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Abstract—The proliferation of cloud computing exposes sen-
sitive data to the risk of unauthorized access, as traditional
access control mechanisms are often inadequate for this dynamic
environment. To address these shortcomings, this article proposes
a novel access control scheme, named STM-ABAC, which is based
on the Skew Tent Map (STM). This scheme is specifically designed
to overcome the inherent limitations of traditional Attribute-
Based Access Control (ABAC) and Attribute-Based Encryption
(ABE) schemes when deployed in dynamic cloud environments.
The methodology involves constructing a multi-authority ABAC
model, generating verifiable attribute tokens using chaotic se-
quences, applying LSSS-based policy encryption, and evaluating
performance through rigorous formal analysis and experimental
benchmarking. The results demonstrate that STM-ABAC reduces
the computational overhead during decryption by up to 60% and
maintains lower initialization and key-generation costs compared
to existing CP-ABE and MA-ABE schemes. Furthermore, security
proofs confirm strong resistance to chosen-attribute and chosen-
nonce attacks.
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I. INTRODUCTION

Cloud computing has become an essential foundation for
modern information technology landscapes. Distributed stor-
age architectures in the cloud are increasingly adopted by
both large enterprises and individual users, offering superior
adaptability, scalable storage capabilities, and universal data
availability. Furthermore, their inherently distributed nature
strengthens data integrity and simplifies collaborative sharing
across geographically diverse users.

Despite these significant benefits, several persistent chal-
lenges remain. The Top Threats to Cloud Computing 2024
report [1], which gathered insights from over 500 industry
experts, identified eleven major security concerns. The study
reveals a profound evolution in cloud security risks. Tradi-
tional threats, such as denial-of-service (DoS) attacks, shared
technology vulnerabilities, and data loss originating from the
provider side, are perceived as less critical, reflecting increased
confidence in the resilience of cloud infrastructure. Similarly,
data breaches—historically the most significant concern—have
dropped from the top spot. New issues have surfaced, with
Identity and Access Management (IAM) [2] now recognized
as the foremost challenge, surpassing concerns like misconfig-
uration and insufficient change control. This critical shift un-
derscores that contemporary security risks are no longer solely
the responsibility of cloud providers but are increasingly tied to
user-side governance and effective access control mechanisms.

Consequently, access control serves as a foundational
mechanism for guaranteeing the Confidentiality, Integrity,

and Availability (CIA) triad) of information. Various access
control models have been established in the literature, in-
cluding Mandatory Access Control (MAC) [3], Discretionary
Access Control (DAC) [4], and Role-Based Access Con-
trol (RBAC) [5]. However, these models exhibit intrinsic
limitations when implemented in the highly distributed and
volatile cloud environment. In contrast, Attribute-Based Access
Control (ABAC) [6], [7] provides finer-grained authorization
and context-aware policy evaluation. Yet, in practical deploy-
ment, ABAC often struggles with insufficient adaptability, high
communication overhead between its core components (Pol-
icy Enforcement Point (PEP), Policy Decision Point (PDP),
Policy Administration Point (PAP), and Policy Information
Point (PIP)), and limited suitability for real-time applica-
tions—especially in vast, multimedia, or latency-sensitive sys-
tems.

To address these shortcomings, cryptographic solutions
like Attribute-Based Encryption (ABE) have been introduced.
Nevertheless, both Key-Policy ABE (KP-ABE) and Ciphertext-
Policy ABE (CP-ABE) still face drawbacks, including sus-
ceptibility to collusion attacks, inefficient user/attribute re-
vocation, exposure of access policies, reliance on a single
trusted authority, and substantial computational demands [8],
[9], [10]. To overcome these enduring limitations, this paper
introduces a novel ABAC architecture that integrates chaotic
dynamics—specifically, the Skew Tent Map (STM). The uti-
lization of chaotic systems in cryptographic design has at-
tracted increasing scholarly interest [11], [12], [13], [14], [15]
in recent years, primarily due to their inherent characteristics
that align closely with robust security requirements. Research
in this area typically follows two main avenues: the use of
chaotic sequences for data encryption and secure transmission
and the exploitation of chaos to generate shared cryptography
keys or secrets between authorized parties. These methods are
mutually reinforcing and can be seamlessly incorporated into
a cohesive security framework.

Chaotic systems are deterministic nonlinear dynamical sys-
tems that demonstrate highly intricate and seemingly random
behavior under specific initial conditions. Their chaotic nature
is defined by the following core characteristics:

• Extreme Sensitivity to Initial Conditions: Small mod-
ifications to the starting state of a chaotic system can
lead to exponentially divergent output sequences.

• Bounded State Space: The chaotic behavior remains
confined within defined parameters or states.

• Deterministic Operation: Lacking true randomness,
the future state of a chaotic system can be simulated
accurately given the initial conditions and parameters.
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• Aperiodic Dynamics: The behavior of the system is
non-repeating, meaning there is no regular pattern in
its dynamics.

The remainder of this paper is structured as follows:
Section II provides a review of existing work focused on
enhancing Attribute-Based Access Control (ABAC) models,
particularly those derived from Attribute-Based Encryption
(ABE) techniques. Sections III and IV establish the theoret-
ical underpinnings of ABAC and present the proposed Skew
Tent Map-based ABAC (STM-ABAC) framework, detailing its
architecture, operational flow, and core algorithms. Section V
elaborates on the cryptographic mechanisms utilized to ensure
secure policy conversion and the dynamic administration of
attributes. Section VI furnishes a formal security analysis of
the STM-ABAC scheme. Section VII outlines the experimen-
tal evaluation and discusses the performance results. Finally,
Section VIII offers the conclusion and suggests avenues for
future research.

II. RELATED WORK

Traditional authorization frameworks, such as RBAC and
ABAC, offer mechanisms for granular and flexible manage-
ment of access permissions. However, their efficacy diminishes
in vast and diverse cloud computing environments, pushing
researchers to seek more advanced and integrated methodolo-
gies. Prior investigations by Smith et al. [16], Johnson et al.
[17], and Brown and Miller [18] emphasize the deficiencies
of these standard models, highlighting the critical need for
solutions that can provide more precise and secure oversight
of data access.

To surmount these constraints, encryption-based access
schemes, most notably Attribute-Based Encryption (ABE),
have been introduced to guarantee data confidentiality and
user privacy. The primary iterations of ABE are Key-Policy
ABE (KP-ABE) [19] and Ciphertext-Policy ABE (CP-ABE)
[20]. In KP-ABE [21], the access structure is embedded within
the user’s secret decryption key, while data attributes are
linked to the ciphertext. Although this scheme safeguards data
secrecy, it faces considerable challenges in dynamic and large-
scale policy administration, as modifying any access condition
necessitates the regeneration of the key. Conversely, CP-ABE
[22] embeds the access policy directly into the ciphertext
and associates attributes with the user’s key, affording greater
adaptability to data owners. Nevertheless, this paradigm also
suffers from disadvantages, including substantial computa-
tional overhead, inefficient attribute revocation, and reliance on
a single central authority. This single point of failure increases
the system’s susceptibility to compromise and collusion risks.

