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Abstract—Traffic congestion is a global problem in urban
areas that creates longer travel times, increased fuel consumption,
and elevated levels of pollution. Traffic congestion occurs because
of the exponential growth of vehicles along with a finite number
of roadways and the inability to manage traffic effectively. This
paper studies the question: How well can traffic type factors be
used as a predictor for determining the severity of traffic con-
gestion? To answer this question, we present a new methodology
to perform clustering and classification based on various types
of traffic indicators. In addition, traffic indicators (such as size
of roadway, speed of vehicles, number of vehicles, and level of
traffic flow) are categorized by using two distinct classifications:
homogeneous and heterogeneous. Using these categories, we then
apply a modified version of the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm to do clustering
of traffic indicators. The resultant label from the clustering
process is then used to develop a prediction model that will
provide information regarding the level of traffic congestion
along a selected roadway. Results from our experiments were
conducted using an actual dataset and demonstrate that our
proposed method produced an accuracy rate of 93% with 92%
precision and recall, and therefore, outperforming other current
methodologies used for predicting traffic congestion. Overall,
these findings indicate that incorporating an analysis of traffic
type factors into the clustering and classification methodology
can result in more accurate predictions of traffic congestion.

Keywords—Traffic congestion; traffic management; traffic fac-
tors; congestion level; DBSCAN; GCN

I. INTRODUCTION

Urban traffic congestion [1] is a significant challenge in
modern cities, impacting daily commutes, fuel consumption,
and environmental sustainability. Traffic congestion arises due
to an imbalance between the increasing number of vehicles
and the capacity of road infrastructure [2]. External factors
such as weather conditions [3], peak hours, and road incidents
further exacerbate this issue, making congestion prediction and
management crucial for efficient urban mobility. Several ap-
proaches have been explored to tackle this issue [4]. Traditional
traffic prediction models [5]–[7] rely on statistical methods and
machine learning algorithms [8]. Recent advancements include
deep learning-based techniques such as LSTMs and Bi-LSTMs
for short-term traffic flow prediction [9], big data integration
with deep learning for large-scale traffic forecasting [10], and
hybrid swarm intelligence algorithms for route optimization
[11]. While these approaches have demonstrated promising
results, they face limitations such as high computational costs,

lack of real-time adaptability, and challenges in handling noisy
traffic data [12].

Apart from lowering traffic efficiency, urban traffic con-
gestion incurs huge financial losses as well as environmen-
tal degradation. Traffic congestion in highly urbanized cities
results in higher fuel usage and vehicle emissions, thereby
contributing to higher risks to public health and air pollution,
according to studies [13]. Additionally, the commuters them-
selves experience stress and reduced quality of life through
traffic jams, making the critical need for smart traffic man-
agement systems arise that can learn to keep pace with the
changing trends of urban traffic [14].

Advanced traffic control techniques like adaptive signal
control, dynamic route guidance, and price-demand respon-
siveness are made possible through accurate and timely traffic
congestion prediction. But urban transportation networks are
highly spatial-temporal in complexity, so modeling them is
quite hard Models with the capacity to discern local and
network-wide interactions are needed since traffic at a point
can spread and impact neighboring regions. To generate reli-
able, scalable, and comprehensible congestion predictions that
facilitate smarter urban mobility planning, our system inte-
grates static infrastructure data with dynamic traffic attributes
through sophisticated clustering and graph-based learning tech-
niques [15].

Despite these advancements, existing methods often fail to
integrate both static (unvaried) and dynamic (varied) traffic
factors effectively. Some studies focus on real-time traffic
variations, such as vehicle speed and density, while neglecting
the influence of fixed constraints like road infrastructure and
historical traffic patterns [16]. Others emphasize static features,
but lack adaptability to sudden traffic fluctuations caused by
external factors like weather or road incidents [18], [19]. The
main objective of the current research study is to answer the
following research question: What advantages does the incor-
poration of unvaried and varied traffic features with enhanced
clustering methods and graph-based classification bring to the
accurate prediction of urban traffic congestion?

To answer this question, this study suggests a novel hybrid
strategy that combines supervised and unsupervised learning
methods to tackle both diversely changing (dynamic) and
stably unchanging (static) traffic measurements concurrently.
In particular, we suggest an optimized DBSCAN clustering
algorithm that incorporates traffic-related domain constraints
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and improves parameter selection sensitivity to better handle
heterogeneous and noisy traffic data. This allows traffic pat-
terns to be more forcefully structured, reflecting the underlying
structure of real-world situations.

We use the resulting cluster labels as an input layer for
classifying traffic states after the clustering process. Then,
with topological relationships between road segments, a Graph
Convolutional Network (GCN) predicts traffic congestion lev-
els. Spatial interdependencies and network-wide interactions
underlying congestion dynamics are captured using this graph-
based approach. Our model can make precise, scalable, and
explainable predictions by integrating time-dependent features
(e.g., speed of vehicles, flow, and density) with infrastructure-
related static attributes (e.g., lane number and road length).
Two-faceted learning in this way empowers real-time respon-
siveness and smart decision-making in urban traffic manage-
ment systems, revealing a fuller picture of traffic status.

