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Abstract—Strategic planning improves TCM cultural 

transmission efficacy, reliability, and impact. Many systems use 

heuristic or rule-based approaches, which have drawbacks such as 

path redundancy, low adaptation, and limited scalability in non-

static networks. To address these constraints, we suggest RACO-

TCM, or Reinforced Ant Colony Optimization for TCM 

Dissemination. This novel algorithmic distribution technique uses 

Ant Colony Optimization and reinforcement learning to create 

adaptable reward-driven cultural routes. The framework 

outperforms standard ant colony optimization because it uses 

dynamic pheromone updates, reinforcement-based exploration, 

and redundancy-aware heuristics to improve global search, 

convergence time, and robustness to local optimal solutions. We 

quantitatively assessed RACO-TCM against other methods and 

found that it increased cultural diffusion efficiency by 18.6% and 

reduced repeated routes by 12.3%. Creating a vast and instructive 

TCM knowledge graph with over 46,000 prescriptions, 8,000 

herbs, and 25,000 chemical compounds achieved this. Overall, the 

TCM transmission technique is adaptive, scalable, and culturally 

consistent. It is used to manage business and TCM tourism, 

promote healthcare, digital education, and cultural services in 

smart cities. 
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I. INTRODUCTION 

Traditional Chinese Medicine (TCM) is among the oldest 
and most developed medical systems in the world. It is based on 
a great deal of knowledge sharing passed down from doctors, as 
well as from health practitioners and beliefs [1]. With medical 
knowledge, other cultures also share cultural identity, 
philosophical beliefs, and various health measures of prevention 
and treatment. Globalization or growing global exchange has 
created an increase of digital information or communication, and 
therefore TCM culture is required to be distributed quickly and 
efficiently. In this way, a heightened understanding of cultural 
health practices among different cultures can be accomplished, 
fostering a spirit of collaboration in health care, and the 
incorporation of Traditional Chinese Medicine into the larger 
conversation of medicine [2]. During the process of distribution 
through clinical health care settings, the manifestation of 
barriers as dispersed pathways can arise. Such barriers include 

broken pathways, uneven distribution of information, and the 
lack of representation by different constituency groups to the 
same degree. To address these solutions, further coordination of 
curation and distribution layers can be studied that will optimize 
the level of reach, reduce the level of distortion, and improve 
potential pathways of networks of communication that may span 
levels of complexity [3]. 

The primary methods by which individuals transported 
knowledge were through professional organizations, community 
health education programs, or published materials. While they 
were claimingably better at localized familiarity, the systems 
faced difficulties scaling, sequencing systemic changes, and 
accommodating various cultural settings. New media, or social 
media, internet-based cultural platforms or websites, have 
facilitated the use of Traditional Chinese Medicine in response 
to developments in information technology [4]. These formats 
struggle to normalize their capacity for speed, accuracy, and 
cultural appropriateness in mass distribution networks because 
they rely on heuristic decision-making [5]. 

In recent years, healthcare informatics and cultural 
communication have significantly leveraged swarm 
intelligence, machine learning, evolutionary algorithms, and 
various other computational intelligence paradigms [6]. Ant 
Colony Optimization (ACO) addresses complex path-planning 
challenges by emulating the foraging behavior of ants, attracting 
considerable interest [7]. Nonetheless, traditional ACO has 
several limitations that diminish its effectiveness in extensive, 
varied distribution networks, including the potential for slow 
convergence and the risk of becoming trapped in local optima 
[8]. 

Improved ACO variants with adaptive pheromone updating, 
heuristic optimization, and hybrid learning have been proposed 
to get around these restrictions [9]. By applying the best ACO to 
extend the use of TCM's cultural dissemination, such 
improvements bring novel new paradigms for simulating 
dissemination networks as linked knowledge graphs with 
cultural participants, medical hypotheses, treatments, and 
botanicals [10]. For the sake of improving efficiency, 
eliminating redundancy, and optimizing accuracy in the 
communication process, a more efficient ACO can strategically 
position dissemination channels [11]. For the sake of guaranteed 
preservation, promotion, and integration of TCM knowledge 
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within contemporary healthcare systems, as well as optimization 
of the scientific foundation of cultural communication 
strategies, adopting these measures within TCM is necessary 
[12]. 

In addition, computational distribution planning supports the 
achievement of sustainable development goals by promoting 
innovation in digital health, cultural preservation, and global 
health equity for all [13]. Another milestone in overcoming 
long-term challenges and building a TCM culture within the 
overall environment of smart global communication systems is 
the inclusion of optimal ACO in designing TCM distribution 
routes [14]. 

A. Problem Statement and Motivation 

Since optimized dispersion routes are essential to the success 
of cultural diffusion in the modern digital age, TCM culture 
dissemination is significantly hindered. Most predominant 
approaches, such as scholarly debates, bottom-up movements, 
and social media sites, are poorly structured, heuristic-based, 
and without systematic improvement [15]. Inefficiency in the 
dissemination of inclusive and readily available information on 
TCM to evolving groups, redundancy of paths, and uneven 
cultural passing are all results of these constraints. Classical 
ACO algorithms perform well in path planning but converge 
slowly and tend to solve local optimums, thus are not suitable in 
the situation of complicated cultural diffusion networks when it 
comes to scalability [16]. The goal of this research is to respond 
to the question, "How can we strategically design TCM 
dissemination channels to achieve the greatest cultural impact, 
the least information distortion, and the greatest communication 
effectiveness in large-scale and diverse networks?" by 
developing an integrative, evolutionary, and scalable framework 
[17]. 

This research is motivated by the current need to address the 
protection and promotion of TCM culture in a globalizing and 
digitally linked environment. Successful distribution planning 
provides the best hope for the successful distribution of credible 
TCM information while reducing distortion and redundancy and 
increasing access to the information. Improving the routes of 
distribution has a positive effect on culture and encourages inter-
cultural healthcare collaboration, education, and sustainability 
options for future cultural preservation. This proposal intends to 
develop an optimized approach to ACO, bringing the field of 
computing intelligence to the forefront of cultural 
communication by proposing a science-based and scalable 
framework that maintains the relevance and accessibility of 
TCM culture while maximizing its contributions in "PCMH" 
within the rapidly changing cultural dimensions of global 
contemporary healthcare systems. 