Furthermore, existing ABE approaches [23] remain re-
stricted in their ability to handle real-time and constantly
changing scenarios. ABE and its variants operate using a
classic cryptographic structure comprising four stages (Setup,
Key Generation, Encryption, and Decryption), whereas the
ABAC methodology utilizes four service modules (PEP, PDP,
PAP and PIP). This fundamental structural disparity makes
ABE schemes inherently ill-suited for the demands of dynamic
and time-critical environments.

In addition to this incompatibility, ABE faces several key
limitations:

• Inability to assign attributes dynamically: Users’ secret
keys remain fixed following their initial creation.

• Incompatibility with evolving policies: Access policies
are fixed to the ciphertext after encryption and cannot
be automatically updated to reflect changes in the
system.

• Dependence on a unitary authority: All keys and
policies hinge on a single central entity, creating a
single point of failure and amplifying the danger of
collusion or system breach.

To overcome these constraints, particularly the reliance
on a single authority and the fine-grained management of
attributes, the Multi-Authority ABE (MA-ABE) model was in-
troduced [24]. This model allows trust to be distributed among
multiple authorities while providing more flexible and secure
access control. In [25], a MA-ABE provides fine-grained
access control over encrypted data and partially addresses
the problem of attribute revocation. In [26] and [27], MA-
ABE is used to reduce computational and storage overhead
on resource-constrained devices while preventing collusion
among users. In [28], MA-ABE allows a single execution of
the authorization process even when policies originate from
multiple authorities, thereby improving scalability. However,
despite its advantages in terms of scalability and reduced
risk of key compromise, MA-ABE introduces new challenges:
synchronization among authorities, increased complexity in
key management, and higher latency during policy verification
and user revocation. Furthermore, existing works fail to si-
multaneously integrate all key functionalities: multi-authority,
attribute revocation, outsourced encryption, and outsourced
decryption. A study in [29] sheds light on several shortcomings
in different access control models, requiring solutions capable
of:

• Designing an efficient ABAC model that reduces
communication and computational complexity while
preserving data security.

• Hiding transmitted access policies to protect the con-
fidentiality of recipients.

• Limiting the risk of unauthorized internal access, even
when users possess attributes that satisfy the policies.

• Effectively managing dynamic updates of data, at-
tributes, and user revocation without the need to
redistribute keys.

To address the aforementioned challenges, the ABAC
model should be enhanced with the following four advanced
security mechanisms:

• A cryptographically secured policy representation en-
sures protection against forgery, tampering, and replay
attacks.

• Dynamically generated one-time attribute tokens used
to represent real-time attribute identifiers. This ap-
proach enhances flexibility and minimizes the risk
associated with key compromise.

• A cryptographically verifiable decision-making pro-
cess to ensure the integrity and validity of access
decisions.
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• Multiple attribute authorities should be deployed to
establish a decentralized authorization structure.

Despite significant advancements in ABAC, ABE, and MA-
ABE models, a critical functional gap persists that existing
systems fail to address simultaneously: the requirement for
natively dynamic and cryptographically verifiable access man-
agement. ABE-based models, even in their multi-authority
versions, are inherently static—they cannot integrate real-time
attribute updates nor natively support the ABAC workflow
(PEP-PDP-PAP-PIP), remaining vulnerable to collusion and
policy exposure. For the first time, the STM-ABAC framework
proposed in this paper implements a conceptual breakthrough
by integrating the chaotic properties of the Skew Tent Map at
three critical levels: the policies, the dynamic attribute tokens,
and the access keys. This integration simultaneously ensures:
1) the dynamic generation of single-use attribute tokens, 2)
the cryptographic verifiability of the access decision, 3) Policy
Hiding, and 4) decentralized multi-authority management. It
is this tripartite and dynamic integration of chaos theory that
gives STM-ABAC its true novelty and distinctive advantage
over conventional schemes based on bilinear cryptography.

III. CONSTRUCTION OF THE STM-ABAC SYSTEM

A. Standard ABAC Model

The Attribute-Based Access Control (ABAC) model reg-
ulates access based on attributes associated with subjects,
objects, and the environment. It dynamically evaluates attribute
conditions to decide whether to grant or deny access. As illus-
trated in Fig. 1 (Appendix), the standard ABAC architecture
includes four main components:

• PEP: Receives access requests, forwards them to the
PDP, and enforces the returned decision.

• PDP: Evaluates policies from the PAP using attributes
supplied by the PIP, and determines access outcomes.

• PIP: Provides required attribute values from external
sources such as directories or sensors.

• PAP: Defines and manages access control policies
evaluated by the PDP.

B. Fundamental Concepts

The authorization engine compares attribute values with
policy rules, producing one of four outcomes: permit, deny,
indeterminate, or not applicable [30], [31], [32].

1) Entity: An entity is defined as (S,O,E,A), where S,
O, E, and A represent the sets of attributes describing the
subject, object, environment, and action.

2) Attributes: Attributes represent entity properties. Each
category has its subset: ATS , ATO, ATE , and ATA.

3) Policy: A policy π specifies the conditions under which
subjects can perform actions on objects, formally represented
as:

π = sign(ATS , ATO, ATE , ATA), sign ∈ {permit, deny}.

The policy set is denoted by Π = {π1, π2, ..., πn}.

C. Proposed STM-ABAC Model

Access control and user data protection during authentica-
tion are paramount to preventing security threats. To achieve
this, integrating chaotic encryption techniques is crucial. An
enhancement to the NIST ABAC model is proposed by com-
bining it with the Skew Tent Map (STM). This approach aims
to enhance security while ensuring flexibility and efficiency
for dynamic access management in various contexts. Fig. 2
(Appendix) illustrates the interactions between the Attribute
Authority (AA), the Policy Center (PC), and the Authorization
Service (AS), as well as the information transfers between
the algorithms utilized. These interactions demonstrate how
the STM-ABAC model handles access requests based on
encrypted policies and the defined security attributes.

The new mechanism is described as follows:

• Policy Generation Unit (PGU): This unit interfaces
with the PAP and the PolicyGen Algorithm 7 (Ap-
pendix) to obtain the relevant policy for the current
request. It then produces a cryptographic representa-
tion of this policy, referred to as the cryptographic
policy (CΠ).

• Attribute Token Generation Unit (ATGU): This unit
utilizes the PIP and AttTokGen Algorithm 8 (Ap-
pendix) to collect information on attributes and gen-
erate corresponding verifiable attribute tokens.

• Policy Decision Unit (PDU): This unit relies on the
PDP to make decisions. It evaluates the cryptographic
policy (CΠ) against the ATGU attribute tokens pro-
vided by the ATGU after performing Policy Decryp-
tion to verify the user’s authorization status.

• Resource Encryption and Decryption Unit (REDU):
This unit operates with the PEP to interpret and
redirect access requests to the PDU, decrypt the object,
and execute the request based on the permissions
granted by the PDU.