The remainder of this paper is structured as follows:
Section II reviews the related work. Section III presents the
problem definition and describes the use of DBSCAN for
clustering. Section IV details our proposed approach. Section
V discusses the experimental results and compares the per-
formance of our method with existing approaches. Finally,
Section VI concludes the paper and outlines future research
directions.

II. RELATED WORK

By merging traffic flow physics with spatio-temporal graph
neural networks, this study [20] presents the Physics-Guided
Spatio-Temporal Graph Neural Network (PG-STGNN), a
model for predicting traffic flow at city intersections. With the
help of a step-by-step technique, the model goal is to improve
short term traffic prediction accuracy by merging essential
traffic features like queue building and signal schedule. The
framework has mainly applied to crossroads and short-term
estimation tasks but however provides a structured manner
of giving physical traffic dynamics in combination with deep
learning approaches. the particularity can make it less relevant
for more Far-reaching or sophisticated traffic Circumstances,
Especially where long term analysis or congestion Segmen-
tation is needed. Moreover, the framework might be less
Adjustable if utilized in datasets with no such specific field
Awareness since it relies on complex tangible simulation.

Authors in [21] presented three most crucial sections Are
assimilated to present a novel AI-biased approach for predict-
ing traffic congestion: a Consistent Lizard Search Optimization
(CLSO) algorithm to elevate the precision of forecasting; a
Paramount Transfer Learning Network (PTLN) for conges-
tion level Classification; and a Cascaded Transition Recurrent
Feature Network (CTRFN) to find Pertinent traffic features.
The outcome is Created to Surmount major Disadvantages
of current approaches with regard to computation operating
costs, weak data processing, and extreme error prediction. The
structure’s reliance on heavy deep learning and optimization
components may hamper scalability and real-time response ca-
pability, despite exemplifying an orderly approach in managing
traffic data and trying to increase the accuracy of forecasts.
In addition The system performance can be limited in noisy,
incomplete, or heterogeneous urban traffic data environments

in dynamic city scenarios due to the assumption of clean and
structured dataset availability.

Through the use of linear regression models, feed forward
neural networks (FFNN), and radial basis function neural net-
works (RBFNN), this study [22] proposes a machine learning-
based prediction solution to reduce traffic congestion in Beirut.
In forecasting congestion, the system takes into account wait
times at intersections, time of day, day of week, holidays, and
meteorological conditions (e.g., rain). FFNNs were found to
work best. The absence of long-term transportation planning
and the use of Lebanese reliance on poor infrastructure is also
highlighted in the study. While the methodology considers
various models and bases its analysis on real-time data, it
overlooks key factors of implementation including data noise,
scalability at the regional scale, and integration with big traffic
management systems. The application of long-term traffic
management techniques or the viability of implementation in
the real world remains restricted.

To minimize traffic jams at intersections within smart cities,
authors in [23] suggests a cloud-based traffic congestion pre-
diction model with a hybrid Neuro-Fuzzy solution. It enhances
traffic control automation with IoT sensor feeds and intelligent
decision-making. The Neuro-Fuzzy model adapts dynamically
to traffic patterns through combining the programmability
of fuzzy logic and learning from neural networks. System
scalability and data preparation are made possible through
the cloud environment. The technique has several drawbacks,
including no field testing, reliance on sensor accuracy, and
no account being taken of the difficulties in large-scale roll-
out and integration with current infrastructure. The model’s
effectiveness in real urban settings is undermined by its failure
to project possible lag in cloud computing and difficulty in
real-time decision-making amid dynamic traffic conditions.

To improve traffic prediction, this paper [24] introduces
the Congestion-based Traffic Prediction Model (CTPM), a
new model that combines congestion propagation patterns
with existing prediction frameworks. CTPM uses external
congestion data to enhance predictions without overriding
existing systems, unlike classical models that often fail during
abnormally fluctuating traffic conditions. In order to maximize
resource allocation, including dynamic traffic control and lane
management, the model highlights the significance of knowing
how congestion develops across road networks. The strategy,
however, has a number of drawbacks, including the need
for sophisticated integration into existing infrastructure, the
reliance on the amount and quality of available data, and
difficulty handling small data sets. Besides, it is also unclear
how well the model handles extremely dynamic, real-time
environments, especially urban areas with non-uniform traffic
patterns and weak sensor coverage.

To enhance the accuracy and scalability of machine
learning-based models, authors in [25] suggests a mixed traffic
flow prediction method that integrates historical data and road
network topology. Since conventional models utilize single-
point data and possess limited contextual knowledge regarding
traffic behavior over a network, they often cannot identify real-
time anomalies. To overcome this, the suggested method in-
volves road interconnectivity structural information, enhancing
prediction and making traffic control measures more efficient.
The method is not without limitations, however, because the
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addition of topology expands processing requirements and
model complexity, which may constrain real-time implementa-
tions. Further, usability in sparsely instrumented environments
will be constrained because of a dependence on highly accurate
and detailed network data.