The primary contributions of this research are to create 
RACO-TCM, a more robust Ant Colony Optimization 
framework that leverages reinforcement learning for cultural 
distribution path planning; to refine pheromone update 
adaptations and reward-directed exploration in order to improve 
global search efficacy and convergence speed; to leverage 
improved heuristic evaluations to reduce redundancy in 
propagation pathways, resulting in greater scalability in 
complicated cultural networks; to empirically test the model and 
show that it is 18.6% improved and 12.3% less redundant 

relative to baseline methods; and to show how this system is 
useful to improve healthcare, digital learning environments, and 
smart cultural services. 

The organization of this research is as follows: Section I 
discusses the issues and challenges of cultural distribution of 
Traditional Chinese Medicine. Section II reviews recent studies 
with the gaps identified. Section III contains the details of the 
proposed RACO-TCM Framework which contain the 
components of preprocessing, sometimes a knowledge graph, 
network modeling, and optimization, some of the key details of 
the data generation and pre-processing stages of RACO-TCM. 
Section IV shows the results. Section V presents the discussion 
regarding how to measure performance. Finally, Section VI 
provides a summary of contributions, limitations, and potential 
areas for future research. 

II. RELATED WORKS 

Zhang and Hao [18] constructed a TCM knowledge network 
utilizing link mapping, entity collecting, and integration inside 
extensive language models. The findings indicate that the TCM 
data is precise and systematically arranged. On the other side, 
some problems are not having enough data, relying too much on 
model language outputs, and necessitating specialists to keep 
improving and validating the work in order to reach a bigger 
audience. 

Zheng et al. [19] created the Traditional Chinese Medicine 
Information Graph (TCMKG), a place where people can get 
graphs of information about Traditional Chinese Medicine. 
They used deep learning to develop an ontology, find basic 
ideas, and get entity-relations from text data. The results suggest 
a potentially well-structured and readily accessible repository of 
knowledge pertaining to Traditional Chinese Medicine. Some of 
the limitations are insufficient coverage, reliance on data 
accuracy, and the need for expert confirmation. Liu et al. [20] 
created a three-stage "entity-ontology-path" method that uses 
principles of association, ontology rules, and route reasoning to 
build TCM knowledge graphs. The results showed that RotatE 
was the best representation since its outputs were more 
complete, accurate, and useful. It doesn't perform well with a lot 
of data, it needs solid data, and it has to be validated properly 
over a lot of TCM datasets. 

Duan et al. [21] utilized a large language model (LLM) to 
construct a Traditional Chinese Medicine Knowledge Graph 
(TCMKG) using 679 clinical case records. The aim was to detect 
links, pull out entities, and report the findings in a form that was 
simple to grasp. Both RAGAS and human evaluations indicated 
that the results exhibited enhanced accuracy in retrieval. The 
dataset is too tiny, and it needs to be able to increase. 

Yang et al. [22] created LMKG, a large Medical knowledge 
network that originates from numerous areas and may be utilized 
in different languages. They used approaches involving 
hierarchical entity arrangement, relation extraction, and name 
recognition. The results are greater performance for the 
application and more detailed data. Some of the drawbacks 
include that different sources may have different opinions, it 
costs a lot to process data, and the system needs to be updated 
all the time to keep growing. 
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Hua et al. [23] enhanced the Lingdan Pre-trained Large 
Language Model (LLM) by developing specialized models, 
namely Lingdan-Traditional Chinese Patent Medicine (TCPM)-
Chat and Lingdan-Prescription recommendation, utilizing 
distinct TCM datasets. Some of the methods are pre-training, 
fine-tuning, and Chain-of-Thought reasoning. Results attained 
cutting-edge performance in helping with diagnosis and 
treatment. There are certain problems, such as the fact that the 
dataset is not the same across all domains and that it needs a lot 
more clinical validation. 

Chen [24] utilized the Neighborhood Pruning Greedy (NPG) 
technique to identify the most influential nodes, facilitating the 
dissemination of TCM culture. This made the process operate 
better than the normal greedy techniques. Methods include 
modeling the spreading probability and looking at structural 
equations. The results show that social contacts have a big effect 
on dispersion, and that time is a factor that affects this. 
Limitations encompass the dataset's representativeness, model 
generalizability, and validation across many cultural 
communication situations. 

Zou et al. [25] developed the Traditional Chinese Medicine 
Placements Scheme (TCMPS) to improve dispensing efficiency. 
The methods used include the Association Rule Algorithm 
(ARA) to look at frequency and co-utilization, and the 
Simulated Annealing Algorithm (SAA) to select the ideal place. 
The findings indicated that efficiency was enhanced by over 
50%. Limitations include dependence on single-hospital 
datasets, vulnerability to parameter fluctuations, and the 
necessity for validation in real-world applications. 

A. Identified Research Gaps 

The present TCM informatics architecture does not feature a 
consistent, configurable design for connecting knowledge 
representation to enhanced communication pathways. In 
examining previous KG or LLM projects, even those that dealt 
with extraction and reasoning, the profile route planning was 
dismissed due to their ambivalence to different and changing 
media networks, resulting in: content duplication; lack of 
distribution continuity; limited retransmission of message; 
limited audience reach; and transformational and dynamic 
scalability. Cultural conservation, distribution research, so far, 
has opted for heuristics or static non-systematic methods, are 
often stochastic, do not connect well with distinct audiences, nor 
adjust well to changes. ACO variants often become stuck in 
local optima without an incentive-based updated adaptation. The 
criteria for evaluating outcomes place a greater emphasis on 
accuracy than network efficiency, path redundancy, or 
convergence within a reasonable range. Benchmarks of this type 
often come from one source, from one institution, or for one 
language, and suggest restrictions in external validity. There's a 
combination of gaps and constructs that need highlighting in 
order to drive the design of a robust ACO that marries dynamic 
pheromone – a base inference layer – updating, as with 
knowledge-graph style inferring convergence metrics, to reduce 
redundant paths and afford internal inference links, which also 
optimizes the distribution pathway and enhances global search, 
and promotes a joined multi-validation, for both efficiency and 
scalability, across multiple and of varying TCM communicative 
structures. 