D. Workflow of the STM-ABAC Model

The proposed Skew Tent Map-ABAC (STM-ABAC) model
integrates a Skew Tent Map encryption scheme within the
ABAC framework, leveraging ABE for policy enforcement.
The core workflow is divided into two phases: Data Owner
Preparation (Setup, PolicyGen, ResourceEncrypt) and User
Access (AttTokGen, Validation, Decrypt). This structure en-
sures secure, fine-grained, and dynamic access control. The
following workflow focuses specifically on the User Access
phase, initiated upon an authenticated user’s request to access
a protected object (see Fig. 2) (Appendix).

• Token Generation and Request Initiation: Upon a
user’s request, the Request Decryption Unit (RDU)
retrieves the current user attributes A. It uses the
current nonce τ and the chaotic parameters b and T to
locally generate the list of attribute tokens, T list, via
the Attribute Token Generation Algorithm 8. The RDU
then forwards the request, along with the required
token and the current τ , to the Policy Decision Unit
(PDU) for validation (steps 1–2).
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• Token Validation and Policy Decryption: The PDU
retrieves the pre-stored cryptographic policy CΠ and
the user’s structured secret key KS .

◦ Token Validation: The PDU first verifies
the integrity and freshness of the received
token against the user’s current attributes via
the Secure Token Validation Algorithm 9
(Appendix).

◦ Policy Decryption: If the token is valid, the
PDU proceeds to decrypt the policy CΠ using
the user’s secret key KS via the Policy Decryp-
tion Algorithm 5 (Appendix). If the attributes
embedded in KS satisfy the LSSS (Linear
Secret Sharing Scheme) policy Π, the PDU
retrieves the Data Encryption Key ek.

• Data Decryption and Resource Execution: The PDU
securely transmits the retrieved data encryption key
ek to the Request Execution and Decryption Unit
(REDU).

◦ Chaotic Decryption: The REDU retrieves the
encrypted resource C and uses the key ek as a
seed to regenerate the exact chaotic sequence
KSTM (using the parameters b and T ). It
then performs the inverse operation (XOR ⊕)
on C via the Data Decryption Algorithm 6
(Appendix) to recover the original resource
data M .

◦ Execution: Finally, the REDU executes the
requested operation on the decrypted object M
on behalf of the user (steps 6–8).

IV. MATHEMATICAL AND CRYPTOGRAPHIC
CONSTRUCTION OF STM-ABAC

This section focuses on the practical construction of the
Attribute-Based Access Control (ABAC) model combined with
the STM group system. The key notations used throughout the
STM-ABAC construction are summarized in Table I

A. Process of STM-ABAC

The STM-ABAC process is based on the integration of
ABE for fine-grained access control, and a Skew Tent Map
with a parameter b for data encryption.

The following functions describe the complete workflow,
from initialization to data decryption:

• Setup & KeyGen (A)→ (KP ,KM ,KS) : Algorithm
1 (Appendix), the system initializes public and private
parameters. The function takes the user’s attributes
A and master secrets KM = (δ, α) to generate the
Structured Secret Key KS , composed of attribute-
specific components required for ABE decryption.

• ResourceEncrypt (M, ek, b, T ) → C : Algorithm 2
(Appendix), the data owner uses a symmetric data
key ek (session key) as a chaotic seed. This key is
transformed by the STM (parameters b and T ) into a

sequence KChaotic. This sequence encrypts the object
M by XOR (C = M ⊕ KChaotic), producing the
ciphertext C.

• PolicyGen (KM ,Π, ek) → CΠ : Algorithm 7 (Ap-
pendix), the Policy Generation Unit (PGU) takes the
master key KM , the access policy Π, and the data key
ek. It uses Π to encrypt ek according to ABE (LSSS)
rules, producing the cryptographic representation of
the policy CΠ.

• AttTokGen (A, τ, b, T ) → Tlist : Algorithm 8 (Ap-
pendix), during an access request, this function takes
the current attributes A, the nonce τ , and the chaotic
parameters b, T . It generates a list of chaotic, time-
limited tokens Tlist for attribute integrity evaluation.

• PolicyDecrypt (CΠ,KS) → ek or ⊥ : Algorithm
5 (Appendix), the Policy Decision/Decryption Unit
(PDU/PDP) uses the user’s Secret Key KS to decrypt
CΠ through bilinear pairing operations (ABE). If
the attributes in KS satisfy Π, the data key ek is
successfully recovered.

• DataDecrypt (C, ek, b, T ) → M : Algorithm 6 (Ap-
pendix) Once ek is recovered, the algorithm uses it
as a seed to regenerate the chaotic sequence KChaotic

(with parameters b and T ). This sequence is then used
to decrypt the ciphertext C via XOR, restoring the
original data M .

In STM-ABAC construction, the algorithms are described
in detail as follows:

1) System Initialization: Initially, the system performs two
main processes: the generation of entity-specific public/private
keys and the creation of a structured secret key derived from
these keys and the user’s attributes.

a) Public and private key generation: Let G be a
bilinear pairing group of prime order p with generators g
and h. These parameters are publicly available. The Master
Key (KMK) of the Attribute Authority (AA) must contain the
master secrets (δ, α) ∈ Z∗

p required for generating the key
components. For system setup, the initial private and public
keys are defined as:

KM = (δ, α), KP = (g, h, gδ, gα)

b) Secret key generation: Let A denote the set of
attributes associated with the user. The Secret Key KS is
generated by the AA and is structured as a set of attribute-
specific components. KS includes a main component, KS0

,
and a pair of components, (K

(1)
Sj

,K
(2)
Sj

), for each attribute
aj ∈ A. This ensures ABE granularity.

The generation requires the selection of a random exponent
rj ∈ Z∗

p for each attribute aj . The final structured secret key
KS is defined as:

KS = {KS0
} ∪

{(
aj ,K

(1)
Sj

,K
(2)
Sj

)}
aj∈A

where the key components are computed using the Master
Key secrets (δ, α) and the attribute hash H(aj) as follows:
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TABLE I. SUMMARY OF NOTATIONS

Notation Description

A Set of all attributes of an entity

df Set of all attributes of entity a including the policy center

Kp Public key

KM Private key

KS Structured Secret Key (User’s attribute keys)

τ Nonce or time-varying parameter

b Parameter of the Skew Tent Map

Ta,τ Token for a specified entity attribute a and the nonce τ

CΠ Policy cryptographic representation

ek Session key

KS0
= gδ · gα

K
(1)
Sj

= grj

K
(2)
Sj

= H(aj)
δ
α · grj

The Secret Key KS , which contains the set of attribute-
linked components, is securely transmitted to the data user.

2) Chaotic resource encryption: To ensure secure data
confidentiality, the system transforms the data encryption key
ek (obtained via ABE) into a chaotic key stream KChaotic

used to encrypt the resource M.

a) Normalization (Algorithm 3) (Appendix): This pro-
cess transforms the data encryption key ek into a proper
initial condition for the chaotic system. The key ek is first
converted into an integer. The final value X0 (the chaotic
seed) is obtained by applying a cryptographic hash function
H (like SHA-256) to ek, and normalizing the result to obtain
X0 ∈ [0, 1].