While previous works on congestion prediction show some
impact, limitations were identified for all of the analysed stud-
ies on this topic. Many of the studies that utilized DBSCAN-
type methods, along with hybrid techniques, do not have the
ability to effectively identify static and dynamic traffic flows
from the same analysis. Typically, models that adopted this
approach denote both static and dynamic as separate; thus
limiting their ability to accurately predict congestion in real-
time. Likewise, GNN and deep learning approaches do not
take into consideration the significance of spatial relationships
between road segments. Other studies also assumed the use of
entirely structured and noise-free datasets, leading to a lack
of robustness for these models in practice. Regardless of data
types, models were seldom subjected to case-specific testing
or developed to be scalable. Thus, these limitations supported
the rationale for our proposed methodology that enhances
the integration of improved DBSCAN clustering methods
with GCN-based classification methods by considering both
static and dynamic vehicular conditions, resulting in improved
accuracy and increased feasibility.

III. PRELIMINARIES

This section introduces the background material required
for this work, including the character of the traffic data,
graph learning, clustering algorithms, and an introduction to
the utilized Graph Convolutional Networks (GCNs) to predict
congestion.

A. Problem Definition

In traffic analysis, varied traffic factors (e.g., speed and
number of vehicles) are dynamic and change rapidly depending
on time, location, or road conditions. On the other hand,
unvaried traffic factors (e.g., route dimensions, road type,
infrastructure) remain constant over time but still play a crucial
role in congestion. By subdividing traffic factors into these two
categories, we can better model the traffic system, enabling us
to:

1) Differentiate dynamic influences: The varied factors
capture real-time fluctuations in traffic, whereas unvaried fac-
tors provide a stable foundation for traffic patterns.

2) Increase prediction accuracy: This separation allows
more precise models, as varied factors contribute directly to
congestion level fluctuations, while unvaried factors help to
contextualize these changes.

3) Improve clustering and classification: It aids in selecting
the most relevant features for clustering and classification
algorithms, reducing noise in data processing by treating
dynamic factors differently from static ones.

Clustering is essential in traffic congestion analysis [26]
to manage the complexity and variability of traffic data by
grouping similar patterns, such as “low”, “medium” and “high”
congestion levels. DBSCAN is preferred for this task because
it is robust to noise and outliers, which are common in

traffic data, and it can discover clusters of varying shapes
and densities without requiring the number of clusters to be
specified in advance. This makes DBSCAN ideal for identi-
fying natural congestion patterns. Clustering with DBSCAN
enhances prediction accuracy, reduces noise, and allows more
efficient traffic management and resource allocation.

GNNs can provide a preferred traffic congestion classifica-
tion because they are well suited for handling the graph-like
structure of traffic networks [27], where intersections are nodes
and roads are edges. GNNs excel at capturing the varied and
unvaried dependencies and relationships between connected
traffic points, allowing for a more accurate prediction of
congestion levels across the network. They can model how
congestion at one point affects surrounding areas, providing a
more context-aware classification. By leveraging this structure,
GNNs improve the accuracy of congestion predictions and can
efficiently classify traffic into “low”, “medium” and “high”
congestion levels, even in complex, large-scale networks.

It is usually difficult for traditional models to properly
combine both varied and unvaried congestion constraints. In
order to overcome these constraints, this paper suggests a
hybrid DBSCAN-GNN model that uses graph-based learning
for classification and density-based clustering for congestion
pattern identification.

B. DBSCAN Algorithm

DBSCAN technique [28], one of the density-based clus-
tering techniques, is used to group data of any type out of
a large amount of data when there are noises and outliers.
The key benefit of the DBSCAN technique over partition and
hierarchical cluster algorithm is as follows, as depicted in
Fig. 1:

Fig. 1. Visualization of clusters formed by the DBSCAN algorithm.

• The DBSCAN algorithm is not limited to spherical
or convex shapes but can be applied to any arbitrary
shape. Because of this, it is far more practical than
other algorithms like kmeans.

• Because the name itself indicates, the major benefit of
this algorithm is that it will work properly even when
there is noise and outliers. DBSCAN is a good method
because other techniques will not work effectively
with noise. (Those points which are different or greater
than the original point are called noise and outliers.)
With the help of Minpts in the clusters, it does not
include noise and outliers.

The role of DBSCAN is the identification of the noise and
clusters within a spatial database. Researchers need to know
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the Eps and MinPts parameters for each cluster as well as at
least one point of the cluster. With the appropriate parameters,
it can then identify all the point density-reachable from the
known location provided [2]. The cluster is formed with the
DBSCAN implementing the two significant parameters, minPts
and eps:

• eps(ϵ): It is the radius which encloses the point to be
used for looking for points near to it. It is utilized to
calculate the density of the area. It will create low-
density clusters when a huge ϵ value is utilized.