III. REINFORCED ANT COLONY OPTIMIZATION FOR TCM 

DISSEMINATION (RACO-TCM) 

This study proposes RACO-TCM, a flexible and robust 
framework that combines reinforcement learning with 
Reinforced Ant Colony Optimization (RACO) to facilitate TCM 
cultural channels' dissemination. The overall framework 
consists of data collection and pretreatment, constructing a 
knowledge graph, modeling a network, and optimizing a path 
(see Fig. 1). Introducing traditional ACO constraints, which 
facilitate dynamically updating pheromones, exploration based 
on rewards, and enhancing the heuristic evaluation, mitigates the 
previous convergence issues and local optima trapping. 

 
Fig. 1. Overall architecture of RACO-TCM framework. 

RACO-TCM can facilitate scalability and flexibility in 
complex cultural communication networks by enhancing 
dissemination efficiency by 18.6% and reducing path 
redundancy by 12.3% compared to traditional heuristic 
strategies. The primary benefits include enhanced global search 
optimization, high accuracy, and intelligent routing for various 
dissemination scenarios. Online education platforms, smart 
cultural communication networks, and health knowledge 
sharing are among the applications that will facilitate the 
sustainable integration of Traditional Chinese Medicine (TCM) 
into the global economy. 

A. Data Acquisition and Processing 

The Traditional Chinese Medicine Integrated Database 
(TCMID) [26] is used as the central dataset herein since it covers 
TCM data holistically. To facilitate constructing a highly 
connected knowledge graph, TCMID provides rich connections 
between herb prescriptions, chemical compounds, targets, and 
diseases. It needs a database containing more than 46,000 
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prescriptions, 8,000 herbs, 25,000 chemicals, and 3,800 
biological targets to model culture-treatment interactions. The 
data entries suit the diffusion network modeling due to the 
various relation types between them, i.e., herb-prescription, 
herb-compound, and prescription-disease relations. To cover the 
linguistic and cultural elements necessary for route planning, we 

have also integrated extratextual material from cultural 
communication channels and digital TCM classics. This 
heterogeneous data ensures an adequate representation of 
cultural and clinical information. A summary of the dataset is 
provided in Table Ⅰ. 

TABLE I.  SUMMARY OF DATASET COMPONENTS 

Component Details 

Number of Prescriptions 46,000+ 

Number of Herbs 8,000+ 

Number of Compounds 25,000+ 

Number of Biological Targets 3,800+ 

Number of Diseases Multiple disease categories linked to prescriptions 

Relation Types Herb–Prescription, Herb–Compound, Compound–Target, Prescription–Disease 
 

The preprocessing stage is very important for making sure 
that TCM information is semantically coherent, structurally 
sound, and devoid of noise. This step uses ideas from 
computational linguistics and graph theory. It includes multiple 
smaller jobs, such as cleaning up data, normalizing entities, 
extracting relations, and filtering out noise. 

1) Getting Rid of Duplicates and Cleaning up Data: When 

you obtain TCM from more than one place, you often get things 

that are the same and terminology that don't match. To tackle 

this problem, the research utilizes a hybrid similarity function 

that combines lexical and semantic similarity, guaranteeing 

effective entity matching as specified in Eq. (1): 

𝑆(𝑒𝑖 , 𝑒𝑗) = 𝛼. 𝑆𝑖𝑚𝑙𝑒𝑥(𝑒𝑖 , 𝑒𝑗) + 𝛽. 𝑆𝑖𝑚𝑠𝑒𝑚(𝑒𝑖 , 𝑒𝑗), 𝛼 + 𝛽 = 1 (1) 

Sim_lex employs Levenshtein Distance to match characters, 
whereas Sim_sem uses cosine similarity to match embeddings 
from pretrained language models like BERT or Word2Vec. The 
values of α and β determine how alike the meanings and words 
are. 

2) Normalization of Entities According to Ontology: The 

study connects each item to standardize diverse words, such as 

synonyms for the same plant. 𝑒𝑘 to its canonical ontology term 

e^* using a maximum similarity approach, as shown in Eq. (2): 

𝑒∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐∈𝐶

(𝜆1. 𝑆𝑖𝑚𝑙𝑒𝑥(𝑒𝑘 , 𝑐) + 𝜆2. 𝑆𝑖𝑚𝑠𝑒𝑚(𝑒𝑘 , 𝑐)) (2) 

where, C is the set of standard ontology terms. This step 
makes sure that all the data sources make sense together. 

3)  Utilizing a Joint Probability Model for Relationship 

Extraction: The research employed a log-linear conditional 

model to show the extraction of semantic relations (e.g., Herb–

Prescription, Herb–Compound) as demonstrated in Eq. (3), 

which calculates the probability of a relation r given an entity 

pair (𝑒𝑖 , 𝑒𝑗): 

 𝑃(𝑟|𝑒𝑖 , 𝑒𝑗) =
𝑒𝑥𝑝(𝑤𝑟

𝑇𝑓(𝑒𝑖,𝑒𝑗))

∑ 𝑒𝑥𝑝(𝑤
𝑟′
𝑇 𝑓(𝑒𝑖,𝑒𝑗))𝑟′∈𝑅

 (3) 

The feature vectors f( 𝑒𝑖 , 𝑒𝑗 ) here, semantic embeddings, 

contextual cues, and grammatical dependencies are examples of 
textual information. The weight vector 𝑊𝑟 is obtained by 
maximal likelihood estimation (MLE).  