X0 =
hex2dec(H(ek))

2256 − 1

The normalized value X0 is the initial condition for the
Skew Tent Map (STM).

b) Application of the skew tent map transformation
(Algorithm 4) (Appendix): The normalized seed X0 is used
to generate the Chaotic Key Stream KChaotic by performing
T iterations of the Skew Tent Map Tb(x), where T is the
required key stream length. The STM function is defined with
the control parameter b (0 < b < 1):

Tb(x) =


x

b
, if 0 ≤ x < b

1− x

1− b
, if b ≤ x ≤ 1

c) Resource data encryption (Algorithm 2) (Appendix):
The final encryption step uses the generated Chaotic Key
Stream KChaotic as a one-time pad for a stream cipher.
The raw resource data M is converted into a stream of
bits/bytes, and the encryption is performed using the bitwise
XOR operation (⊕):

C = M⊕KChaotic

The final output C is the encrypted resource data.

3) Policy generation (Algorithm 7) (Appendix): In the
proposed STM-ABAC model, the access policy Π is trans-
formed into a cryptographic representation CΠ to ensure its
confidentiality while preserving the authorized access rights.

First, the policy is converted into a matrix representa-
tion (M, π) such that M satisfies the Linear Secret Sharing
Scheme (LSSS) requirements and π maps each row of the
matrix to the corresponding attribute. A random secret vector
v = (t, r2, . . . , rn)

T ∈ Rn
p is generated, containing the secret

share t and random values ri, to compute the coefficients
necessary for the cryptographic encoding of the policy.

For each literal k = 1, . . . , l, the coefficient λk (the share
of the secret t) is calculated as:

λk = Mk · v

The corresponding encrypted component pk is then derived
using group exponentiations and multiplication (bilinear oper-
ations) to link the encryption to the associated attribute aπ(k):

pk = gλk ·H(aπ(k))
−λk

where H(·) is a cryptographic hash function, and aπ(k)
represents the attribute associated with the k-th row. The
central component p0 is calculated by encrypting the data
encryption key ek (needed for the chaotic encryption) using
the secret share t:
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p0 = ek · gt

The metadata of the policy is defined as:

policy_metadata =

{ version : policy_version,
expiry : expiry_time,
attributes = π(k) }

Finally, the complete cryptographic policy is constructed
as:

CΠ = (Π, p0, {pk}lk=1, sign(policy_metadata,KM ))

where sign(policy_metadata,KM ) ensures the authenticity
and integrity of the policy using the Master Key KM . This
mathematical representation formalizes the PolicyGen algo-
rithm and enhances its cryptographic precision.

4) Attribute token generation (Algorithm 8): The algorithm
takes as input the set of attributes A, the nonce τ , and the two
parameters of the chaotic system: the control parameter b and
the number of iterations T . The nonce τ represents a timestamp
indicating the precise moment of the token’s generation. For
each attribute value val_att ∈ A, the process is as follows:

a) Chaotic transformation: The attribute value val_att
is first normalized into a chaotic seed N ∈ [0, 1] (using Algo-
rithm 3) (Appendix). This seed then undergoes T iterations of
the Skew Tent Map Tb(x) (using Algorithm 4) (Appendix) to
obtain the final chaotic value Ta. This leverages the sensitivity
of the chaotic system to ensure that any minute change in the
input attribute radically alters the resulting value Ta.

b) Token hashing: The final chaotic value Ta is com-
bined with the nonce τ using a cryptographic hash function H
to generate the final, time-limited token Ta,τ :

Ta,τ = H(Ta ∥ τ)

The nonce τ ensures the token is disposable, immediate,
and reduces the need for storage or management. The validity
of a token Ta,τ is verified according to the following rules by
the Secure Token Validation Algorithm 9 (Appendix):

• The regenerated token TGenerated
a,τ must

exactly match the presented token T Provided
a,τ

(constant_time_compare).

• The token’s timestamp must be within the valid dura-
tion: ∆t = tcurrent − ttoken ≤ ∆tmax.

• Tokens listed in the revocation list are invalid.

If any of these conditions fail, a new token may be
generated using a refresh function. Finally, the unique tokens
and corresponding timestamps are generated for each entity in
the dataset and used for real-time validation by the PDP.

5) Policy and data decryption phase: According to the
standard ABAC model and the specific construction, the final
access phase is executed by the (AS), which is responsible for
implementing the policy decision and decryption processes.
Specifically, these steps are carried out by the PDU and the
REDU. Assuming that the token verification is successful (i.e.,
the PDU receives a TRUE after executing the Secure Token
Validation Algorithm 9), the process continues with two critical
decryption steps: ABE and Data Decryption.

a) Policy decryption (Algorithm 5) (Appendix): The
PDU executes the Algorithm 5 (Appendix) to retrieve the Data
Encryption Key (ek) using the user’s secret key KS . The PDU
takes as input the cryptographic policy CΠ (from the PGU)
and the user’s Structured Secret Key KS (from the AA). The
core of this algorithm is based on bilinear pairing operations
to check if the set of attributes embedded in KS satisfies the
LSSS matrix M defined by Π. The algorithm first checks if
the attributes linked to KS can satisfy the policy Π. If not, it
returns a failure symbol (⊥).

After that, the algorithm checks whether the attributes
match a subset of policy rows I , the algorithm computes a
set of constant weights {wk}k∈I such that:∑

k∈I

wk ·Mk = (1, 0, . . . , 0)

The decryption proceeds by calculating the pairing prod-
ucts A and B:

A = e(KS0 , p0), B =
∏
k∈I

e(KSk
, pk)

−1

The session key ek is successfully isolated and recovered
by dividing A by B in the pairing target group:

ek ←
A

B

If ek is successfully recovered, the PDU has granted
authorization and sends the key ek securely to the REDU.

b) Data decryption (Algorithm 6) (Appendix): The
REDU executes the Algorithm 6 (Appendix) using the recov-
ered key ek to restore the original resource M. The REDU
takes as input the encrypted resource C (ch_encrypt), the
key ek, and the chaotic parameters b and T .

The key ek is used to regenerate the original chaotic seed
X0 through hashing and normalization:

X0 ← H(ek) mod 1

X0 is iterated T times using the Skew Tent Map Tb(x) to
precisely recreate the Chaotic Key Stream KChaotic.

The sequence KChaotic is converted into a bit stream
(Sbits) and used as a one-time pad to decrypt the ciphertext
C (Cencrypt) via the bitwise XOR operation:

Dbytes ← Cencrypt ⊕ Sbits
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The resulting decrypted bytes are converted back into the
original resource data M (df_original), and the requested
operation is executed by the REDU on behalf of the user.

V. CRYPTOGRAPHIC TRANSFORMATION OF ACCESS
POLICIES

In the STM-ABAC model, cryptographic techniques are
employed to represent and evaluate access policies. Converting
XACML policies into a cryptographic form remains a key
challenge.

XACML policies consist of rules that verify conditions on
the attributes of subjects, objects, environments, and actions.
These rules are combined through Boolean operators AND (∧)
and OR (∨), forming a logical policy Π. Typical examples
include:

Role(S) = Engineer,

Date(E) = Weekday,

Object(O) = BackupFile.

each returning a Boolean result.