• minPts: It is the number of points that must be found
in the surrounding (eps distance from the point) to
form a cluster. A good algorithm must not have
extremely small minPts.

Fig. 2. DBSCAN clustering process showing core, border, and noise points.

Once the DBSCAN algorithm is executed on any data set,
researchers essentially obtain three varieties of points (Fig. 2):

• Core: If there are many clusters, this is the spot from
where there are at least k other points that fall inside
radius r.

• Border: Any area with one or more central points in
the distance r may be referred to as a border.

• Noise: Any point that contains at least k points within
a distance of r and is neither a core nor a boundary.

IV. PROPOSED APPROACH

The predicted traffic congestion architecture is presented
in this section. To learn spatial-temporal correlations and
effectively predict the level of congestion, the model combines
data collection, preprocessing, enhanced DBSCAN clustering,
and a GCN-based classification module.

A. Architecture Overview

The architecture of the suggested traffic congestion fore-
casting framework is depicted in Fig. 3. To make precise
predictions of congestion, the model is trained to utilize both
dynamic and static traffic information. To capture continuous
streams of traffic variables like vehicle speed, vehicle counts,
lane counts, and route parameters, the pipeline starts with raw
traffic data capture. To provide equivalence among disparate
sensors as well as time periods, the information collected is
preprocessed through cleaning, normalization, and temporal
alignment.

The data is then divided into unvaried factors, constant
features that remain the same over time like the number of
lanes or route length, and varied factors, dynamic features that

change, like traffic flow and vehicle speed. A better DBSCAN
module utilizes these features and uses them to divide the road
network according to congestion patterns and identify traffic
trends. The model can denoise the input data and identify
geographical interdependence by grouping similarly occurring
traffic conditions.

A Graph Convolutional Network (GCN), mimicking the so-
phisticated spatial-temporal relationships between various road
segments, subsequently receives the cluster data. For a correct
prediction of congestion levels for every segment, the GCN
leverages the road network topology and the traffic patterns
learnt while clustering. The output layer finally offers real-time
congestion level prediction, facilitating useful information for
traffic control and route optimization.

Every stage of this architecture, from data preprocessing to
clustering and GCN classification, improves prediction perfor-
mance while ensuring computing economy. It is heavily based
on modular and interpretable design. The model is amenable to
smart city applications and real-time traffic analysis because
it efficiently solves the problems caused by dynamic traffic
environments through the integration of spatial and temporal
information.

Raw Traffic Data

Data Acquisition

Preprocessing

Varied Factors
(Speed, Vehicle Count)

Unvaried Factors
(Lanes, Route Length)

Enhanced DBSCAN Clustering

GCN Classification Model

Congestion Level Prediction

Fig. 3. Compact architecture overview of the proposed traffic congestion
prediction model.

B. Traffic Congestion Factors

A variety of key restrictions that fall into two general
categories varied and unvaried factors must be evaluated in
order to forecast traffic congestion using Internet of Things
networks. A few examples of generally fixed (unvaried) factors
are the route’s length, the average traffic flow, and customary
vehicle behavior patterns. These components remain consistent
over time and provide a fundamental understanding of traffic
patterns. Varied factors present a more difficult challenge, as
they are dynamic and change over time. Examples of these
varied factors include weather, which can quickly alter road
conditions; the route’s distinctive and evolving nature (such as
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whether it is an urban road, highway, or frequently congested
area); temporal elements such as rush hours or special events
that significantly impact traffic volumes; the behavior of other
vehicles on the road; the surrounding environment (such as
roadwork and urban development); and the varying speeds
of vehicles. Predicting traffic congestion is a very difficult
challenge due to the intricate interactions between these two
sets of constraints: fixed and dynamic.

Although unvaried factors help establish baseline traffic
patterns, varied factors introduce an element of unpredictabil-
ity, often requiring efficient real-time data management. For
example, unforeseen road closures or adverse weather can sud-
denly turn an otherwise uncongested route into a bottleneck.
Similarly, any reliable traffic prediction model must take into
account time-dependent varied factors, such as rush hours,
special events, or weekend traffic patterns. As shown in Table
I, the predicting traffic congestion issue utilizing IoT networks
is assessed using two key constraints which are unvaried such
as, dimension of route distance, traffic low, pattern current
vehicle conditions, and varied like : weather conditions, special
nature of route, temporal nature of route, other vehicles pattern
conditions, route environment, and vehicle speed. Our main
objective is to develop a model that makes this task more
efficient, because the related mechanisms particularly consider
some constraints to deal with this problem, it is vital to explore
all of them for effective congestion prediction.

