18 0.000 0.000 0.000 0.000
linear 371.55 25.00 1325.00 0.56 2.374 -0.304 0.083 -0.803
softmax_drop_1 2370.35 225.00 4600.00 0.69 4.625 -0.186 1.045 0.132
softmax_drop_2 2457.75 325.00 4200.00 0.67 4711 -0.030 2.299 -0.477
linear_drop_1 481.15 0.00 4050.00 0.73 0.954 -0.911 0.020 -1.776
linear_drop_2 1201.20 125.00 4150.00 1.14 1.296 -1.239 0.028 0.054

sampled transitions, and the significant, negative TD errors are
the direct result. The critic, having not been adequately trained
on these inputs, provides overly optimistic value estimates and
is then surprised by the poor outcomes. This is a classic symp-
tom of statistical overfitting, where a model fails to generalize
from its training distribution to a different test distribution.
The success of deterministic evaluation is therefore not just
a matter of exploitation; it is a strategy that implicitly hides
this overfitting by constraining the agent to the well-modeled,
high-density regions where its value function is accurate.

V. DISCUSSION

Our empirical analyses provide multifaceted insights into
the consequences of employing stochastic evaluation policies
for agents trained with PPO. The findings have significant

practical implications for RL practitioners and open
avenues for future research.

up new

A. Synthesis of Findings: A Unified View

The narrative that emerges from our results is clear and
consistent. The central finding of this study is that the value
functions of PPO-trained agents are often overfitted to the
high-confidence, on-policy actions experienced during training.
This overfitting, compounded by the objective mismatch be-
tween a stochastic training goal and a deterministic evaluation
goal, is revealed through the following mechanism:

1) Stochastic evaluation policies act as a diagnostic probe:
By increasing policy entropy, we force the agent to sample
low-confidence actions more frequently. This pushes the agent
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TABLE XII. AVERAGE ENTROPY PER POLICY AND ENVIRONMENT

Policy Alien Boxing Breakout Enduro Freeway KFM Pong Qbert
softmax_0.1 0.216 0.057 0.183 0.195 0.000 0.206 0.198 0.112
softmax_0.5 0.998 0.289 0.482 0.820 0.000 1.058 0.803 0.544
softmax_1.0 1.577 0.575 0.727 1.234 0.036 1.529 1.132 0.871
softmax_2.0 2.144 1.138 0.987 1.592 0.335 1.958 1.396 1.193
softmax_10.0 2.820 2.761 1.329 2.137 1.042 2.585 1.756 1.692
deterministic 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
linear 2.677 2.699 1.015 1.905 0.514 2.367 1.416 1.501
softmax_drop_1 1.575 0.577 0.676 1.224 0.032 1.529 1.073 0.857
softmax_drop_2 1.572 0.575 0.495 1.209 0.000 1.527 0.974 0.796
linear_drop_1 2.593 2.575 0.565 1.806 0.000 2.163 1.202 1.279
linear_drop_2 2.517 2.475 0.000 1.704 0.000 2.112 0.895 0.888

to rely on its value function in low-density regions of the state-
action space that were infrequently visited during training.

2) The probe reveals inaccurate and overly optimistic value
estimates: The value function, having been poorly generalized
in these regions, proves to be systematically over-optimistic.
This inaccuracy is directly measured by the large, negative TD
errors that result when these low-confidence actions are taken.

3) Inaccurate value estimates lead to performance degra-
dation: This failure of the value function to accurately price
the consequences of suboptimal actions is the direct cause
of the observed performance degradation. The success of
deterministic evaluation is therefore a strategy that succeeds
primarily because it confines the agent to the well-modeled,
high-density regions of its policy distribution where the value
function is reliable. Conversely, the superior performance of
low-to-moderate entropy policies in five of the eight environ-
ments (Alien, Breakout, Enduro, KFM, and Freeway) indicates
that deterministic evaluation is not universally optimal. In these
cases, the agent’s performance is limited by factors other
than value function overfitting. We hypothesize that modest
stochasticity helps overcome challenges like perceptual alias-
ing (where different states appear identical) or helps the policy
escape repetitive, suboptimal loops that a purely deterministic
approach might get trapped in. This highlights a fundamental
trade-off: while deterministic evaluation protects against the
dangers of a poorly generalized value function, it may prevent
the agent from achieving a higher score if the environment
dynamics reward a degree of randomness.