The logical policy Π is then transformed into a mathemat-
ical structure defined by a share-generation matrix M and a
permutation function π, within the STM-ABAC model. This
process involves two phases: translating Π into a decision tree,
and converting it into the pair (M,π). The resulting pair serves
as input to the PolicyGen algorithm, which produces the
cryptographic representation of the access policy. To formalize
(M,π), the model relies on the Linear Secret Sharing Scheme
(LSSS).

Definition 1 (Linear Secret Sharing Scheme (LSSS)). A
scheme is said to be a Linear Secret Sharing Scheme (LSSS)
for an access policy Π over a finite field Zp and a set of
participants

P = {P1, P2, . . . , Pl} if it satisfies the following proper-
ties:

• π is a mapping function that associates each row index
i of the share-generating matrix with an attribute label
π(i).

• M is an l × n matrix used to generate shares corre-
sponding to the access policy Π.

• t denotes the secret value shared over Zp.

• The function Share computes λ = M · v, producing
the share vector λ = (λ1, λ2, . . . , λl), where v =
(t, r2, . . . , rn)

⊤ is a column vector and r2, . . . , rn are
random elements from Zp.

• The reconstruction function Recons retrieves the
secret t from any authorized set U by computing the
following equation: ∑

i∈I

ωiλi = t, (1)

where {ωi ∈ Zp}i∈I are known reconstruction con-
stants, and I = {i | π(i) ∈ U} denotes the index set
of attributes belonging to U .

The function π associates each row of M with a specific
attribute, meaning that for every index i = 1, . . . , l, the share
λi = (Mv)i is allocated to the party Pπ(i).

Define the set I ⊆ {1, 2, . . . , l} as I = {i : π(i) ∈ U},
where U represents any authorized subset of attributes. If the
shares {λi = (Mv)i = Mi · v : i ∈ I} are possessed by
the user, they can calculate the reconstruction constants {ωi ∈
Zp : ∀i ∈ I}. Consequently, the Eq. (2) holds:

∑
(ωiMi) = (1, 0, 0, . . . , 0) (2)

and therefore the secret t can be derived as illustrated in
the Eq. (3):

∑
ωiλi =

∑
ωi(Mi · v) =

∑
(ωiMi) · v = t (3)

where all constants ωi are public and computable in
polynomial time with respect to M .

A. STM-ABAC’s Policies and Rules

Drawing from the XACML framework, the STM-ABAC
policy repository employs a streamlined policy specification
language. An attribute instance is represented as a key-value
pair, where the key denotes an attribute name corresponding to
an entity in {S,O,E,A}. For example, in a resource manage-
ment scenario, ResourceID(O) = Authform indicates
that the resource ID of object O is Authform.

Other examples include Role(S) = Technician and
Time(E) = 8:30.

The policy target is defined through conditions formatted
as:

subject : Role : Engineer

environment : Date : Weekday

object : Type : BackupFile

For example, Action : ActionID : Read corre-
sponds to ActionID(A) = Read.

As shown in the Fig. 3 (Appendix), the Target specifies
that either an Engineer or a Technician is permitted to access
the BackupFile:

target(S,O,A) := ActionID(A) = Read
∧ ObjectName(O) = BackupFile
∧ Role(S) ∈ {Engineer,Technician}.

The integration of multiple rules is achieved using the
following methods:

• Deny-overrides: Access is only granted if all rule
conditions evaluate to “Permit”.

• Permit-overrides: Access is granted if at least one
rule evaluates to “Permit”.
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• Supermajority rule: Access is granted if more than
two-thirds of rule conditions evaluate to “Permit”.

Based on the access control policy in Fig. 3 (Appendix),
the Permit-Overrides method is used to combine rules:

can_access(S,O,E,A) := target(S,O,A)

∧(rule1(S) ∨ rule2(S,E))

B. Cryptographic Representation of Policies

The translation from Boolean policy representation to
(M,π) is achieved via the policy tree. The cryptographic
policy is dynamically generated using (M,π) and the
PolicyGen algorithm.

Consider an IT equipment management system that stores
critical information such as IP addresses, MAC addresses, and
encryption keys. A robust policy framework is necessary to
protect this data. An example policy is defined as:

can_access(S,O,A,E) := [(Role(S) =
Engineer ∧ Localisation(E) = LAC) ∨ (Role(S) =
Technician ∧ Time(E) = Weekday)] ∧ ObjectName(O) =
BackupFile ∧ ActionID(A) = Read

Each predicate in the policy is associated with a unique
identifier Pi. The policy tree, illustrated in Fig. 4 (Appendix),
represents Boolean operators (AND/OR) as internal nodes and
attributes as leaves. To construct the share generation matrix
M , random elements e1, e2, e3, e4, e5 are selected. Since a
threshold access structure (n, n) is equivalent to an AND
gate, the shares of the secret k are generated using a secret
sharing scheme as follows. Consider a random polynomial
of degree 2 f(x) = k + r2x + r3x

2, so that the shares
k1, k2, and k3 are given by k1 = f(e1), k2 = f(e2), and
k3 = f(e5). For an OR gate, k21 and k22 are simply defined
to be equal to t2. . Next, a polynomial g(x) = k22 + r4x is
constructed to derive the shares of k22, specifically k221 =
g(e2) = f(e2) + r4e3 = k + r2e2 + r3e

2
2 + r4e3 and

t222 = g(e2) = f(e2)+ r4e4 = k+ r2e2 + r3e
2
2 + r4e4. Using

the values e1, e2, e3, e4, and e5, along with the equations
above, the share generation matrix M can be constructed by
the Eq. (4).

M =


1 e1 e21 0
1 e2 e22 0
1 e2 e22 e3
1 e2 e22 e4
1 e3 e23 0

 (4)

The vector u = (k, r2, r3, r4) is defined, where r2, r3, and
r4 are selected randomly, as previously described. The share
λj = Mj ·u corresponds to the attribute Pπ(j), with Mj being
the j-th row of the matrix M . It is clear that the resulting share
vector (λ1, λ2, λ3, λ4, λ5) aligns with (k1, k21, k221, k222, k3).
Thus, the following conclusion is drawn in the Eq. (5):

M · u =


M1

M2

M3

M4

M5

 · (t, r2, r3, r4)T = (λ1, λ2, λ3, λ4, λ5)
T (5)

And the mapping function π is

π =

(
1 2 3 4 5
1 2 3 4 5

)
(6)

The results of Eq. (5) and Eq. (6) will be used in the
PolicyGen algorithm to generate the cryptographic.

C. Cryptographic Evaluation of Policies

The cryptographic decision-making process for the crypto-
graphic policy is based on (M ,π). To illustrate this process,
consider the following request: the subject Mohammed, who
is an Engineer, has a Read request for the file named
BackupFile from Tunis. This means that three attribute
assignments are valid.

Role(S) = Engineer
Localisation(E) = Tunis

Name(O) = BackupFile

In the evaluation process of the Decryptalgorithm, the
set I = {i : Pπ(i) ∈ U} = {1, 4, 5} is defined based on the
permutation π. Subsequently, the three rows M1, M2, and M5

are selected from the matrix M , corresponding to P1, P2, and
P5, to construct a reconstruction matrix. Following this, the
existence of values ω1, ω2, and ω5 is checked to ensure they
satisfy specific conditions, as expressed in Eq. (7).