A comprehensive knowledge of the interplay between these
components is necessary for the precise forecasting of traffic
congestion. Varied factors introduce layers of complexity that
require dynamic handling, whereas unvaried factors set the
scene by providing insights on typical traffic flow and bottle-
neck points. These elements work together to define the traffic
environment, and it is crucial to take them into account when
forecasting and handling congestion. The complexity of traffic
circumstances emphasizes the value of using real-time data,
advanced algorithms, and a thorough grasp of the different
factors influencing traffic congestion.

C. DBSCAN for Traffic Data Clustering

The Algorithm 1 is intended to cluster data via the DB-
SCAN technique, and then estimate the congestion level. It
first initializes the cluster index and sets up the core points,
unvisited points, and clusters. Finding each data point’s ϵ-
neighborhood and designating those with enough neighbors
(more than or equal to MinPts) as core points constitute the
core point identification step. The algorithm chooses core
points iteratively, forms clusters, enlarges them with nearby
core points, and updates the list of unvisited sites during the
cluster building process. Lastly, it computes cluster densities
and allocates congestion levels (Low, Medium, High) accord-
ing to these densities in order to estimate congestion levels.
Noise is defined as points that do not fit into any cluster.

D. Traffic Congestion Classification Using GNN with Tempo-
ral Extensions

Graph-structured data, such social connections or road
networks, is processed using GNNs [36], a specific kind
of neural network. While graphs have been the subject of
applications for traditional neural networks such as Convo-
lutional Neural Networks (CNNs) [37] and Recurrent Neural

Algorithm 1 DBSCAN Clustering with Congestion Estimation

1: Initialize:
2: Set core points Ω← ∅
3: Set unvisited points F ← D
4: Set clusters C ← ∅
5: Set cluster index k ← 0
6: Set congestion levels based on cluster density
7: Core Point Identification:
8: for each point xi in D do
9: Compute ϵ-neighborhood of xi

10: if number of neighbors ≥ MinPts then
11: Add xi to core points Ω
12: end if
13: end for
14: Cluster Formation:
15: while Ω is not empty do
16: Pick a core point o from Ω
17: Create a new cluster Ck including o
18: Expand the cluster with ϵ-neighbors of core points
19: Remove processed points from F
20: Update clusters C and increment k
21: Remove core point o from Ω
22: end while
23: Estimate Congestion Levels:
24: for each cluster Ck do
25: Compute cluster density
26: if density is low then
27: Assign congestion level to Low
28: else if density is medium then
29: Assign congestion level to Medium
30: else
31: Assign congestion level to High
32: end if
33: end for
34: Handle Noise:
35: Points not included in any cluster are labeled as noise.

Networks (RNNs) [38], GNNs are better suited for these kinds
of jobs. Since its debut in 2005, supervised, unsupervised, and
reinforcement learning have all seen a significant increase in
interest in GNNs because of their versatility.

As a robust mechanism For exploring graph structured data,
Containing traffic networks, Graph Neural Networks (GNNs)
transmit messages among nodes to record spatial associations.
GNNs can effectively replicate the time changing character
of traffic By integrating temporal frameworks like LSTM and
learning Trends out of previous data to predict future traffic
congestion. This fusion enables to utilize a dynamic framework
in which Adjustments to the traffic network, Comparable
to accidents or closures, could be provided in the graph
Architecture as the system Is in training. Additionally, by
Measuring the Meaning of Diverse nodes, Complex GNN
topologies similar to Graph Attention Networks (GATs) [39]
Enhance the prediction of accuracy Beyond enabling the model
to concentrate on important congestion regions. because of
these specifications, GNNs are Particularly well Appropriate
for predicting real-time traffic congestion because they could
Simultaneously capture Each of the two spatial and temporal
dependencies.
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TABLE I. THE PERFORMANCE OF DIFFERENT MODELS ON VARIOUS ROUTE AND TRAFFIC FEATURES

Feature Coverage

Studies D T P W S Tn Ov Re Vs

[29] ✓ ✓ ✓ ✓
[30] ✓ ✓ ✓ ✓
[31] ✓ ✓ ✓ ✓ ✓
[32] ✓ ✓ ✓ ✓
[33] ✓ ✓ ✓ ✓ ✓
[34] ✓ ✓ ✓ ✓
[35] ✓ ✓ ✓
Our Model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D : Dimension of Route Distance T : Traffic Flow P : Pattern of Current Vehicle Conditions
W : Weather Conditions S : Special Nature of Route Tn : Temporal Nature of Route
Ov : Other Vehicles Pattern Conditions Re : Route Environment Vs : Vehicle Speed

GNNs are being used in smart cities for practical purposes
[40], such as route planning and traffic light optimization
to reduce congestion. GNNs are more effective at captur-
ing intricate, non-grid road structures than previous models,
which makes them more appropriate for large-scale, irregular
road networks. Additionally, the model’s ability to prioritize
important traffic nodes is made possible by innovations like
Graph Attention Networks (GATs), which raise the accuracy
of congestion prediction.