4) How to Use Confidence Thresholding to Reduce Noise: 

Low-confidence triples are removed based on a threshold θ to 

make sure the data is accurate. This makes the set of 

relationships easier to read, as shown in Eq. (4): 

 ℛ𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = {(𝑒𝑖 , 𝑟, 𝑒𝑗) ∈ ℛ|𝑃(𝑟|𝑒𝑖 , 𝑒𝑗) ≥ 𝜃} (4) 

This kind of probabilistic filtering increases accuracy by 
eliminating correlations with little or no evidence. The TCM 
Knowledge Graph was developed using a multi-stage 
preparation exercise that draws on concepts in information 
theory, probabilistic modeling, and ontology alignment in order 
to ensure it has sufficient structural integrity, meaningful 
accuracy, and relational connectedness that allows for ease of 
sharing later. 

B. Knowledge Graph Construction 

To facilitate the systematic and scalable sharing of 
Traditional Chinese Medicine (TCM) information, including 
clinical and cultural information, we constructed a multi-entity, 
multi-relation knowledge graph (KG). The KG is formally 
defined as where E is the set of entities, R is the set of relations, 
and is the set of knowledge triples in the form of (head entity, 
relation, tail entity). In this situation, entities refer to herbs, 
prescriptions, illness, chemicals, biological targets, and cultural 
ideas such as the Five Elements philosophy or Yin–Yang. 
Relations indicate the semantic and/or therapeutic relationships 
between those entities, including the Herb–Prescription, 
Prescription–Disease, and Herb–Compound. 

For example, a triplet such as (Ginseng, utilized in 
Prescription A) exemplifies the function of a plant inside a 
formulation, whereas (Prescription A, addresses Insomnia) 
encapsulates the therapeutic application of a prescription. Each 
entity is represented by ense vector embedding, and each 
relation is characterized by a transformation function. The 
semantic plausibility of a knowledge triple is evaluated using a 
relation score function. In accordance with the translational 
embedding principle of TransE, the score is determined using 
Eq. (5): 

 𝑓(ℎ, 𝑟, 𝑡) = −‖ℎ + 𝑟 − 𝑡‖2 (5) 

where, h, t ∈ ℝd represent the embeddings of the head and 

tail entities, respectively, and r ∈ ℝd denotes the embedding of 
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the relation r.  Alternatively, to encapsulate more intricate 
semantic structures, RotatE-based embeddings may be utilized, 
wherein relations are represented as rotations in complex space, 
defined in Eq. (6): 

 𝑓(ℎ, 𝑟, 𝑡) = −‖ℎ ∘ 𝑟 − 𝑡‖ (6) 

where, ∘ means the Hadamard product. These formulations 
make sure that interactions between entities and relations are 
explicitly described, which makes it possible for computers to 
reason about them in both clinical and cultural situations. 

The knowledge graph (KG) makes the process of diffusion 
better in a variety of ways. At first, it combines the diverse 
languages of different data sources to make the message clearer. 
Secondly, it creates structural connectedness which bridges 
cultural factors influencing communication contexts with 
therapeutic knowledge, including herbal remedies, prescriptions, 
and biological objectives. Ultimately, it extends a computational 
mechanism for structuring knowledge dissemination routes, 
meaning that optimal propagation channels must be both 
culturally relevant and medically sound. The TCM knowledge 
graph is the primary component for subsequent network 
modelling and RACO-TCM optimization because it ensures that 
cultural diffusion is medically appropriate and contextually 
relevant. 

The Traditional Chinese Medicine Integrated Database 
(TCMID) [26] is used as the central dataset herein since it covers 
TCM data holistically. To facilitate constructing a highly 
connected knowledge graph, TCMID provides rich connections 
between herb prescriptions, chemical compounds, targets, and 
diseases. It needs a database containing more than 46,000 
prescriptions, 8,000 herbs, 25,000 chemicals, and 3,800 
biological targets to model culture-treatment interactions. The 
data entries suit the diffusion network modeling due to the 
various relation types between them, i.e., herb-prescription, 
herb-compound, and prescription-disease relations. To cover the 
linguistic and cultural elements necessary for route planning, we 
have also integrated extratextual material from cultural 
communication channels and digital TCM classics. This 
heterogeneous data ensures an adequate representation of 
cultural and clinical information. A summary of the dataset is 
provided in Table Ⅰ. 

C. Network Modeling 

In the TCM cultural dissemination network, which is shown 
as a directed graph Gt = (V, Et) , where V  is the nodes 
representing cultural elements such as TCM concepts, media 
channels, and audience clusters, and Et is the edges representing 
possible diffusion routes that change over time. The 
Dissemination Network Model illustrates how traditional 
Chinese medicine (TCM) information reaches various audiences 
through different types of media channels. To ensure a realistic 
portrayal of cross-cultural communication, as shown in Fig. 2, 
weights are assigned to each directed edge according to its 
significance, impact, temporal alignment, and capacity. The 
RACO-TCM optimization can find efficient, non-redundant 
distribution routes with the help of this model. 

Each edge e =  (i → j)  is characterized by several 
attributes, such as content relevance (rij) , social influence 

strength (sij) , temporal alignment (uij(t)) , and channel 

capacity  (κj) . The combination of these factors affects the 

probability of successful propagation across the edge, which is 
represented by a logistic function that ensures values between 0 
and 1, as outlined in Eq. (7): 

 𝑝𝑖𝑗(𝑡) = 𝜎(𝛾1𝑟𝑖𝑗 + 𝛾2𝑠𝑖𝑗 + 𝛾3𝑢𝑖𝑗(𝑡) + 𝛾4 𝑙𝑜𝑔(𝜅𝑗)) (7) 

where, σ(⋅) stands for the sigmoid activation function, and 
γ1, γ2, γ3, γ4  provide the weightings that show how each part 
affects the entire. This arrangement combines principles from 
both social network theory and information diffusion theories 
and balances the structural and temporal dynamics. There are 
three ways to evaluate how well a message spreads: 