ω1 ·M1 + ω2 ·M2 + ω5 ·M5 = (1, 0, 0, 0). (7)

By doing this, the corresponding values of M1, M2, and
M5 are substituted into the equation above, allowing the
expression 8 below to be obtained.

(ω1, ω2, ω5) ·

(
M1

M2

M5

)
=

(ω1, ω2, ω5) ·

1 e1 e21 0
1 e2 e22 0
1 e3 e23 0

 = (1, 0, 0, 0)

(8)

So the secret k can be computed according to Eq. (5) and
(8) as follows in the Eq. (9):

www.ijacsa.thesai.org 1060 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 11, 2025

∑
i∈I

ωiλi = ω1λ1 + ω2λ2 + ω5λ5

= (ω1, ω2, ω5) · (λ1, λ2, λ5)
T

= (ω1, ω2, ω5) ·

(
M1

M2

M5

)
· (k, r2, r3, r4)T

= (1, 0, 0, 0) · (k, r2, r3, r4)T

= k.

(9)

This result can be used to determine the session key sk,
which will be retrieved from the policy generation algorithm.

VI. SECURITY PROOFS

A. Unforgeability Against Chosen-Attribute Attacks (EUF-
CAA)

Attribute Tokens are considered Existentially Unforgeable
Against Chosen-Attribute Attacks (EUF-CAA) if the scheme
guarantees that an adversary cannot create a valid new token
for a specific attribute a∗, even after observing numerous
previously issued tokens for other attributes. In an ABAC
system, this property is crucial against adversaries who select
specific attributes to forge a valid token without possessing the
associated private key.

The EUF-CAA property can be modeled as an interaction
between an adversary and a challenger:

• Challenger: The entity that executes the setup protocol
and securely holds the private key.

• Adversary (A): The entity attempting to forge an
attribute token.

• Attributes {ai}: The set of attributes for which the
adversary requests tokens.

• Forge Condition: The adversary wins if they output a
triple (τ, a∗, Ta∗,τ ) such that Ta∗,τ is a valid token for
the attribute a∗ with a nonce τ , and a∗ has not been
previously queried by A.

Theorem 1 (Non-Forgeability of the Attribute Token). The
attribute token scheme is considered existentially (ϵ, q, t)-
unforgeable if no adversary A, making at most q queries within
a computational limit t, can forge a valid token with probabil-
ity greater than ϵ. Specifically, the advantage AdvEUF-CAA

STM-ABAC(A)
must be less than ϵ.

The STM-ABAC scheme ensures that each token Tai,τ is
highly dependent on the private key and the attribute ai (via
the chaotic transformation). It is therefore practically infeasible
for an adversary to generate a valid token Ta∗,τ for any new
attribute a∗ without the private key. Hence, the attribute token
is existentially (ϵ, q, t)-unforgeable against CAA, assuming the
computational advantage is bounded. The total time is t′ ⪯
t+ q · tQ, where tQ is the time required for one token query.

B. Unforgeability Against Chosen-Nonce Attacks (EUF-CNA)

Attribute tokens are Existentially Unforgeable Against
Chosen-Nonce Attacks (EUF-CNA) if an attacker cannot create
a valid token for a new nonce τ∗, even after obtaining multiple
tokens for previously chosen nonces.

The EUF-CNA property can be modeled as an interaction
between an adversary and a challenger (any entity from
{S,O,E,A}):

• Setup Phase: The challenger prepares the system and
securely holds the private key sks. The adversary
receives the public key pks.

• Token Queries Phase: The adversary requests tokens
for pairs {(ai, τi)}qi=1, where the nonces τi are chosen
by the adversary. For each pair, the challenger gener-
ates a token Tai,τi using the TokenGen function and
provides it to the adversary.

• Output Phase (Forge Condition): The adversary pro-
duces a triple (τ∗, a∗, Ta∗,τ∗). The adversary succeeds
if Ta∗,τ∗ is a valid token for (a∗, τ∗) and τ∗ has
not been included in the previously queried set T =
{τi}qi=1.

Theorem 2 (Unforgeability Against Chosen-Nonce Attacks).
The attribute token is existentially (ϵ, q, t)-unforgeable against
CNA if no adversary A, with a computational limit t and at
most q queries, can produce a valid token with probability
greater than ϵ. Formally, the advantage AdvEUF-CNA

STM-ABAC(A) must
be less than ϵ.

STM-ABAC scheme guarantees that attribute tokens are
existentially (ϵ, q, t)-unforgeable against chosen-nonce attacks,
assuming bounded computational advantage, where t′ ⪯ t +
q · tQ, and tQ is the time required for a single token query.

VII. PERFORMANCE EVALUATION

This section presents the performance analysis of the pro-
posed STM-ABAC model. Compared to the schemes presented
in [33], [34], [35], [36], which are based on the CP-ABE
framework, the proposed model is evaluated in terms of
computational efficiency and experimental analysis. A detailed
comparison is also conducted between STM-ABAC and exist-
ing ABAC-based access control models.

A. Computational Efficiency

To evaluate the computational efficiency of the proposed
STM-ABAC model, its computational costs are compared
with those of the existing schemes [33], [34], [35], [36],
as summarized in Table III (Appendix). The notations and
their corresponding descriptions are presented in Table II
(Appendix). It should be noted that the computational overhead
of multiplication and hash operations is negligible compared
to the other operations listed, and the overhead of G1 is
significantly lower than that of G0 and Ce.

• Setup Phase: The computational cost of all schemes is
primarily determined by the exponential operations in
G0 and G1. Schemes generating parameters for each
attribute or authorization incur higher overhead due to
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the increased number of exponential operations. STM-
ABAC requires (n+2)G0+G1, which remains lower
than most existing schemes, demonstrating efficient
initialization.

• Key Generation Phase: All schemes depend on ex-
ponential operations in G0, which increase with the
number of attributes in the secret key (k). Multi-
authorization schemes, such as those in [35], require
additional G0 operations, resulting in higher overhead.
STM-ABAC minimizes G0 operations to kG0 + G1,
reducing the computational cost during this phase.

• Encryption Phase: The cost of existing schemes [33],
[35], [36] is influenced by exponential operations in
both G0 and G1, while STM-ABAC primarily relies
on G1 operations (|S|G1 +LS). Since G1 operations
are less expensive than G0, STM-ABAC achieves
lower overhead and better scalability as the number
of ciphertext attributes (|S|) increases.

• Decryption Phase: The overhead in existing schemes
varies depending on which groups (G0, G1) and
ciphertext components (Ce) are involved. STM-ABAC
performs decryption using |S|Ce + LX , avoiding G0

operations and thus achieving lower computational
cost compared to other schemes, while maintaining
efficiency even as the number of attributes satisfying
the access structure (|S|) grows.

Overall, STM-ABAC consistently demonstrates reduced
computational overhead across all phases compared to the
existing schemes, confirming its efficiency for secure and
scalable attribute-based access control.