B. Practical Implications for Reinforcement Learning Practi-
tioners

Based on our findings, we propose the following guidelines
for practitioners working with policy gradient algorithms:

1) Default to low-entropy evaluation (tune temperature):
Deterministic (argmax) is a strong baseline, but not uniformly
optimal across our Atari suite. Practitioners should treat eval-
uation entropy as a hyperparameter: begin with argmax or a
low-temperature softmax, and select the setting that maximizes
mean return and stability on held-out evaluation seeds.

2) Consider slightly stochastic evaluation in specific cases:
In environments where there is a strong reason to suspect the
presence of perceptual aliasing or where the policy might be
trapped in a local optimum, evaluating with a small amount
of stochasticity can be beneficial. As observed in Breakout, a

low-temperature softmax policy (e.g., with temperature T=0.5)
might allow the agent to escape repetitive patterns and achieve
higher performance. In environments such as Breakout, we
hypothesize that a purely deterministic policy may become
trapped in a simple but less effective strategy. The evaluation
temperature should be treated as a hyperparameter to be tuned
based on the specific problem at hand.

3) Use TD error on low-confidence actions as a diagnos-
tic tool: Our results highlight the diagnostic power of TD
error. Monitoring the TD error on actions with low selection
probability during the training process can serve as a powerful
indicator of value function overfitting. A widening gap between
the TD error on high-confidence versus low-confidence actions
should be seen as a red flag, signaling a potential generalization
problem.

C. Limitations and Future Work

While this study provides a comprehensive analysis, it has
several limitations that point toward important directions for
future research.

1) Algorithmic scope: Our investigation was confined to
the PPO algorithm. It is an open question whether these
findings generalize to other families of RL algorithms. Of
particular interest are off-policy actor-critic methods, such
as SAC, which explicitly optimize an entropy-regularized
objective. Because an agent trained with SAC is optimized
to act stochastically, it is plausible that such an agent would
exhibit less performance degradation, or perhaps even an im-
provement, under stochastic evaluation. A comparative study
is needed to resolve this.

2) Environment scope: The analysis was conducted on
eight discrete-action Atari games. Future work should extend
this investigation to other domains, such as continuous control
tasks (e.g., MuJoCo benchmarks) and more complex, modern
game environments, to assess the generality of our conclusions.

3) Exploring regularization: Our findings indicate that
value function overfitting is a key limiting factor. This mo-
tivates future work to test empirically whether regularization
techniques known to combat overfitting in supervised learning
can enhance the value function’s generalization in an RL
context. Researchers and practitioners may apply methods such
as weight decay, dropout, spectral normalization, or ensemble
methods to the critic network during PPO training. An effective
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regularization scheme should reduce the TD error on low-
confidence actions and, as a result, diminish the performance
gap between deterministic and stochastic evaluation.

VI. CONCLUSIONS

This paper has presented a rigorous empirical investigation
into the common practice of training reinforcement learning
agents with a stochastic policy but evaluating them determin-
istically. Our findings demonstrate that this practice is not
merely a convention but is often a well-justified approach
that mitigates a critical, underlying weakness in deep RL
agents: the overfitting of the learned value function to its most
frequently observed state-action pairs.

We have shown that higher evaluation-time entropy of-
ten degrades performance and stability—particularly in brittle
environments—yet modest stochasticity can improve returns
in several games (e.g., Alien, Breakout, Enduro, KFM, Free-
way). Thus, evaluation entropy should be selected empirically,
balancing exploitation against environment-specific benefits of
limited randomness. The root cause of performance degrada-
tion, in cases where it occurs, is that stochastic policies force
the agent to sample low-confidence actions, exposing it to
low-density regions of the state-action space where its value
function is demonstrably inaccurate and overly optimistic.
This inaccuracy is a direct manifestation of overfitting to the
on-policy training distribution, compounded by the inherent
mismatch between the entropy-regularized stochastic objective
used in training and the purely exploitative deterministic
objective used in evaluation.

Ultimately, the choice of an evaluation policy transcends
the simple dichotomy of exploration versus exploitation. It is
a decision that interacts deeply with the generalization limits
of the agent’s learned models. Deterministic evaluation often
succeeds because it acts as a safeguard, confining the agent
to the high-density regions of its policy distribution where
its internal value model is most reliable. However, our work
also shows this is not a universal solution, as some environ-
ments reward modest stochasticity that can overcome other
limitations of the learned policy. This work provides a clear
empirical framework and a causal, TD-error-based mechanism
for understanding this critical aspect of deep reinforcement
learning applications, offering both practical guidance for
practitioners and a diagnostic tool for future research aimed
at building more robust and generalizable agents.
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