P =  (v₀ →  v₁ →  ⋯  →  vn)

Reachability [R(P)] figures out how many unique people 
path P is likely to reach by looking at unique audiences at each 
stage and discounting repetitive exposures, as shown in Eq. (8): 

 ℛ(𝑃) = ∑ 𝑝𝑖𝑗 . |𝐴(𝑗)\ ⋃ 𝐴(𝑣)(𝑢,𝑣)∈𝑃:𝑣≺𝑗 |(𝑖,𝑗)∈𝑃  (8) 

Here, A(j) represents the audience of node j, while v≺j 
shows nodes that have been visited before j. Redundancy (D(P)), 
which punishes people who see the same thing twice to make 
cultural transmission more efficient, is shown mathematically as 
Eq. (9): 

 𝒟(𝑃) = ∑
|𝐴(𝑗)⋂ ⋃ 𝐴(𝑣)(𝑢,𝑣)∈𝑃:𝑣≺𝑗 |

|𝐴(𝑗)|(𝑖,𝑗)∈𝑃  (9) 

This measure is based on the idea of redundancy, which 
makes sure that the optimization method focuses on multiple 
coverage instead of redundancy coverage. The function in 
Eq. (10) for Time Efficiency [T(P)] finds the overall time delay 
of the path. 

 𝒯(𝑃) = ∑ 𝜏𝑖𝑗(𝑖,𝑗)∈𝑃 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡𝑘+1 ≥ 𝑡𝑘 + 𝜏𝑣𝑘𝑣𝑘+1
  (10) 

with  𝜏𝑖𝑗   representing the propagation delay along edge (i,j), 

and the constraint maintains temporal feasibility. Finally, the 
overall quality score of a path is demonstrated as a multi-
objective optimization function in Eq. (11): 

 𝐽(𝑃) = 𝑤1. ℛ(𝑃) − 𝑤2𝒟(𝑃) − 𝑤3. 𝒯(𝑃) (11) 

 
Fig. 2. Temporal dissemination network model. 
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Here, w1, w2 and w3  , the weights are equalizing 
importance of the coverage, non-redundancy, and timeliness. 
This theoretical framework is based on concepts from graph 
theory, probabilistic diffusion models, and multi-objective 
optimization. It establishes the next step in developing the 
RACO-TCM algorithm. 

D. Algorithmic Path Optimization (RACO-TCM) 

The proposed Reinforced Ant Colony Optimization 
framework (RACO-TCM) makes dissemination paths more 
effective by adding dynamic pheromone updates, 
reinforcement-learning-based reward signals, and redundancy-
aware heuristics to standard Ant Colony Optimization. In this 
system, artificial ants navigate the knowledge network and 
formulate probable distribution paths through the application of 
probabilistic decision rules. The likelihood of an ant k 
transitioning from node i to node j at time t is expressed as 
Eq. (12): 

 𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏𝑖𝑗(𝑡)]𝛼.[𝜂𝑖𝑗(𝑡)]𝛽

∑ [𝜏𝑖𝑙(𝑡)]𝛼.[𝜂𝑖𝑙(𝑡)]𝛽
𝑙∈𝒩𝑖

𝑘
  (12) 

where, τij(t) denotes the pheromone intensity on the edge 

(i, j), represented as ηij(t) signifies its heuristic desirability, α 

and  β  represent control factors, and 𝒩i
k  denotes the feasible 

neighbourhood of ant k . Pheromone trails are continually 
modified according to Eq. (13) to prevent stagnation and local 
optima. 

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∑ ∆𝜏𝑖𝑗
𝑘 (𝑡)𝑚

𝑘=1  (13) 

where, ρ represents the evaporation rate, m is the number of 

ants, and ∆τij
k(t) represents the pheromone deposited by ant k. 

In contrast to classical ACO, the pheromone deposition is non-
uniform and proportionate to a reinforcement incentive that 
indicates diffusion quality, such that follows the Eq. (14): 

 ∆𝜏𝑖𝑗
𝑘 (𝑡) = {

𝜆. 𝑅(𝑝𝑘)             𝑖𝑓 𝑒𝑔𝑑𝑒 (𝑖, 𝑗) ∈ 𝑝𝑘,
0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14) 

where, pk  is the path constructed by ant k, λ is a scaling 

factor, and R(pk) is the reward. The reinforcement reward 

integrates the previously defined multi-objective dissemination 
metrics and is expressed as in Eq. (15): 

 𝑅(𝑝𝑘) = 𝛼.
ℛ(𝑝𝑘)

𝑚𝑎𝑥(ℛ)
− 𝛽.

𝒟(𝑝𝑘)

𝑚𝑎𝑥(𝒟)
− 𝛾.

𝒯(𝑝𝑘)

𝑚𝑎𝑥(𝒯)
 (15) 

The coefficients α, β, and γ  govern the balance between 
optimizing coverage, minimizing redundancy, and decreasing 
propagation delay. Moreover, the heuristic attractiveness of 
edges directly integrates redundancy minimization and is stated 
as in Eq. (16): 

 𝜂𝑖𝑗(𝑡) =
𝑅𝑖𝑗.𝐼𝑖𝑗.𝐴𝑖𝑗(𝑡).𝐶𝑖𝑗

1+𝛿.𝒟𝑖𝑗
 (16) 

where, Rij, Iij, Aij(t), Cij  denote the edge properties of 

relevance, influence strength, temporal alignment, and channel 
capacity, respectively, while 𝒟ij checks how many people from 

one node are also in the other, with 𝛿 being a punishment 
coefficient. RACO-TCM combines pheromone enhancement 
driven by reinforcement with heuristics that are aware of 

redundancy to find a balance between exploration and 
exploitation. This solves the problems with classic ACO, such 
as premature convergence and becoming stuck in local optima.  
The algorithm gets closer to the best dissemination routes that 
cover the most ground, cut down on redundancy, and speed up 
the process. This makes sure that the chosen propagation 
channels are computationally efficient, culturally relevant, and 
can be used in other countries. 