In the proposed STM-ABAC scheme, the cost of a pairing
operation (Ce) is the most computationally expensive, while
the cost of a XOR operation (X) is negligible and serves as
the reference, with Ce ≈ 1000×X.

The decryption cost is therefore dominated by the pairings
used during token generation, whereas data decryption relies
on fast XOR operations. Formally, the total cost can be
expressed as

CostSTM-ABAC = O(|S| ·Ce + L ·X) ≈ 10 ·Ce + 1000 ·X.

The data-related cost (1000 ·X) is negligible compared to
the cryptographic cost and can be approximated as 1 · Ce.
Hence, the overall decryption cost is largely dominated by
token generation (10 · Ce), confirming that the chaotic STM
mechanism ensures that the cost of decrypting data remains
insignificant relative to the cost of cryptographic operations.

Building upon these results, the STM-ABAC model will be
evolved by further optimizing token generation and reducing
the pairing overhead. The planned focus is to enhance both
the computational efficiency and the scalability of the system,
particularly for large-scale cloud environments.

B. Experimental Analysis

To further demonstrate the computational efficiency of the
proposed STM-ABAC scheme, a series of comparative experi-
ments was conducted against the reference schemes [33], [34],

[35], [36]. The experimental results evaluated the time cost of
the schemes as the number of the user’s attributes increased.
The experiments were implemented using the Python language
with the open-source cryptographic library Charm-Crypto (or
another suitable Python-based pairing library). The hardware
configuration featured an 11th Gen Intel(R) Core(TM) i7-
1165G7 @ 2.80 GHz processor running on the Windows 11
operating system.

The experimental results, illustrated collectively in Fig.
5 (Appendix), unequivocally demonstrate the computational
efficiency of the proposed STM-ABAC scheme across all
phases. Fig. 5a shows that the STM-ABAC model consistently
achieves the lowest initialization time, maintaining a near-
constant cost despite the increasing number of attributes.
During the Key Generation phase (Fig. 5b) (Appendix), the
STM-ABAC achieves a significant reduction in computational
time (over 70% improvement compared to certain reference
schemes) due to the integration of the Skew Tent Map for
chaotic key generation. The Encryption time cost (Fig. 5c)
(Appendix) also exhibits a lower growth rate, confirming
better scalability with larger attribute sets. Finally, Fig. 5d
(Appendix) highlights the model’s major advantage during
Decryption, where it achieves the best overall performance (up
to 60% faster than comparable reference schemes), validating
its suitability for secure, real-time access control in cloud
environments.

C. Comparisons with Related Work

The Table IV (Appendix) compares four attribute-based
access control (ABE-ABAC) technologies across five technical
criteria, highlighting the limitations of existing schemes (CP-
ABE, KP-ABE, MA-ABE) and the advantages of the proposed
STM-ABAC model.

Regarding system architecture, CP-ABE and KP-ABE are
centralized, creating a single point of failure and potential
performance bottlenecks. In contrast, STM-ABAC, like MA-
ABE, adopts a distributed architecture, enhancing robustness
and scalability for large-scale systems such as cloud environ-
ments.

Traditional ABE schemes focus on subject (user) and
object (data) attributes. Following the NIST ABAC standard,
access control should also consider action (e.g., read/write)
and environment (e.g., time/location). STM-ABAC is the only
scheme fully implementing this model, enabling more granular
and context-aware access control.

For private key management, existing models rely on static
cryptographic keys. STM-ABAC introduces a dynamic mech-
anism where keys depend on initial conditions, parameters,
and iteration counts, enhancing security through iterative key
derivation.

Regarding policy provision and authorization, STM-ABAC,
like CP-ABE and MA-ABE, delegates access decisions to the
Data Owner while supporting a multi-authority framework,
which is inherited from MA-ABE, thereby increasing flexi-
bility and security.

In summary, STM-ABAC combines the benefits of dis-
tributed and multi-authority architectures while introducing en-
hanced granularity through action and environment attributes,
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as well as a dynamic key mechanism, to offer more precise
and secure access control.

D. Summary of Performance

This paper makes the following measurable and architec-
tural contributions to the field:

1) High decryption efficiency: The proposed framework
demonstrates a reduction in computational overhead during
decryption by up to 60% compared to existing CP-ABE
and MA-ABE schemes. This efficiency gain is achieved by
decoupling the cryptographic policy decryption (ABE) from
the final data decryption (lightweight STM XOR operation).

2) Optimized key setup and initialization phases: Lower
initialization and key-generation costs are realized compared to
existing schemes. Specifically, the initialization time remains
nearly constant, irrespective of the number of attributes in-
volved as shown in Fig. 5a (Appendix).

3) Enhanced anti-collusion security: A dynamic access
control mechanism is integrated, which ensures strong resis-
tance to chosen-attribute and chosen-nonce attacks (formally
proven by Theorem 2).

4) Novel architectural integration: A new framework is
presented that natively integrates a multi-authority access con-
trol model with policy-hiding and chaos-based encryption. This
addresses a significant architectural gap left by previous ABAC
and ABE models.

VIII. CONCLUSION

This paper introduced STM-ABAC, a chaotic-enhanced
access control model that addresses the core limitations of
traditional ABAC and ABE schemes in dynamic cloud environ-
ments. By integrating the Skew Tent Map, the model enables
the generation of verifiable and non-forgeable attribute tokens,
ensuring secure and real-time policy evaluation while signif-
icantly reducing computational overhead. STM-ABAC also
incorporates an LSSS-based policy transformation mechanism
and a multi-authority architecture fully compatible with ABAC
workflows, thereby improving confidentiality, decentralization,
and overall system efficiency. The scientific value of the model
lies in the unified integration of chaos theory into both policy
encryption and attribute validation, offering a resilient and
scalable foundation for modern distributed infrastructures. Al-
though reliance on bilinear pairings and the lack of large-scale
deployment testing remain limitations, future work will focus
on enhancing scalability, integrating machine learning–based
trust management, and optimizing chaotic token generation for
cloud and IoT environments.
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APPENDIX

Fig. 1. Framework of the standard ABAC model.

Fig. 2. Framework of the STM-ABAC model.

TABLE II. NOTATION

Symbol Description

k Number of attributes in the user’s secret key (k = |A|)

|S| Number of satisfied attributes in the access policy

L Data size (length of the STM sequence)

G Group exponentiation in G1 or G2 (equivalent to G0 or G1)

S Skew Tent Map (STM) iteration cost

Ce Pairing operation cost (equivalent to Ce in the literature)

X XOR operation cost during data decryption
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Fig. 3. Example of access policy for ward record.

Fig. 4. Policy tree of the given access policy.