The traffic data in a GNN with Temporal Extensions is
shown as a graph G = (V, E), where:

• V The total number of nodes that represent traffic
locations.

• E The set of edges (i.e., route links) that link each
node.

By combining data from nearby nodes, a process known as
graph convolution, the model is able to represent the spatial
dependencies. Through this procedure, the model is able to
understand how surrounding sites affect the traffic conditions
at a certain location.

In order to simulate how traffic conditions change over
time, the temporal part of the model incorporates tempo-
ral graph convolutions or recurrent mechanisms like gated
recurrent units (GRUs) or LSTMs [41]. The network can
anticipate traffic congestion in upcoming time steps because
to the combination of temporal and graph modeling.

There are two primary parts to the temporal Graph Neural
Network (GNN) model that was employed in this research.
GNNs improve congestion class accuracy by allowing traffic
information to spread between nodes, as opposed to traditional
machine learning techniques, which treat individual road seg-
ments separately. The first layer is the Graph Convolution
Layer, which represents the spatial connections between the
graph’s nodes. The graph convolution for a node v ∈ V at
time t is defined in Eq. (1) [42] as follows:

H
(l+1)
t = σ

 ∑
u∈N(v)

1

cvu
W (l)H

(l)
t (u)

 (1)

where, sigma is a non-linear activation function, N(v) is the set
of surrounding nodes of v, cvu is the normalization constant, W (l)

is the learnable weight matrix, and H
(l)
t is the hidden state of node

v at layer l and time t.

The Temporal Extension, a second element, simulates how node
properties change over time. It is possible to employ a temporal
convolution or a recurrent neural network (such as GRU or LSTM).
For example, at time t+ 1, the hidden state of a node is changed as
follows in Eq. (2) [43]:

Ht+1 = GRU(Ht, Xt) (2)

where, the traffic data input at time t is denoted by Xt.

The traffic observation network is represented as a graph in this
study, with nodes standing in for traffic observation stations and edges
for connectivity between places. At each node, traffic data, including
vehicle count and speed, is gathered over time to create a time-series
of graph-structured data.

For capturing the temporal dynamics of traffic across time, as well
as the spatial dependencies between observation stations, a GNN with
temporal extensions is used. While recurrent layers (such as GRU
or LSTM) or temporal convolutions are utilized to record the time-
varying characteristics of traffic at every node, graph convolutions are
used to model the influence of surrounding nodes.

Using historic traffic information and interactions with other
nodes through time, the model predicts future congestion at each
monitored location. Three classifications - low, medium, and high
congestion characterize the levels of congestion. The edges of the
graph are weighted based on past congestion relationships, reflecting
both spatial and temporal dependencies.

V. EXPERIMENTAL RESULTS AND EVALUATION

In this study, we evaluated a number of traffic congestion pre-
diction models using actual traffic data and contrasted their overall
effectiveness.

A. Dataset Description

The validation for the proposed methodology was carried out
using the CityPulse dataset [44], which includes six months of real
traffic data collected from 449 sensor nodes in Aarhus (Denmark).
CityPulse was selected as a source of valuable information due to
the wide-ranging nature of the type of traffic measured and the city’s
geographical location; it includes information about the quantity of
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traffic at different time intervals on several different types of roads
(such as freeways and major thoroughfares) and at different locations
(within the same metropolitan area).

In terms of traffic data collected over a six month period, the
dataset includes a wide-ranging representation of the different types
of traffic congestion in cities due to the variety of traffic conditions
and types of roads represented within the CityPulse dataset. Also, the
dataset provides data for many different types of attributes that may
influence traffic congestion patterns, including, for example, the time
taken to travel between two locations (travel time), the number of
vehicles on the road (road occupancy), and the speed at which traffic
is travelling (average speed).

The dataset include the following features:
status, avgMeasuredTime, avgSpeed, extID,
medianMeasuredTime, TIMESTAMP, vehicleCount,
_id, and REPORT_ID.

Nevertheless, these factors do not address the static limitations
(route length and capacity, or structural bottlenecks) that play an
important role in shaping traffic behaviour.

To enhance the dataset, we incorporated fixed attributes like
length of the road, how many lanes there are, and where these roads
are located in space. These fixed attributes represent the limitations
or constraints created by the road network itself. Conversely, varying
attributes such as speeds, elapsed time, and number of vehicles on
a road are dynamic attributes that change over time and document
traffic’s dynamic characteristics.

By merging both fixed and dynamic data to create a dataset, we
have created a more complete and realistic framework for modelling
congestion behavior. This enhanced dataset gives us the ability to
quantify how traffic changes dynamically and how structural bot-
tlenecks impact when and where congestion occurs along a road
segment.

B. Enhanced DBSCAN Data Labelling

Once the dataset had been created, the next step in processing
the original and enriched variables into effective congestion categories
was accomplished using a modified version of the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm. A
modified version of DBSCAN was chosen because the noise and
variation present in real-world traffic datasets are difficult to handle
even with the latest clustering methods. The DBSCAN algorithm has
many advantages for use in urban traffic situations, particularly due
to its ability to create clusters of differing dimension and to reject
outliers, whereas traditional clustering algorithms such as k-means
rely on the number of clusters and thus are limited to producing
clusters of the same dimension.