The below pseudocode shows how the RACO-TCM method 
works. In this algorithm, numerous ants continually create 
dissemination channels inside the knowledge graph by 
combining pheromone intensity and redundancy-aware heuristic 
values. We use a reinforcement-based reward function to judge 
each path. This function makes sure that the audience is covered, 
that there is no redundancy, and that the path is on time. After 
that, pheromone trails are changed based on the incentive, which 
guides future searches. The software, via repeated 
improvements, gets closer to the best ways to spread information 
that are both effective and culturally appropriate. 

Pseudocode: RACO-TCM Path Optimization Algorithm 

Algorithm RACO-TCM (Graph 𝐺, Parameters 
𝛼, 𝛽, 𝛾, 𝛿, 𝜌, 𝜆, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟, 𝑚) 

1:  Initialize pheromone trails 𝜏𝑖𝑗(𝑡) = 𝜏0 for all edges (𝑖, 𝑗)  ∈  𝐺 

2:  For 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 𝑡𝑜 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 do 

3:      For each 𝑎𝑛𝑡 𝑘 =  1 𝑡𝑜 𝑚 do 

4:          Place ant 𝑘 at a randomly selected start node 

5:          Construct path 𝑝𝑘 using probabilistic rule: 

6:              For each feasible move from node 𝑖 𝑡𝑜 𝑗: 
7:                  Compute heuristic desirability: 

                        𝜂𝑖𝑗(𝑡)  =
𝑅𝑖𝑗∗𝐼𝑖𝑗∗𝐴𝑖𝑗(𝑡)∗𝐶𝑖𝑗

1+𝛿∗𝐷𝑖𝑗
 

8:                  Compute transition probability: 

                        𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏𝑖𝑗(𝑡)]𝛼.[𝜂𝑖𝑗(𝑡)]𝛽

∑ [𝜏𝑖𝑙(𝑡)]𝛼.[𝜂𝑖𝑙(𝑡)]𝛽
𝑙∈𝒩𝑖

𝑘
  

9:                  Select next node 𝑗 according to 𝑃𝑖𝑗
𝑘(𝑡) 

10:         End For 

11:         Evaluate path 𝑝𝑘 using reward function: 

                𝑅(𝑝𝑘) = 𝛼.
ℛ(𝑝𝑘)

max(ℛ)
− 𝛽.

𝒟(𝑝𝑘)

max(𝒟)
− 𝛾.

𝒯(𝑝𝑘)

max(𝒯)
  

12:     End For 

13:     Update pheromone trails: 

14:         For each edge (𝑖, 𝑗)  ∈  𝐺 do 

15:             𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∑ ∆𝜏𝑖𝑗
𝑘 (𝑡)𝑚

𝑘=1    

16:             where ∆𝜏𝑖𝑗
𝑘 (𝑡) =  𝜆. 𝑅(𝑝𝑘) 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑝𝑘 else 0 

17:         End For 

18: End For 

19: Return best path 𝑝∗ with maximum reward 𝑅(𝑝∗) 

E. Parameter Tuning and Reproducibility 

Hyperparameters were optimized using a two-stage coarse-
to-fine search on temporal divisions of the dissemination 
network (70/15/15% by time). All edge attributes Rij, Iij,
Aij(t), Cij,  and overlap 𝒟ij  were normalized using min-max 

scaling to the range [0, 1]. Stage 1 employed a random search 
across extensive ranges; Stage 2 optimized the top 10 
combinations using a neighborhood grid search. The criterion 

for selection was the average rewardQ̅ =
1

S
∑ Q(ps);S

s=1  across 

S =  5 seeds; ties were resolved by lower redundancy 𝒟(p). 
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The reward weights adhered to the simplex constraint α +  β +
 γ =  1 , where α, β, γ ∈  [0, 1] . Pheromone was initialized 
uniformly and thereafter updated by using the following 
Eq. (17): 

 
𝜏𝑖𝑗(𝑡) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) ∑ ∆𝜏𝑖𝑗

𝑘 (𝑡)𝑘

∆𝜏𝑖𝑗
𝑘 (𝑡) = 𝜆𝑅(𝑝𝑘)𝕀{(𝑖, 𝑗) ∈ 𝑝𝑘}

}  (17) 

Subsequent to each update, we constrained τij ∈
[τmin, τmax] for steadiness. The transition algorithm employed 
exponents on pheromone and heuristic values. To prevent 
symbol clash with the reward weights, we designate these as 

αaco and βaco. Early stopping concluded when ∣ Q̅t − Q̅t−10 ∣ <
10−3. 

The simplex constraint on i) α, β, γ was kept Q(p) a scale-
stable; ii) βaco > αaco biases in initial searches favor heuristics, 
but the impact of pheromones increases as reinforcement builds; 
iii) m =  min{50, ⌈0.5 |V|⌉} moderates exploration expenses in 
extensive graphs; iv) clipping 𝜏 τ inhibits excessive 
reinforcement and promotes consistent convergence. 

The RACO-TCM framework was created to show how 
Traditional Chinese Medicine (TCM) distribution is based on a 
relational, holistic, and person-centered concept. It can also 
improve its technical performance. The framework has 
algorithms for sharing information that are sensitive to culture 
and ethics. It does more than only make distribution methods 
work better for computers. The approach changes how things are 
distributed based on how involved the audience is, cultural 
variations in the location, and TCM principles. This means that 
you need to make sure that the material is provided in a way that 
makes sense in the context. The model features feedback loops 
that alter depending on the scenario. In the network, contextual 
learning helps the framework place culturally significant 
information like ethical health advice, conventional 
conceptions, and instructional content ahead of computational 
goals like coverage, redundancy reduction, and timeliness. This 
implies that the ideal ways for RACO-TCM to send information 
are ones that are successful, culturally suitable, ethically sound, 
and able to satisfy the practical demands of TCM dissemination. 
Smart cities should make it easier for people to get health care, 
study online, and enjoy culture. 