TABLE III. COMPUTATIONAL COMPLEXITY IN EACH PHASE OF THE STM-ABAC MODEL COMPARED TO [33], [34], [35], [36]

Scheme Setup KeyGen Encryption Decryption

[33] 3G0 + G1 7G0 5tG0 + (2t + 1)G1 sG0 + 3Ce

[33] (m + 2)G0 + G1 (4k + 1)G0 (4t + 2)G0 sG0 + (2s + 2)Ce

[33] (n + 3)G0 + nG1 5nG0 + 4kG0 (2t + 2)G0 + G1 2sG0 + sG1 + (s + 2)Ce

[33] 2G0 + G1 (4k + 1)G0 (2t + 1)G0 + G1 (s + 2)G1 + 3Ce

STM-ABAC (Proposed) (n + 2)G0 + G1 kG0 + G1 |S|G1 + L§ |S|Ce + LX
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(a) The comparisons of time cost in the setup phase with the schemes. (b) The comparisons of time cost in the Keygen phase with the schemes.

(c) The comparisons of time cost in the Encrypt phase with the schemes. (d) The comparisons of time cost in the decryption phase with the schemes.

Fig. 5. Comparative performance analysis of the proposed STM-ABAC with the schemes [33], [34], [35], [36] .

TABLE IV. COMPARISON BETWEEN EXISTING ABE-ABAC SCHEMES AND STM-ABAC

CP-ABE [22] KP-ABE [21] MA-ABE [25] STM-ABAC
ABAC Model Centralized Centralized Distributed Distributed
Attribute Type Subject, Object Subject, Object Subject, Object Subject, Object, Action, Environment
Private Key Presentation Encrypted Private Key Private Key Initial Condition, Parameter, Number of Iterations
Policy Provider Data Owner User Manager Data Owner Data Owner
Attribute Value Authorization
KDC

Data Owner Multiple Multiple Authorities Multiple Authorities

Algorithm 1 Secret Key Generation

1: Input: KP ,KM , A
2: Output: KS

3: Variables: g, h (group generators); α, δ (master secrets from KM )
4: Begin
5: Compute KS0

← gδ · gα;
6: Initialize KS ← {KS0

};
7: for each attribute aj ∈ A do
8: Choose a random rj ∈R Z∗

p;
9: Compute K

(1)
Sj
← grj ; // First key component

10: Compute K
(2)
Sj
← H(aj)

δ
α · grj ;

11: Add (aj ,K
(1)
Sj

,K
(2)
Sj

) to KS ;
12: end for
13: return KS
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Algorithm 2 Resource Data Encryption

1: Input: M, ek
2: Output: C
3: Begin
4: KChaotic ← ChaoticSequence(ek, b, T );
5: C←M⊕KChaotic;
6: return C

Algorithm 3 Normalization using Hash Function

1: Input: LISTE df = [AS , AE , AA, AO]
2: Output: dfnormalized
3: begin
4: for each attribute i in df do
5: val← df [i]
6: hash_val← SHA-256(val)
7: H ← hex2dec(hash_val)
8: N ← H

2256−1
9: dfnormalized[i]← N

10: end for
11: return dfnormalized

Algorithm 4 Skew Tent Map Sequence Generation

1: Input: df_normalized, b, T { b: STM parameter 0 < b < 1, T : number of iterations}
2: Output: df_skewtent {Table of generated chaotic sequences S}
3: STM Fonction:
4: Tb(x) =

{
x/b si 0 ≤ x < b

(1− x)/(1− b) si b ≤ x ≤ 1
5: begin
6: for each attribute i in df_normalized do
7: X0 ← df_normalized[i]
8: Xcurrent ← X0

9: Initialize Si ← []
10: for t = 1 to T do
11: Xnext ← Tb(Xcurrent)
12: Si.append(Xnext)
13: Xcurrent ← Xnext

14: end for
15: df_skewtent[i]← Si

16: end for
17:
18: return df_skewtent
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Algorithm 5 Policy Decryption Algorithm

1: Input: CΠ = (Π, p0, {pk}lk=1), KS , I
2: Output: ek or ⊥
3: Begin
4: if KS does not satisfy Π then
5: return ⊥
6: end if
7: Determine reconstruction coefficients{wk}k∈I ∈ Z∗

p∑
k∈I

wk ·Mk = (1, 0, . . . , 0)

8: A← e(KS0
, p0)

9: B ← 1
10: for each k ∈ I do
11: aπ(k) ← line-related attribute k
12: Extract KS,comp1 and KS,comp2 de KS for the attribute aπ(k)
13: Dk ← e(pk,KS,1) · e(H(aπ(k)),KS,2)
14: B ← B · (Dk)

−wk

15: end for
16: ek ← A/B {Isolate the key ek}
17: return ek

Algorithm 6 Data Decryption Algorithm

1: Input: ch_encrypt, ek, b, T
2: Output: df_original
3: Begin
4: X0 ← H(ek) mod 1
5: Xcurrent ← X0

6: KChaotic ← []
7:
8: for t = 1 to T do
9: Xcurrent ← Tb(Xcurrent)

10: KChaotic.append(Xcurrent)
11: end for
12: Sbits ← ConvertirEnBinaire(KChaotic)
13:
14: df_original← []
15: for each cipher bloc I in ch_encrypt do
16: Separate IV and Cencrypt from I
17: Dbytes ← Cencrypt ⊕ Sbits
18: Dstring ← Convertir(Dbytes, “text”)
19: df_original.append(Dstring)
20: end for
21: return df_original
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Algorithm 7 Policy Generation Algorithm

1: Input: KM , Π, ek, policy_version, expiry_time, g, H
2: Output: (CΠ, policy_metadata)
3: begin
4: (M,π)← generate_matrix(Π)
5: assert M satisfies LSSS requirements
6: v ← (t, r2, . . . , rn)

T ∈ Rn
p

7: p0 ← ek · gt
8: policy_metadata← {version : policy_version, expiry : expiry_time}
9: policy_metadata.attributes← []

10: for k = 1 to l do
11: λk ←Mk · v
12: pk ← gλk ·H(aπ(k))

−λk

13: policy_metadata.attributes.append(π(k))
14: end for
15: sig ← sign(policy_metadata,KM )
16: CΠ ← (Π, p0, {pk}lk=1, sig)
17: return (CΠ, policy_metadata)

Algorithm 8 Attribute Token Generation

1: Input: A , τ , b , T
2: Output: Tlist

3: Begin
4: Initialize Tlist ← []
5: for each val_att ∈ A do
6: N ← Normalization(val_att)
7: Xcurrent ← N
8: for t = 1 to T do
9: if 0 ≤ Xcurrent < b then

10: Xcurrent ← Xcurrent/b
11: else if b ≤ Xcurrent ≤ 1 then
12: Xcurrent ← (1−Xcurrent)/(1− b)
13: end if
14: end for
15: Ta ← Xcurrent

16: Ta,τ ← H(Ta ∥ τ)
17: Tlist.append(Ta,τ )
18: end for
19: Return Tlist

Algorithm 9 Secure Attribute Token Validation

1: Input: A, Tlist, received, τcurrent, b, T , revocation_list
2: Output: Boolean (True/False)
3: begin
4: if A ∈ revocation_list then
5: return False
6: end if
7: Tlist, expected ← AttTokGen(A, τcurrent, b, T )
8: if constant_time_compare(Tlist, received, Tlist, expected) then
9: return True

10: else
11: log_security_event("Invalid token attempt or expired Nonce")
12: return False
13: end if
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