Road segments were categorized into three main groupings by the
clustering algorithm, which we subsequently designated as congestion
levels:

• Low Congestion: Characterized by relatively low traffic
volumes, higher average speeds, and short travel times.
These conditions usually reflect free-flow traffic.

• Medium Congestion: Represents moderate traffic volumes
and reduced average speeds, often corresponding to peak
hours or transitional conditions where flow remains man-
ageable but delays are present.

• High Congestion: Defined by high vehicle density, low
average speeds, and longer measured times. These condi-
tions reflect severe bottlenecks or critical saturation of the
infrastructure.

This labelling step transforms the raw clustering output into
interpretable and operational categories, which serve two purposes: 1)
they provide a meaningful way to compare different traffic conditions
across the city, and 2) they create a labelled dataset that can be used
to train supervised learning models such as the GCN classifier.

In this way, the Enhanced DBSCAN not only organizes raw
traffic data into coherent groups but also bridges the gap between
unsupervised clustering and interpretable, real-world traffic levels.

C. Model Performance Analysis

From pre-clustered with labels for low, medium, and high con-
gestion levels, the Graph Convolutional Network (GCN), being an
exemplary model of the class of Graph Neural Networks (GNNs)
[45], is used for traffic data classification. The graph-structured repre-
sentation of traffic flow by the model accurately captures spatial inter-
dependence among neighboring road segments. Each node represents
road segments, and geographical correlations among segments are
indicated by the edges. The GCN can model the complex non-linear
relationships encountered in urban transport networks by considering
geographical and temporal dependencies.

The hyperparameters used for GCN model training are listed
in Table II. The network topology has three layers with a hidden
dimension of 64, learning rate of 0.005, and ReLU activation function.
The model was trained by an Adam optimizer for 30 epochs, with
a weight decay of 0.0001 to control the model complexity and a
dropout of 0.4 to prevent overfitting. 15 epochs of patience were used
for early stopping for guaranteeing convergence and preventing un-
necessary computation. For a trade-off between computing efficiency
and stability, the batch size was chosen to be 128.

TABLE II. HYPERPARAMETERS USED FOR TRAINING THE GCN MODEL

Hyperparameter Value
Learning Rate 0.005
Number of Layers 3
Hidden Dimension 64
Activation Function ReLU
Batch Size 128
Dropout Rate 0.4
Weight Decay 0.0001
Number of Epochs 30
Optimizer Adam
Early Stopping Patience 15

The good convergence and stability of the GCN model are
confirmed by the training curves in Fig. 4. As the loss function
reduces smoothly before settling to a small value, the accuracy curve
rises very sharply in early epochs, saturating to a 93% accuracy. Good
generalization and zero overfitting are ensured by the parallel nature
of the training and validation curves. Model instability is not the
cause of minor differences in validation accuracy, rather it is a result
of natural traffic variation.

We evaluated the effectiveness of our suggested method by
making comparisons with a number of state-of-the-art techniques,
such as a hybrid CNN-LSTM model [9], a GAT-based technique
[16], and Mouna’s model [17]. A comparison in terms of important
performance metrics, i.e., accuracy, precision, recall, F1-score, and
area under the ROC curve (AUC), is given in Table III. Our approach
based on GCN performs better than these models in all of the
evaluation measures. It has well-balanced predictive capability for
all types of congestion, with accuracy of 93%, 92% precision and
recall, and F1-score of 0.92. The AUC of 0.95 indicates the model’s
outstanding discriminative capability to distinguish between types of
congestion.
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Fig. 4. Accuracy and loss curves for GCN model training, showing rapid
accuracy growth and stable convergence.

TABLE III. COMPARISON OF THE PROPOSED GCN MODEL WITH OTHER
STATE-OF-THE-ART METHODS

Metric GCN Mouna [17] CNN-LSTM [9] GAT [16]
Precision 0.92 0.89 0.88 0.90

Recall 0.92 0.89 0.87 0.89
F1-Score 0.92 0.89 0.87 0.89
Accuracy 0.93 0.90 0.88 0.91

AUC 0.95 0.91 0.90 0.93

1) Computational efficiency and resource utilization: In
the process of determining whether or not deep learning models
are feasible to be used in large-scale traffic networks, computation
efficiency is as vital as prediction accuracy. The experiment average
memory (RAM) consumption, training time, and inference time are
summarized in Table IV.

Training the proposed GCN model on an NVIDIA RTX 3060
with a RAM of 12 GB and 1.7 GB system RAM took around 4
minutes and 52 seconds. At a time of only 11.3 seconds and an
estimated RAM usage of around 0.9 GB, the inference time (testing)
was much faster. Our model has a good balance between accuracy and
computational cost compared to the CNN-LSTM and GAT models,
whose higher memory cost of over 2 GB was slower to train (6.4 and
5.7 minutes, respectively).