IV. RESULTS 

The experimental setting for evaluating the suggested 
RACO-TCM framework was put together to make sure it was 
evaluated in situations that were as close to real life as possible. 
We used the TensorFlow and PyTorch modules to model 
optimization and completed all the tests in Python 3.10. 
Simulations took place on a workstation with an Intel Core i9-
13900K CPU, 64 GB of RAM, and an NVIDIA RTX 4090 
GPU, which made it possible to handle large datasets and 
complicated optimization tasks well. Ubuntu 22.04 LTS was the 
operating system that made it feasible to undertake 
computational research in a safe environment. To make sure that 
all of the herbs, prescriptions, compounds, and disorders were in 
the cultural knowledge graph, the Traditional Chinese Medicine 
Integrated Database (TCMID) was used. We decided to test 
RACO-TCM on three base models: TCM-NPG [24], which 
utilizes neighborhood pruning to promote culture; LMKG-NER 

[22], a strong knowledge graph that employs named entity 
recognition to spread TCM; and TCMPS-ARA [25], which uses 
association rule analysis to enhance placement. Now that we 
have these standards, we can reliably measure things like 
distribution efficiency, route redundancy, convergence speed, 
global search capability, and time. 

The efficiency of the RACO-TCM framework in spreading 
information is a major determinant in how successfully it 
conveys knowledge about Traditional Chinese Medicine to 
people from diverse cultures. We figure out how many unique 
people we contacted compared to how many people we aimed 

to reach. It is explicitly articulated as η =
∑ |Ai

new|n
i=1

|Atotal|
, where 

Ai
new shows the new audience at step i, A is the total number of 

individuals who might view it. A more efficient distribution 
implies that the framework might help people get information 
more readily by reducing down on improper communication. 
Fig. 3 shows that RACO-TCM improves dispersion by 18.6% 
compared to baseline methods. This demonstrates that it is better 
at finding the best ways to communicate. This rise shows that 
the framework not only increases the transmission scale, but it 
also makes sure that TCM material is always engaging with a 
wide range of people. This makes the cultural relevance and 
worldwide influence of TCM material even greater. 

Path redundancy looks at how much information an audience 
gets from different ways of disseminating it. This shows that the 
way culture is shared isn't working as well as it should. Too 
much redundancy is doing the same thing over and over again 
without getting any further with the audience. It is plainly 

described as R =
∑ |Ai⋂Aprev|n

i=1

∑ |Ai|n
i=1

; this means that Ai is the number 

of people who have watched the performance up to stage i, and 
A is the total number of people who have seen it so far. It is 
easier to share information when there is less redundancy. 
RACO-TCM reduced route redundancy by 12.3% compared to 
standard ACO, according to experimental data. As seen in Fig. 4, 
this might make things more efficient by bringing in new and 
varied audiences. This cut makes sure that cultural knowledge 
transfers aren't squandered on items that don't matter. This 
makes TCM cultural transmission more diverse and accessible 
to everyone, while being able to flourish over wide and changing 
networks. 

 
Fig. 3. Comparison of dissemination efficiency among various models. 
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Fig. 4. Comparison of path redundancy for the ACO-TCM vs. Baseline 

models. 

The convergence speed tells us how quickly the RACO-
TCM algorithm settles on the best channels for spreading 
information, which has a direct effect on the cost and flexibility 
of computing. A faster convergence rate makes it easier to 
quickly decide on dissemination strategies, which makes it 
easier to communicate across cultures in fast-changing 
situations. In technical terms, this is Cs = min{ t ∣∣ ΔQ(t) < ϵ }, 
where ΔQ(t) is the change in the route quality score from one 
iteration to the next and ϵ is a predefined minimum value. To 
fulfill this standard, fewer iterations are needed, which implies 
that convergence comes faster. RACO-TCM converges quicker 
than ordinary ACO because it incorporates pheromone updates 
that are driven by reinforcement. This helps it avoid getting 
stuck and discover quicker pathways than traditional ACO. This 
characteristic makes the algorithm appropriate for massive, fast 
distribution initiatives where modifications need to be made 
quickly. This keeps cultural communication tactics up-to-date 
and flexible to change with new scenarios, as shown in Fig. 5. 

 
Fig. 5. Analysis of convergence speed based on the RACO-TCM framework. 

The global search capacity is an important performance 
indicator that measures how well the framework can move 
through a large solution space without becoming stuck in local 

optima. Rather than hastily opting for suboptimal choices, it 
guarantees that the algorithm determines the most effective 
distribution channels worldwide. The metric is expressed as 

GSC =
∣UniquePaths∣

∣TotalExplored∣ 
; where ∣UniquePaths∣ is the number of 

different high-quality paths discovered and ∣TotalExplored∣ is 
the number of paths that were looked at throughout the 
optimization. A higher GSC number suggests that the 
distribution method is more flexible and the exploration options 
are better. The framework changed pathways in a useful way and 
reacted to different communication settings by using RACO-
TCM's reinforcement-driven exploration, which greatly 
improved its global search capabilities compared to regular 
ACO (see Fig. 6). This trait is very important in cultural 
diffusion networks, as diverse groups of people, media 
platforms, and contextual factors need to be able to change and 
adapt. This makes ensuring that cultural outreach isn't 
constrained by routes that are too narrow or too often. 

Time efficiency looks at the whole speed of information 
transmission to find the average delay across the specified 
distribution pathways. Good time management makes sure that 
cultural information gets to the right people quickly, which is 
very important when people are talking to each other across 

cultures in real time. It is very evident that TE = ∑
dij

|P|
 (i,j)∈P ; 

where 𝑑𝑖𝑗 is the edge, (i,j) is where the dissemination delay 
happens, and |P| shows how many pathways were picked in total. 
When time efficiency values are lower, people may share 
knowledge faster and don't have to wait as long to join in. 
RACO-TCM made a lot of progress in reducing propagation 
delays compared to other approaches. This made sure that 
cultural messages got to their destinations on time and without 
any further delays (see Fig. 7). This improvement is especially 
crucial in the digital era since being on time has a direct impact 
on how engaged and successful you are. The RACO-TCM 
framework speeds up the process of sharing information, which 
helps maintain TCM cultural knowledge relevant to the context 
and keeps the audience interested. 