According to IV, the results prove that the proposed GCN-based
technique provides superior performance when compared to existing
approaches including CNN-LSTM, GAT and Mouna’s model based
upon the same set of performance metrics. The main advantages
offered by our approach are:

• Improved prediction accuracy since the GCN was capa-
ble of better capturing spatial dependencies between road
segments; therefore, creating an accurate representation of
traffic congestion level for each road segment.

• Balanced performance across the different congested levels
with high precision, recall and F1-score.

• The GCN model was able to perform computations more
efficiently than other models, performing inference at a
higher speed (throughput), and with less memory consump-
tion, thus, allowing for its application in real-time traffic
situations.

The above advantages indicate that our approach for predict-
ing traffic congestion provides both greater accuracy and greater
efficiency than existing state-of-the-art methodologies for predicting
traffic flow congestion in dataset utilised in this analysis.

These results confirm that the targeted GCN model retains
effective memory usage and speeds up inference while improving
prediction performance. This makes it an effective fit in applications
where fast and efficient processing is required, such as adaptive traffic
control and real-time traffic congestion prediction.

Given everything being equal, the proposed approach attains an
appropriate balance among hardware use, training effectiveness, and
performance and hence constitutes a viable and competitive option
for long-term use in smart transport systems.

D. Discussion

The results of the experiments show that by combining both
structural (non-varying) and dynamic (varying) factors, we achieved
greater accuracy in classifying traffic congestion levels. The enhanced
version of the DBSCAN algorithm enabled the conversion of different
types of traffic data into usable traffic congestion levels. This allowed
the GCN classifier to distinguish between different traffic behaviours
that were not captured by other models. This supports our theory
that the use of density-based clustering in conjunction with graph-
based classification will provide an improved method of capturing
the spatial and temporal characteristics of traffic flow.

When compared with CNN-LSTM, GAT, and Mouna’s [17]
proposed model, the GCN-based approach achieves better accuracy,
precision, recall and Area Under the ROC Curve (AUC). The GCN
has an advantage over these sequence-based or attention-based models
that treat each segment independently, because of its ability to
explicitly model relationships between adjacent road segments. The
improved AUC value of 0.95 demonstrates that the model is highly
capable of distinguishing between medium and high congestion levels,
which tend to be the hardest to differentiate from one another.

An analysis of the efficiency of the proposed model shows that the
proposed model achieves competitive training and inference speed, as
well as efficiency, while using a much lower amount of GPU Memory
in comparison to CNN-LSTM and GAT. Therefore, as a result of this
balance between the model’s ability to predict accurately and the cost
of computation, the proposed model is well-suited to use in the real-
time traffic monitoring environment, which requires rapid decisions
and limited resources.

VI. CONCLUSION AND FUTURE WORK

We introduced a novel approach for predicting traffic congestion
in urban environments by utilizing an enhanced DBSCAN clustering
technique and a GCN Classifier. Using a 6-Month Traffic Dataset
from Aarhus, Denmark, we concluded that combining both static and
dynamic (evolving) Traffic Factors together will increase accuracy
when predicting the level of congested traffic. Our enhanced DB-
SCAN method provides a way to convert multiplexed types of traffic
data into usable levels of congestion and allows for the capture of
spatial relationships between adjacent Roads or Segments of Road
via a GCN to further distinguish between Medium and High levels
of Traffic Congestion. Our methodology outperforms current leading
approaches, including CNN-LSTM, GAT and Mouna’s [17], in terms
of Accuracy (93%), Precision (92%), Recall (92%) and AUC (0.95),
while also achieving a balance between performance and speed which
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TABLE IV. COMPUTATIONAL EFFICIENCY AND MEMORY CONSUMPTION COMPARISON BETWEEN MODELS

Model Train Time (min) Test Time (s) RAM (GB) GPU (GB)
Proposed GCN 4.87 11.3 1.7 2.3
CNN-LSTM [9] 6.42 15.8 2.4 3.1
GAT [16] 5.73 13.5 2.1 2.8
Mouna [17] 5.15 12.7 1.9 2.6

make it appropriate for inclusion in a real-time Traffic Monitoring
Application and Intelligent Traffic Management System.

In future research, we will include various contextual elements
(like weather patterns, public events, and car wrecks) as input features
to create more robust predictive models. We will also expand our
temporal modeling technique to forecast traffic congestion further into
the future (i.e., hours, days, weeks, etc.). Finally, we are interested in
how our traffic prediction method can be integrated into the develop-
ment of adaptive traffic control systems that respond dynamically to
changing traffic conditions in real time. The work outlined above has
been developed to make our traffic prediction method robust and able
to be used for a wide range of smart traffic management and urban
planning applications in rapidly changing and varied urban settings.
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