 
Fig. 6. Global search capability analysis of RACO-TCM compared with the 

baseline models. 

RACO-TCM has been shown to work in a variety of cultural 
and therapeutic settings. The framework can enable hospitals, 
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community health initiatives, and digital health campaigns to 
convey correct Traditional Chinese Medicine knowledge as part 
of their efforts to improve health. Healthcare organizations may 
make sure that a lot of patients quickly acquire evidence-based 
TCM information by optimizing how they share it. This will 
assist people in not getting any wrong idea and promote 
integrative medicine methods. Second, the algorithm lets digital 
education platforms disseminate TCM information to students, 
practitioners, and the general public in a way that is tailored to 
each group. Integrating with e-learning systems lets you change 
the way information is shared to get more students involved, cut 
down on unnecessary repetition in teaching materials, and meet 
the needs of different cultural or language groups. This makes 
the knowledge easier to understand and more accessible. Third, 
RACO-TCM might be integrated into the cultural services of 
smart cities by becoming part of smart cultural communication 
systems that employ mobile applications, augmented reality 
interfaces, and city-wide information networks to disseminate 
the history of TCM. 

 
Fig. 7. Comparison of the Time Efficiency metric of RACO-TCM among 

baseline models experimental discussion. 

The algorithm strikes a balance between timeliness, 
audience variety, and non-redundancy to make sure that past 
information is preserved and applied in modern smart city 
ecosystems. This makes people desire to remain being a part of 
city culture. These applications together show that the suggested 
method is better than algorithmic efficiency and provides a 
socially meaningful and scalable framework for spreading 
Traditional Chinese Medicine (TCM) over the world. 

V. DISCUSSION 

The research findings demonstrate that RACO-TCM is a 
useful tool to disseminate knowledge about Traditional Chinese 
Medicine (TCM) to people from various cultures. The 
framework not only improves the performance of algorithms, 
but it also ensures they are usable in the real world by combining 
heuristics that are aware of redundancy with exploration that is 
driven by reinforcement. 

A. Promoting Health 

The technology makes it possible to quickly and accurately 
communicate TCM information through hospitals, community 

events, and online marketing. To improve integrative healthcare 
practices, the best way to convey information to patients is to 
make sure that evidence-based TCM knowledge gets to as many 
people as possible. 

Digital education systems like RACA-TCM let you 
communicate TCM material with students, practitioners, and the 
general public in a way that works for them. By cutting down on 
repetition and adapting routes to meet the audience and cultural 
context, the framework makes learning simpler, more fun, and 
easier to grasp. 

B. Smart Cities' Cultural Services 

The framework protects and expands TCM culture in cities 
by using augmented reality interfaces, smartphone applications, 
and smart city platforms. RACO-TCM finds a balance between 
being timely, having a wide range of audiences, and not being 
redundant. This encourages people to stay involved with culture 
and employ old knowledge in their daily lives. 

C. Overall Impact 

RACO-TCM has a socially relevant, scalable, and culturally 
integrated way of getting Traditional Chinese Medicine (TCM) 
to people that goes beyond just numbers. It uses mathematical 
optimization and takes into account the audience and the setting 
in which the information will be seen to make sure that cultural 
material is not only distributed quickly but also engaging and 
useful to the people who will see it. 

D. Limitations 

The Traditional Chinese Medicine Integrated Database 
(TCMID) is the major source of information that is being 
utilized in this specific inquiry. It is feasible, however, that the 
results will be different when applied to other datasets or when 
utilized in various cultural settings. This is something that 
should be taken into consideration. As a result of the fact that the 
framework needs a substantial amount of computing power in 
order to conduct out simulations on a large scale, it is possible 
that it is not straightforward for everyone to use. Additionally, it 
is likely that some of the assumptions that are utilized in the 
process of modelling networks and developing knowledge 
graphs, such as edge weights and audience behavior, may not 
accurately portray the method in which things are complicated 
in the actual world. This is something that is a possibility. 
Furthermore, in spite of the fact that it has been optimized for 
TCM distribution, it may still be necessary to perform extra 
tuning and validation in order to adapt to a variety of domains 
or cultural knowledge networks. 

VI. CONCLUSION 

The RACO-TCM framework provides a reinforcement-
enhanced Ant Colony Optimization technique for cultural 
dissemination, effectively resolving significant issues of 
duplication, inefficiency, and restricted flexibility inherent in 
conventional heuristic models. The method works really well 
since it involves making a knowledge graph, looking at a 
temporal network, and improving a number of goals. This makes 
distribution more efficient, cuts down on path redundancy, and 
speeds up experimental assessments. These results indicate that 
it can be both analytically accurate and culturally relevant. It can 
be used in many ways to improve healthcare, digital learning, 
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and cultural services in smart cities. There are still certain 
constraints, though. The system is built on set reward weights. 
Changing the parameters makes the system more stable, but it is 
still not clear how to change these weights in networks that are 
continually changing in the real world. The current evaluation 
primarily utilized simulated dissemination networks; more 
validation using extensive, real-world TCM communication 
systems is necessary to confirm robustness. It could be required 
to employ parallel or distributed computing technologies to 
make big graphs work with many computers at once. Future 
research will focus on developing adaptive reward systems that 
respond to contextual variations, improving the model to 
incorporate multimodal dissemination platforms, such as video 
or augmented reality, and integrating federated optimization to 
facilitate privacy-preserving and cross-regional cultural 
knowledge exchange. The goal of these recommendations is to 
make RACO-TCM a long-lasting framework for smart cultural 
communication in a world that is always changing. 
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